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Abstract

The best known method to find exact or at least e-approximate solutions to polynomial program-
ming problems is the spatial Branch-and-Bound algorithm, which rests on computing lower bounds
to the value of the objective function to be minimized on each region that it explores. These lower
bounds are often computed by solving convex relaxations of the original program. Although convex
envelopes are explicitly known (via linear inequalities) for bilinear and trilinear terms on arbitrary
boxes, such a description is unknown, in general, for multilinear terms of higher order. In this paper,
we study convex relaxations of quadrilinear terms. We exploit associativity to rewrite such terms as
products of bilinear and trilinear terms. Using a general technique, we establish that, any relaxation
for k-linear terms that employs a successive use of relaxing bilinear terms (via the bilinear convex
envelope) can be improved by employing instead a relaxation of a trilinear term (via the trilinear
convex envelope). We present a computational analysis which helps establish which relaxations are
strictly tighter, and we apply our findings to two well-studied applications: the Molecular Distance
Geometry Problem and the Hartree-Fock Problem.

Keywords: quadrilinear, trilinear, bilinear, convex relaxation, reformulation, global optimization,
spatial Branch and Bound, MINLP.

1 Introduction

A polynomial programming problem is a Nonlinear Program (NLP) in the following general form:

min  f(z)
glxz) < 0 (1)
r € [zt 2Y],
where f : R” — R, g : R® — R™ are polynomial functions, and %, 2V € R". In general, the feasible
region of (1) can be a nonconvex set, or the objective function may be nonconvex on the feasible region;

it is such instances that are primarily of interest.

The solution method of choice is the spatial Branch-and-Bound (sBB) algorithm [33, 2, 37, 21],
which finds, in general, e-approximate solutions for an arbitrarily small positive . The sBB algorithm
works by recursively partitioning the search space (normally a box defined by variable ranges) along the
coordinate direction that contributes most to the gap between lower and upper bounds on the optimal
objective function value computed in each subproblem. For a minimization problem, the lower bound is
usually computed by constructing and solving a convex relaxation, and the upper bound can simply be a
local optimum found by a (local) NLP solver. When the gap for a particular subproblem is within ¢, the
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subproblem is discarded without further partitioning, because the globally optimal objective value for that
subproblem has been found. Subproblems are also discarded when the convex relaxation is infeasible or
when their lower bound is greater than the current best overall solution found. The algorithm terminates
when all the subproblems have been discarded.

One of the most crucial steps of sBB is the lower bound computation. For factorable problems
(i.e. NLPs involving functional forms that can be written as recursively, using a finite number of ele-
mentary “atomic” functions), it is possible to construct a convex relaxation automatically by means of a
particular type of lifting reformulation (called MINLP standard form [37, 22]) first proposed in [28] and
then exploited in most existing sBB algorithms [33, 2, 37, 21, 40, 5]. Because all polynomial functions
are factorable (relative to multiplication), such a reformulation also applies to (1). Informally, high-order
monomials are recursively rewritten as products of monomials of sufficiently low order for which a tight
convex relaxation (possibly the convex envelope) is known. Each low-order monomial is replaced by an
additional variable, and an equality constraint defining the additional variable in terms of the monomial
it replaces is adjoined to (1). This operation is carried out recursively, until the functions f, g are linear
forms. At this stage, each defining constraint is replaced by a set of constraints defining the convex
relaxation of its feasible set, thus yielding a convex relaxation for the whole problem.

This iterative procedure for constructing a convex relaxation of (1) is symbolic rather than numeric, in
the sense that it performs structural changes to the formulation of (1), adjoining variables and constraints,
and replacing terms with variables and constraints with other constraints. The tightness of the resulting
relaxation rests on the availability of a good “library” of convex relaxations/envelopes of elementary
terms, such as monomials of low degree. Notice that this symbolic procedure is independent of any
geometrical consideration concerning the feasible set of (1); thus, the direction of the objective function
at a point is not an option for measuring convex relaxation tightness; we employ the partial order of set
containment instead: convex relaxation A is tighter than convex relaxation B if A C B.

Convex envelopes in explicit form are currently known for concave/convex univariate functions [1, 36],
bilinear terms [3, 28], trilinear terms [30, 29], univariate monomials of odd degree [20, 26] and fractional
terms [39]. General theoretical results for vertex-polyhedral convex envelopes are given in [38]. More
advanced practical techniques for generating tight convex envelopes computationally are given in [11, 12].
The multivariate monomial of smallest degree for which the convex envelope is not known in general is
the quartic one [7]. In [34], bounding schemes for multilinear functions are compared; convex envelopes
of multilinear terms are known for specific values of x¥, zU [32]; a recent result characterizes the convex
envelope of a class of functions including some multilinear functions [14]. The general quartic terms, up
to symmetry on variable indices, are x1722374, T17973, 173, 2?22, Besides being fundamental building
blocks for reformulating the general problem (1), these terms occur in important applications, such as the
Molecular Distance Geometry Problem (MDGP) (see [16, 17, 23]) and the Hartree-Fock Problem (HFP)

(see [18, 24]).

In this paper, we focus on the quadrilinear term zqz2x324 (other types of quartic terms will be the
object of future investigations). Associativity allows the iterative procedure to decomopose this term in
several different ways: ((z122)2x3)z4 and (x12923)x4 are two examples yielding as different outcomes the
set of defining constraints wy = x1x9, we = w3, w3 = waxy and, respectively, w; = x1x2x3, Wo = W1Ty
(where the w are added variables). It is this flexibility that we wish to investigate. We prove, using a
general method that is not limited to monomials, that the second alternative yields a relaxation that is
at least as tight as the first. Also, we establish by means of a computational assessment, that in many
cases the second alternative yields strictly tighter relaxations. Finally, we study the behaviour of the
proposed relaxations when used for the MDGP and HFP.

The results that we obtain are important especially in view of the fact that the traditional grouping
used by sBB algorithms [2, 35, 27, 5] is the slacker alternative ((xix2)x3)xs. Moreover, because the
symbolic-relaxation procedure illustrated above also holds in the presence of integrality constraints on
the variable vector x, and even when f, g include transcendental terms such as logarithm, exponentials and
trigonometric functions, our results also apply to rather general Mixed-Integer Nonlinear Programming
(MINLP) problems.
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The rest of this paper is organized as follows. In §2 we review the explicit convex (linear) envelopes for
bilinear and trilinear terms, and we use them to derive explicit convex (linear) relaxations of a quadrilinear
term. In §3 we define a small formal language for expressing functions in infix form, and describe language
semantics corresponding to the function itself and its reformulation/relaxation. We then exploit these
formalisms to prove our main result. In §4 we describe an experimental methodology to determine which
type of term grouping order is best for the quadrilinear term. In §5 we introduce the MDGP and the HFP,
and we report the results of computational experiments aimed at comparing different convex relaxations
on application models. §6 concludes the paper.

2 Convex relaxations of quadrilinear terms

2.1 Existing convex envelopes

In this section, we review the known convex envelopes for bilinear and trilinear terms that we use to
derive convex relaxations for the quadrilinear term. Each of these should be considered as a symbolic
algorithm to be applied to the original problem in order to obtain a (convex) relaxation. Throughout,
the domain of each variable z; is the interval denoted [zf, zV].

The bilinear term x;x, is replaced by a new variable x;, and the following linear inequalities are added
to the problem relaxation (“McCormick’s envelope”; see [3, 28]):

T, > xfask—l—:véxj —xfxé
x;, > x]ka + zg:cj — x?zg
r; < xka + :ngj - xJLxg
xr; < ijxk + xﬁxj — xgjxﬁ

The trilinear term x5, is replaced by a new variable x;, and linear inequalities describing the convex
envelope are added to the problem relaxation depending on the signs of the bounds on variables [30, 29].
Denoting a permutation of x;, zx,z, by the symbols z,¥, z, in the case x> 0,yr >0,2L <0,2V >0
the following inequalities are added:

i > yVVz+aVVy4aVyVsz—22UyU20
2 > yUilotalUygalyls—olyUsl — ghyUU
T, > yUzLax—l-:szLy—l—a?LyLz—wLyUzL —aJLyLzL
2 > ylaUaotalUzlygalyls —gUylsU — gUyL L
i > yPrlagaUzbyalyls — aUylzE - gLyl
x> yrVetatVy+(0/(Y - 252+

(—(025) /(20 — 2) — alyU2U — Uyl U 4 gUyU Ly
r; < yUzLx—i—xUzLy—i—nyUz—2nyUzL
i < ylzla4aUzUy—aUyls - gUylzU _ gUyl L
i < yVVztalzUytalyls — alyUzU — glyl,U
2 < yUUzalalygalyls—olyUsU — glyUsl
2 < ylUaotalzUytabyls — gUylsU — glylU
z; < yllo+ally+ 0/ -2Y)z+

(—(029) /(25 = 2U) — gUylol — glyULL 4 gUyU LUy,

where
0 = alyUzU _gUyU L _ gLyl U 4 gUy LU

0 = aUylal —gUyUsU _gLyl,L g gLy U L
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For details about other cases, depending on the signs of the bounds, the reader is referred to [30, 29], where
explicit expressions defining the facets of convex/concave envelopes are given for different combinations
of variable bounds.

2.2 Obtaining convex relaxations of quadrilinear terms

Let us consider a quadrilinear term xyxox3x4. Exploiting associativity of the product, we rewrite it, in
different ways, as products of monomials of degree two and three and use the known bilinear and trilinear
convex envelopes (described in the previous subsection) to derive the corresponding convex relaxations.

We consider the four types of term groupings

(z172)33)74
($1I2)($35€4)
(T12023) T4
(r122)T324,

which, up to renaming the variables, exhausts the possibilities. Relative to these groupings, we consider,
respectively, the sets:

S = {(z,w) e R* xR®|z; € [zF, 2V], w1 = 2129, wo = w23, w3 = woz4},
Sy = {(z,w) eER* xR3|z; € [zF,2V], w1 = 2120, wo = 2324, w3 = WiWs},
Sz = {(z,w) e R* xR?|z; € [zF,2V], wi = z12013, w0 = w24},
Sy = {(z,w) e R* xR?|z; € [zL, 2V], w1 = z129, wy = wyz324}.

To derive four corresponding relaxations, we exploit a bilinear envelope thrice for the first two cases; a
trilinear envelope followed by a bilinear envelope for S3 and a bilinear envelope followed by a trilinear
envelope for Sy.

3 Main result

In this section, we provide a theoretical framework to investigate relaxation strength. We point out that
it can be applied to any factorable mathematical program in order to compare pairs of relaxations. The
general method that we propose is based on the idea of using a formal language to express the functions
used in the objective and constraints of a mathematical program, and defining a semantic of strings of
this language that is used to prove the main result.

A list of symbols used in this section, together with their meaning, is reported in Table 1.

3.1 Mathematical expression language

Let 2" = {x1,...,2,} be a set of variable symbols. Let & be a set of operator symbols. Operators are
written in functional form, i.e. for an operator ® € ¢ with p > 1 arguments, we let ®(x1,...,z,) be
the string describing the application of the operator ® to the formal arguments z1,...,z, (sometimes,
depending on the context, we also write the more usual infix form 21 ® - - - ® ,,). For an operator ® € 0,
we let the arity a(®) be the set of numbers of arguments that the operator ® can have. Let &2 be the
set comprising the three symbols: “(”, “)” and “,” — that is: left round bracket, right round bracket,
and comma.

Consider the alphabet & = Z"URU U P, which we use to define a language whose strings (i.e. valid
words) are precisely the functions used in the objective and constraints of a mathematical program.
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Symbol | Meaning
z set of variables symbols
% set of operator symbols
P set of round brackets and comma symbols
o alphabet
<z language
fsh strings of the language
By (%) symbol of the string f in the i-th position
w(®) result of application of the operator ® (to elements of the language)
Z(f) semantic of f
Z(f) relaxed semantic of f
R(h) relaxed composite semantic of A with respect to its substring

Table 1: Table of notations

3.1 Example
For 0 = {+,—,x,+,1, \ﬁlog,exp,sin, cos, tan}, we have the arities:
a(+) = N
( ) = {1’2}
a(x) = N
(=) = o) ={2}
a(v/) = a(log) = a(exp) = afsin) = a(cos) = a(tan) = {1}.

2 Vz(y+1)(y—2)
logy

—(sin(=(1 (2,2)), = (x(v/(2), +(y: 1), = (4,2)), log())))-

The function — sin (x ) is given by the following string:

Let £ be the language (set of strings of &) built recursively according to the following rules: atomic
expressions consisting of a single variable or real number are in the language, and for every operator
and potential arity, if the arity p is compatible with the operator, then by applying the operator to p
(ordered) elements of the language, we get another element of the language:

1. WeRUZ ({eP)
2.Ve e O.peN (pea(®) -V ...,l, e L ((,....L,) €2L)).

In the latter case, we also write w(®) = (f1,...,£p). For f € £, we write f(z;,,...,2;,) to emphasize
the fact that the string for f only includes variable symbols z;, for j < p.

3.2 Relaxed semantics

We now introduce the formal definition of relaxed semantic of strings in .Z.

Let € R™ be such that 2¥ <z < 2V for 2%, 2V € R?, and let f € .Z. Consider the sets:
L) = {(ws,2) | wy = f(2), 2" <@ <2}
Z(f) = {(wyz)|Ap(wys,x) < by, 2" <z <2V}
where by € R™, Ag(wy,x) : R+FD — R™ is a convex function, and .7 (f) C Z(f). We call Z(f) a

relazed semantic of f.

We also consider a relaxed semantic over substrings of f. For all i < p, let f;,g,h € £ be such that
h(z) = g(fi(x),..., [p(x)). Let ws = (wyg,,...,wy,), W= (w1, ..., wp), and consider sets
R(h) = {(wg,wy,x) | Ag(wg, wy) < by, A, (wy,,x) < by, Vi <p, a¥ <z <al}
R(h) = {(w,z)]|3w (w,w,z) € R(h)},
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where R(h) is the projection of R(h) on the subspace {(w,z) € R**'}. R(h) is the relazed composite
semantic of h with respect to its substring g(f1,..., fp)-

In what follows, we always assume that Z(h) C R(h), i.e. the relaxed semantic is at least as tight as
the relaxed composite semantic.

Note that it is possible to define relaxed semantics slacker than relaxed composite semantics.

3.2 Example
Let v = (z1,72,23) € R?, ol = (af 2, 2L) and 2V = (2V,2Y,2Y) be such that 2* < x < 2V, where
rl =10 and 2V = 5.

Consider the relaxed semantic given by the application of interval arithmetic. We recall that, for two
intervals [a,b] and [b, ¢| such that a < 0 < b,¢ < 0 < d, the application of basic interval arithmetic rules
gives the interval [min(be, ad), max(ac, bd)]. Hence, applying interval arithmetic on xix2x3, we get the
hyperrectangle R;, given by [—10,5] x [—10, 5] x [—10, 5] x [-1000, 500].

As relaxed composite semantic, we consider that obtained by applying the bilinear convex relaxation
twice. Let w1 = x12x9 and we = wixz. We have:

Ry = {(wi,wq,z) €R® |z <a<al,
wy > lea:Q + xQLxl - leacQL,wl > a:lsz + xgxl - xlljxg,
wy < xfxg + I2UI1 - lea:g,wl < xlng + 1’5‘1‘1 — le:cQL,
wo > wleg + xéwl - wfng,wg > ng.ﬁg —|—J;gw1 - wga:g,

L U LU U L U, L
wy < wyTs + x5 w) — wyxs , wy < wy Tz + r3W; — wy T

The polytope obtained projecting Ry, on R* has extreme points (—10, —10, —10, —1000), (—10, —10, 5, 500),
(~10,5,-10,500), (5, — 10, —10,500), (~10,5,5, —250), (5, —10, 5, —250), (5, 5, —10, —250), (5,5, — 3, —625),
(5,5, —%, 500), (5,5,5,125), that are contained in R;,.

3.3 Comparison of relaxed semantics

Let F' € Z. Let 0' = 0 U{h}, where h(z) = g(f1(x),..., fp(x)), and let &7’ = o/, Let F’ be F rewritten
using the rule g(fi,..., fp) — h, L.e. using the alphabet in &7’.

3.3 Theorem
R(F") C R(F).

Proof. Let h be a string of the alphabet &7 such that h(z) = g(f1(z), ..., fp(z)), and let i’ be a string of
the alphabet <7’ written using the operator replacing g(fi,..., fp) € -Z. The relaxed composite semantic
of F' and of F’ are given by:

R(F) = {(wg,wys,z) | Ag(wg, wy) <bg, Vi <p Ay, (wy,,x) <by,, 2" <z <2V}
U U{(w5k7w7’k’x) | Ask (wsk7wrk) S bSk’
k<t

Vi <pAr, (wr, @) <bry 2" <o <al)

= Tjk’ Y

R(F") = {(wp,z)| A'(wp,2) <V, a¥ <z <2V}
U U{(wsk’wrk’x) | Asy (wsy,, Wiy,) < by,
k<t

Vi <p Ar, (wr, @) by, 2t <@ <o
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where wy = (wy,,...,wy,), Vb <t Wy, = (Wpy,..., W), Wy =h'(xz), p>1and t > 0.
Consider the relaxed composite semantic of h and of A’/

R(h) = {(wngf’x) | Ag(wngf) S b97 Vi S pAfi(wfmx) S bfz‘v xL S € S xU}v

R(W) = {(wn,2) | A'(wy,2) <V, 2 <o <2},

and their projections R(h) = {(w,z) | 3w (w,w,z) € R(h)} and similarly for R(h’). Furthermore, let
Z(h) be the relaxed semantic of h:

Zh) = {(wn, )| Ap(wp,z) < by, 25 <2 <2V},

where wy, = h(z) = g(fi(z),..., fp(x)). By construction this is equal to h'(x), so that Z(h) = R(}').

From the hypothesis that Z(h) C R(h) it follows that R(h') C R(h). The same inclusion holds in the
lifted space: R(h') C R(h). Because all the other terms Ay, (ws, ,w,,) < bs, Vk < t are the same across
both definitions, we have: R(F') C R(F) and hence R(F') C R(F). a

Theorem 3.3 proves that for any relaxation of zyxa - -z (k > 3) using any bilinear envelopes recur-
sively, there is a relaxation employing also trilinear envelopes that is at least as tight. Moreover, such a
relaxation can even be arrived at by replacing any single (a x b) X ¢ with a x b x ¢. In particular, if applied
to the convex relaxations of xixox3x4 described in Section 2, the theorem proves that Sy is at least as
tight as S; and S5, and that S5 is at least as tight as S;. Note that it does not give an indication on the
relative tightness of S3 and S;. In the following, we show in detail how Theorem 3.3 can be applied to
compare the tightness of two of the considered relaxations, namely S; and Ss.

3.4 Example

Let z = (z1, 79,23, 74) € R, 2 = (2l 2l 2l 2l) and 2V = (2Y,2Y  2Y,2¥) be such that 2L < x < 2U.
Let us consider a quadrilinear term x1xox3x4 and the two term grouping ((z1x2)xs)zs and (z1x223)Ty.
We assume for this example that z > 0,y% > 0,21 < 0,2V > 0, where the symbols x,y, z denote a
permutation of x1,xs, T3.

The sets of involved variable and operator symbols are 2" = {x1,29, 23,24}, O = {x} (we also write
yz meaning y X z). Let &/ be the alphabet o = Z URU O U 2.

Consider first ((z122)x3)xa. Let 1, f,g,h € £ be such that h(x) = g(f(I(z))) and suppose that I, f, g
are such that w; = x122, wy = w3 and wy = wyxy. We have:

R(h) = {(wg,wp,w,z) € R7 | zF <2 <2l

wy > :L'leQ +x2Lx1 - xfzé, wy; > x?xg +m2Ux1 - oslljzzU,
wy < lexg + xgxl - xfﬂ;g, wy < xlng —|—$§l‘1 - xlljxé,
wy > wleg + xgwl - wleg, wy > wlUgcg + mgwl - wancg,
wy < wirs + xgwl - wle3U, wy < wy 23 —|—x§wl - wlU:cg,
Wy > w]%x4 + xfwf — wj%:cf, Wy > w](cjzzz4 + xf{wf — wax4U,

wy < w]’%m + x4Uwf - wjffxg, wy < w?m + xfwf - w[j’xf}
The relazed composite semantic R(h) is given by the projection on the space of (w,r) € R5.

Now consider (x1x223)xs. Let b in £ be written by using the operator f’ replacing f(l). Let
0 = plyUsU — gUyUsl _ gyl U 4 pUyLoU

g = aUylol — gUyUsU — plylol 4 glyUsL,
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We have:
R() = {(wg,ws,z) R |2l <2 <2V,
wyp > yUzUx + acUzUy + acUyUz — QmUyUzU,
wp > yUZLx + xLZUy + xLyUZ _ xLyUZL _ xLyUZU’
wp > yUZL:C+Z,LZLy+ILyLZ _ ILyUZL _ l,LyLZL’
wp > yLZU$+xUZLy +nyLZ _ nyLZU _ mUyLZL’

wp > yPola 4 aVzly + alyls — aUylal — plylsl,

wp >yl Ve 42l 2y 4+ (0/(2Y — 25))2 +
(_(GZL)/(ZU _ ZL) _ l,LyUZU _ zUyLZU +nyUZL)7
wypr < yUzLx + xUzLy + mUyUz — QnyUzL,

wp < ylola 4 2UVy — aVyly — aUyloV — pUyklo L,
wp < yUVz 4 aloUy v alyly — alyUslU — gLyl U,
wypr < yUzUx + a:LzLy + a:LyUz — xLyUzU - a:LyUzL,
wp < yLzUx +:UUzUy —i—xLyLz _ nyLZU _ xLyLZU7
wp < ylzlr oty +(0/(2F - 2Y)2 +
(7(§ZU)/(ZL _ ZU) —gUylol — glyU,L +nyUZU)7

Wy > w]%,m + a:fwf/ — wf,xf, (P w][{,m +J;ffwf/ — w]q,xf{,

L U LU U L UL
Wy SWFHT4+ T W — WeHTE, Wy S WpTg + TLWp — We Ty }.

Let R(h) = {(w,z) | 3w (w,w,z) € R(h)} be the projection of R and similarly let R(h') be the
projection of R(h’). The hypotesis Z(h) C R(h) is satisfied, hence, from Theorem 3.3, we have that
R(I') C R(h), i.e. S3 is at least as tight as Si.

4 Computational assessment for the quadrilinear term

Theorem 3.3 allows the comparison of some pairs of relaxations of quadrilinear terms, but it does not give
an indication on the actual strength of the relaxations. We carried out numerical experiments to analyze
the four convex relaxations in order to evaluate their relative tightness. Toward this aim, we generated
a set of instances varying the signs of the bounds on the variables z;, ¢ = 1,...,4. Missing cases on
sign combinations are equivalent to covered cases by simple symmetry considerations. Instances were
generated having the same initial width of the bound intervals for all variables, and then progressively,
for ¢ = 1,2,3, reducing the width of the bound interval of x;. This simulates a typical behavior of
a sBB algorithm, which progressively reduces the size of the variable intervals. This reduction in the
widths of the intervals is made preserving the signs of the bounds, changing a bound interval [z, z¥] to
[zF +1/2,2Y — 1/2]. Initial intervals [zF, z¥] were generated by considering the cases zZ > 0, 2¥ > 0,
zl <0, 2Y <0and 2F <0, 2 > 0. Specifically, we set ' = 1, 2V = 3 in the first case, zF = =3, 2¥ =
—1 in the second case and xF = —1, z¥ =1 in the third case.

The comparison among the considered relaxations is made in terms of the volume of the corresponding
enclosing polytopes. This method of comparison, introduced in [19], is independent of any objective
function. Because exploiting envelopes for bilinear and trilinear terms leads to an increased number of
variables, so that the obtained polytopes belong to R7 (S;, S3) and RS (S3, Sy) respectively, we project
the polytopes on (z, f(z) := z172w324) € R® in order to compare the results. The projection is computed
using the software CDD [9], that calculates projections in exact rational arithmetic. Then, the volume
of each of the obtained projected polytopes is computed using the LRS code [4]. Again, the results are
computed in exact rational arithmetic.

In Table 2 we report the values of the volumes of the polytopes corresponding to Sy, So, S3, Sy
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projected onto R®, obtained for each problem instance. We remark that the volumes are reported in fixed-
precision decimal format for easier reading, although they were computed in exact rational arithmetic.
For each variable x;, the width of the bound interval ¥ — zX and the sign of X and z¥ are also listed.

As expected, reducing the width of the bounds on variables, the polytopes have decreasing volumes,
while keeping the same relative size with respect to the others. Note that for 85% of the test instances,
the smallest values of the volume are obtained with the relaxation corresponding to S4. These values in
5% of instances are the same obtained with S5 and with S; and are the same obtained with Sy again in 5%
of instances (other than the previous ones). On the remaining instances, in 5% of cases we get the same
value for the volume of the four enveloping polytopes, in the other cases the smallest values are obtained
with S3. These results show that S3 and S4 always yield the best relaxations. It is interesting to remark
that in some cases the lowest value is also reached exploiting bilinear relaxations, but we never find that
Sy and Sy provide the lowest volumes. This confirms the Theorem 3.3 (Section 3): the best relaxations
are obtained employing convex envelopes for trilinear terms and not just bilinear ones. Although our
results depend on the particular bounds that we tried, we get a significant indication of the strength of
the considered relaxations and their dependence on signs and widths of bounds.

We also compute the extreme points of w = x1x2x324 by considering all the combinations of bounds
on the variables and we get the convex hull for these points. This gives the tightest linear approximation
of the quadrilinear term, but it is not used in sBB codes because it cannot be expressed explicitly in
function of the bounds on the variables. We use it as an approximation against which to compare the
others. In Table 3 we report, for each of the considered relaxations, the ratios between the volume of
the enveloping polytope projected onto R® and the volume of the above approximation. According to
the results in Table 2, we find the lowest ratios for the relaxation corresponding to S4. Furthermore, for
the 5% of the instances all the volumes are equal; for 5% of the instances other than the previous ones,
S1, S3 and Sy give the same volume of that used as reference. For the remaining cases, we find some
instances (10%) for which the polytope corresponding to S4 is not only the tightest with respect to Sy,
So, S5, but is also equivalent to the polytope around the extreme points.

In order to easily analyze the overall pattern that is emerging in terms of variations of volumes of
the enveloping polytopes, we report a graphical representation of the computational results. For each of
the sign combinations, we plot 4 line graphs, one for each of the linearizations. Each line has 4 points,
corresponding to the instances obtained by progressively tightening the bounds for the considered sign
combination. These graphs suggest that the relaxation strength of quadrilinear terms follow different
behaviors according to different bound widths/signs. We note that, after tightening the bounds on a
variable, there are no examples where one curve goes from far below to far above another. This suggests
that tightening the bounds has a comparable effect on the different relaxations.

The considered polytopes are expected to overlap. Given two polytopes, they share some common
points or one is entirely contained in the other. We get a more precise information about tightness of
the considered relaxations by checking relative containments of the corresponding (projected) polytopes.
For each pair of polytopes P, @, we check if P is contained in @ by checking that every extreme point
of P satisfies all the inequalities defining ). Given a pair P, @ such that the volume of P is less than
or equal to that of @, we are able to estabilish if () contains P. This gives a stronger indication on the
“dominance” of a relaxation with respect to another. The obtained results are reported in Table 4. As
expected from results in Table 2, relaxation Sy gives a polytope which is the most frequently contained
in the others. This polytope is always contained in that corresponding to S; and Ss. It is sometimes
equivalent to these polytopes, specifically in the 20% and in the 15% of the cases respectively. S3 also
gives a polytope always contained or equivalent to that given by S;. This is interesting, being S; currently
the most used relaxation in implementations. For some instances (5%, e.g. i-5), we find that all the
polytopes are equivalent.
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# 1 T2 z3 z4 S1 So S3 Sq
[-1 | sign [ -] ] sign | [-]] sign | [-] sign

FY 2 | +.+ | 2 |+ +| 2 | =+ ] 2 | —, + | 184.0444 | 98.2667 | 175.4074 | 98.2667
i2 2 |+, + | 2 |+ +| 2| -4+ 2 | - —| 242.7111 | 245.9202 | 223.4074 | 185.6000
i3 2 |+, + | 2| -+ 2| -4+] 2 |-+ 770370 77.0370 69.6889 77.0370
i4 2 |+, +| 2| -+ 2 |- 4+] 2 |- —| 1268148 | 203.7333 | 101.6889 | 126.8148
i5 2 | -+ | 2| —+|2|—4+] 2 |-+ 277333 27.7333 27.7333 27.7833
i6 2 | -+ | 2| —+|2]|—-4+] 2 |- | 49.0667 | 77.0370 49.0667 | 49.0667
i7 2 | 4,4+ | 2 s+ | 2 | —-,—| 2 | =+ | 184.8889 | 203.7333 | 175.4074 | 126.8148
i8 2 | 4,4+ | 2 | =4+ | 2| == 2 | -, —| 245.3333 | 245.9202 | 223.4074 | 209.7778
i9 2 | -+ 2 |- =] 2 2 | —, 4 | 184.8889 | 203.7333 | 175.4074 | 126.8148
i10 2 | — 4| 2 |- =] 2 — | 2 | =, — | 245.3333 | 245.9202 | 223.4074 | 209.7778
i1 2 | — 4| 2| — 4] 2 —| 2 | —,+ | 69.6889 77.0370 69.6889 49.0667
i12 2 | -+ | 2| -4+ 2 |- =] 2 |- —| 101688 | 98.2667 | 101.6889 | 89.6000
i13 2 |+, + | 2 |+ +| 2 |+ +] 2 | -+ | 2059795 | 245.9202 | 196.3487 | 185.6000
italfl 2 |+, 4+ 2 | +.+| 2 |+, +| 2 | —,— | 275.3128 | 296.2436 | 249.6821 | 249.2667
i-15 2 |+, 4+ 2 |+ +] 2 |- 2 | —, 4 | 205.9795 | 245.9202 | 196.3487 | 185.6000
i-16 2 |+, + | 2 |+, +| 2| - =] 2 | -, —| 2753128 | 296.2436 | 249.6821 | 249.2667
i17 2 |+, + | 2 | == | 2 |- =] 2| -, 4| 2059795 | 245.9202 | 196.3487 | 185.6000
i18 2 | 4,4+ | 2 2 | -, 2 | —, — | 275.3128 | 296.2436 | 249.6821 | 249.2667
i19 2 | -, — | 2 2 | -, 2 | —, 4 | 205.9795 | 245.9202 | 196.3487 | 185.6000
i.20 2 | —,—| 2 2 | —,— | 2 | —,— | 275.3128 | 296.2436 | 249.6821 | 249.2667
i21 T |+ + | 2 2 | —.+ | 2 | —, + | 72.5304 | 41.9111 69.2622 41.9111
122 1| +,4+ | 2 2 | -4+ | 2 | -, — | 93.8637 97.0978 86.5956 73.5556
123 1| 4,4+ | 2 2 | -4+ | 2 | —,+ | 30.3147 30.3147 28.3733 30.3147
i24 1| +.4+ | 2 2 | —, 4+ | 2 | =, — | 48.4480 77.1504 41.7067 48.4480
125 1| =+ 2 2 | -+ | 2 | -+ 6.9333 6.9333 6.9333 6.9333
126 1| =+ 2 2 | -+ | 2 | -, — | 12.2667 19.2593 12.2667 | 12.2667
i27 1| 4,4+ | 2 2 | —,—| 2 | =, 4+ | 72.0071 77.1504 69.2622 48.4480
i28 1| 4,4+ | 2 2 | —,—| 2 | —,— | 92.8071 92.6308 86.5956 77.7387
i29 1| -+ 2 2 | —,— | 2 | —, 4+ | 46.2222 50.9333 43.8519 31.7037
.30 1| -+ 2 2 | —,— | 2 | —,— | 61.3333 61.4800 55.8519 52.4444
i31 1| =+ 2 2 | - 2 | —, 4 | 17.4222 19.2593 17.4222 12.2667
132 1| =+ 2 2 | -, 2 | -, — | 25.4222 24.5667 25.4222 22.4000
133 1| +,4+ | 2 2 | 4,4+ | 2 | —,+ | 84.2095 97.0978 80.5206 73.5556
i34 1| +,4+ | 2 2 | 4,4+ | 2 | =, — | 108.2095 | 114.5142 | 99.1873 93.0000
i35 1| 4+,4+ | 2 2 | —,— | 2 | =, 4+ | 84.2095 97.0978 80.5206 73.5556
i.36 1| 4,4+ | 2 2 | —,—| 2 ,— | 108.2095 | 114.5142 | 99.1873 93.0000
i.37 1 4,4+ 2 | -, 2 | —,— | 2 + | 84.2095 97.0978 80.5206 73.5556
i.38 1] 4,4+ 2 | -, 2 | —,— | 2 | =, — | 108.2095 | 114.5142 | 99.1873 93.0000
i.39 1] -, 2 | —,—| 2 |- —| 2 | -+ | 84.2095 97.0978 80.5206 73.5556
i.40 1] -, 2 | —,— | 2 | —,—| 2 | —,— | 108.2095 | 114.5142 | 99.1873 93.0000
141 T |+ +] 1 | ++] 2| —F]| 2 |- F]| 279709 | 17.6104 26.6667 17.6104
i42 1| +4+ ] 1 |+ +] 2 |-+ 2 ,— | 35.1376 36.4175 32.3333 28.2958
i43 144+ 1 | =+ 2| =+ 2 + 7.5787 7.5787 7.0933 7.5787
i44 1| 4,4+ | 1 + 2 | =+ 2 |-, =] 1221120 19.2876 10.4267 12.1120
i45 1| =+ 1 + 2| =+ 2 |-+ 1.7333 1.7333 1.7833 1.7333
i46 1| -+ 1 +| 2 |- +]| 2 |-, —-| 80667 4.8148 3.0667 3.0667
i47 1| 4,4+ | 1 +| 2 |- —| 2 |- +]| 180018 19.2876 17.3156 12.1120
i48 1| 4,4+ | 1 +| 2 |- —| 2 |-, —| 232018 23.1577 21.6489 19.4347
i-49 1| =+ 1 - 2 |-, 2 | —,4+ | 18.0018 19.2876 17.3156 12.1120
150 1| =+ 1 — |2 |- =2 |- —| 232018 23.1577 21.6489 19.4347
151 1| =+ + 2 |- =2 |-+ 4.3556 4.8148 4.3556 3.0667
152 1| =+ 1 + 2 |- =2 - 6.3556 6.1417 6.3556 5.6000
153 1] 4+,4+ ] 1 + 2 |+ +] 2 + | 33.2785 36.4175 31.8323 28.2958
i54 1| 4,4+ | 1 + 2 |+ +] 2 |- -] 411118 42.1904 37.8323 32.9208
i85 1| 4,4+ | 1 + 2| - =] 2 |-, +| 332785 36.4175 31.8323 28.2958
i.56 1| 4,4+ | 1 + | 2 — | 2| - - 411118 42.1904 37.8323 32.9208
167 1| 4,4+ | 1 — |2 |- -] 2 |-+ 332785 36.4175 31.8323 28.2958
158 1| 4,4+ | 1 2 | -, 2 | —,— | 41.1118 42.1904 37.8323 32.9208
159 1] - -1 2 | —,— | 2 | —,+ | 33.2785 36.4175 31.8323 28.2958
1-60 1| -, -] — |2 |-, —| 2 | -, —| 411118 42.1904 37.8323 32.9208
i61 T+ +] 1 FlI]|=—F]2 |-+ 6.9927 4.4026 6.6667 4.4026
i62 1| 4,4+ | 1 |- 4+] 2 |- - 8.7844 9.1044 8.0833 7.0740
163 1| 4,4+ | 1 + 1=+ 2| -+ 1.8947 1.8947 1.7733 1.8947
i64 1| 4,4+ | 1 + 1=+ 2 |- - 3.0280 4.8219 2.6067 3.0280
165 1| -+ 1 + 1| -+ 2 |-+ 0.4338 0.4333 0.4333 0.4333
1,66 1| -+ 1 +| 1 |- +| 2 |-, —| o7eer 1.2037 0.7667 0.7667
167 1| 4,4+ ] 1 + ] 1 =2 | -+ 6.8539 7.2208 6.6667 5.2947
168 1| 4,4+ ] 1 + ] 1 =] 2 | == 8.4872 8.8981 8.0833 7.4587
169 1| =+ |y == 2 |-+ 6.8539 7.2208 6.6667 5.2947
170 1| =+ 1 -1 == 2 - 8.4872 8.8981 8.0833 7.4587
i1 1| =+ 1 + 1 == 2 + 1.7733 1.8947 1.7733 1.4333
i72 1| =+ 1 + 1 == 2 |- - 2.6067 2.6194 2.6067 2.4000
i73 1| 4,4+ | 1 + |t |+ 4+ ] 2 | -+ | 12.3542 12.9119 11.8636 10.6573
i74 1| 4,4+ | 1 + |t |+, +] 2 |- —| 14.6459 15.3285 13.5303 12.1469
i75 1| 4,4+ | 1 A+ 1| - =] 2 | =+ | 12.3542 12.9119 11.8636 10.6573
176 1| 4,4+ | 1 + |1 |- =] 2 |- —| 14.6459 15.3285 13.5303 12.1469
177 1| 4,4+ ] 1 — |1 | == | 2 | - 4| 12.3542 12.9119 11.8636 10.6573
178 1| 4+4+] 1| == 1 |—=—=|2 |- —| 146459 15.3285 13.5303 12.1469
179 1| = =] 1| ==11 , 2 | —, 4+ | 12.3542 12.9119 11.8636 10.6573
1-80 1| = -] 1 ]-=11 , 2 | -, — | 14.6459 15.3285 13.5303 12.1469

Table 2: Volumes of the enveloping polytopes projected onto R®. For each z;,

L

of 2V — zf, and “sign” indicates the pair of signs of zF

positive signs is equivalent to that of all negative signs.

U

7xi

indicates the value

“| | 7

respectively. We remark that the case of all
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# T o x3 Ty Sq So S3 Sy
[T [ sign | -1 [ sign | -1 | sign | -1 [ sign

it 2 +, + 2 +, + 2 -+ 2 -, + 2.0541 1.0967 1.9577 1.0967
i2 2 +, + 2 +, + 2 -+ 2 - = 1.5271 1.5473 1.4057 1.1678
i3 2 +, + 2 -+ 2 -+ 2 — 4+ 1.5700 1.5700 1.4203 1.5700
i4 2 +,+ 2 -+ 2 -+ 2 i 1.4153 2.2738 1.1349 1.4153
i5 2 -+ 2 -+ 2 -+ 2 -+ 1.0000 1.0000 1.0000 1.0000
i6 2 -+ 2 -+ 2 -+ 2 —,— | 1.0000 1.5700 1.0000 1.0000
i7 2 +, + 2 -, + 2 - = 2 -+ 2.0635 2.2738 1.9577 1.4153
i8 2 +, + 2 -+ 2 -, 2 - = 1.5436 1.5473 1.4057 1.3199
i9 2 -, + 2 - = 2 - = 2 -, + 2.0635 2.2738 1.9577 1.4153
i-10 2 -, + 2 , = 2 - = 2 - = 1.5436 1.5473 1.4057 1.3199
il 2 -, + 2 -, + 2 - = 2 -, + 1.4203 1.5700 1.4203 1.0000
i12 2 -+ 2 -+ 2 - 2 - = 1.1349 1.0967 1.1349 1.0000
i13 2 +, + 2 +, + 2 +, + 2 -+ 1.2960 1.5473 1.2354 1.1678
i14 2 +,+ 2 +,+ 2 +,+ 2 R 1.4260 1.5344 1.2932 1.2911
i15 2 +,+ 2 +,+ 2 - 2 -+ 1.2960 1.5473 1.2354 1.1678
i16 2 +, + 2 +, + 2 - 2 - 1.4260 1.5344 1.2932 1.2911
i17 2 +, + 2 - = 2 - = 2 -, + 1.2960 1.5473 1.2354 1.1678
i.18 2 +, + 2 -, = 2 -, 2 - = 1.4260 1.5344 1.2932 1.2911
i19 2 R 2 - = 2 - = 2 -+ 1.2960 1.5473 1.2354 1.1678
i-20 2 -, — 2 —, — 2 -, — 2 —, — 1.4260 1.5344 1.2932 1.2911
i21 1 .+ 2 T, + 2 [ 2 [ 1.8888 1.0014 1.8037 1.0914
122 1 +,+ 2 +, + 2 -+ 2 - 1.4728 1.5235 1.3587 1.1541
1923 1 +, + 2 -+ 2 -+ 2 -+ 1.3219 1.3219 1.2372 1.3219
i24 1 +, + 2 -, + 2 -, + 2 - = 1.2617 2.0091 1.0861 1.2617
i25 1 -, + 2 -, + 2 -+ 2 -+ 1.0000 1.0000 1.0000 1.0000
i.26 1 -+ 2 -, + 2 -, + 2 - = 1.0000 1.5700 1.0000 1.0000
i.27 1 +, + 2 -, + 2 - = 2 -+ 1.8752 2.0091 1.8037 1.2617
i.28 1 +, + 2 -, + 2 - 2 - = 1.4562 1.4534 1.3587 1.2197
i29 1 -, + 2 - = 2 - 2 -, + 2.0635 2.2738 1.9577 1.4153
i-30 1 -+ 2 - = 2 - = 2 - = 1.5436 1.5473 1.4057 1.3199
i31 1 -+ 2 -+ 2 - = 2 -+ 1.4203 1.5700 1.4203 1.0000
i32 1 -, + 2 -+ 2 -, 2 - — 1.1349 1.0967 1.1349 1.0000
i33 1 +, + 2 +,+ 2 +,+ 2 -+ 1.3213 1.5235 1.2634 1.1541
i34 1 +, + 2 +, + 2 +, + 2 - 1.4441 1.5282 1.3237 1.2411
i35 1 +, + 2 +, + 2 - 2 -, + 1.3213 1.5235 1.2634 1.1541
i.36 1 +, + 2 +, + 2 -, 2 - = 1.4441 1.5282 1.3237 1.2411
i.37 1 +, + 2 - = 2 - = 2 -, + 1.3213 1.5235 1.2634 1.1541
i-38 1 +, + 2 , = 2 - 2 - = 1.4441 1.5282 1.3237 1.2411
i-39 1 - = 2 y = 2 - 2 -, + 1.3213 1.5235 1.2634 1.1541
i-40 1 -, — 2 —, — 2 -, — 2 —, — 1.4441 1.5282 1.3237 1.2411
i41 1 +, + 1 +. + 2 -+ 2 -+ 1.7195 1.0826 1.6393 1.0826
i42 1 +, + 1 +, + 2 -, + 2 - = 1.4284 1.4804 1.3144 1.1502
i43 1 +, + 1 -+ 2 -+ 2 -, + 1.3219 1.3219 1.2372 1.3219
ia4 1 +, + 1 -, + 2 -, + 2 - = 1.2617 2.0091 1.0861 1.2617
i45 1 -, + 1 -, + 2 -+ 2 -, + 1.0000 1.0000 1.0000 1.0000
i46 1 -, + 1 -, + 2 s + 2 - = 1.0000 1.5700 1.0000 1.0000
ia7 1 +, + 1 s+ 2 - = 2 -, + 1.8752 2.0091 1.8037 1.2617
i.48 1 +, + 1 s+ 2 - = 2 - = 1.4562 1.4534 1.3587 1.2197
i.49 1 — + 1 ,— 2 -, 2 — + 1.8752 2.0091 1.8037 1.2617
i50 1 -, + 1 — — 2 - — 2 — — 1.4562 1.4534 1.3587 1.2197
i51 1 -+ 1 -+ 2 —, 2 -+ 1.4203 1.5700 1.4203 1.0000
i.52 1 -, + 1 -, + 2 -y - 2 - = 1.1349 1.0967 1.1349 1.0000
i83 1 +, + 1 +, + 2 +, + 2 -, + 1.3528 1.4804 1.2940 1.1502
i54 1 +, + 1 +, + 2 +, + 2 - = 1.4648 1.5032 1.3479 1.1730
i.65 1 +, + 1 +, + 2 - 2 -, + 1.3528 1.4804 1.2940 1.1502
i.56 1 +, + 1 +, + 2 - = 2 - = 1.4648 1.5032 1.3479 1.1730
i.67 1 +, + 1 - = 2 - = 2 -, + 1.3528 1.4804 1.2940 1.1502
i.58 1 +, + 1 - = 2 - = 2 - = 1.4648 1.5032 1.3479 1.1730
ib9 1 -, = 1 -, = 2 - 2 -, + 1.3528 1.4804 1.2940 1.1502
i60 1 —, — 1 —, — 2 —y — 2 —, — 1.4648 1.5032 1.3479 1.1730
i61 1 +, + 1 +, + 1 -, + 2 -, + 1.7195 1.0826 1.6393 1.0826
i.62 1 +, + 1 +, + 1 -, + 2 - = 1.4284 1.4804 1.3144 1.1502
i.63 1 +, + 1 -, + 1 -+ 2 -, + 1.3219 1.3219 1.2372 1.3219
i64 1 +, + 1 -, + 1 -+ 2 - = 1.2617 2.0091 1.0861 1.2617
i65 1 -+ 1 -+ 1 -+ 2 -+ 1.0000 1.0000 1.0000 1.0000
i.66 1 -+ 1 -+ 1 -+ 2 - = 1.0000 1.5700 1.0000 1.0000
i67 1 +, 4 1 L+ 1 i 2 -+ 1.6854 1.7756 1.6393 1.8020
i68 1 +, + 1 L+ 1 -, 2 - 1.3800 1.4469 1.3144 1.2128
169 1 -+ 1 - = 1 - = 2 -+ 1.6854 1.7756 1.6393 1.3020
i70 1 -+ 1 - 1 - 2 - 1.3800 1.4469 1.3144 1.2128
i71 1 -, + 1 -, + 1 - = 2 -, + 1.2372 1.3219 1.2372 1.0000
i72 1 -, + 1 -+ 1 - = 2 - = 1.0861 1.0914 1.0861 1.0000
i.73 1 +, + 1 +, + 1 +, + 2 -, + 1.3855 1.4481 1.3305 1.1952
i74 1 +, + 1 +, + 1 +, + 2 - = 1.4970 1.5668 1.3830 1.2416
i75 1 +, + 1 +, + 1 - = 2 -, + 1.3855 1.4481 1.3305 1.1952
i.76 1 +, + 1 +, + 1 - = 2 - = 1.4970 1.5668 1.3830 1.2416
i77 1 +, + 1 -, = 1 - = 2 -, + 1.3855 1.4481 1.3305 1.1952
i.78 1 +, + 1 -, 1 — = 2 i 1.4970 1.5668 1.3830 1.2416
i79 1 - - 1 - - 1 - — 2 -+ 1.3855 1.4481 1.3305 1.1952
i.80 1 -, — 1 -, — 1 -, — 2 -, — 1.4970 1.5668 1.3830 1.2416

Table 3: Ratios of the volumes of the enveloping polytopes projected onto R® and the volume of the
convex hull of the extreme points of w = z1z9x324. For each z;, || = 2¥ — 2F and sign is the sign of z£,

U_
zY respectively. We remark that the case of all positive signs is equivalent to that of all negative signs.
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Figure 1: Volumes of enveloping polytopes corresponding to Sy, Sa, S3, Sy.
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Figure 2: Volumes of enveloping polytopes corresponding to Sy, Sa, S3, S4.
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# ] To T3 T4 containments

[T T sign | -1 ] sign | 1-1 ] sign | 1-1 ] sign
i1 2 +, + 2 +, + 2 — + 2 — + Sg =S4 C S, S3CS1
i2 2 +, + 2 +,+ 2 -+ 2 —,— | s83C 81, 54 C Sy, S4 C Sg
i3 2 +,+ 2 -+ 2 -+ 2 -+
ia 2 +,+ 2 -+ 2 -+ 2 —
i5 2 -+ 2 —+ 2 -+ 2 -+
i6 2 -+ 2 -+ 2 -+ 2 J— =
i7 2 +.+ 2 -+ 2 - - 2 -+ C
i8 2 +,+ 2 -+ 2 -, 2 ,— C
i9 2 — + 2 - = 2 R 2 + C
i10 2 -+ 2 ,— 2 [ 2 — = C
i1l 2 -, + 2 -+ 2 -, = 2 -+
i12 2 — + 2 -+ 2 - 2 R
i.13 2 +, + 2 +,+ 2 +,+ 2 -+
i14 2 +,+ 2 +, + 2 +,+ 2 -, =
i15 2 +,+ 2 +, + 2 - 2 -+
i.16 2 +, + 2 +,+ 2 - 2 - =
i17 2 +,+ 2 R 2 - 2 -+
i18 2 +,+ 2 - = 2 -, 2 - =
i19 2 - = 2 ,— 2 R 2 -+
120 2 —, — 2 [ 2 —, — 2 —, —
io1 1 ¥+ 2 [ 2 Ep— 2 = F
122 1 +,+ 2 +,+ 2 -+ 2 J—
i.23 1 +, + 2 -+ 2 -+ 2 -+
i24 1 +, + 2 -+ 2 -+ 2 - =
i.25 1 -+ 2 -+ 2 -+ 2 -+
126 1 -+ 2 -+ 2 -+ 2 - =
i27 1 +, + 2 -+ 2 -, — 2 -+
i.28 1 +,+ 2 -+ 2 -, 2 -, =
i.29 1 -+ 2 - - 2 - 2 -+
.30 1 — + 2 J— 2 - 2 R
i31 1 -+ 2 -+ 2 - 2 -+
i.32 1 -+ 2 -+ 2 - 2 — p
i.33 1 +,+ 2 +, + 2 +,+ 2 -+ -
i.34 1 +, + 2 +, + 2 +, + 2 - = -
i35 1 +, + 2 +, + 2 - 2 -+ c
i-36 1 +, + 2 +, + 2 - 2 — = c
i.37 1 +,+ 2 — = 2 R 2 -+ C
i.38 1 +,+ 2 ,— 2 -, 2 - = C
i.39 1 - = 2 ,— 2 -, 2 -+ C
i.40 1 —, = 2 -, = 2 —, = 2 —, = C C
141l 1 T, + 1 Ep— 2 JEp— 2 [ C 51, 83C 51
i42 1 +, + 1 +, + 2 -+ 2 - = C 51, 84 C S2
i.43 1 +, + 1 —+ 2 — + 2 —+ Sy =S4
i44 1 +,+ 1 -+ 2 -+ 2 ,— S4 C So
i45 1 -+ 1 -+ 2 — + 2 + S3 =S4
i46 1 — + 1 -+ 2 + 2 R S4 C So
i47 1 +, + 1 -+ 2 — 2 -+ Sy, Sq4 C So
i.48 1 +,+ 1 -+ 2 - = 2 - = Sy, Sq4 C So
i.49 1 — 4 1 - 2 - - 2 -+ S1, S4 C So
150 1 -+ 1 — = 2 - 2 R S1, Sg C So
i51 1 -+ 1 — + 2 -, 2 -+ S3, S84 C So
i52 1 -+ 1 -+ 2 -, 2 J— = S3, S4 C So
i-53 1 +, + 1 +, + 2 +, + 2 -+ C S1, 84 C S2
i-54 1 +, + 1 +, + 2 +, + 2 — = C S1, 5S4 € S2
i.55 1 +,+ 1 +,+ 2 -, 2 -+ C 51, S4 C Sg
i.56 1 +,+ 1 +, + 2 - - 2 - - C 51, S4 C 8o
i.57 1 +,+ 1 - = 2 - - 2 -+ C 51, S4 C Sq
i.58 1 +, + 1 -, = 2 -, = 2 -, = C S1, S4 C S
i.59 1 -, 1 -, = 2 -, = 2 -+ C S1, S4 C So
160 1 —, 1 —, - 2 —, — 2 —, — C Sy, S4 C So
161 1 T, F 1 E— 1 JEp— 2 Ep— S1, 53 C 51
i-62 1 +, + 1 +, + 1 -+ 2 — = C S1, 54 € Sa
i.63 1 +,+ 1 -+ 1 -, + 2 -+ =
i64 1 +,+ 1 -+ 1 + 2 -, =
i.65 1 -+ 1 -+ 1 + 2 -+
.66 1 -+ 1 -+ 1 + 2 - =
i67 1 +,+ 1 .+ 1 - = 2 -+ 3 C
i.68 1 +,+ 1 -+ 1 — 2 J— 3 C
169 1 -+ 1 — 1 — 2 -+ -
i70 1 -+ 1 -, = 1 [ 2 J— -
i71 1 -+ 1 -+ 1 — 2 -+ 4 C
i72 1 -+ 1 -+ 1 — 2 Jp— 4 C
173 1 +, + 1 +, + 1 +, + 2 — 4+ | S3 CS1, 54 €Sy, Sg € So
i.74 1 +,+ 1 +, + 1 +, + 2 —,— | 83 C sy, 84 C Sy, 84 C Sq
i.75 1 +,+ 1 +, + 1 - - 2 —,+ | S3C 81,54 C Sy, S4C 8o
176 1 +, + 1 +, + 1 - = 2 —,— | S3 € 5S1,84 C Sy, Sq4C Sy
i77 1 +, + 1 - 1 - 2 —,+ | s3C 51,54 C Sy, S4C Sg
178 1 +, + 1 - 1 - 2 —,— | s3 C sy, 84 C Sy, S4C Sy
179 1 - = 1 - 1 - - 2 —,+ | S3C Sy, S4C Sy, S4C Sy
i.80 1 - = 1 —, = 1 i 2 —,— | 53 CS1, 5S4 C Sy, 84 C So

14

Table 4: Relative containments of the enveloping polytopes corresponding to Sy, S2, S5, .54 projected onto

R5. For each z;,

—_ U
= x;

L o ; L U
— z; and sign is the sign of z;*, =

%

groupings ((z122)x3)x4, (T122)(324), (x12223)2a, (T122)T324, respectively.

. 51,855,853, correspond to the term
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5 Application to well-known problems

We applied the obtained results to some well-known problems, namely the Molecular Distance Geometry
Problem (MDGP) [17, 41] and the Hartree-Fock Problem (HFP) [18, 24]. Both problems, when cast in
their mathematical programming formulation, are nonconvex polynomial NLPs with terms of degree up
to four. Both can be solved to e-optimality by means of the sBB algorithm.

5.1 Molecular Distance Geometry Problem

The MDGP is the problem of finding an embedding in R? of a weighted graph G such that all Euclidean
distances between points in the embedding are the same as the corresponding edge weights in the graph.
The main application is to find the three-dimensional structure of a molecule given a subset of the atomic
distances (these are usually found using Nuclear Magnetic Resonance techniques) [6, 31].

Consider an undirected graph G = (V, E) with weights d : E — Ry, where V is the set of vertices
(also called atoms), and F is the set of weighted edges (also called inter-atomic distances). Let N = |V|
and d;; = d({i, j}) for {i,j} € E. A solution of the MDGP is a set of points z1,...,zx € R? satisfying

Vi, j} € E ||w; — ;]| = diy. (2)

Each 3-vector x; has components (z;1,2;2,%;3), and we indicate the vector sequence (x1,...,2yx) by
2. The MDGP can be naturally cast as a continuous non-convex optimization problem min, f(z) by
minimizing the sum of the squared errors over each equation (2):

F@)= Y (i -l = diy)*. (3)

{i,j}€E

Because each equation (2) must be satisfied, a candidate point x is a solution of the MDGP if and only
if f(z) = 0. Note that (3) has a large number of local minima, so this is a difficult global-optimization
problem.

When expanded, a typical term (||z; — z;]|* — d?j)2 of the MDGP objective function sum involves
many quartic terms. We employ randomly generated MDGP instances as described in [15].

5.2 Hartree-Fock Problem

The quantum behaviour of atoms and molecules, in the absence of relativistic effects and any external
time-dependent perturbations, is determined by the time-independent Schrodinger equation HV,, = EV,,,
where H (the Hamiltonian operator of the system) represents the total energy (kinetic + potential) of
all the particles of the system. Analytical solutions for this equation are only possible for very simple
systems. Hence, for the majority of problems of interest, one has to rely on some approximate model. In
the Hartree-Fock (HF) model, the electrons in atoms and molecules move independently of each other,
the motion of each one of the electrons being determined by the attractive electrostatic potential of the
nuclei and by a repulsive average field due to all the other electrons of the system. In this model, the
approximate solutions ®,, of the Schrédinger equation are anti-symmetrized products of one-electron
wave functions {¢;} (also called orbitals), which are solutions of the Hartree-Fock (HF) equations for
the system under study. Since each orbital ¢; can be expanded in a complete basis set {xs}52;, we can
transform the HF equations into a less cumbersome form by only considering a finite subset {xs | s < b}
of the basis, and we use it to approximate the orbitals. We define the Hartree-Fock Problem (HFP)
as the problem of finding a set of coefficients cg; such that the p; = Zs<b CsiXs are the best possible
approximations of the spatial orbitals. Thus, the decision variables of this mathematical programming
problem are the coefficients cg;. The objective function (quality of the approximation) is given by a
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suitable energy function E associated with the approximating set {@;}, which is constrained to be an
orthonormal set:

min  E(c)
s.t. <Z CsiXs » chsz> = 572]‘ Vi<j<n
s<b s<b

chcch,

where 0 is the Kronecker delta function. We can readily see that the orthonormality constraints are
quadratic in the decision variables ¢ . Moreover, it turns out that for closed-shell atomic systems, the
objective function is a quartic expression of the decision variables c .

5.3 Bound evaluation algorithm

The natural application of tight lower bounds computed through a convex relaxation is within the sBB
algorithm. In order to quickly assess the quality of our proposed alternative bound for quadrilinear
terms on the MDGP and HFP without having to implement a full sSBB framework, we implemented
(using AMPL [8]) a simplified “partial sBB” algorithm which, at each branching step, only records
the most promising node and discards the other, thus exploring a single branch up to a leaf. This
corresponds to well-known “diving heuristics” employed in integer linear programming. In Algoritm 1,
P is a mathematical program defined as min{f(z) | g(x) < 0, 2& < z < 2Y} with decision variables
xr € R*" N [zl 2Y], objective function f : R® — R and constraints g : R" — R™.

Algorithm 1 can be considered as a heuristic solution algorithm for nonconvex NLPs, whose purpose
is that of assessing the quality of a lower bound instead of that of the incumbent. We use a very simple
branching strategy (the variable index ¢ maximizing |z} — Z;|) and terminate either on iteration limit or
on reaching a node that is infeasible or that contains the global optimum.

P is solved by SNOPT [10], and its (linear) convex relaxations Ry, R; by CPLEX [13]. Ry, R; are
constructed automatically (by the ROSE software [22]) in the four different ways corresponding to S71—Sj.
The algorithm implemented in ROSE for constructing the convex relaxation is similar to the symbolic
reformulation algorithm in [37]. First, each nonlinear term is replaced by an additional variable, and
a defining constraint “additional variable = nonlinear term” is added to the problem. In a second
stage, each defining constraint is replaced by a convex relaxation. The different associativity precedences
in S1-5, yield different defining constraints and in turn different convex relaxations. For the sake of
completeness, in the following we report the convex envelopes for piecewice/convex/concave monomials
with the respective linear relaxations.

- The concave univariate function f(x;) is replaced by a variable x; and two inequalities are added
to the problem relaxation: the function itself and the secant:

zi < f(x;) (4)

2V — f(zl
1) I o)ty ®)
J J

\Y

x> feh)+

Constraint (4) is a nonlinear over-estimator which is replaced in our implementation by a pre-
determined number of tangents to f at various given points.

- The convex univariate function f(x;) is replaced by a variable ; and two inequalities are added to
the problem relaxation:
f@) = f(zf)
]U I 1 (:Ej - ng) (6)

Ty~

f(z5). (7
Constraint (7) is a nonlinear under-estimator which is replaced in our implementation by a pre-
determined number of tangents to f at various given points.

IN

fh) +

T

Y

T
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Algorithm 1 The partial depth-first sBB algorithm.
Input an NLP P and an iteration 1imit
Let counter « 0
Solve P locally to find z* with objective function value f* (incumbent)
Construct a (linear) convex relaxation R of P
Solve R to find an optimum Z with function value f (bound)
Choose the branching variable ¢ with branching point Z;
Let termination « false
while !termination do
Let Py be defined as P with the added constraint z7 < x; < z;
Let P; be defined as P with the added constraint z; < z; < xf]
For k € {0,1}, let Ry be the convex relaxation of Py
For k € {0,1}, let z¥ be the optimum of R}, with value fj
Let ¢ = argmin(fo, f1) (best lower bound)
if f, > f* then
Let termination « true (node cannot improve)
else
if f, > f then
Let f « f; (overall bound improvement)
end if
end if
if 2* is infeasible in P, then
Solve P, locally to find z’ with value f’
if f/ < f* then
Let f* « f" and * — 2’ (incumb. improv.)
end if
end if
if |f* — f| < e or counter > limit then
Let termination « true (global optimum)
end if
if f, = oo then
Let termination « true (infeasible node)
end if
Let P« Py and 7 « Z*
Update the branching variable ¢ and branching point z;
Increase counter
end while

- The term x?k for any k € N is replaced by a variable x; and treated as a convex univariate function.

- The term :r?k *1 for any k € N is replaced by a variable 2; and can be convex, concave, or piecewise
convex and concave with a turning point at 0. If the range of x; does not include 0, the function
is convex or concave and falls into a category described above. Otherwise, the convex/concave

envelope is given in [26]; a tight linear relaxation is given by:

v = ()P <1+Tk (3—1)) ®)
J

T
zi > (2k+1)(a)) Pz, — 2k(2xY )2 H (10)
z; < (k4 1)(xf) ey — 2k(zf)? (11)

2k+41

where T}, = t"t)ﬁl ! and the coefficients ti are given for the first few values of k’s in the table below
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Instance S1 So Ss3 Sy

lavor6 -1006.75 | -1839.21 -1006.75 | -990.167
lavor7 -1285.67 | -1279.88 -1175.95 -1216.91
lavor8 -1711.27 | -1694.56 -1718.41 | -1671.09
lavor10 -3149.29 | -3172.05 -3007.41 -2755.04
beryllium || -24.2038 | -22.4639 | -24.2038 -23.8677
neon -683.034 | -619.238 -651.045 | -508.061

Table 5: Results obtained by running Alg. 1 on MDGP and HFP instances.

(see [26] for details).

| b
-0.5000000000
06058295862
-0.6703320476
-0.7145377272
-0.7470540749

k ‘ Tk

6 -0.7721416355
7 | -0.7921778546
8

9

1

-0.8086048979
-0.8223534102
0 | -0.8340533676

CUs W N =3

5.4 Computational results

Table 5 shows the results obtained by running Algorithm 1 on four MDGP and two HFP instances. We
report the lower bounds obtained with the four relaxations as per S1—Ss. On all the MDGP instances
the best lower bound is that obtained with a relaxation involving a trilinear envelope. In particular, .Sy
gives the tightest bound for most cases, and this bound is significantly better than the values obtained
with bilinear relaxations on the largest MDGP instance. On the first HFP instance, we found a good
bound using a relaxation based on bilinear envelopes. We never found that the first relaxation, which is
currently the most used in sBB implementations, gives the best bounds. The CPU time taken to solve
each of the different relaxations is about the same.

These results confirm the results of the previous sections and suggest that they can be used to configure
a sBB algorithm to be efficiently applied to mathematical programs containing quadrilinear terms.

6 Conclusion

This paper focuses on convex relaxations of quadrilinear terms xyxoxsxy. We computationally and
mathematically evaluated four linear relaxations, showing that the tightest one can be obtained by
combining the convex envelope of a trilinear term and that of a bilinear term. Our results can be
exploited in a sBB algorithm to compute tight bounds. Our mathematical result can be applied to
compare relaxations of more general problems.
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