
The KDevelop Programming Handbook
The User Guide to C++ Application Design for the K Desktop Environment (KDE) with
the KDevelop IDE, Version 1.0

Ralf Nolden <Ralf.Nolden@post.rwth-aachen.de>

The KDevelop Team Version 2.1 , July 7, 1999

This handbook itself is part of the KDevelop Integrated Development Environment and is therefore also

licensed under the GNU General Public License; see 17 (Copyright) for more information.

2

Contents

1 Introduction 7

1.1 What you should know already . 7

1.2 About this Handbook . 7

1.3 Additional Information . 8

2 The KDE and Qt Libraries 9

2.1 The Qt GUI Toolkit . 9

2.1.1 The �rst Qt Application . 10

2.1.2 The Reference Documentation for Qt . 10

2.1.3 Interpretation of the Sample . 11

2.1.4 User Interaction . 12

2.1.5 Object Interaction by Signals and Slots . 13

2.2 What KDE provides . 15

2.2.1 The KDE 1.1.x libraries . 15

2.2.2 Example KDE Application . 15

3 Creating new Applications 17

3.1 Invoking KAppWizard and Project Generation . 17

3.1.1 Starting KAppWizard and the First Page . 17

3.1.2 The Generate Settings Page . 18

3.1.3 The Header and Source Templates . 18

3.1.4 Creating the Project . 19

3.2 The First Build . 19

3.3 The Source Skeleton . 21

3.3.1 The main() Function . 22

3.3.2 User Application Start . 22

3.3.3 Invocation by Session Management . 31

3.4 Additional Contents of KDevelop Projects . 33

3

4 CONTENTS

4 Application View Design 35

4.1 Using Library Views . 36

4.1.1 Qt Views . 36

4.1.2 KDE Views . 37

4.2 Creating your own Views . 38

5 Con�guring Menubars and Toolbars 41

5.1 How does it work ? . 41

5.2 Adding a new menu . 42

5.3 Integrating Toolbar buttons . 42

5.4 Con�guring Statusbars . 43

5.5 Keyboard Accelerator Con�guration . 43

6 The Dialogeditor: Where your Dialogs are Build 45

6.1 What the Dialogeditor provides . 45

6.2 Qt and KDE Widgets . 45

6.3 Properties of Qt supported Widgets . 47

6.3.1 QWidget Properties . 47

6.3.2 QButton inherited widgets . 48

6.3.3 QComboBox Properties . 49

6.3.4 QFrame inherited widgets . 49

6.3.5 QLineEdit Properties . 52

6.3.6 QScrollBar Properties . 52

6.3.7 QSlider Properties . 53

6.4 Properties of KDE supported Widgets . 53

6.4.1 KColorButton . 54

6.4.2 KKeyButton . 54

6.4.3 KCombo . 54

6.4.4 KDatePicker . 54

6.4.5 KLedLamp . 54

6.4.6 KProgress . 54

6.4.7 KSeparator . 54

6.4.8 KDateTable . 54

6.4.9 KTreeList . 54

6.4.10 KRestrictedLine . 55

6.4.11 KLed . 55

6.5 Constructing a new Dialog . 55

6.6 Setting Widget Properties . 56

CONTENTS 5

6.7 Integrating the Dialog . 57

6.7.1 QWidget inherited . 57

6.7.2 QDialog inherited . 57

7 Printing Support 59

7.1 The Qt Print Dialog . 59

7.2 The QPainter Class . 59

8 Help Functions 61

8.1 Tool-Tips . 61

8.2 Adding Quick-help . 62

8.3 Extending the Statusbar Help . 62

8.4 The "What's This...?" Button . 63

9 Extending the Documentation with SGML 65

9.1 Why SGML ? . 65

9.2 What the Documentation already contains . 65

9.3 Adding new Pages . 66

9.4 How to call Help in Dialogs . 66

10 Class Documentation with KDoc 67

10.1 How to use KDevelop's Documentation features . 67

10.2 Adding Class and Member Documentation . 67

10.3 Special Tags . 68

11 Internationalization 71

11.1 What is i18n ? . 71

11.2 How KDE supports Internationalization . 71

11.3 Adding a Language to your Project . 72

11.4 Translation Team Contacts . 72

12 Finding Errors 77

12.1 Debugging Macros provided by Qt . 77

12.2 KDE Macros . 77

13 The KDE File System Standard 81

13.1 Introduction . 81

13.2 Directory Layout . 81

13.3 What does this mean to application developers? . 83

13.4 Application Documentation . 83

6 CONTENTS

13.5 What does this mean to library developers? . 84

14 File System Usage for KDevelop Projects 85

14.1 Accessing Files during Runtime . 85

14.2 KApplication Methods . 85

14.3 KIconLoader Methods . 87

14.4 Setting File Installation Properties . 87

14.5 Organizing Project Data . 89

14.6 The kdelnk File . 89

15 Programming Issues 91

16 References 93

17 Copyright 95

A Additional Information 97

A.1 Example Make�le.am for a Shared Library . 97

Chapter 1

Introduction

As Unix Systems are becoming more and more popular to even beginners working with computer

machines due to its advantages in regards of stability and functionality, most are somehow disap-

pointed, because those applications don't have a consistent look and each one behaves di�erent from

another. With KDE, developers have an almost perfect way to create �rst-class applications for

Unix desktop systems to get a wider user community by the mere quality their applications have

to o�er. Therefore, KDE becomes more and more popular as a base for programming design, and

developers want to take advantage of the possibilities that the system has to o�er.

1.1 What you should know already

For making the best use of this programming handbook, we assume that you already know about the

C++ programming language; if not, you should make yourself familiar with that �rst. Information

about C++ is available through various sources either in printed form at your local bookstore or

by tutorials found on the Internet. Knowledge about the design of Graphical User Interfaces is

not required, as this handbook tries to cover the application design for KDE programs, which also

includes an introduction into the Qt toolkit as well as the KDE libraries and the design of User

Interfaces. Also, you should have made yourself comfortable with KDevelop by reading The User

Manual to KDevelop, which contains a descriptive review of the functionality provided by the IDE.

1.2 About this Handbook

This handbook has been written to give developers an introduction into KDE application develop-

ment by using the KDevelop Integrated Development Environment.

The following chapters therefore give an introduction on how to create projects, explains the source-

codes already generated and shows how to extend the given sources on various topics such as toolbars,

menu bars and view areas.

Then the dialogeditor is discussed in detail, explaining how widgets are created and covers widget

properties settings in detail for all provided widgets.

Finally, you will learn about several topics that will complete your knowledge in regards of project

design and helps you work out additional issues besides coding such as adding API documentation

and extending online-manuals.

In the next chapter

7

8 Chapter 1. Introduction

we'll take a look at the Qt and KDE libraries, showing basic concepts and why things are the way

they are. Also, we will discuss how to create the tutorial applications provided with the Qt toolkit

by using KDevelop, so beginners can already see �rst results with a few steps, and thereby will learn

how to make use of some of KDevelop's best features.

In the following chapters you will learn:

� how to create an application with the KAppWizard,

� what the project skeleton already provides,

� what the code already created means,

� how to create your own views,

� how to extend your application's functionality by dialog, menu bars and toolbars

� how to make your application user friendly by providing help functions and

� how to write SGML online documentation.

1.3 Additional Information

Additional information about Qt/KDE programming is available by various sources:

� Programming with Qt by Matthias Kalle Dalheimer, published by O'Reilly (see <http://www.

oreilly.com>, covering almost all aspects of the Qt GUI toolkit and contains examples as

well.

� The User Manual to KDevelop, provided with the KDevelop IDE,

� Online-Reference to the Qt-library, provided with your copy of the Qt toolkit in HTML and

available as Postscript on <http://www.troll.no>

� On the Internet, see

� the Troll Tech web site at <http://www.troll.no>,

� the KDE web site at <http://www.kde.org>,

� the KDE developer web site at <http://developer.kde.org>

� the KDevelop home page at <http://www.kdevelop.org>

Additionally, you should look for help by subscribing to the various mailing lists, whose addresses

are available on the mentioned web sites, and on the Usenet newsgroups dedicated to users of KDE

and Unix Systems as well as about the C and C++ programming language.

For obtaining help about the KDevelop IDE, you should send requests to our mailinglist at

kdevelop@fara3.cs.uni-potsdam.de. Mind that the KDevelop team is dedicated to provide the means

to enable you to program applications and therefore is not intended as a technical support team in

cases where the applications you're developing don't work due to implementation errors or miscon-

�gurations of your operating system. By this, we ask all users to take advantage of the mailinglist

in any case you're running into problems with the use of the IDE itself, as well as for bug reports

and suggestions for improving the functionality of the development environment.

Chapter 2

The KDE and Qt Libraries

The Norwegian company Troll Tech (<http://www.troll.no>) provides a so-called GUI toolkit,

named Qt. Thereby, GUI means "Graphical User Interface", and therefore, Qt-based applications

represent themselves with buttons, windows etc, allowing user input by visualizing the functions

an application provides. Such a toolkit is needed for developing graphical applications that run on

the X-Window interface on Unix Systems, because X does not contain a pre-de�ned user interface

itself. Although other toolkits are also available to create User Interfaces, Qt o�ers some technical

advantages that make application design very easy. Additionally, the Qt toolkit is also available for

Microsoft Windows systems, which allows developers to provide their applications for both platforms.

The KDE Team (<http://www.kde.org>) joined together with the goal to make using Unix Systems

more friendly, and decided to use the Qt toolkit for the development of a window manager on X-

Window, plus a variety of tools included with the KDE packages. The K Desktop Environment

therefore contains the window manager kwm, the �le manager kfm and the launch panel kpanel as

the main components plus a variety of �rst-class utilities and applications. After KDE was out,

a lot of developers turned their eyes towards the new environment and what it has to o�er them.

The KDE libraries are providing essential methods and classes that make all applications designed

with them look similar and consistent, so the user has the great advantage that he only has to get

accustomed with an application's speci�c usage, not with handling dialogs or buttons. Also, KDE

programs integrate themselves into the desktop and are able to interact with the �le manager via

drag'n drop, o�er session management and many more, if all features o�ered by the KDE libraries

are used.

Both, the Qt toolkit and the KDE libraries, are implemented in the C++ programming language;

therefore applications that make use of these libraries are also mostly written in C++. In the

following chapter, we'll make a short trip through the libraries to see what already is provided and

how Qt and KDE applications are created in general.

2.1 The Qt GUI Toolkit

As said, the Qt library is a toolkit that o�ers graphical elements that are used for creating GUI

applications and are needed for X-Window programming. Additionally, the toolkit o�ers:

� A complete set of classes and methods ready to use even for non-graphical programming issues,

� A good solution towards user interaction by virtual methods and the signal/slot mechanism,

9

10 Chapter 2. The KDE and Qt Libraries

� A set of prede�ned GUI-elements, called "widgets", that can be used easily for creating the

visible elements

� Additional completely pre-de�ned dialogs that are often used in applications such as progress

and �le dialogs.

Therefore knowing the Qt classes is very essential, even if you only want to program KDE-

applications. To have an impression on the basic concept how GUI-applications are constructed

and compiled, we'll �rst have a look at a sample Qt-only program; then we'll extend it to a KDE

program.

2.1.1 The �rst Qt Application

As usual, programs in C++ have to contain a main() function, which is the starting point for

application execution. As we want them to be graphically visible in windows and o�ering user

interaction, we �rst have to know, how they can show themselves to the user. For an example, we'll

have a look at the �rst tutorial included with the Qt Online Reference Documentation and explain

the basic execution steps; also why and how the application window appears:

#include <qapplication.h>

#include <qpushbutton.h>

int main(int argc, char **argv)

{

QApplication a(argc, argv);

QPushButton hello("Hello world!");

hello.resize(100, 30);

a.setMainWidget(&hello);

hello.show();

return a.exec();

}

This application merely paints a window containing a button with "Hello world" as its text. As for

all Qt-based applications, you �rst have to create an instance of the class QApplication, represented

by a.

Next, the program creates an instance of the class QPushButton called hello, this will be the button.

The constructor of hello gets a string as a parameter, which is the contents of the widget visible

as the buttons text.

Then the resize() method is called on the hello button. This changes the default size a widget

(which is in this case the QPushButton) has when created to the length of 100 pixels and the height

of 30 pixels. Finally, the setMainWidget()method is called for a and the show()method for hello.

The QApplication is �nally executed by a.exec(), enters the main event loop and waits until it

has to return an integer value to the overlaying Operating System signaling that the application is

exited.

2.1.2 The Reference Documentation for Qt

Now, let's have a quick look at the reference documentation of the Qt library. To do this, start KDe-

velop and select "Qt-library" from the "Help"-menu in the menubar. The documentation browser

2.1. The Qt GUI Toolkit 11

opens and shows you the start page of the Qt reference. This will be your �rst place to get infor-

mation about Qt, it's classes and the available functions they provide. Also, the above program

is the �rst that is included in the tutorials section. To get to the classes we want to have a look

at, QApplication and QPushButton, select "Alphabetical Class List" and search for the according

names. Follow either of them to have a look at the class documentation.

For QApplication, you will see the constructor and all other methods that this class provides. If

you follow a link, you will get more information about the usage and meaning of the methods, which

is very useful when you sometimes can't detect the correct use or want to have an example. This

also counts for the KDE library documentation, which uses a similar documentation type; therefore

this is almost all you have to know about using the class-references with the documentation browser.

2.1.3 Interpretation of the Sample

Starting with QApplication, you will �nd all the methods used in our �rst example:

� the constructor QApplication(),

� the setMainWidget() method and

� the exec() method.

The interpretation why we use these methods is very simple:

1. �rst create an instance of the class QApplication with the constructor, so we can make use

of the GUI elements provided by Qt,

2. create a widget which will be the contents of our program window,

3. set the widget as the main widget for a,

4. execute the a instance of QApplication.

The second object of our program is the pushbutton, an instance of the class QPushButton. From

the two constructors given to create an instance, we used the second: this accepts a text, which is

the label contents of the button; here, it is the string "Hello world!". Then we called the resize()

method to change the size of the button according to it's contents- the button has to be larger to

make the string completely visible.

But what about the show() method ? Now, you see that like most other widgets, QPushButton is

based on a single-inheritance- here, the documentation says, Inherits QButton. Follow the link to the

QButton class. This shows you a lot of other methodss that are inherited by QPushButton, which

we'll use later to explain the signal/slot mechanism. Anyway, the show() method is not listed,

therefore, it must be a method that is provided by inheritance as well. The class that QButton

inherits, is QWidget. Just follow the link again, and you will see a whole bunch of methods that the

QWidget class provides; including the show() method. Now we understand what was done in the

sample with the button:

1. create an instance of QPushButton, use the second constructor to set the buttons text,

2. resize the widget to it's contents,

3. set the widget as the main widget of the QApplication instance a,

12 Chapter 2. The KDE and Qt Libraries

4. tell the widget to display itself on the screen by calling show(), an inherited method from

QWidget.

After calling the exec() method, the application is visible to the user, showing a window with the

button showing "Hello world!". Now, GUI programs behave somewhat di�erently than procedural

applications. The main thing here is that the application enters a so-called "main event loop".

This means that the program has to wait for user actions and then react to it, also that for a Qt

application, the program has to be in the main event loop to start the event handling. The next

section tells you in short what this means to the programmer and what Qt o�ers to process user

events.

(For already advanced users: The button has no parent declared in the constructor, therefore it is a

top-level widget alone and runs in a local event loop which doesn't need to wait for the main event

loop, see the QWidget class documentation and The KDE Library Reference Guide)

Summary:

A Qt application always has to have one instance of the class QApplication. This provides that

we can create windows that are the graphical representation of programs to the user and allow

interaction. The window contents itself is called a "Main Widget", meaning that all graphical

elements are based on the class QWidget and can be any type of widget that �ts the needs of the

application to communicate with the user. Therefore, all user elements somehow have to inherit

QWidget to be visible.

2.1.4 User Interaction

After reading the last sections, you should already know:

� What the Qt-library provides in terms of GUI applications,

� how a program using Qt is created and

� where and how to �nd information about classes that you want to use with the documentation

browser

Now we'll turn to give the application "life" by processing user events. Generally, the user has two

ways to interact with a program: the mouse and the keyboard. For both ways, a graphical user

interface has to provide methods that detect actions and methods that do something as a reaction

to these actions.

The Window system therefore sends all interaction events to the according application. The QAppli-

cation then sends them to the active window as a QEvent and the widgets themselves have to decide

what to do with them. A widget receives the event and processes QWidget::event(QEvent*)/, which

then decides which event has been executed and how to react; event() is therefore the main event

handler. Then, the event() function passes the event to so-called event �lters, that determine what

happened and what to do with the event. If no �lter signs responsible for the event, the specialized

event handlers are called. Thereby we can decide between:

a) Keyboard events �TAB and Shift-TAB keys:

changes the keyboard input focus from the current widget to the next widget in the focus order. The

focus can be set to widgets by calling setFocusPolicy() and process the following event handlers:

� virtual void focusInEvent (QFocusEvent *)

2.1. The Qt GUI Toolkit 13

� virtual void focusOutEvent (QFocusEvent *)

b) all other keyboard input:

� virtual void keyPressEvent (QKeyEvent *)

� virtual void keyReleaseEvent (QKeyEvent *)

c) mouse movements:

� virtual void mouseMoveEvent (QMouseEvent *)

� virtual void enterEvent (QEvent *)

� virtual void leaveEvent (QEvent *)

d) mouse button actions:

� virtual void mousePressEvent (QMouseEvent *)

� virtual void mouseReleaseEvent (QMouseEvent *)

� virtual void mouseDoubleClickEvent (QMouseEvent *)

e) window events containing the widget:

� virtual void moveEvent (QMoveEvent *)

� virtual void resizeEvent (QResizeEvent *)

� virtual void closeEvent (QCloseEvent *)

Note that all event functions are virtual and protected; therefore you can re-implement the events

that you need in your own widgets and specify how your widget has to react. QWidget also contains

some other virtual methods that can be useful in your programs; anyway, it is su�cient to know

about QWidget very well generally.

2.1.5 Object Interaction by Signals and Slots

Now we're coming to the most obvious advantages of the Qt toolkit: the signal/slot mechanism. This

o�ers a very handy and useful solution to object interaction, which usually is solved by callback

functions for X-Window toolkits. As this communication requires a strict programming and some-

times makes user interface creation very di�cult (as referred by the Qt documentation and explained

in Programming with Qt by K.Dalheimer), Troll Tech invented a new system where objects can emit

signals that can be connected to methods declared as slots. For the C++ part of the programmer,

he only has to know some things about this mechanism:

1. the class declaration of a class using signals/slots has to contain the Q_OBJECT macro at the

beginning (without the semicolon); and have to be derived from the QObject class,

2. a signal can be emitted by the keyword emit, e.g. emit signal(parameters); from within

any member function of a class that allows signals/slots,

3. all signals used by the classes that are not inherited have to be added to the class declaration

by a signals: section,

14 Chapter 2. The KDE and Qt Libraries

4. all methods that can be connected with a signal are declared in sections with the additional

keyword slot, e.g. public slots: within the class declaration,

5. the meta-object compiler moc has to run over the header �le to expand the macros and to

produce the implementation (which is not needed to know.). The output �les of moc are

compiled as well by the C++ compiler.

Another way to use signals without deriving from QObject is to use the QSignal class- see the

reference documentation for more information and example usage. In the following, we assume

you're deriving from QObject.

This way, your class is able to send signals anywhere and to provide slots that signals can connect

to. By using the signals, you don't have to care about who's receiving it- you just have to emit the

signal and whatever slot you want to connect to it can react to the emission. Also the slots can be

used as normal methods during implementation.

Now, to connect a signal to a slot, you have to use the connect() methods that are provided by

QObject or, where available, special methods that objects provide to set the connection for a certain

signal.

Sample Usage

To explain the way how to set up object-interaction, we'll take our �rst example again and extend

it by a simple connection:

#include <qapplication.h>

#include <qpushbutton.h>

int main(int argc, char **argv)

{

QApplication a(argc, argv);

QPushButton hello("Hello world!");

hello.resize(100, 30);

a.setMainWidget(&hello);

connect(&hello, SIGNAL(clicked()), &a, SLOT(quit());

hello.show();

return a.exec();

}

You see, the only addition to give the button more interaction is to use a connect() method:

connect(&hello, SIGNAL(clicked()), &a, SLOT(quit()); is all you have to add. What is

the meaning now ? The class declaration of QObject says about the connect() method:

bool connect (const QObject * sender, const char * signal, const QObject *

receiver, const char * member)

This means, you have to specify a QObject instance pointer that is the sender of the signal, meaning

that it can emit this signal as �rst parameter; then you have to specify the signal that you want to

connect to. The last two parameters are the receiver object that provides a slot, followed by the

member function which actually is the slot that will be executed on signal emission.

2.2. What KDE provides 15

By using signals and slots, your program's objects can interact with each other easily without

explicitely depending on the type of the receiver object. You will learn more about using this

mechanism for productive usage later in this handbook. More information about the Signals/Slot

mechanism can also be found in The KDE Library Reference Guide and the Qt online reference.

2.2 What KDE provides

2.2.1 The KDE 1.1.x libraries

For the time of this writing and due to the fact that KDevelop uses KDE 1.1, I'm referring to the

state of the KDE libraries at that release. The main KDE libraries you'll be using for creating your

own KDE applications are:

� the KDE-Core library, containing all classes that are non-visible elements and provide func-

tionality your application may use.

� the KDE-UI library, containing user interface elements like menu bars, toolbars and the like,

� the KFile library, containing the �le selection dialogs,

Additionally, for speci�c solutions KDE o�ers the following libraries:

� the KHTMLW library, o�ering a complete HTML-interpreting widget that is used by various

programs like KDEHelp, KFM, KDevelop,

� the KFM library, allowing to use the KDE �le manager from within your application.

� the KAb library, the KAddressBook. Provides address-book access for e.g. email applications

� the KSpell library, o�ering widgets and functionality to integrate the use of Ispell, the common

spell-checker, in applications like editors; used for the KEdit application.

Next, we'll have a look at what is needed to turn our �rst Qt application into a KDE one.

2.2.2 Example KDE Application

In the following, you will see that writing a KDE application is not much more di�cult than a Qt

application. For the use of KDE's features, you just have to use some other classes, and you're

almost done. As an example, we'll discuss the changed version of the Qt example from above:

#include <kapp.h>

#include <qpushbutton.h>

int main(int argc, char **argv)

{

KApplication a(argc, argv);

QPushButton hello("Hello world!");

hello.resize(100, 30);

a.setTopWidget(&hello);

16 Chapter 2. The KDE and Qt Libraries

connect(&hello, SIGNAL(clicked()), &a, SLOT(quit());

hello.show();

return a.exec();

}

You see that �rst we have changed from QApplication to KApplication. Further, we had to change

the previously used setMainWidget() method to setTopWidget, which KApplication uses to set

the main widget. That's it ! Your �rst KDE application is ready- you only have to tell the compiler

the KDE include path and the linker to link in the KDE-Core library with -lkdecore.

As you now know what at least the main() function provides generally and how an application gets

visible and allows user and object interaction, we'll go on with the next chapter, where our �rst

application is made with KDevelop- there you can also test everything which was mentioned before

and see the e�ects.

What you should have looked into additionally until now is the reference documentation for Qt, espe-

cially the QApplication, QWidget and QObject class and the KDE-Core library documentation for

the KApplication class. The KDE Library Reference handbook also covers a complete description

about the invocation of the QApplication and KApplication constructors including command-line

argument processing.

Chapter 3

Creating new Applications

The KAppWizard, or also called the KDE Application Wizard, is intended to let you start working

on new projects with KDevelop. Therefore, all your projects are �rst created by the wizard; then

you can start building them and extend the already provided source skeleton. KAppWizard also

allows to choose between several project types according to your project's goals:

� Normal KDE Application: includes source code for a complete frame structure of a standard

KDE application with support for the Document-View-Controller model, a menubar, toolbar

and statusbar as well as a set of standard documentation based on SGML, KDE-links and

application icons. This is the application type usually needed for a new KDE project.

� Mini KDE Application: contains the same general structure as the Normal KDE Application

type but with the di�erence that the application's code only provides a widget as a window.

� Normal Qt Application: works like the normal KDE application by it's code with the di�erence

that the project is based on the Qt library only and doesn't contain KDE support. This is

intended for projects that have to be portable to Windows platforms or that don't want to

require KDE libraries by the end-user.

� C Application: Is based on the C compiler only and runs in a console.

� C++ Application: Is based on the C++ compiler only and runs in a console like the C

application, therefore doesn't require X-Window.

� Custom project: creates an empty project without any sourcecode. This is intended for already

existing projects to port to KDevelop or for projects where you want to start from scratch.

Mind that you have to take care for make�les and con�gure scripts all by yourself.

In this chapter we'll see how the KAppWizard can be invoked and what has to be done to generate

a KDE application project. This will also be the initial step of our coverage, where we will create

the initial version of a sample project. For all other project types the steps are usually the same,

just you may not have certain options available.

3.1 Invoking KAppWizard and Project Generation

3.1.1 Starting KAppWizard and the First Page

To start with your �rst KDE application, open KDevelop. Then select "New..." from the "Project"-

menu. The KAppWizard starts, and you see a tree on the �rst page, containing the project types.

17

18 Chapter 3. Creating new Applications

When a type is selected, you see a preview how it will look like after the initial build process. Choose

the KDE subtree, Normal type. Then press the "Next" button on the bottom of the �rst wizard

page. This will switch to the next page, where you have to set the general project options.

3.1.2 The Generate Settings Page

For our sample application, we choose the project name KScribble; therefore insert this in the �eld

"Projectname". Then select the directory you want to have your project build in; the default is your

home directory. You can enter the path manually or you can as well press the button on the right

to select the directory by a dialog.

Next, you have to enter the Version number. For the �rst version, set this to 0.1. It is usual to

number new applications that are in development for the �rst release lower than 1, and as the initial

version will only contain the standard framework, we'll name this the 0.1 version.

Finally, add your name to the "Author" �eld and your email address. You can leave all other options

to their default settings.

To give you some information about all other options, you can press the right mouse button over

the options, and you will get a quick-help window that describes the option's purpose.

These are:

� generate sources and headers: generates the application source code

� GNU-Standard-Files: adds a copy of the GNU-General Public License to the project as

well as some standard �les for user information when distributing the package.

� User-Documentation: the user handbook in SGML, already prepared for your project.

� API-Documentation: creates an initial HTML documentation set for the Application

Programming Interface.

� lsm-File: the Linux Software Map, used by distribution sites and contains short information

about the project's purpose and requirements.

� .kdelnk-File: a KDE link that will install your application in the "Applications" tree of the

KDE-Panel.

� Program-Icon: an Icon that represents your project and can be used to create a link on

the desktop.

� Mini-Icon: a Mini-version of the program icon that represents your application besides its

name in the KDE-Panel and is shown in your application's dialogs and main-window in the

left upper corner.

Now we'll switch to the next page by pressing the "Next" button again to set the template for the

header �les of your project.

3.1.3 The Header and Source Templates

The header template page allows you to automatically include a preface for your header �les, con-

taining the �lename, the construction date, the year of the copyright, also your name and your

email address. You don't have to change those uppercase parts yourself, as KAppWizard does this

automatically and stores the template for this project, so it can be used later again for creating new

�les.

3.2. The First Build 19

The second part of the default header template contains a license information. By default, your

project is set under the GNU General Public License, which is also included in the package. This

license is used to protect your source code against any person that just copies your sources for his

own purpose. The General Public License o�ers you this license for free and thereby protects your

rights as the author, and is common for distributing free software. To get more information about

the license, you should read the COPYING �le in the base directory of your new project later which

is a copy of the GPL and ships with your application already.

Anyway, you may want to choose another license or another header template you're already using

for your projects. Therefore you can either edit the given default template directly. To do this,

you're given the template in an editing window. To clear the default page, select "New", to use

another template, select "Load...", which lets you choose the template �le.

When you're done, go to the next page by entering "Next". This is the template page for your

source �les and is generally the same as the header template page. The only di�erence is that this

template is used for your implementation �les.

3.1.4 Creating the Project

Now that you've set all options for KScribble, select "Next" and press the "Generate" button on the

bottom of the wizard window. If the button is not available, you haven't set all options correctly.

To correct any errors, step back in the Wizard with "Back".

Then you'll see what KAppWizard does- he copies all templates to your project directory and creates

the new project. After KAppWizard is �nished, the "Cancel" button changes to an "Exit" button

to leave the wizard.

After this last step, you're �nished with creating a new project. KDevelop then loads it and the

tree-views let you browse through the project's �les and classes.

In the next section, we'll discuss how to build and run your �rst version of KScribble and how the

source code is organized.

3.2 The First Build

After our project is generated, we'll �rst make a trip through the source code to get a general

understanding how the application frame works. This won't only help to get started but we'll know

where to change what in later steps.

When opening the LFV (Logical File Viewer) page on the tree-view, you see some folders that already

sort the project �les relevant to the developer. The �rst two folders are "Header" and "Sources".

The Header-folder therefore logically contains all header �les of the project, the Sources-folder all

sourcecodes. All other folders are of no interest right now, so we'll turn back here later to see what

they contain.

The two folders then contain the following �les:

Headers:

� kscribble.h : contains the class declaration for the class KScribbleApp.

� kscribbledoc.h : contains the class declaration for the class KScribbleDoc.

� kscribbleview.h : contains the class declaration for the class KScribbleView.

� resource.h : contains a macro collection for the menu-ID's

20 Chapter 3. Creating new Applications

Sources:

� kscribble.cpp : contains the implementation of the class KScribbleApp.

� kscribbledoc.cpp : contains the implementation of the class KScribbleDoc.

� kscribbleview.cpp : contains the implementation of the class KScribbleView.

� main.cpp : contains the main() function implementation.

Before diving into the sources, we'll let KDevelop build and run our new application. To do this,

select "Make" from the "Build"-menu or hit the according button on the toolbar. The output

window opens from the bottom of KDevelop and lets you see what make does by the messages it

gives us:

1 Making all in docs

2 make[1]: Entering directory `/home/rnolden/Tutorial/kscribble1/kscribble/docs'

3 Making all in en

4 make[2]: Entering directory `/home/rnolden/Tutorial/kscribble1/kscribble/docs/en'

5 make[2]: Nothing to be done for `all'.

6 make[2]: Leaving directory `/home/rnolden/Tutorial/kscribble1/kscribble/docs/en'

7 make[2]: Entering directory `/home/rnolden/Tutorial/kscribble1/kscribble/docs'

8 make[2]: Nothing to be done for `all-am'.

9 make[2]: Leaving directory `/home/rnolden/Tutorial/kscribble1/kscribble/docs'

10 make[1]: Leaving directory `/home/rnolden/Tutorial/kscribble1/kscribble/docs'

11 make[1]: Entering directory `/home/rnolden/Tutorial/kscribble1/kscribble'

12 g++ -DHAVE_CONFIG_H -I. -I. -I.. -I/opt/kde/include -I/usr/lib/qt/include -I/usr/X11R6/include -O0

kscribbleview.cpp

13 g++ -DHAVE_CONFIG_H -I. -I. -I.. -I/opt/kde/include -I/usr/lib/qt/include -I/usr/X11R6/include -O0

kscribbledoc.cpp

14 g++ -DHAVE_CONFIG_H -I. -I. -I.. -I/opt/kde/include -I/usr/lib/qt/include -I/usr/X11R6/include -O0

kscribble.cpp

15 g++ -DHAVE_CONFIG_H -I. -I. -I.. -I/opt/kde/include -I/usr/lib/qt/include -I/usr/X11R6/include -O0

main.cpp

16 /usr/bin/moc ./kscribble.h -o kscribble.moc.cpp

17 g++ -DHAVE_CONFIG_H -I. -I. -I.. -I/opt/kde/include -I/usr/lib/qt/include -I/usr/X11R6/include -O0

kscribble.moc.cpp

18 /usr/bin/moc ./kscribbledoc.h -o kscribbledoc.moc.cpp

19 g++ -DHAVE_CONFIG_H -I. -I. -I.. -I/opt/kde/include -I/usr/lib/qt/include -I/usr/X11R6/include -O0

kscribbledoc.moc.cpp

20 /usr/bin/moc ./kscribbleview.h -o kscribbleview.moc.cpp

21 g++ -DHAVE_CONFIG_H -I. -I. -I.. -I/opt/kde/include -I/usr/lib/qt/include -I/usr/X11R6/include -O0

kscribbleview.moc.cpp

22 /bin/sh ../libtool --silent --mode=link g++ -O0 -g -Wall -o kscribble -L/opt/kde/lib -L/usr/X11R6/

-rpath /usr/X11R6/lib kscribbleview.o kscribbledoc.o kscribble.o main.o kscribble.moc.o kscribbledoc.m

-lkfile -lkfm -lkdeui -lkdecore -lqt -lXext -lX11

23 make[1]: Leaving directory `/home/rnolden/Tutorial/kscribble1/kscribble'

As you see, we've put line-numbers in front of each line, which won't appear in your output; it just

makes it easier to describe what happened during the build now. First of all, make works recursively.

That means, it starts from the directory it is invoked in and then goes into the subdirectories �rst,

returns and processes the next directory. Finally, the directory it was started is processed and make

�nishes. Therefore, make started in the main project directory containing the sources �rst. In line

3.3. The Source Skeleton 21

1 and 2, you see how the make process goes into the docs directory, then into the en subdirectory.

As there isn't anything to do, it leaves these directories until it returns to the source-directory

kscribble in line 11. Then, the real work starts: make invokes the compiler, here g++ to compile

the source-�le kscribbleview.cpp. The macro -DHAVE_CONFIG_H says that the �le config.h should

be used. This is a �le containing macros for the speci�c platform and application and is located in

the main project directory. The following -I commands add the include path where g++ can �nd

the includes it needs. These are the current directory, the main project directory (by -I..) and the

include path for the KDE, Qt and X11 library header �les. The directories for these include �les

were determined by the configure script and set in the Make�les, therefore, the compiler knows

where these are located. Finally, -O0 sets the optimization to zero (no optimization), -g enables

debugging, -Wall sets the compiler warnings to all and -c tells the compiler to produce an object

�le, so only compile the �le.

This is done for the other source-�les of our project as well in lines 13-15. Obviously, our sources

are compiled, but instead of linking the object �les of the sources to the �nal binary, we see some

other commands. In line 16, you see that the program "moc" is called to process the header-�le

kscribble.h, with it's output in kscribble.moc.cpp. Then, in line 17, this source �le is compiled

as well. The same happens with the other project header �les until line 21. Now, as the Qt toolkit

contains the signal/slot mechanism, but still stays a C++ implementation, you're using certain

keywords that are not originally C++ language, such as the signals: and slots: declaration in

your classes. This gives you the ability to easily allow object communication for all class objects

that inherit the class QObject, so you can avoid the usual callback pointer functions. Therefore, the

application needs the sources that implement this functionality, and that is why moc is called. Moc

is the Meta Object Compiler of the Qt toolkit and builds the implementation for signals and slots

mechanisms by parsing the header �le and producing a source output that has to be compiled in the

binary. As KDevelop projects use automoc to determine, which header �le needs to be processed,

you don't have to take care for any call on moc and the C++ compiler on the moc output �les.

Just remember the rules that make a class use the signals and slots- inheritance from QObject or

any class that inherits QObject itself, inclusion of the Q_OBJECT macro (without semicolon !) at the

beginning of the class declaration and the declarations for signals and slots.

Finally, your binary is built by the compiler. The output binary is called kscribble, the linker

includes the path for the KDE and X11 libraries and links the sources against the libraries kfile,

kfm, kdeui, kdecore, qt, Xext and X11. Then you're done and make exits.

3.3 The Source Skeleton

To gain a concept of how a KDE application works, we'll �rst have a very close look at the source

skeleton already provided by the Application Wizard. As we already saw, we're having a set of

source and header �les that build the initial code for the application and make it ready-to-run.

Therefore, the easiest way to explain the code is to follow the implementation line by line as it is

processed during executing the program until it enters the main event loop and is ready to accept

user input. Then, we'll have a look at the functionality that enables user interaction and how certain

things work. This is probably the best way to explain the framework and, as it is similar to almost

all KDE applications, will enable you to read source codes from other projects as well; additionally,

you will know where to change what part of the code to make your applications behave the way they

are designed for.

22 Chapter 3. Creating new Applications

3.3.1 The main() Function

As the application begins its execution with entering the main() function, this will be the start for

our code examination. The main() function of KScribble is implemented in the �le main.cpp and

can also be found using the Class Browser by selecting the "Globals" folder, sub-folder "Functions":

1 #include "kscribble.h"

2

3 int main(int argc, char* argv[]) {

4 KApplication app(argc,argv,"KScribble");

5

6 if (app.isRestored())

7 {

8 RESTORE(KScribbleApp);

9 }

10 else

11 {

12 KScribbleApp* kscribble = new KScribbleApp;

13 kscribble->show();

14 if(argc > 1){

15 kscribble->openFile(argv[1]);

16 }

17 }

18 return app.exec();

19 }

Now, what happens �rst is the usual creation of a KApplication object, which gets our application

name KScribble as a third parameter. When creating a new KApplication, a new KConfig instance

is created as well which is connected to a con�guration �le in $HOME/.kde/share/con�g/appname

+ rc which stores all information we want to use when starting application windows. The name we

passed the constructor of app will be used as the window title later.

Despite of the example code for turning the �rst Qt application into a KDE one, the following code

is somewhat di�erent. After the KApplication object is present, we're testing if the application is

started by the session management of kwm or manually by the user. This can be found out when

calling isRestored() on the app object, which returns true for session management and false for

a normal start.

As session management is a main feature of KDE applications and widely used by the framework

but a lot more to explain, we'll follow the elsefg section �rst; then we'll come back and explain the

session functionality in a later step.

3.3.2 User Application Start

The elsefg section now creates an instance of the class KScribbleApp in line 12. This object is called

to show itself in line 13 as usual; line 14 determines if a command-line argument has been passed

and, as this is usually the name of a �le, calls the kscribble object to open it with openFile().

Note that we didn't call the method setTopWidget(kscribble) for our application- this is already

done by the class that KScribbleApp inherits. Now we'll have a look at our KScribbleApp object-

what is it and what does it provide already ? The only thing we know until now is that it has to be

a Widget to represent the user interface in the main window. Let's turn to the class implementation

of KScribbleApp, which can be found in the �le kscribble.cpp or by a click on the class icon in

the Class Browser. As the instance is created by the constructor. First of all, we see that it inherits

3.3. The Source Skeleton 23

the class KTMainWindow, which is a part of the kdeui library. This class itself inherits QWidget,

so, as usual, we have a normal widget as the top-level window. KTMainWindow contains a lot of

functionality that the class KScribbleApp makes use of. It provides a menubar, toolbar, statusbar

and session management support. The only thing we have to do when sub-classing KTMainWindow is

to create all the objects we need and create another widget that is managed by our KTMainWindow

instance as the main view in the center of the window; usually this is the place where the user works

like a text-editing view.

The Constructor

Let's have a look at the code for the constructor and see how the instance is created:

1 KScribbleApp::KScribbleApp()

2 {

3 config=kapp->getConfig();

4

5

6 ///

7 // call inits to invoke all other construction parts

8 initMenuBar();

9 initToolBar();

10 initStatusBar();

11 initKeyAccel();

12 initDocument();

13 initView();

14

15 readOptions();

16

17 ///

18 // disable menu and toolbar items at startup

19 disableCommand(ID_FILE_SAVE);

20 disableCommand(ID_FILE_SAVE_AS);

21 disableCommand(ID_FILE_PRINT);

22

23 disableCommand(ID_EDIT_CUT);

24 disableCommand(ID_EDIT_COPY);

25 disableCommand(ID_EDIT_PASTE);

26 }

We see that our con�g instance of KConfig now points to the applications con�guration, so we can

operate with the con�guration �le entries later.

Then, all parts of the application that are needed are created by their according member functions

that are speci�c to our main window:

� initMenuBar(): constructs the menubar,

� initToolBar(): constructs the toolbar,

� initStatusBar(): creates the statusbar,

� initKeyAccel(): sets all keyboard accelerators for our application by the global and applica-

tion speci�c keyboard con�guration

� initDocument(): creates the document object for the application window

24 Chapter 3. Creating new Applications

� initView(): creates the main widget for our view within the main window

� readOptions(): reads all application speci�c settings from the con�guration �le and initializes

the rest of the application such as the recent �le list, the bar positions and the window size.

Finally, we disable some commands that the user can do, because they should not be available in

the current application state. As we now have a general overview how the application window is

created, we will look into the details of how the user elements are constructed by following the above

methods.

The Menubar

As shown above, the menubar of KScribble is created by the method initMenuBar(). There, we

create a set of QPopupMenus that pop up if the user selected a menuentry. Then, we insert them into

the menubar and connect to the entries.

First, we create our recent_file_menu, which will contain the names of the last 5 opened �les. We

have to do this �rst, because this menu is inserted into the file_menu. Then we add the connection

directly- we just retrieve the signal that is emitted by the menuentry with its entry number and

call the slotFileOpenRecent(int), which then calls the right �le from the recent �le list to be

opened.

Then we create our "File"-menu. This will be the menu that will be visible in the menubar. The

standard actions are then inserted into the popup-menu one by one- �rst the commands for creating

a new �le, open a �le, close a �le etc., �nally "E&xit" to close the application. All menu entries

have to be created in the order as they appear later, so we have to keep an eye on which we want to

have at what place. As an example, we look at the following entries:

file_menu->insertItem(Icon("fileopen.xpm"), i18n("&Open..."), ID_FILE_OPEN);

file_menu->insertItem(i18n("Open &recent"), recent_files_menu, ID_FILE_OPEN_RECENT);

The �rst one inserts the "Open..." entry. As we want to have it with an icon, we use the

insertItem() method with the icon's name. To understand the icon loading process, we need to

know what or where Icon() is declared- in fact, it is a macro provided by the class KApplication:

#define Icon(x) kapp->getIconLoader()->loadIcon(x)

Additionally, it uses the following macro internally to get access to the application object:

#define kapp KApplication::getKApplication()

This means that the KApplication object already contains an Icon loader instance- we only have to

get access to it; then it will load the according icon. As our icons are all from the KDE libraries, we

don't have to take care for anything else- they are installed on the system automatically, therefore

we also don't have to include them into our application package to use them.

After the icon parameter (which is optional), we insert the menuentry name by i18n("&Open...").

There, we have to watch two things: �rst, the entry is inserted with the i18n() method. Like the

Icon() entry, it is a macro de�ned in kapp.h as well and calls the KLocale object of KApplication

to translate the entry to the currently used language:

#define i18n(X) KApplication::getKApplication()->getLocale()->translate(X)

3.3. The Source Skeleton 25

Hereby, it should be mentioned that one could think "I don't want to use macros"- you can do that

in most cases. But here it is immanent to use i18n() because for internationalization the according

language �les have to be build. As this build process depends on the i18n string, you have to use

the macro.

As you might have already guessed, the ampersand within menu entries is later interpreted as a line

under the following letter in the menuentry. This allows fast access to the menu command via the

keyboard when the user presses the Alt-key in conjuction with the underlined letter.

Finally, we're giving the menuentry an ID, which is an integer value by which we can �nd the entry

later. To keep an overview over the used values, these are de�ned by macros and are collected in the

�le resource.h within your project. For consistency, these macros are all uppercase and begin with

ID_, then the menu name followed by the entry. This makes it very easy to remember the sense

of each entry anywhere within the code, so you don't have to turn to the menubar implementation

again to look up the entries.

The second example entry shows another variant of the insertItem() method. Here, we add the

recent_�les_menu popup menu as a menuitem. This means, that the entry shows itself with the

given string "Open recent", followed by a right arrow. On selection, the recent �le popup menu

appears and the user can choose the last �le.

Last but not least there are a lot of other ways to insert menu items- the framework keeps this as

simple as possible. More information can be obtained in the Qt documentation about the QMenuData

class.

Now, after we created the popup menus file_menu, edit_menu and view_menu, we have to include

a "Help"-menu as well. We could do this like the others as well, but the KApplication class o�ers

a nice and quick method to cover this:

help_menu = kapp->getHelpMenu(true, i18n("KScribble\n" VERSION));

This is all we have to do to get a help menu that contains an entry for the help contents with the

F1 keyboard shortcut, an about-box for the application and an about-box for the KDE (which can

be disabled by calling getHelpMenu(false,...);). The contents for our applications about-box is

set with the i18n() string again- VERSION takes the macro that is de�ned for the project version

number in the �le config.h, so we don't have to change this every time manually when we want

to give out a new release. Feel free to add any information about your application here, e.g. your

name, email address, copyright and the like.

Now we only have to insert the pop-ups into the menubar. As KTMainWindow already constructs a

menubar for us, we just insert them by calling menuBar()->insertItem();.

What is left to do is to connect the menu-entries with the methods they will execute. Therefore,

we connect each popup menu by its signal activated(int) to a method commandCallback(

int), which contains a switch statement that calls the according methods for the menu entries.

Additionally, we connect the pop-ups by their signal highlighted(int) to provide statusbar help

on each entry. Whenever the user moves his mouse or keyboard focus to an entry, the statusbar

then shows the according help message.

After we �nished with the menubar, we can continue with the toolbar in the following section. Mind

that an instance of a KTMainWindow can only have one menubar visible at a time; therefore if you

want to construct several menu bars, you have to create them separately with instances of KMenuBar

and set one of them by the according methods of KTMainWindow as the current menubar. See the

class documentation of KMenuBar for more detailed information about how to extend the features,

also see 5 (Con�guring Menubars and Toolbars).

26 Chapter 3. Creating new Applications

The Toolbar

The creation of toolbars now is even simpler than that of menubars. As KTMainWindow already

provides toolbars, which are created by the �rst insertion, you are free to create several ones. Just

add the buttons for the functions you want to provide:

toolBar()->insertButton(Icon("filenew.xpm"), ID_FILE_NEW, true, i18n("New File"));

This adds a left-aligned button with the icon "�lenew.xpm" with the according ID to the toolbar.

The third parameter decides if the button should be enabled or not; by default we set this to true,

because our disableCommand() methods at the end of the constructor do this for us automatically

for both menu and toolbar entries. Finally, the last parameter is uses as a so-called "Quick-Tip"-

when the user moves the mouse pointer over the button so that it gets highlighted, a small window

appears that contains a short help message, whose contents can be set here.

Finally, all toolbar buttons are connected to our commandCallback() method again by their signal

clicked(). On the signal pressed(), we let the user receive the according help message in the

statusbar.

Additional Information:

As toolbars are created using the class KToolBar, you should have a look at the according documen-

tation. With KToolBar, a lot of things needed in a toolbar can be realized such as delayed pop-ups

if your button wants to pop up a menu when the button keeps being pressed or even widgets like

combos. Also, by default, the toolbar �lls the complete width of the window, which makes it look

nice for using a single bar. When using more than one, you should also think about setting the

bar size to end at the most right button, so other bars can be displayed in the same row below the

menubar. We will discuss certain techniques about designing and extending toolbars in section 5

(Con�guring Menubars and Toolbars).

The Statusbar

The statusbar is, as well as the other bars, already provided by the KTMainWindow instance, so we

just have to insert our items as we want to. By default, the framework contains only one entry that

displays statusbar help. For a lot of applications this may not last; then you would add the entries

you need for displaying e.g. coordinates and the like.

Also, an application can only have one statusbar at a time like a menubar. If you want to construct

several ones, you should create them separately and set the current bar by the according method of

KTMainWindow. The statusbar also o�ers to insert widgets, which can be used to produce nice habits

for displaying progress-bars like KDevelop does. Refer to the class documentation of KStatusBar.

Keyboard Accelerators

With reaching the method initKeyAccel(), we already constructed the standard items of an ap-

plication main window- the menubar, toolbar and statusbar. Indeed, we didn't set any keyboard

accelerators by which advanced users that only want to work with the keyboard have a quick access

to certain commands that are used most often during work with our program. To do this, we could

have inserted the accelerator keys by the insertion of the menu-items for example, but KDE o�ers

a good solution to construct and maintain keyboard accelerators. A lot of users want to have them

con�gurable on one hand and on the other standard accelerators should be the same over all applica-

tions. Therefore, the KDE control center o�ers con�guring standard keyboard accelerators globally

by using the KAccel class. Additionally, the KDE libraries contain a widget that lets users con�gure

3.3. The Source Skeleton 27

application speci�c keyboard shortcuts easily. As the application framework only uses menu-items

that have standard actions such as "New" or "Exit", these are set by the method initKeyAccel().

Standard actions just have to be connected, for your application speci�c keyboard values, you have

to insert them �rst by specifying the keyboard accelerator name and then connect them. As our

accelerators are all present in the menubar, we have to change the accelerators for the popup entries.

Finally we call readSettings(), which reads the current settings from the root window of KDE con-

taining the con�guration of standard accelerators, then the settings for accelerators speci�ed in the

application's con�g �le. When we're going further into our example project, we will also talk about

how to con�gure our application speci�c accelerators by a con�guration dialog, see 5 (Con�guring

Menubars and Toolbars) for that part of the development process.

The Document-View Model

The next two member function calls, initDocument() and initView(), are �nally building the part

that the application windows are supposed to provide to the user: an interface to work with data

that the application is supposed to manipulate; and that is also the reason why the application

framework contains three classes, an *App, *View and *Doc class. To understand, why this structure

is helpful, we'll look a bit aside the actual code and introduce some theory, then we'll switch to the

program again to see how the KDevelop frameworks support such a model.

Basically, all what has been explained about the framework is that we need an application instance

that contains a main window. This window is responsible to provide the basic interface for the

user- it contains the menubar, toolbars and statusbar and the event controlling for user interaction.

Also, it contains an area, that is described as a "view". Now, the purpose of a view is generally, to

display the data that the user can manipulate, e.g. a part of a text �le. Although the text �le is

probably larger than the view is able to display on the screen, it o�ers the user to go to the part

that he wants to see (therefore it is a view), and there the user can as well change the data of the

�le contents. To give the programmer a better way to separate parts of the application by code, the

Document-View Model has been invented. Although not a standard, it provides a structure how an

application should work:

� The application contains a controller object,

� a View object that displays the data the user works with

� and a Document object that actually contains the data to manipulate.

Back to the example of working with a text �le- there, this model would work the way that the

Document would read the �le contents and provides methods to change the data as well as to save

the �le again. The view then processes the events that the user produces by the keyboard and the

mouse and uses the document object's methods to manipulate the document data.

Finally, the controller object is responsible for user interaction by providing the document and the

view objects as well as the interfaces to send commands like opening and saving. Additionally,

certain methods of the view object can be provided by commands that can be accessed via keyboard

accelerators or the mouse on menubars and toolbars.

This Document-View model has some advantages- it separates the program's code more object-

oriented and by this o�ers more �exibility in general, e.g. the same document object could be

displayed by two views at the same time; either by a new view in a new window or by tiling the

current one that then contains two view object that build the actual window view region.

Now, if you're coming from MS-Windows systems you may have some experience with that- the

MFC already provide a document model that is ready to use. For KDE and Qt applications, things

28 Chapter 3. Creating new Applications

are a bit di�erent. Qt is a powerful toolkit as it provides the most needed classes, widgets etc.

But there wasn't any intention to take care of the document-view model, and as KDE is inheriting

Qt, there weren't any tendencies to introduce such a model either. This somehow has its reason in

the fact that usually X-applications don't work with an MDI (Multiple Document Interface). Each

main window is responsible for its data and that reduces the need of a document model to the fact

that methods to work on documents are always implied into widgets. The only exception from this

currently is the KO�ce project that is intended to provide a complete o�ce suite of applications

like a word processor, a spreadsheet etc. Technically, this is realized by two changes two the normal

usage of Qt and KDE:

� KO�ce uses KOM and the free MICO implementation of CORBA for object communication,

� the KO�ce applications use a document-view model to allow all applications to work with any

KO�ce data objects

But as KDevelop currently targets on using the current libraries of KDE 1.1.x and Qt 1.4x, we

can't use this model by default- this will come in further releases of a KDE 2, which will (hopefully)

contain two new major changes in relation to the current situation:

1. an MDI interface for KTMainWindow

2. the KOM libraries that provide a document model

Therefore, the current way for application developers can be to either implement all needed document

methods within their view or to try to reproduce a document model by themselves. KDevelop

therefore contains such a reproduction by providing the needed classes and the basic methods that

are generally used for a Document-View model with the application frameworks for Qt and KDE.

Back to the code, you now can imagine the purpose of the two methods we mentioned at the beginning

of this section: the initDocument() and initView() functions. The initDocument() constructs

the document object that represents the application window data and initializes the basic attributes

like setting the modi�cation bit that indicates if the data currently used has been changed by the

user. Then, the initView() method constructs the *View widget, connects it to the document and

calls the setView() method of KTMainWindow to tell the *App window to use the *View widget as

it's center view.

For the developer, it is important to know that during the development process he has to:

� re-implement the virtual methods for mouse and keyboard events provided by QWidget in the

*View object to provide the means to manipulate data,

� re implement the paintEvent() of QWidget in the *View object to repaint() the view after

changes,

� complete the implementation for printing the document via the printing method of the *View

object,

� add the serialization for the *Doc object to provide �le loading and saving,

� add the document data structure implementation to the *Doc object that is representing the

document data logically in the memory.

� add any methods that have to be accessible by the user via accelerator keys and

menus/toolbars.

3.3. The Source Skeleton 29

Application Con�guration

Now, after we created all instances of the KTMainWindow instance of our application to create the �rst

window, we have to initialize certain values that in�uence the look of the program. For this, we call

readOptions(), which gets all values and calls the methods needed to set the according attributes.

The KDE-Core library contains the class KConfig that provides a good possibility to store values

in con�guration �les as well as to read them in again. Also, as each KApplication instance creates

it's resource �le already, we only have to access this �le and create our values. As KConfig provides

us the �le object, we have to use the class KConfigBase to read and write all entries. As writing is

very easy to do with writeEntry() methods, reading depends on the attribute type which we want

to initialize. Generally, an entry in the con�guration �le contains a value name and a value. Values

that belong together in some context can be collected in groups, therefore we have to set the group

name before we access the value afterwards; the group has to be set only once for reading a set of

attributes that are in the same group.

Let's have a look at what we want to read in:

1 void KScribbleApp::readOptions()

2 {

3

4 config->setGroup("General Options");

5

6 // bar status settings

7 bool bViewToolbar = config->readBoolEntry("Show Toolbar", true);

8 view_menu->setItemChecked(ID_VIEW_TOOLBAR, bViewToolbar);

9 if(!bViewToolbar)

10 enableToolBar(KToolBar::Hide);

11

12 bool bViewStatusbar = config->readBoolEntry("Show Statusbar", true);

13 view_menu->setItemChecked(ID_VIEW_STATUSBAR, bViewStatusbar);

14 if(!bViewStatusbar)

15 enableStatusBar(KStatusBar::Hide);

16

17 // bar position settings

18 KMenuBar::menuPosition menu_bar_pos;

19 menu_bar_pos=(KMenuBar::menuPosition)config->readNumEntry("MenuBar Position", KMenuBar::Top);

20

21 KToolBar::BarPosition tool_bar_pos;

22 tool_bar_pos=(KToolBar::BarPosition)config->readNumEntry("ToolBar Position", KToolBar::Top);

23

24 menuBar()->setMenuBarPos(menu_bar_pos);

25 toolBar()->setBarPos(tool_bar_pos);

26

27 // initialize the recent file list

28 recent_files.setAutoDelete(TRUE);

29 config->readListEntry("Recent Files",recent_files);

30

31 uint i;

32 for (i =0 ; i < recent_files.count(); i++){

33 recent_files_menu->insertItem(recent_files.at(i));

34 }

35

36 QSize size=config->readSizeEntry("Geometry");

37 if(!size.isEmpty())

38 resize(size);

30 Chapter 3. Creating new Applications

39 }

As we have seen in one of the above code parts, the �rst action our constructor does was:

config=kapp->getConfig();

which sets the KConfig pointer config to the application con�guration. Therefore, we don't have to

care for the location of the con�guration �le. Indeed, the �le is, according to the KDE File System

Standard (KDE FSS), located in $HOME/.kde/share/config/; we will have a closer look about the

KDE FSS in a later step when we're setting installation locations for project �les. As the con�g �le

is placed in the user's home directory, each user has it's own appearance of his application except

for values that are located in a system wide con�guration �le that can optionally be created and

installed by the programmer in the KDE directory. But, although this could help in some cases,

we should avoid any dependency of our application towards the existing of �le entries. Therefore,

all read methods provided by KConfigBase allow to add a default value to be used when the entry

doesn't exist. Another thing important to a programmer is that the con�guration �le is stored in

plain text, and this is for some reasons as well as you have to watch some criteria:

� the user is able change the con�guration �le by a plain text editor

� if the user wants to change values by hand, the entries should be very transparent to determine

their purpose

� for entries that have to be saved, but are critical in terms of security like passwords, you have

to look for a proper solution to ensure the security.

Now that we know the basics, we're going to analyze the code. As said, we only have to use our

con�g pointer to access the values. First, in line 4, we set the current group to "General Options".

This indicates that the values used are somewhat general attributes for the application. Then we

read the values for the toolbar and statusbar- these have to be saved when the application closes

to restore their status again when the user restarts the program. As the bars can only be on or

o�, we use a boolean value, therefore, our method is readBoolEntry(). The process is identical

for both bars, so we only have a look at the lines 7-10 to watch what's happening for the toolbar.

First, we read the value into the temporary variable bViewToolbar at line 7. The value name in the

�le is "Show Toolbar" and, if the value is not present (which would be the case the �rst time the

application starts), the default value is set to true. Next, we set the checkmark for the menuentry

for en-/disabling the toolbar by this value: we call setItemChecked() on the view menu, entry

ID_VIEW_TOOLBAR with our attribute. Finally, we set the toolbar to use the value. By default,

the toolbar is visible, therefore, we only have to do something if bViewToolbar is false. With

enableToolBar() (line 10) we're setting the bar to hide itself if it is disabled.

Next, we have to read the bar positions. As the user might have changed the bar position by dragging

a bar with the mouse to another view area, these have to be saved as well and their status restored.

Looking at the classes KToolBar and KMenuBar, we see that the bar positions can be:

enum BarPosition {Top, Left, Bottom, Right, Floating, Flat}

As this value has been written in a numeric value, we have to read it with readNumEntry() and

convert it to a position value. With setMenuBarPos() and setBarPos() we tell the bars where to

show up.

Now you probably have noticed that our "File" menu contains a menu for recently used �les. The

�lenames are stored in a list of strings, which has to be saved on application closing and now has

3.3. The Source Skeleton 31

to be read in to restore the menu. First, we initialize the list with the entries stored by using the

readListEntry(). Then, in a for-loop, we create a menu entry for each list item.

Finally, we only have to take care for the geometry of our window. We read in the appearance by

a QSize variable containing an x and y value for width and height of the window. As the window

is initialized by KTMainWindow, we don't have to take care for a default value and only will use

resize() if the entry is not empty.

What is left to explain on application construction is that we initially have to disable available user

commands that shouldn't be available if some instances don't match the needed criteria. These are

�le saving and operations that are using the clipboard. During the application's lifetime, we have to

take care of these several times, but which is quite easy. The framework only gives us two methods

to enable/disable menubar and toolbar items with one method call at the same time.

Executing

During the past section, we have only monitored what happens during the constructor call of

our KScribbleApp instance providing us the main window. After returning to the main() func-

tion, we have to call show() to display the window. What is di�erent from any KApplication or

QApplication here is that when we're using KTMainWindow as the instance for our main widget,

we don't have to set it with setMainWidget(). This is done by KTMainWindow itself and we don't

have to take care of that. The only thing left then is to interpret the command-line. We get the

command-line option and ask, if int argc is > 1, which indicates that the user called our applica-

tion with kscribble filename_to_open. Our window is then asked to open the �le by it's name

and calls openDocumentFile() with the �lename.

The last line of the main() function does the known job: it executes the application instance and

the program enters the event loop.

Now, in section 3.3.1 (The main() Function), we started to separate the execution process by if(

app.isRestored()) and described the usual invocation process. The following now gives an intro-

duction to session management and how our application makes use of this.

3.3.3 Invocation by Session Management

As we said, the main() function tests, if the application is invoked by the session manager. The

session manager is responsible to save the current status of all open application windows on the

user's desktop and has to restore them when the user logs in the next time, which means that the

application is not started by the user but automatically invoked. The part of the code which is

executed was:

6 if (app.isRestored())

7 {

8 RESTORE(KScribbleApp);

9 }

In 3.3.1 (The main() Function), we stated that we test the invocation by asking app.isRestored().

Then line 8 gets executed. It looks like a simple statement, but in fact this will result in a complex

execution process which we want to follow in this section.

RESTORE() itself is a macro provided by KTMainWindow. It expands to the following code:

if (app.isRestored()){

int n = 1;

32 Chapter 3. Creating new Applications

while (KTMainWindow::canBeRestored(n)){

(new KScribbleApp)->restore(n);

n++;

}

}

This will restore all application windows of the class KScribbleApp by creating the instances and

calling restore() to the new window. It is important to realize that if your application uses several

di�erent widgets that inherit KTMainWindow, you have to expand the macro and determine the

type of the top widgets by using KTMainWindow::classNameOfToplevel(n) instead of the class

KScribbleApp. The restore() method then reads the part of the session �le that contains the

information about the window. As KTMainWindow stores all of this for us, we don't have to care

for anything else. Only information that belong to our speci�c instance of KScribbleApp has to

be found then. Usually this would be a temporary �le that we created to store the document or

other initialization that we might need. To get to this restoration information, we only have to

overwrite two virtual methods of KTMainWindow, saveProperties() and readProperties(). The

information we have to save on session end is if the currently opened document is modi�ed or not

and the �lename. If the �le is modi�ed, we will get a temporary �lename to save it to. On session

beginning, this information now is used to restore the document contents:

void KScribbleApp::readProperties(KConfig*)

{

QString filename = config->readEntry("filename","");

bool modified = config->readBoolEntry("modified",false);

if(modified){

bool b_canRecover;

QString tempname = kapp->checkRecoverFile(filename,b_canRecover);

if(b_canRecover){

doc->openDocument(tempname);

doc->setModified();

QFileInfo info(filename);

doc->pathName(info.absFilePath());

doc->title(info.fileName());

QFile::remove(tempname);

}

}

else if(!filename.isEmpty()){

doc->openDocument(filename);

}

setCaption(kapp->appName()+": "+doc->getTitle());

}

Here, the line kapp->checkRecoverFile() seems a bit strange, as b_canRecover is not initialized.

This is done by the method which sets it to true, if there is a recover �le. As we only saved a

document in a recover �le if it was modi�ed, we set the modi�ed bit directly to indicate that the

information hasn't been saved to the belonging �le. Also we have to take care that the recover

�le has another �lename than the original �le which was opened. Therefore, we have to reset the

�lename and path to the old �lename. Finally, we have the information we wanted to recover and

we can delete the temporary �le by the session manager.

Summary:

During this chapter, you got to know how the application starts either by normal user invocation

or by the session manager. We went through the code to learn how the parts of the visual interface

3.4. Additional Contents of KDevelop Projects 33

of the application are constructed as well as how to initialize attributes by con�guration �le entries.

Now you can execute the framework application to test these functions and see how the program

window reacts.

3.4 Additional Contents of KDevelop Projects

Besides the source code provided, KDevelop projects contain a lot of other additional parts that are

of interest to the developer. These are:

� a program icon

� a program mini-icon

� a .kdelnk �le

� a sample SGML-documentation �le

� a set of API-documentation generated from the framework source

Except the API-documentation, these elements of the project will be installed together with the

application binary. As the project framework has to be as open as possible, you have to adapt

these parts towards your project goals. These are �rst to edit the icons provided. This will give

your application a unique identi�er by which the user can determine your application visually in

window manager menus. The .kdelnk �le then is a �le that installs your application into kpanel

in the Applications menu. This has to be edited by setting the installation path which will be

discussed later in this handbook. Finally, the documentation that you will provide to the user is

written in SGML. This makes it very easy to create several di�erent output from the same source.

By default, KDevelop o�ers to create a set of HTML �les from this source, for KDE-projects this

will automatically use the ksgml2html program to add a consistent KDE look and feel to the

documentation. In a later section, we will see how the SGML source is edited and what we have to

watch for installation on the end-user.

Finally, the API (Application Programming Interface) documentation allows you and other devel-

opers to quickly get into the code and use the classes without having to guess what purpose each

class is for. We will learn how to extend the API documentation in a later step, for now it lasts to

know that the documentation is generated by the KDoc program, which processes the header �les

and creates the HTML output, therefore all documentation is placed in the headers.

34 Chapter 3. Creating new Applications

Chapter 4

Application View Design

When developing an application with a graphical user interface, the main work takes place in pro-

viding a so-called "view" for the application. A view generally is a widget that displays the data

of a document and provides methods to manipulate the document contents. This can be done by

the user via the events he emits by the keyboard or the mouse; more complex operations are often

processed by toolbars and menubars which interact with the view and the document. The statusbar

then provides information about the document, view or application status. As an example, we look

at how an editor is constructed and where we can �nd which part.

An editor generally is supposed to provide an interface to view and/or change the contents of a text

document for the user. If you start KEdit , you see the visual interface as the following:

� The menubar: providing complex operations as well as opening, saving and closing �les and

exiting the application.

� The toolbar: o�ers icons which allow quicker access for most needed functions,

� The statusbar: displays the status of the cursor position by the current row and column,

� The view in the center of the window, displaying a document and o�ering a cursor connected

to the keyboard and the mouse to operate on the data.

Now it's easy to understand, that a view is the most unique part of the application and the design

of the view decides about the usability and acceptability of an application. This means that one of

the �rst steps in development is to determine the purpose of the application and what kind of view

design would match best to allow any user to work with the application with a minimum of work

learning how to handle the user interface.

For some purposes like text editing and displaying HTML �les, views are provided by the Qt and

KDE libraries; we will discuss certain aspects of these high-level widgets in the next section. But

for most applications new widgets have to be designed and implemented. It is that what makes a

programmer also a designer and where his abilities on creativity are asked. Nevertheless, you should

watch for intuitivity �rst. Remember that a lot of users won't accept an application that isn't

� graphically nice,

� o�ering a lot of features,

� easy to handle,

� fast to learn how to use it.

35

36 Chapter 4. Application View Design

Needless to say that stability is a major design goal. Nobody can prevent bugs, but a minimum

can be reached at least by clever design goals and wide use of object-oriented design. C++ makes

programming a joy if you know how to exploit it's capabilities- inheritance, information hiding and

reusablitity of already existing code.

When creating a KDE or Qt project, you always have to have a view that inherits QWidget, either

by direct inheritance or because the library widget you want to use inherits QWidget. Therefore, the

Application Wizard already constructed a view that is an instance of a class <yourapp>View, which

inherits QWidget already. The application creates your view in the method initView(), where an

instance is created and connected to the main widget as it's view with KTMainWidget::setView().

This chapter therefore describes how to use library widgets for creating views of KDE or Qt applica-

tions that are generated with KDevelop, then we're looking at the libraries and what kind of views

are already o�ered.

4.1 Using Library Views

When your application design has been set up, you �rst should look for already existing code that

will make your life a lot easier. A part of this search is to look for a widget that can be used as a

view or at least as a part of it; either directly or by inheritance. The KDE and Qt libraries already

contain a set of widgets that can be used for this purpose. To use them, you have two options:

1. remove the new view class and create an instance of a library widget; then set this as the view,

2. change the inheritance of the provided view class to the class of the library widget to use.

In either way, it is important to know that if the application framework is currently not linked

against the library that contains the widget, the linker will fail. After you decided to use a certain

widget, look for the library to link to; then open "Project"->"Options" from the KDevelop menubar.

Switch to the "Linker Options" page and look for the checkmarks indicating the libraries that are

currently used. If the library of your view widget is already checked, you can leave the project

options untouched and start doing the necessary changes due to your choice. If not, and the linker

options o�er to add the library by a check box, check it and press "OK" to leave the project options

dialog again. In any other case, add the library in the edit line below with the -l option. For

libraries that your application has to search for before preparing the Make�les by the configure

script on the end-user machine, add the according search macro to the configure.in �le located

at the root directory of your project and add the macro to the edit line. Mind that you have to

run "Build"->"Autoconf and automake" and "Build"->"Con�gure" before the Make�les contain

the correct expansion for the library macro.

Also, if the include �les for the library to add are not in the current include path (which can be

seen by the -I options in the output window on "Make"), you have to add the path to the Project

Options dialog -"Compiler Options" page with the -I option or the according automake macro at

the edit line for "Additional Options".

4.1.1 Qt Views

Looking at the �rst page of the Qt online documentation, you will �nd a link to "Widget Screenshots"

where you can have a look at how the widgets Qt contains look like. These are ready to use and

can be combined together to form complex widgets to create application views or dialogs. In the

following, we'll discuss some of these which are very usable for creating application views, but keep

4.1. Using Library Views 37

in mind that the KDE libraries sometimes contain other widgets for the same purpose; those will be

reviewed in the next section.

Here are a set of hints for what purpose you could use which Qt component:

1. if your view area isn't big enough to display all your data, the user must be enabled to scroll

over the document with bars on the left and bottom of the view. For this, Qt provides the

class QScrollView, which o�ers a scrollable child area. As explained, you could inherit your

own widget from QScrollView or use an instance to manage your document's view widget.

2. to create a ScrollView yourself, inherit the View widget from QWidget and add vertical and

horizontal QScrollBars. (this is done by KDE`s KHTMLView widget).

3. for text processing, use QMultiLineEdit. This class provides a complete text editor widget

that is already capable to cut, copy and paste text and is managed by a scrollview.

4. use QTableView to display data that is arranged in a table. As QTableView is managed by

scrollbars as well, it o�ers a good solution for table calculation applications.

5. to display two di�erent widgets or two widget instances at the same time, use QSplitter.

This allows to tile views by horizontal or vertical dividers. Netscape's Mail window is a good

example how this would look like- the main view is separated by a splitter vertically, the right

window then is divided again horizontally.

6. QListView displays information in a list and tree. This is useful for creating �le trees or any

other hierarchical information you want to interact with.

You see that Qt alone o�ers a whole set of widgets which are ready to use so you don't have to

invent new solutions if these match your needs. The side�ect when using standard widgets is that

users already know how to handle them and only have to concentrate on the displayed data.

4.1.2 KDE Views

The KDE libraries were invented to make designing applications for the K Desktop Environment

easier and capable of more functionality than what Qt alone is o�ering. To see what's available,

we have a look at the documentation tree in KDevelop. You see that the KDE libraries start with

kdecore, which is a base for all KDE applications. Then,kdeui o�ers user interface elements. This

is where we will �nd some useful things �rst. For creating new applications, the kdeui library o�ers:

1. KTabListBox: o�ers a multi-column list box where the user can change the rows with drag'n

drop.

2. KTreeList: inherited from QTableView, o�ering a collapsible tree. This could be used instead

of QListView.

3. KEdit: the base classes for the KEdit application o�ered with KDE. This could be used instead

of QMultiLineEdit.

4. KNewPanner: manage two child widgets like QSplitter.

The khtmlw library on the other hand o�ers a complete HTML-interpreting widget that is ready to

use. It is scrollable already, so you don't even have to take care for that. A possible use could be to

integrate it as a preview widget for an HTML editor; used by applications such as KFM, KDEHelp

and KDevelop to display HTML �les.

38 Chapter 4. Application View Design

4.2 Creating your own Views

Now that you have a general overview of what is already provided, you may notice that for a lot of

purposes already existing widgets can be used or combined together. KMail is an example as well

as KDevelop itself makes use of library view components to display data.

For applications that use a special �le format or have to deal with graphics, you are probably forced

to create your own view widget to allow data manipulation. This is realized in our sample by the

class KScribbleView, already providing a base for a view area.

The inheritance from QWidget is necessary to overwrite the virtual methods to process user events,

this is probably the most work besides providing popup menus for easier access of certain functions.

Also it is likely that you have to implement a set of slots which can be accessed by toolbar buttons

or menu bar commands to connect to as well as methods to manipulate variables such as e.g. a

painter color.

For completeness, we will repeat the necessary methods:

a) Keyboard events �TAB and Shift-TAB keys:

changes the keyboard input focus from the current widget to the next widget in the focus order. The

focus can be set to widgets by calling setFocusPolicy() and process the following event handlers:

� virtual void focusInEvent (QFocusEvent *)

� virtual void focusOutEvent (QFocusEvent *)

b) all other keyboard input:

� virtual void keyPressEvent (QKeyEvent *)

� virtual void keyReleaseEvent (QKeyEvent *)

c) mouse movements:

� virtual void mouseMoveEvent (QMouseEvent *)

� virtual void enterEvent (QEvent *)

� virtual void leaveEvent (QEvent *)

d) mouse button actions:

� virtual void mousePressEvent (QMouseEvent *)

� virtual void mouseReleaseEvent (QMouseEvent *)

� virtual void mouseDoubleClickEvent (QMouseEvent *)

e) window events containing the widget:

� virtual void moveEvent (QMoveEvent *)

� virtual void resizeEvent (QResizeEvent *)

� virtual void closeEvent (QCloseEvent *)

4.2. Creating your own Views 39

When re-implementing these functions, you should watch certain issues to avoid implementation

mistakes that will make it almost impossible to change the widget's behavior afterwards:

1. declare your virtual methods as virtual as well and keep the access to protected. This allows

code-reuse by inheritance and is consistent.

2. don't hard-code any event-processing which should be made con�gurable. This counts most

for keyboard events which should be realized with keyboard accelerators if any function is

called. This even counts for text processing ! (Imagine that a lot of users are familiar with

their favorite editor's behavior. If this is con�gurable, they can use the behavior they like and

are used to)

3. forward popup menu highlighting signals to the main widget to enable statusbar help

40 Chapter 4. Application View Design

Chapter 5

Con�guring Menubars and Toolbars

Menubars and toolbars are one of the most important parts of an application to provide methods to

work with a document structure. As a general rule, you should make all functions available by the

menubar. Those methods that should not be available at a current stage of the application process

should be disabled.

Further, an application can only contain one menubar, but several toolbars. Toolbars on the other

hand should contain only the most frequently used commands by pixmap icons or provide quick

access methods like combos to select values.

5.1 How does it work ?

Each entry, may it be a menuentry or a toolbar item, has a resource ID which is an integer value.

As these values can't be used twice, those are set by macros, where the numeric values are replaced

by a descriptive ID name that can be used in your sources then.

All resource ID's are collected in the �le resource.h, where you can keep an overview over the

used values. Anyway, the compiler will inform you if you've used a value twice for constructing

entries. Also, the resource �le should contain all menu accelerators by IDK macro replacements. An

example:

(resource.h)

#define ID_VIEW_TOOLBAR 12010

(kscribble.cpp)

// menu entry Toolbar in the "view" menubar menu

view_menu->insertItem(i18n("&Toolbar"), ID_VIEW_TOOLBAR);

This inserts the entry Toolbar to the View popup menu of the menubar in the kscribble application.

The resource ID's name is held to contain the menu name and the action's name visible. The

ampersand is set in front of the letter that functions as a keyboard accelerator and the entry itself

is embraced by the i18n() internationalization macro.

41

42 Chapter 5. Con�guring Menubars and Toolbars

On activating the menu item, the commandCallback() switch is called with the ID number. There,

you have to add an according comparator value with the method you want to execute on activating

the menuentry:

case ID_VIEW_TOOLBAR:

slotViewToolBar();

break;

Note: you don't have to use the ID system. If no ID is given, the menu gets

numbered automatically. The KDevelop framework uses this as it allows accessing

menu and toolbar ID's to create switch statements that select the slot to call

on activated() for menus, clicked() for toolbar buttons. The connection can also

be made directly using the provided methods of the classes providing menus and

toolbars.

5.2 Adding a new menu

A new menubar is added to an application by the following:

1. add a pointer to the new menu in the App-class header

2. call the constructor of QPopupMenu to the pointer in initMenuBar() at the location where

your menubar should appear later.

3. insert the according menu-items into the popup menu and set their resource ID's in the resource

�le

4. add connects for commandCallback() and statusCallback() to the menu at the end of

initMenuBar()

5. add the methods you want to call by the menu-entries in the header and implementation �le.

6. add the switch statements for the entries to the commandCallback() and statusCallback()

methods

5.3 Integrating Toolbar buttons

Toolbar buttons can be added like menu-entries with the di�erence that the used method is

insertButton() and takes a button pixmap and tool-tip text instead of a menu text.

The icons you want to use can be loaded by KIconLoader, where KApplication o�ers the macros

ICON() and Icon() to access the icon loader and load the icon. These macros take the �lename of

the pixmap as their parameter to load the icon from the KDE �le system in a certain order (see

KIconLoader for the search order).

The KDE libraries also o�er a set of toolbar buttons that can be used for standard actions. In cases

where they don't meet your needs, you will have to paint your own pixmaps. KDevelop supports

this by selecting "New" from the "File" menu, then select Pixmap as the �le type. Usually you will

place your toolbar pixmaps in a project subdirectory "toolbar" and install them into your application

speci�c toolbar directory.

5.4. Con�guring Statusbars 43

5.4 Con�guring Statusbars

The KDevelop projects already make use of the statusbar by providing statusbar messages for menu-

entries and toolbar buttons. When adding a menuentry, also add your status message in the method

statusCallback().

statusCallback() uses the method slotStatusHelpMsg() to display a statusbar message for two

seconds. When executing a command, you should use the method slotStatusMsg() at the beginning

with the string describing what your application does; before a return or method end, you should

reset the statusbar message with a "Ready." string calling the same method.

5.5 Keyboard Accelerator Con�guration

A very professional thing you should always add to your application are keyboard accelerators.

Those are mainly used by experienced users that want to work fast with their applications and are

willing to learn shortcuts. For this, the KDE libraries provide the class KAccel, which provides the

keyboard accelerator keys and access to global con�gured standard keyboard accelerators.

By default, frame applications generated by KDevelop only use standard keyboard accelerators

such as F1 for accessing online-help, Ctrl+N for New File etc. You should look for the keyboard

accelerators already set in KAccel �rst before adding a new accelerator.

If your application contains a lot of accelerators, you should make them con�gurable by an Options-

menu; either it could be combined with other application con�guration in a QWidget or stand

alone. The KDE library already provides a KKeyChooser for use in tab dialogs, whereas KKeyDialog

provides a ready-to use key-con�guration dialog.

See the following classes for more information:

KAccel(kdecore), KKeyChooser, KKeyDialog (kdeui)

44 Chapter 5. Con�guring Menubars and Toolbars

Chapter 6

The Dialogeditor: Where your

Dialogs are Build

6.1 What the Dialogeditor provides

The built-In dialogeditor of KDevelop is designed to help you construct widgets and dialogs that

�t your application's purpose and reduces the time rapidly to extend the GUI of your application.

The only limitation for now is that the dialogeditor does not support geometry management that is

provided by Qt; therefore the dialogs are static in their size and this may lead to certain circumstances

where e.g. the label width is not long enough to support the full length of a translation.

On the other hand, the current state of the editor in conjunction with KDevelop's project manage-

ment o�ers the fastest way to create full-featured applications for the K Desktop Environment.

6.2 Qt and KDE Widgets

Currently provided widgets are:

QT-Widgets:

� QWidget - a widget that can be speci�ed by yourself and can contain other widgets as well.

This allows creating a widget hierarchy within your dialog.

� QLabel - a label that represents text information on the widget. Use QLabel e.g. in front

of lineedits to signal what the purpose of the line-edit is or which variable e.g. a combo box

allows to set.

� QPushButton - a button that allows to e.g. call another dialog like QFileDialog for selecting

a �lename.

� QCheckBox - a check box for e.g. enabling/disabling options. QCheckBox is widely used for

con�guration dialogs.

� QLCDNumber - displays numbers in LCD style. Often used for clocks.

� QRadioButton - like QCheckBox often used to let the user set any options. QRadioButton

specializes the options setting when more of them depend on each other, e.g. you have three

radio-buttons, but you want the user to choose one of three o�ered options. See QButtonGroup

for additional information.

45

46 Chapter 6. The Dialogeditor: Where your Dialogs are Build

� QComboBox - a combo box lets the user set a value by selecting it from a drop-down menu

or by inserting the value, if the box is write enabled.

� QListBox - provides a single-column list of items that can be scrolled.

� QListView - creates a multi-column list view that can be used to display e.g. �le trees etc.

in tree and table view.

� QMultiLineEdit - o�ers a multi-line editor.

� QProgressBar - displays the progress of an action that takes a longer time to be �nished.

� QSpinBox - allows choosing numeric values by up- and down buttons or insertion if write

enabled.

� QSlider - sets a value in a program-de�ned range by a slider.

� QScrollBar - indicates the range of a value and sets the current value by a slider as well

as up- and down buttons; often used for widgets whose contents is larger than the actually

visible view area. By using the scrollbar, the visible area can be changed to another part of

the widgets' contents.

� QGroupBox - provides a group box frame with title to indicate that child widgets within the

box belong together.

KDE-Widgets:

� KColorButton - a pushbutton displaying a selected color. On a button press, the KDE Color

dialog is shown where the user can select another color. Often used for drawing applications

or in any case where color values can be set.

� KCombo - similar to QComboBox. Lets the user choose a value by a drop-down list box.

� KDatePicker - a complete widget to get a date value by the user.

� KDateTable - a calendar table to select a date of a month. Used by KDatePicker to build

the date picker dialog.

� KKeyButton - a button to select a key value. If the button is selected, it gets activated.

Pressing a keyboard button will change the key value for the button which can be used to

con�gure key-bindings.

� KLed - and LED (Light Emitting Diode) widget to display a certain state.

� KLedLamp - and LED lamp that also supports click actions

� KProgress - similar to QProgressBar, KProgress supports certain other values.

� KRestrictedLine - a QLineEdit that only accepts certain user input. This can be used to

restrict access to certain data by password dialogs.

� KSeparator - a separator widget to be used in all cases where KDE applications require

a separator to provide a unique look. Often used in dialogs to separate logical parts where

QGroupBox doesn't �t.

� KTreeList - a collapsible list view to display trees similar to QListView.

6.3. Properties of Qt supported Widgets 47

6.3 Properties of Qt supported Widgets

The following chapter gives a complete overview over the currently supported widgets of the Qt

toolkit. To achieve a better understanding of the properties, these are separated to their inher-

itance. As all of them inherit QWidget, this class is described �rst. All QWidget properties are

available for all other widgets as well, so these are not listed for them again. For widget groups that

inherit an abstract subclass of QWidget as their base-class, the base-classes' properties are listed �rst

(though this class does not provide a widget in the dialogeditor itself). Then the widget properties

for the available widget of the group contains the properties that are speci�c to it. For a better

understanding the inheritance tree of the available widgets is listed below:

� 6.3.1 (<cdx/QWidget/)

� 6.3.2 (<cdx/QButton/) (abstract)

� 6.3.2 (QCheckBox)

� 6.3.2 (QPushButton)

� 6.3.2 (QRadioButton)

� 6.3.3 (<cdx/QComboBox/)

� 6.3.4 (QFrame) (abstract for now)

� 6.3.4 (QGroupBox)

� 6.3.4 (QLCDNumber)

� 6.3.4 (<idx/QLabel/)

� 6.3.4 (QProgressBar)

� 6.3.4 (QScrollView) (abstract for now)

� 6.3.4 (QListView)

� 6.3.4 (QSpinBox)

� 6.3.4 (QTableView) (abstract)

� 6.3.4 (QListBox)

� 6.3.4 (QMultiLineEdit)

� 6.3.5 (QLineEdit)

� 6.3.6 (QScrollBar)

� 6.3.7 (QSlider)

6.3.1 QWidget Properties

QWidget is the base class for almost all widgets in Qt and KDE. Therefore widgets that inherit

QWidget will allow to use the same settings in most cases.

� Appearance:

� BgColor: Background color of the widget

� BgMode: Background mode of the widget

� BgPalColor: Color pallette for the background

� BgPixmap: �lename for a background pixmap

� Cursor: Cursor over the widget

� Font: Font for the widget

48 Chapter 6. The Dialogeditor: Where your Dialogs are Build

� MaskBitmap: �lename for a masking bitmap.

� C++ Code:

� AcceptsDrops: if set to true, the widget item will accept drops by drag'n drop mecha-

nisms (Qt drag'n drop protocol, not KDE 1.x !)

� Connections: connects the item's signals to slots

� FocusProxy: the item that gives its focus to this widget.

� HasFocus: sets if the item has the focus by default. Mind that only one item per dialog

can have this value as true

� ResizeToParent: resizes the widget to its parent's size (not visible in editing mode)

� VarName: Variable name of the item. Change this to names that describe the item's

purpose.

� General:

� IsEnabled: sets if the widget will accept user events

� IsHidden: sets the item to be visible(false) or hidden(true)

� Name: sets the name of the widget. Mind that the name is di�erent from the VarName

in C++ Code.

� Geometry:

� Height: height of the item

� IsFixedSize:

� MaxHeight: maximum value for Height

� MaxWidth: maximum value for Width

� MinHeight: minimum value for Height

� MinWidth: minimum value for Width

� SizeIncX: pixel steps for resize actions to X direction

� SizeIncY: pixel steps for resize actions to Y direction

� Width: width of the item

� X: position horizontal, counted from the left corner

� Y: position vertical, counted up to down

6.3.2 QButton inherited widgets

QButton is an abstract widget class that provides properties common to buttons.

Inherits 6.3.1 (<cdx/QWidget/)

Inherited by 6.3.2 (QCheckBox), 6.3.2 (QPushButton) and 6.3.2 (QRadioButton) inherit QButton.

� Appearance:

� setPixmap: sets the pixmap �lename to use

� General:

� setText: the text on labels, buttons and boxes, also pre-set text for lineedits.

� setAutoRepeat: if enabled, the clicked() signal is emitted at regular intervals while the

button is down. No e�ect on toggle buttons.

� setAutoResize: Enables auto-resizing if TRUE. When auto-resize is enabled, the button

will resizes itself whenever the contents changes.

6.3. Properties of Qt supported Widgets 49

QCheckBox Properties

Inherits 6.3.1 (<cdx/QWidget/) and 6.3.2 (<cdx/QButton/)

� General:

� isChecked: (setChecked) de�nes is the checkbox is set checked on construction

QPushButton Properties

Inherits 6.3.1 (<cdx/QWidget/) and 6.3.2 (<cdx/QButton/)

� General:

� isAutoDefault: (setAutoDefault) the auto-default button becomes the default push

button if it receives the keyboard input focus.

� isDefault: (setDefault) there can be only one default button and it is only allowed to

use in a dialog (see QDialog). The default button emits clicked() if the user presses

the Enter key.

� isMenuButton: (setIsMenuButton) tells the button to draw a menu indication tri-

angle if enabled. The menu has to be inserted separately.

� isToggleButton::(setToggleButton) makes a push button a toggle button, so the

button has a similar state as check boxes.

� isToggledOn: (setOn) (public slot) switches a toggle button on.

QRadioButton Properties

Inherits 6.3.1 (<cdx/QWidget/) and 6.3.2 (<cdx/QButton/)

� General:

� isChecked: (setChecked) de�nes is the radio button is set checked on construction

6.3.3 QComboBox Properties

Inherits 6.3.1 (<cdx/QWidget/)

(no additional properties for now)

6.3.4 QFrame inherited widgets

Inherits 6.3.1 (<cdx/QWidget/)

For now only used as an abstract class.

� Appearance:

� Margin (setMargin): sets the margin, which is the distance from the innermost pixel of

the frame and the outermost pixel of the contents.

50 Chapter 6. The Dialogeditor: Where your Dialogs are Build

QGroupBox Properties

Inherits 6.3.1 (<cdx/QWidget/) and 6.3.4 (QFrame)

� General:

� Title: (setTitle) sets the group box title that is displayed in the box frame.

QLCDNumber Properties

Inherits 6.3.1 (<cdx/QWidget/) and 6.3.4 (QFrame)

� General:

� NumDigits:(setNumDigits) sets the number of digits displayed in QLCDNumber

� Value: (display) (public slot) sets the initial value for QLCDNumber

QLabel Properties

Inherits 6.3.1 (<cdx/QWidget/) and 6.3.4 (QFrame)

� Appearance:

� Margin (setMargin): sets the margin, which is for QLabel the distance from the frame to

the �rst letter of the label text, depending on the alignment of the label.

� C++ Code:

� Buddy: (setBuddy) sets the buddy widget of the label.

� General:

� Text: (setText) sets the label text.

� isAutoResize: (setAutoResize) if TRUE, the label will resize itself if the contents

changes. The top left corner is not moved.

QProgressBar Properties

Inherits 6.3.1 (<cdx/QWidget/) and 6.3.4 (QFrame)

� General:

� TotalSteps: (setTotalSteps) (public slot) sets the total steps of the progress bar. Dur-

ing the iteration of your action to display the progress, you have to call setProgress(int)

to advance the progress step displayed to (int).

QScrollView

Inherits 6.3.1 (<cdx/QWidget/) and 6.3.4 (QFrame)

Inherited by 6.3.4 (QListBox) (abstract for now)

Provides a scrollable widget that manages the display of a child widget by a vertical and horizontal

scrollbar.

6.3. Properties of Qt supported Widgets 51

QListView Inherits 6.3.1 (<cdx/QWidget/), 6.3.4 (QFrame) and 6.3.4 (QListView)

Provides a list view to display hierarchical data either in a table or a tree. Manages itself by scrollbars

through 6.3.4 (QScrollView).

� Appearance:

� ListViewFont: (setFont()) Sets the font of the ListView items

� ListViewPalette: (setPalette()) Sets the palette of the list view items

� TreeStepSize: (setTreeStepSize(int)) O�set of pixels of a child item to its parent item

� hScrollBarMode: Scrollbar mode provided by 6.3.4 (QScrollView) for the horizontal

scrollbar

� isAllColumnsShowFocus: (setAllColumnsShowFocus(bool)) displays focus on all

columns of an item.

� isMultiSelection: enables multi-selection of list items

� isRootDecorated: enables the + and - decoration to open and close trees

� vScrollBarMode:Scrollbar mode provided by 6.3.4 (QScrollView) for the vertical scroll-

bar

� General:

� Entries: lets you insert a list of entries that are pre-set as QListViewItems.

� isAutoUpdate:

QSpinBox Properties

Inherits 6.3.1 (<cdx/QWidget/) and 6.3.4 (QFrame)

� General:

� MaxValue: the maximum value the user can choose

� MinValue: the minimum value the user can choose

� Pre�x:

� Su�x:

� Value: the pre-set value when the widget is shown

� isWrapping:

QTableView inherited widgets

Inherits 6.3.1 (<cdx/QWidget/), 6.3.4 (QFrame) and 6.3.4 (QTableView)

Inherited by 6.3.4 (QListBox) and 6.3.4 (QMultiLineEdit)

QListBox Properties Inherits 6.3.1 (<cdx/QWidget/), 6.3.4 (QFrame) and 6.3.4 (QTableView)

� General:

� isAutoBottomScrollBar: (setAutoBottomScrollBar)

� isAutoScroll: (setAutoScroll)

52 Chapter 6. The Dialogeditor: Where your Dialogs are Build

� isAutoScrollBar: (setAutoScrollBar)

� isAutoUpdate: (setAutoUpdate)

� isBottomScrollBar: (setBottomScrollBar)

� isDragSelect: (setDragSelect)

� isSmoothScrolling: (setSmoothScrolling)

� Geometry:

� setFixedVisibleLines: sets a �xed height for the widget so that the given number of

text lines are displayed using the current font.

QMultiLineEdit Properties Inherits 6.3.1 (<cdx/QWidget/), 6.3.4 (QFrame) and 6.3.4

(QTableView)

� General:

� Text: (setText) (public slot) sets the text of the widget.

� isAutoUpdate: (setAutoUpdate) used to avoid �icker during large changes; the view

is not updated if disabled.

� isOverWriteMode: (setOverwriteMode) (public slot) sets overwrite enabled or dis-

abled.

� isReadOnly: (setReadOnly) (public slot) sets the widget text to read only; disables

text input.

� isTextSelected: (selectAll)(public slot) marks the whole text selected

� Geometry:

� setFixedVisibleLines: sets a �xed height for the widget so that the given number of

text lines are displayed using the current font.

6.3.5 QLineEdit Properties

Inherits 6.3.1 (<cdx/QWidget/)

� General:

� CursorPosition: (setCursorPosition) sets the default cursor position.

� MaxLength: (setMaxLength) sets the maximum string length

� Text: (setText) (public slot) sets the contents displayed on construction

� hasFrame: (setFrame) draws the line edit within a two-pixel frame if enabled.

� isTextSelected: (selectAll) (public slot) sets the text to be selected.

6.3.6 QScrollBar Properties

Inherits 6.3.1 (<cdx/QWidget/) and QRangeControl.

� General:

� MaxValue: sets the maximum slider value; used in constructor (optional)

6.4. Properties of KDE supported Widgets 53

� MinValue: sets the minimum slider value; used in constructor (optional)

� Orientation: (setOrientation) sets the orientation of the scrollbar to horizontal or

vertical.

� Value: sets the initial value of the scrollbar in the constructor (optional)

� isTracking: (setTracking) if enabled, the scrollbar emits valueChanged() whenever

the bar is dragged; otherwise only on mouse release.

6.3.7 QSlider Properties

Inherits 6.3.1 (<cdx/QWidget/) and QRangeControl.

� General:

� MaxValue: sets the maximum slider value; used in constructor (optional)

� MinValue: sets the minimum slider value; used in constructor (optional)

� Orientation: (setOrientation) sets the orientation of the slider to horizontal or verti-

cal.

� Value: (setValue) (public slot) uses QRangeControl::setValue() to set the value.

� isTracking:(setTracking) if enabled, the slider emits valueChanged() whenever the

slider is dragged; otherwise only on mouse release.

6.4 Properties of KDE supported Widgets

� 6.3.1 (<cdx/QWidget/)

� 6.3.2 (<cdx/QButton/) (abstract)

� 6.3.2 (QPushButton)

� 6.4.1 (KColorButton)

� 6.4.2 (KKeyButton)

� 6.3.3 (<cdx/QComboBox/)

� 6.4.3 (KCombo)

� 6.3.4 (QFrame) (abstract for now)

� 6.4.4 (KDatePicker)

� 6.4.5 (KLedLamp)

� 6.4.6 (KProgress)

� 6.4.7 (KSeparator)

� 6.3.4 (QTableView) (abstract)

� 6.4.8 (KDateTable)

� 6.4.9 (KTreeList)

� 6.3.5 (QLineEdit)

� 6.4.10 (KRestrictedLine)

� 6.4.11 (KLed)

54 Chapter 6. The Dialogeditor: Where your Dialogs are Build

6.4.1 KColorButton

Inherits 6.3.2 (QPushButton)

� General

� DisplayedColor (setColor()) the displayed color on the button

6.4.2 KKeyButton

6.4.3 KCombo

Inherits: 6.3.3 (<cdx/QComboBox/)

� General

� Entries the string list of entries displayed in the combo box

� Text the text displayed in the combo box currently

� isAutoResize resizes the combo box to the current item

6.4.4 KDatePicker

� Appearance

� FontSize the font size for the date picker

6.4.5 KLedLamp

6.4.6 KProgress

6.4.7 KSeparator

� General

� Orientation sets the orientation of the separator to horizontal or vertical; default is

horizontal

6.4.8 KDateTable

6.4.9 KTreeList

� Appearance

� TreeListBgColor

� TreeListPalette

� isBottomScrollbar

� isScrollBar

� isShowItemText

� isSmoothScrolling

6.5. Constructing a new Dialog 55

� isTreeDrawing

� General

� Entries

� isAutoUpdate

6.4.10 KRestrictedLine

6.4.11 KLed

Inherits 6.3.1 (<cdx/QWidget/)

� Appearance

� LedColor: (setColor()) sets the displayed LED color

6.5 Constructing a new Dialog

Constructing a new dialog is very easy if you already have experience with graphical construction

applications. KDevelop o�ers to create a widget visually and displays the look as it will be shown

to the user directly. Further, you can have a preview of your widget by selecting "Preview" from

the "View" menu.

To begin constructing a dialog or any other widget, switch to the Dialogeditor and select "New

Dialog" from the "File" menu. Then enter all needed information to the "New Dialog" dialog.

Those are:

1. The Dialog inheritance. This is necessary because any widget is at least derived from QWidget.

Besides the widget types provided by Qt, you can inherit e.g. form an abstract base class you

constructed yourself within your project. In this case, select "custom" and enter the header

�le path to the line edit below.

2. The Dialog name. This sets the class name of the generated dialog. Select a classname that

is descriptive for what the dialog does; in cases of inheritance from QDialog, you may enter a

name that ends with Dlg to remember yourself it's a dialog. Naming convention should match

that of KDE and Qt: Use uppercase letters for your classname. For e.g. a grid-size selection

dialog, you would enter GridSizeDlg.

3. The generated �lenames. Those are preset when entering the dialog name, but can be changed

afterwards. If you want to use other �lenames, the naming convention should also match that of

KDE and Qt: the �lenames are all lowercase and contain the classname to remember what class

is kept where. The data �le that has to be set will later contain the generated code that will

build up your dialog. You should not edit this �le manually afterwards; use the implementation

�le for any additions towards dialog construction code and method implementations.

The dialog will then show itself as a widget with a grid. As the dialogeditor uses the grid to snap

any child widgets to the geometry, you can change the grid size with the "Grid Size" entry in the

"View" menu, if the preset values don't match your needs.

Then select the "Widgets" tabulator on the left pane and press the button for the widget item you

want to add to the main widget. It directly appears on the main widget's left upper corner and

56 Chapter 6. The Dialogeditor: Where your Dialogs are Build

gets selected by a resizable frame. Then move or resize the widget with the mouse. The cursor will

change to indicate which action can be done at the current position.

After having �nished the construction, select "Generate Files" from the "Build" menu or hit the

according toolbar button. The �les will then be generated at the preset location and included into

your project sources. A rebuild or make will compile all generated �les within your project and you

can add the according constructor call to the application to invoke the dialog or widget. For KDE

projects, all widget properties that will be visible later, e.g. label texts, are set with the i18n()

macro of kapp.h to support internationalization. Therefore you should do a "Make Messages and

merge" when �nished with construction and implementation.

When creating a dialog or widget, you should watch the following guidelines:

� Always try to be consistent! This is probably the most important rule when constructing GUI

elements. Mind that the user will only accept an application that is easy to understand no

matter how complex it's purpose may be.

� Add help wherever you can by tool-tips, What's this..? help or Quick-help. This allows getting

direct information about the purpose of the GUI elements.

� watch the keyboard focus ! The generator does not take care of that- this has to be watched

when constructing any widget; otherwise you have to reorder your initialization code by hand

which is a very unthankful job. The keyboard focus on any widget means the oder on which

items get the keyboard input focus when the user presses the tab and shift+tab button. It

would be very annoying if the focus changes everywhere but not to the next widget visible

below or to the right of the current widget. Therefore start constructing your widget top down

from left to right to ensure the consistency of the focus.

6.6 Setting Widget Properties

Widget properties can be set easily with the properties window entries. When a widget gets selected,

the properties window automatically updates to the properties of the current widget. As all widgets

are derived from QWidget, you can set the QWidget properties plus an amount of properties that are

speci�c to the selected widget. Properties can be:

� Integer values, such as the geometry of a widget or the font size

� Boolean values to enable/disable certain parameters of the widget. Set with combos containing

true and false

� enumerable values of a widget, e.g. the palette. Set with combos containing all possible values

� Color values for e.g. the displayed color. Set with the KDE Color Dialog

� Font values for e.g. labels. Be careful to set Font values other than the default because this

may prevent KDE from updating the font. Set with the KDE Font Dialog

� File names for e.g. background pixmaps. Do not use gif images here as these may get unsup-

ported by further Qt versions > 1.42

6.7. Integrating the Dialog 57

6.7 Integrating the Dialog

Whenever you created a widget, you probably want to add it to the project to execute the action it

is designed for. As a widget can be constructed for several purposes, we will watch for two cases: a

QWidget inherited widget and a QDialog one.

6.7.1 QWidget inherited

Let's say you created a widget that will be part of the main view. If it �lls the whole view area, you

have to add an instance pointer to the header declaration of your KTMainWindow instance replacing

the currently set view widget. Then change the code in the initView method to set this widget the

main view. Additionally, you could remove the View class of the generated project, but mind that

the document instance and the App instance depends on the view class. In this case, it is technically

a much better way to create a mini-KDE application and construct your KTMainWindow instance

yourself.

More often the widget is intended to be a part of the view area, which means it is combined with

other widgets. This can be done by using one of the following classes that provide a divider to

separate two widgets:

1. QSplitter

2. KPanner

3. KNewPanner

If the main view shall contain more than two widgets, you have to use another instance of the divider

as one of the two managed widgets by the �rst one. Then add the according widgets to each panner

and set the �rst panner the view area.

6.7.2 QDialog inherited

If your widget inherits QDialog, it is probably intended to change one or more values; often this

is used to set the application preferences. To invoke the dialog, you have to add a slot to the App

class by adding the method declaration and the implementation body. Then add the constructor

call to the method as well as a call to show() or exec() the dialog. Finally, you should take care

for processing the results of the dialog; this can either be done by the dialog who changes values of

the parent widget itself or by retrieving the values from the dialog (which would make your dialog

a lot more reusable in other projects). Mind that you should call delete if you called the dialog

instance with new to avoid memory leaks.

Finally, you have to connect a menuentry (with according statusbar help) to the new slot invoking

the dialog; optionally a keyboard accelerator and a toolbar icon. For this, add a resource ID to the

�le resource.h with a de�ne. Then add an according menuentry to one of the popup menus already

present in the menubar or create a new popup to add your menuentry. The menuentry consists of:

� an optional icon pixmap. Call this with the Icon("iconname.xpm") macro of KApplication

to use the provided KIconLoader instance.

� the menuentry name. Add this with the i18n("&entryname")macro of KApplication to allow

internationalization. The ampersand should be in front of the letter that will be displayed

underlined to access the entry directly by keyboard acceleration.

58 Chapter 6. The Dialogeditor: Where your Dialogs are Build

� the member instance to call. Normally this would be the this pointer.

� the member slot to call. Use SLOT(yourmethod() to call the slot on the signal activated().

� the accelerator key. This should be set to zero as this is done by an entry in initKeyAccel()

where you have to introduce an accelerator key together with the slot to call. Then call

changeMenuAccel() to change the menu item's accelerator. This will make it con�gurable by

a key-chooser dialog later. For standard actions, use the enumerable values given by KAccel.

� the menu ID as set in resource.h

Chapter 7

Printing Support

Printing is usually provided by your application to let the user create a printed version of the

document he created with the application; therefore only needed for those programs that are used to

produce something the user may want to print out, e.g. text or pictures. In any case, this requires

an interface that is provided by the Qt library by two classes: the QPrintDialog class, o�ering the

printing dialog, and the QPainter class that is also used to draw the widget's contents usually. As

the view-class of an application is responsible for displaying a document, it also is responsible for

printing.

7.1 The Qt Print Dialog

The Qt Printer dialog can be used including qprintdialog.h. When using the KDE framework

application, this is already used by the view class, so you only have to complete the implementation

of the method print() by using QPainter.

7.2 The QPainter Class

Independent of the printer's capabilities, you can use QPainter to draw your document onto the

printer provided by QPrinter like you would when drawing onto a widget. The only di�culty would

be where you have to implement the way things have to be printed.

59

60 Chapter 7. Printing Support

Chapter 8

Help Functions

A very important part of the development process is to provide help functionality to the user wherever

possible. Most developers tend to delay this, but you should remember that a normal user isn't

necessarily a Unix-expert. He may come from the the dark side of computer software usage o�ering

all sweets that a user may need to work himself into using an application even without ever touching

the manuals. Therefore, the KDE and Qt library provide all means usually considered making an

application professional in the eyes of the normal user by help functions that are ready to use.

Within the application, those are:

� Tool-Tips

� Quick-Help

� Statusbar help

� What's this...? buttons

Additionally, the application should provide means to access a HTML-based online manual directly

using the standard help key F1.

As KDevelop also o�ers all types of help as well as the KDE framework generated by the application

wizard already contains support for this, this chapter will help you �nd out where and how to add

your help functionality.

During the development of your application you should try to be consistent whatever you're doing;

therefore you should do the necessary steps directly while extending the code. This will prevent you

from diving into the code again and �guring out what your application does or what you intended

by certain parts of the code.

8.1 Tool-Tips

A very easy mean of providing help are tool-tips. Those are small help messages popping up while

the user moves the mouse over a widget that provides a tool-tip and disappears when the mouse

moves away. The most popular usage of tool-tips is made in toolbars where your tool-tips should

be kept as small as possible because toolbars can be con�gured to display their contents in various

ways: either displaying the button, button with text on the right, button with text below, text only.

This possibility should be made con�gurable by the user, but isn't a must-be. The text is shown

as a tool-tip anyway and a toolbar usually consists of buttons and other widgets like lineedits and

61

62 Chapter 8. Help Functions

combo boxes. For a complete reference, see the KToolBar class reference located in the KDE-UI

library.

As an example, we have a look at the the "New File" button in a generic application:

toolBar()->insertButton(Icon("filenew.xpm"), ID_FILE_NEW, true, i18n("New File"));

There, the part i18n("New File") provides a tool-tip message. It is enclosed by the i18n() macro

provided by kapp.h to translate the tool-tip towards the currently selected language.

Tool-tips can also be added to any custom widget by using the classes QToolTip and QToolTipGroup

provided by Qt. An example of that would be:

QToolTip::add(yourwidget, i18n("your Tip"));

For more information, see the Qt-Online Reference, class QToolTip.

8.2 Adding Quick-help

Quick-Help windows are another good example of providing help. The user can access the quick-help

over a widget that it is connected to by pressing the right mousebutton and selecting "Quick-Help" in

the context menu. Therefore, Quick-Help can be placed somewhere in between a detailed handbook

reference help and tool-tips- the documentation would be too extensive and a tool-tip would not

provide enough information. To see how Quick-Help works, open any dialog within KDevelop and

press the right mouse button over a dialog item. Then select the Quick-Help menuentry and you're

o�ered the help message. Additionally, those messages can be formatted by color, font and even can

be used for containing URL's to refer a certain webpage (and therefore can refer to the documentation

handbook as well).

To make use of Quick-Help, add the include �le kquickhelp.h to your source�le containing quick-

help. As the KQuickHelp class is part of the KDE-UI library, it should already be used by your

application; if not, set the linker �ags of your project to use kdeui.

An example would be:

KQuickHelp::add(yourwidget, i18n("your Tip"));

which is almost the same as with QToolTip. When constructing a dialog with the KDevelop dialoged-

itor, add your tool-tips and Quickhelp in the implementation �le- NOT within the data source�le

as this is rebuild by the dialogeditor every time you edit the widget.

The KQuickHelp class provides also formatting text by using tags. It allows hyperlinks including

Internet protocols, colors, font types and sizes. See the KDE Library Reference Guide and the class

documentation for KQuickTip for more information.

8.3 Extending the Statusbar Help

As the frame applications provided by KDevelop contain a statusbar as well, it also o�ers a set of

statusbar messages already for all menu and toolbar items. A statusbar help message is a short

message that extends the meaning of a tool-tip or can be seen as a replacement for a tool-tip over

menubar items and is (as the name suggests) displayed in the statusbar when the user enters a menu

8.4. The "What's This...?" Button 63

and highlights the menu entry; therefore all menu items connect their signal highlighted(int)

to the method statusCallback(int) which selects the according message in a switch statement.

Whenever you add a menuitem to already existing menus or a toolbar item, add an according entry

in this method with a short description of the action the user will cause when activating the button

or menuentry.

Example:

case ID_FILE_NEW:

slotStatusHelpMsg(i18n("Creates a new document"));

break;

This will display a statusbar message by calling the method slotStatusHelpMsg() with the ac-

cording translated help string whenever the user highlights a menu or toolbar item with the id

ID_FILE_NEW that is connected to the statusCallback() method. Toolbars connect to this

method by their signal pressed(int), which allows the user to press the toolbar button and move

away the mouse when he doesn't want to invoke the command. KToolBar also o�ers the signal

highlighted(int, bool) which can be used to display the message whenever the user highlights

the button instead of the preset signal used.

8.4 The "What's This...?" Button

The "What's This...?" button provides help windows like Quickhelp, but with the intention that the

user wants to get help about a certain widget within the working view or a toolbar item. It is placed

in the toolbar and gets activated once the user hits the button. The cursor changes to an arrow

cursor with a question mark like the button itself looks like. The the user can press on a visible

widget item and gets a help window. As an exercise, you could try this behavior with the What's

this...? button within KDevelop. To add the What's This...? button, do the following:

1. include qwhatsthis.h into your sourcecode

2. add a private member QWhatsThis whats_this/ or with another member name to your

KTMainWindow derived class declaration

3. de�ne a resource id for your what's this button into the resource.h �le,e.g. #define

ID_HELP_WHATS_THIS 10100

4. in your method to create the toolbar (usually initToolBar()), add at the location you want

to have the button displayed:

whats_this = new QWhatsThis;

QToolButton *btnwhat = whats_this->whatsThisButton(toolBar());

QToolTip::add(btnwhat, i18n("What's this...?"));

toolBar()->insertWidget(ID_HELP_WHATS_THIS, btnwhat->sizeHint().width(), btnwhat);

btnwhat->setFocusPolicy(QWidget::NoFocus);

5. �nally, add the messages you want to have on a click over a certain widget like this:

whats_this->add(class_tree, i18n("Class Viewer\n\n"

"The class viewer shows all classes, methods and variables "

"of the current project files and allows switching to declarations

"and implementations. The right button popup-menu allows more specia

"functionality."));

64 Chapter 8. Help Functions

Chapter 9

Extending the Documentation with

SGML

Due to the fact that projects often lack a complete set of user documentation, all KDevelop projects

contain a pre-build handbook that can be easily adapted; therefore ful�lling another goal of KDE:

providing enough online-help to support users that are not familiar with an application. This chapter

therefore introduces you on how to extend the provided documentation template and what you have

to do to make it available to the user.

9.1 Why SGML ?

SGML (Standard Generalized Markup Language) is a text formatting system that allows to create

output in various formats; therefore technical documentation has to be written only once and can

then be transfered to the desired output. The most used output is probably HTML to provide online

help through web-browsers in a time where Internet standards are available even on single-desktop

systems. KDE makes use of HTML documentation by it's KDEHelp application where all KDE

applications are listed and give access to their user manuals as well as by a helpmenu where the user

can access the online-help directly from within the application.

To provide a unique look to KDE documentation, the KDE-Software Development Kit (SDK) con-

tains a tool called ksgml2html which itself uses the sgml-tools' ksgml2html program to extend the

HTML output with the KDE logo.

But besides this, sgml-tools allow output in plain text, GNU info, LyX, DVI, Postscript and RTF;

therefore the SGML documentation can be easily used to provide a printed version of the online

handbook. The KDevelop IDE itself contains four handbooks that are all written in SGML - you

may read this in a printed version or online right now; this alone shows how useful it is to learn the

few things about writing in SGML.

9.2 What the Documentation already contains

When creating a KDevelop project, the subdirectory docs/en already contains the index.sgml doc-

umentation �le and the already produced output HTML �les. Those are already included into the

project as well as their installation destination is preset to the KDE HTML directory. The documen-

tation is already adapted to your project name, version number and the programmer's information.

65

66 Chapter 9. Extending the Documentation with SGML

Further, the output covers the index.html �le containing the table of contents (which is opened by

KDE Help when the user requests help); an installation introduction and a copyright information.

Therefore, when extending the documentation, you only have to concentrate on the information you

want to add. Mind that for KDE projects you have to run "Make Doc-Handbook" from the "Project"

menu again after the project is created. The index.sgml �le is again processed by ksgml2html and

the logo is added. Then open the RFV and add the logo.gif �le to the project and set the �le

properties correctly to install the logo �le into the same location the HTML �les will go.

9.3 Adding new Pages

Adding another page to the documentation is very easy by adding another <sect>, followed by the

name of the chapter to the index.sgml �le at the location where your chapter will appear. For that,

search the <sect> that is the chapter before and add your section after that into the sgml �le.

Whenever you want to rebuild your documentation output to control for errors, select "Make Doc-

Handbook" from the "Project" menu which will invoke either ksgml2html or ksgml2html depending

on the project type. If errors occur, you are able to locate the error by clicking on the error message

or selecting "next error" from the "View" menu.

For each <sect> you added, another HTML output �le will be generated; therefore all chapters after

the inserted will change their chapters. This is important if you call your HTML documentation

pages from within your application- mind that you have to watch the page you call for help.

The sgmltools-package contains a reference for almost all valid tags and contains sample code for

various formatting purposes. As the standard SGML �le uses the <article> format, you should

think about changing to <book> formatting if your documentation extends more than 10-20 pages

in printed form. The KDevelop handbooks have been created this way; the only thing you have to

watch out for is using <chapt> instead of <sect> for chapters. The following subsections then have

to be declared with <sect>, <sect1> etc. as usual.

9.4 How to call Help in Dialogs

Calling help in dialogs is often done by adding a Help-button; then you add a slot that is called

when the button gets pressed. Within the slot implementation, call

kapp->invokeHTMLHelp(QString aFilename, QString aTopic);

where aFilename is the the �lename to be called within your HTML documentation directory of

the application; e.g index-3.html. aTopic then is the topic that is to be called. The hash pre�x is

automatically added; just enter the chapter you want to have on this page, actually this would be a

subsection's name.

Chapter 10

Class Documentation with KDoc

Another important part of the documentation is including a descriptive help for your class interfaces.

This will allow you and other programmers to use your classes by reading the HTML class documen-

tation that can be created with KDoc. KDevelop supports the use of KDoc completely by creating the

KDE-library documentation, also your application frameworks are already documented. To work

yourself into the provided code, it would be a good start to read the included documentation online.

The following describes what to do to get the API documentation, where KDevelop helps you add

it and what kind of special tags KDoc provides additionally.

10.1 How to use KDevelop's Documentation features

To create the API documentation after you generated a project, select "Make API-Doc" from the

"Project" menu. This will process all header �les and create the HTML output. Then you can

access the documentation by selecting "API-Documentation" from the Help-menu or the according

book symbol in the Documentation tree, folder "Current Project".

The documentation is already cross-referenced to the KDE and Qt online-class documentation, so

you can follow the inheritance easily with the inheritance overview. This may help you getting

started with the KDE and Qt documentation as well.

10.2 Adding Class and Member Documentation

As KDevelop provides all means to add code automatically, it also o�ers direct documentation.

Whenever you're using the Class Generator by choosing "Project"->"New Class", add a descriptive

help message to the documentation �eld. This will add the documentation to the class header.

When adding class member functions and attributes with the classtools, add the member documen-

tation to the according documentation �elds as well.

You may think that documentation is a part of the development process that isn't very necessary.

But remember that the more your project grows and the more people take part on the development

process, class documentation is the best help to save time. If developers have to guess by method

names what exactly the method does, it is even more likely that the meaning is misunderstood and

the method apparently doesn't do the job a developer guessed it would do. Therefore keep track of

your documentation and rebuild it as often as possible.

Besides this, the documentation �les are NOT included into the project, nor do they have any

67

68 Chapter 10. Class Documentation with KDoc

internationalization support. Therefore all API documentation should be held in English to allow

international development groups to work with your sources.

Whenever you may want to add documentation by hand into the header �le, just add the documen-

tation above the method or class in a C-comment style with the di�erence that the �rst line has to

begin with a slash and a double asterisk.

Example:

/** enables menuentries/toolbar items

*/

void enableCommand(int id_);

10.3 Special Tags

NOTE: The following documentation of this chapter is taken from the KDoc documentation pro-

vided with KDoc by Sirtaj S. Kang taj@.kde.org), author of KDoc; Copyright (c) 1997

The documentation is a mixture of:

� Normal text. Paragraphs must be separated by at least one blank line.

� text of the form

<pre>

.....code fragments....

</pre>

� Various tags of the form:

@tagname [tag parameters]

The valid tags for each type of source code entity are:

� Classes

@short [one sentence of text]

A short description of the class

@author [one sentence of text]

Class author

@version [once sentence of text]

Class version (I normally set this to the RCS/CVS tag "Id")

@see [one or more references to classes or methods]

References to other related documentation.

� Methods

@see

as above

@return [one sentence]

A sentence describing the return value

@param [param name identifier] [param description]

Describe a parameter. The param description can span multiple

lines and will be terminated by a blank line, the end of the

comment, or another param entry. For this reason, param entries

should normally be the last part of the doc comment.

10.3. Special Tags 69

� Constants, Enums, Properties

@see

as above

� ALSO @ref As a departure from the javadoc format, the metatag "@ref" has the same format

as @see, but can appear anywhere in the documentation (all other tags must appear on a line

by themselves).

70 Chapter 10. Class Documentation with KDoc

Chapter 11

Internationalization

11.1 What is i18n ?

i18n is an internationalization system that is used to o�er internationalized versions of an application

or project. The di�culty with writing applications is that they only support the language they

originally are composed with; visually this can be seen on labels, menu entries and the like. Goal of

the internationalization is to provide applications and library functions in the language of the user;

therefore enabling users that are not capable of the original language to make use of the provided

functionality and feel more comfortable.

11.2 How KDE supports Internationalization

KDE, as one of the most modern desktop environments, has set one of its numerous goals to provide

applications for users in their native languages, and simpli�es the work for developers to provide

their application in any of the supported language.

Technically, this is realized by the KDE File System Standard which contains localization support

for languages in terms of documentation and by providing application internationalization through

the use of the KDE-core library class KLocale. This class does all the translation, dependent on the

preferred language set in the KDE Control Center.

The developer on the other hand only has to know two things to make his application able to use

this feature:

1. include kapp.h into your sourcecode wherever a visible text appears in your application, e.g.

in source �les that contain QLabels.

2. wherever you set the visual string, embrace it with the i18n() macro provided by kapp.h to

enable translation.

3. whenever you have to access a locale object, use the klocale macro provided by kapp.h

That is almost all you have to watch for while coding. Mind that you should not internationalize

any con�guration strings that are used by KConfig, because this is not necessary on one hand and

doesn't work for reading in values on the other.

71

72 Chapter 11. Internationalization

11.3 Adding a Language to your Project

KDevelop also takes part on making life easier for developers to include native language support to

their applications. Whenever you create a new KDE project, a po directory is added to the main

project directory. There, your <application>.pot �le will be placed after the generation is complete.

The .pot �le already contains all strings that are set up with the i18n() macro, therefore you only

have to write your code using the macro again. From time to time, you should do a "Project"-"Make

messages and merge", which will automatically extract all macros again and rebuilds the pot�le.

To add a language to your application, choose "Project"-"Add translation �le", which opens the

language selection dialog. Select the desired language and press OK. Then, the according <lang>.po

�le will be build in the po directory. Then start translating the po �le by selecting it from the po

directory in the Real File Viewer or from the LFV, folder "Translations". If you have KTranslator

installed, it will be opened in the "Tools" window with KTranslator, otherwise as a text �le in

the header/resource window. KTranslator makes it very easy to translate strings by scanning the

existing translations of your local KDE installation, so they can be used already.

For editing by hand, we'll have a look at an example:

#: kscribble.cpp:619

msgid "Opens an existing document"

msgstr ""

The above shows a string that was extracted from the �le kscribble.cpp at line 619. msgid and

msgstr are the tags which give the information for the translation; msgstrwill contain the translated

string. There, you have to watch escape sequences such as nn or nt, which have to be included into

the translation string. A German translation would therefore look like this:

#: kscribble.cpp:619

msgid "Opens an existing document"

msgstr "Öffnet ein existierendes Dokument"

That would be all to watch for translation; after you're done, save the �le. When make is run within

the po directory, the message �les will be processed and errors may occur if strings are not translated

consistently, e.g. escape sequences are missing. Then edit the according message string again and

make sure that make runs without errors.

Additionally, you should be very careful when translating ampersands within text strings. The

letters after ampersands are used as keyboard accelerators in conjunction with the ALT key to access

menubar or popup menu items to change the keyboard focus to the selected item more quickly. Now,

if the same accelerator letter appears in the same keyboard focus area (which would be the main

widget on one time, and a dialog at another), each widget after the �rst one cannot be accessed by

the supposed keyboard accelerator. So even translators have a responsibility for the usage of the

application under their language. There is also no guarantee that the original letter will occur in

the translation, so translators have to choose very carefully and should test the application under

their language after they installed the translation to ensure it runs without these malfunctions.

11.4 Translation Team Contacts

The KDE Team also provides numerous contacts to developers that are contributing to the KDE

project as translators. Those are organized in language teams and coordinate the translation work.

11.4. Translation Team Contacts 73

For an actual list and information who to ask for translating your application, see <http://www.

kde.org>.

The information below is taken from the KDE web site and contains the current contact addresses as

of March 06, 1999. If you want to join a team please write directly to one of the team coordinators.

The translation of the KDE is organized by Juraj Bednarmailto:bednar@rak.isternet.sk and Matthias

Elter me@kde.org

You can subscribe KDE internationalization mailing list kde-i18n-doc@kde.org by sending a mail to

kde-i18n-doc-request@kde.org with the word "subscribe" in the subject line.

Before starting any translation work, please contact the according translation team leaders for

coordination to avoid double work.

br Breton translation team:

team coordinators: Jañ-Mai DRAPIER jdrapier@club-internet.fr website: http://perso.club-

internet.fr/jdrapier

ca Catalan translation team:

team coordinators: Sebastià Pla sastia@redestb.es

cs Czech translation team:

team coordinators: Miroslav Flídr �idr@kky.zcu.cz

da Danish translation team:

team coordinators: Erik Kjær Pedersen erik@binghamton.edu

de German translation team:

team coordinators: Thomas Diehl th.diehl@gmx.net website: <http://www.dtp-service.

com/kde/de/> mailing list: send a mail with 'subscribe' in the subject line to: kde-i18n-de-

request@kde.org Webforum for discussions and user feedback: <http://www.dtp-service.

com/discus_d>

el Greek translation team:

team coordinators: Theodore J. Soldatos theodore@eexi.gr

eo Esperanto translation team:

team coordinators: Wolfram Diestel diestel@rzaix340.rz-uni-leipzig.de

es Spanish translation team:

team coordinators: Boris Wesslowski, Alonso Lara Boris@Wesslowski.com website: <http:

//members.xoom.com/keko5/>mailing list: send a mail with 'subscribe' in the subject line to

kde-es@kde.org

et Estonian translation team:

team coordinators: Hasso C. Tepper hasso@ewsound.estnet.ee

� Finnish translation team:

team coordinators: Kim Enkovaara kim.enkovaara@iki.�

fr French translation team:

team coordinators: Francois-Xavier Duranceau Francois-Xavier.Duranceau@loria.fr website:

<http://www.loria.fr/~durancea/kde/wip-apps.html> mailing list: send an empty mail

to: kde-traduc-fr-subscribe@egroups.com

74 Chapter 11. Internationalization

he Hebrew translation team:

team coordinators: Erez Nir erez-n@actcom.co.il

hr Croatian translation team:

team coordinators: Vladimir Vuksan vuksan@veus.hr

hu Hungarian translation team:

team coordinators: Marcell Lengyel miketkf@yahoo.com website: <http://sophia.jpte.hu/

~kde>

is Icelandic translation team:

team coordinators: Logi Ragnarsson, logir@imf.au.dk Thorarinn R. Einarsson,

thori@mindspring.com Bjarni R. Einarsson, bre@netverjar.is Hrafnkell Eiriksson,

hkelle@rhi.hi.is Gudmundur Erlingsson, gudmuner@lexis.hi.is Richard Allen ra@hp.is

it Italian translation team:

team coordinators: Andrea Rizzi rizzi@kde.org

ko Korean translation team:

team coordinators: LinuxKorea Co. kde@linuxkorea.co.kr

mk Macedonian translation team:

team coordinators: Sasha Konecni sasha@msi-uk.com

nl Dutch translation team:

team coordinators: �idr@CyberGate.zcu.cz �idr@CyberGate.zcu.cz

no Norwegian translation team:

team coordinators: Hans Petter Bieker zerium@webindex.no

pl Polish translation team:

team coordinators: Piotr Roszatycki dexter@fnet.pl

pt Portuguese translation team:

team coordinators: Pedro Morais pmmm@camoes.rnl.ist.utl.pt

pt_BR Brazil Portuguese translation team:

team coordinators: Elvis Pfützenreuter epx@netville.com.br

ro Romanian translation team:

team coordinators: Paul Ionescu ipaul@romsys.ro

ru Russian translation team:

team coordinators: Denis Y. Pershin dyp@inetlab.com

sk Slovak translation team:

team coordinators: Juraj Bednar bednar@isternet.sk mailling list: send a mail with 'subscribe'

in the subject line to: sk-i18n@rak.isternet.sk

sl Slovenian translation team:

team coordinators: blazzupancic@hotmail.com blazzupancic@hotmail.com

11.4. Translation Team Contacts 75

sv Swedish translation team:

team coordinators: Anders Widell d95-awi@nada.kth.se

tr Turkish translation team:

team coordinators: Gorkem Cetin gorkem@linux.org.tr

zh_GB2312 Simpli�ed Chinese translation team:

team coordinators: Wang Jian larkw@263.net

zh_TW_Big5 Chinese BIG5 translation team:

team coordinators: Chou Yeh-Jyi ycchou@ccca.nctu.edu.tw

76 Chapter 11. Internationalization

Chapter 12

Finding Errors

12.1 Debugging Macros provided by Qt

The Debugging Macros provided by the Qt library can be read on the debug.html page of your Qt

Online Reference Documentation, acessable on the link "Debugging Techniques" at the Qt Docu-

mentation index page.

The most recently used macros are

� ASSERT(b)

� CHECK_PTR(p)

Thereby, b is a boolean expression. Gives out a debugging warning if b is false; p is a pointer which

is checked and gives out a warning, if p is null.

Details can be found in the Qt Online Reference.

12.2 KDE Macros

NOTE: This chapter is a copy of Kalle Dalheimer's kalle@kde.org explanation document about the

KDEBUG macros included with the KDE libs package as kdebug.html

Last modi�ed: Sat Sep 13 11:56:01 CEST 1997

What is KDebug

KDebug is a system of macros and functions that makes using diagnostic messages in your code

more e�cient. You can give a message one out of four severity level and an area. You can choose at

runtime where diagnostic messages should go and which of them should be printed at all. How to

use KDebug in your code

The macro KDEBUG

Using KDebug is very simple. All you have to do is to #include <kdebug.h> at the beginning of

every source �le in which you want to use diagnostic messages and output the messages by calling

the macro KDEBUG. This macro expects three parameters. The �rst is the severity level. Use one

of the following constants:

� KDEBUG_INFO

77

78 Chapter 12. Finding Errors

� KDEBUG_WARN

� KDEBUG_ERROR

� KDEBUG_FATAL

The second parameter is the area. An area is a part of KDE that you de�ne yourself. You can

then at runtime choose from which areas diagnostic messages should be printed. Please see the �le

kdelibs/kdecore/kdebugareas.txt for a list of already allocated area ranges. Choose an area within

the range allocated for your application. If your application is not yet in here and you have CVS

access, you can allocate a range for your application here, otherwise just mail me. It is probably a

good idea to de�ne symbolic constants for the areas you want to use, but this is completely up to

you. The third parameter, �nally, is the text you want to output. KDebug automatically prepends

the logical application name if you output to a �le, to stderr or to syslog. A newline is always

appended, you need not (and should not) use one yourself. If you need parameters, you can use one

of the macros KDEBUG1, ..., KDEBUG9. These allow for one to nine additional arguments. The

syntax is exactly the same as with printf, i.e. you have to include format speci�ers in your message

which get replaced by the additional parameters. An example:

KDEBUG3(<idx/KDEBUG_INFO/, kmail_composer, "Message no. %d to %s has %d bytes",

message_no, aMessage.to(), aMessage.length());

KASSERT

There are also the macros KASSERT, KASSERT1, ..., KASSERT9 which work just like their KDE-

BUG-counterparts, except that they have an additional bool as their �rst parameter. Only if this

evaluates to false will the message be output. Note: You should not use neither KDEBUG nor

KASSERT before the KApplication object is constructed. Note 2: KDebug provides no means for

internationalization because it is meant strictly for developers only. If you want to inform the user

about an erroneous condition (like "this �le is not writable"), use KMsgBox.

Compiler switches

You do not need any special compiler switches in order to use KDebug. But when you ship your

product (this mainly applies to people who create distributions like .rpm or .deb packages), you

should compile with the switch -DNDEBUG. This will simply remove all the debugging code from

your application and make it smaller and faster (e.g. it uses 256K less non-shareable memory).

How to manage diagnostic messages at runtime

You can press Ctrl-Shift-F12 in every KApplication at any time, and the "Debug Settings"-Dialog

will appear. Here you can de�ne separately for every severity level what should be done with the

diagnostic messages of that level. The following settings are available:

� Output: In this Combobox, you can choose where the messages should be output. The choices

are: "File", "Message Box", "Shell" (meaning stderr) and "syslog". Please do not direct fatal

messages to syslog unless you are the system administrator yourself. The default is "Message

Box".

� File: This is only meaningful when you have chosen "File" as the output and provides the

name of that �le (which is interpreted relatively to the current directory). The default is

kdebug.dbg.

� Area: The areas which should only be output. Every message that is not mentioned here

will simply not be output (unless this �eld remains empty which is the default and means

that all messages should be output). Your can enter several areas separated by commas here,

12.2. KDE Macros 79

and you can also use area ranges with the syntax start-end. Thus a valid entry could be:

117,214-289,356-359,221. Please do not use whitespace.

Apart from this, you can also tick the checkbox "Abort on fatal errors". In this case, if a diagnos-

tic message with the severity level "KDEBUG_FATAL" is output, the application aborts with a

SIGABRT after outputting the message. When you close the dialog with OK, your entries apply

immediately and saved in your application's con�guration �le. Please note that these settings are

speci�c for one singular application! When you press cancel, your entries are discarded and the old

ones are restored.

80 Chapter 12. Finding Errors

Chapter 13

The KDE File System Standard

This chapter is a copy of the KDE-File System Standard as published on the KDE website at

<http://www.kde.org>, written by Richard Moore rich@kde.org

KDE File System Standard

This �le documents the directory structure that KDE and all KDE compliant applications should

use. This is version 0.0.4 of the standard.

13.1 Introduction

The purpose of the KDE FSSTD is to ensure that all resources (icons, mimetypes etc.) needed

for KDE applications are stored in a consistent directory structure. Following this structure allows

applications to make use of tools such as the KIconLoader class and allows separation of the platform

speci�c data needed by KDE from platform independent data (making installations on multiple

architectures possible). In this document directory names have been su�xed with a `/` character.

Where the word 'appname' appears in angle brackets <like this> it means that there should be

an entry corresponding to every installed KDE application. The word 'lang' is used in the same

way to indicate that there should be an entry for every supported language named according to the

standard two letter language codes eg. 'fr' for French, 'de' for German etc.

13.2 Directory Layout

The KDE directory structure is as shown below, the top of the KDE installation tree is usually

'/opt/kde' and can be found at run time by using the kdedir() method of KApplication (this replaces

the KDEDIR environment variable the use of which is now deprecated). This document will refer

to this directory as kdedir().

� kdedir()/

� bin/

� Application binaries

� lib/

� standard kde libraries (libkdecore etc.)

� <appname>/

81

82 Chapter 13. The KDE File System Standard

� Application speci�c data that is platform dependent

� include/

� standard kde header �les

� parts/

� cgi-bin/

� CGI programs for kdehelp

� share/

� doc/

� HTML/

� default �> Link to kdedir()/share/doc/HTML/en

� <lang>/

� <appname>/

� index.html

� other application help �les

� con�g/

� applnk/

� System/

� Utilities/

� Applications/

� Games/

� k�nd.kdelnk

� khelp.kdelnk

� khome.kdelnk

� krefresh.kdelnk

� mimelnk/

� magic

� text/

� audio/

� partlnk/

� <partname>.kdelnk

� icons/

� Icons used in kdelnk �les

� <appname>.xpm

� mini/

� Mini Icons for kpanel

� toolbar/

13.3. What does this mean to application developers? 83

� Standard toolbar pixmaps (eg. �leopen.xpm)

� wallpapers/

� Wallpapers used by kdisplay

� apps/

� <appname>/

� toolbar/

� Toolbar pixmaps

� pics/

� Other application pixmaps

� application speci�c data (must be platform independent)

� <libname>/

� pics/

� locale/

� <lang>/

� LC_MESSAGES/

� <appname>.mo

13.3 What does this mean to application developers?

A standard KDE application will install �les into several places in the above structure. The only

required items are the application binary, the application kdelnk �le, the application icon and the

application help �les - all others are optional. The most common things that are installed are:

Type of file Location

Application binary (required) kdedir()/bin/

Application kdelnk file (required) kdedir()/share/applnk/

Application icon (required) kdedir()/share/icons/<appname>.xpm

Application help files (required) kdedir()/share/doc/default/HTML/<appname>/<index>.html

Application toolbar pixmaps kdedir()/share/apps/<appname>/toolbar/

Application platform independent data kdedir()/share/apps/<appname>/

Application platform specific data kdedir()/lib/<appname>/

13.4 Application Documentation

I've suggested making putting at least a single page in

kdedir()/doc/default/HTML/<appname>/<appname>.html

a requirement for KDE compliance. The application is free to use the directory to store any help

data it requires.

Applications that support more than one language would place the other languages

inkdedir()/doc/<lang>/HTML/<appname>/<appname>.html with there being one 'lang' direc-

tory for each language code as usual. Arranging the �les like this would allow links between the help

�les of two di�erent applications that both support a given language.

I am not 100% happy with the solution I've suggested as it does not allow any way to fall back to

the default language if a required translation is not available.

84 Chapter 13. The KDE File System Standard

13.5 What does this mean to library developers?

� kdedir()/share/apps/<libname>/toolbar

Toolbar icons for library widgets.

� kdedir()/share/apps/<libname>/pics

Any other bitmaps for library widgets.

Chapter 14

File System Usage for KDevelop

Projects

As the last chapter covered the KDE File System Standard, this chapter deals with what you have

to do to use the �le system. A KDE project uses the �le system at least for installation routines;

therefore we will discuss setting installation properties for your project �les. Your application may

make use of �les that are installed afterwards, where it is important to know how to get the relative

pathname by the standard. This enables your application to work wherever the KDE �le system

may be and prevents hard-coding any �le information.

14.1 Accessing Files during Runtime

After the installation of your project by end-users, your application may require �le information

during runtime. During the development process, you will experience at least one error which

is caused when running your application within the KDevelop IDE and requiring the application

manual by "Help"-"Contents" or pressing the F1 key. This will result in a message box, saying that

the index.html �le could not be found- if you haven't installed your application on your local KDE

�le system. Your application asks KDEHelp to open your index page with detecting the installation

directory �rst through KApplication's methods to access the �le system, therefore, we will have a

look at what KApplication o�ers and make some example usage. Also other classes of KDE-Core

make use of the KDE File System like KIconLoader and KLocale, which will be reviewed afterwards.

14.2 KApplication Methods

The KApplication class o�ers the following methods to access the KDE File System:

void invokeHTMLHelp (QString aFilename, QString aTopic) const

static const QString& kde_htmldir ()

static const QString& kde_appsdir ()

static const QString& kde_icondir ()

static const QString& kde_datadir ()

static const QString& kde_localedir ()

static const QString& kde_cgidir ()

static const QString& kde_sounddir ()

static const QString& kde_toolbardir ()

85

86 Chapter 14. File System Usage for KDevelop Projects

static const QString& kde_wallpaperdir ()

static const QString& kde_bindir ()

static const QString& kde_configdir ()

static const QString& kde_mimedir ()

static QString localkdedir ()

static QString localconfigdir ()

static QString findFile (const char *file)

The methods are generally used with the KApplication object of your application, where

KApplication o�ers the macro kapp to receive the pointer:

#de�ne kapp KApplication::getKApplication()

Therefore, the methods are generally used like this:

QString sounddir=kapp->kde_sounddir();

This example stores the path of the KDE sounddirectory under a QString, where you would append

e.g. the sound �lename. Then you can process this information and play a sound �le that is located

there. You should always test for the existence of a �le by using QFileInfo's exists() method.

Within these methods,

void invokeHTMLHelp(QString aFilename, QString aTopic) const [public]

takes a special position to invoke the KDE help. Generally, you should use it everywhere a user

needs to access information, e.g. when he is presented a modal dialog. The F1 key will not work

to invoke the help contents, also the user should be presented the according help page. To make a

good use of it, add a "Help" button to your dialog and create a slot that is used to connect on signal

pressed(). In this method, use invokeHTMLHelp() with the according page and subject; in case

your application's documentation isn't written completely yet, leave this open to complete it after

the documentation is in sync with the application.

The documentation of KApplication says:

Invoke the kdehelp HTML help viewer.

Parameters: aTopic This allows context-sensitive help. Its value will be appended to the �lename,

pre�xed with a "#" (hash) character.

aFilename: The �lename that is to be loaded. Its location is computed automatically according to

the KFSSTND. If aFilename is empty, the logical appname with .html appended to it is used.

The methods of KApplication will retrieve the following path's.

kde_htmldir() kdedir()/share/doc/HTML Returns the directory where KDE stores

its HTML documentation

kde_appsdir() kdedir()/share/applnk Returns the directory where KDE applications

store their .kdelnk file

kde_icondir() kdedir()/share/icons Returns the directory where KDE icons are stored

kde_datadir() kdedir()/share/apps Returns the directory where KDE applications

store their specific data

kde_localedir() kdedir()/share/locale Returns the directory where locale-specific

14.3. KIconLoader Methods 87

information (like translated on-screen messages) are

kde_cgidir() kdedir()/cgi-bin Returns the directory where cgi scripts are stored

kde_sounddir() kdedir()/share/sounds Returns the directory where sound data are stored.

This directory is for KDE specific sounds.

Sound data of Applications should go

into kde_datadir()

kde_toolbardir() kdedir()/share/toolbar Returns the directory where toolbar icons are stored

kde_wallpaperdir() kdedir()/share/wallpapers Returns the directory where KDE wallpaper files are

kde_bindir() kdedir()/bin Returns the directory where KDE application binaries

kde_configdir() kdedir()/share/config Returns the directory where config files are stored

kde_mimedir() kdedir()/share/mimelnk Returns the directory where mimetypes are stored

localkdedir() $HOME/.kde Get the local KDE base dir

localconfigdir() $HOME/.kde/share/config Get the local KDE config dir

To search for a speci�c �le, use findFile(const char *file) which will search several path's of

the KDE File System:

1. $KDEDIR,

2. $KDEPATH,

3. "[KDE Setup]:Path=" entry in a con�g �le.

If the �le is not found, the QString method isEmpty() will return True

14.3 KIconLoader Methods

QPixmap loadIcon (const QString &name, int w = 0, int h = 0)

QPixmap reloadIcon (const QString &name, int w = 0, int h = 0)

QPixmap loadMiniIcon (const QString &name , int w = 0, int h = 0)

QPixmap loadApplicationIcon (const QString &name, int w = 0, int h = 0)

QPixmap loadApplicationMiniIcon (const QString &name, int w = 0, int h = 0)

bool insertDirectory (int index, const QString &dir_name)

14.4 Setting File Installation Properties

As the above explained where KDE applications should place their �les and how to access them

at runtime, the following will explain how to set the �le properties correctly to ensure the �les get

installed at the right place. The Make�les support a set of macros to install your �les into the KDE

File System and which have to be used for setting the �le installation properties.

88 Chapter 14. File System Usage for KDevelop Projects

To set the properties, open your project and select "Project"-"File Properties" which opens the File

Properties dialog. The �le properties are displayed if you select a �lename currently included in the

project. First of all, a �le has a type property, which can be one of the following:

� HEADER: speci�es a �le as a header �le

� SOURCE: speci�es a �le as a source �le

� SCRIPT: speci�es a �le as a script �le

� DATA: speci�es a �le as a data �le that usually gets installed like pixmaps or HTML docu-

mentation �les

� PO: speci�es a �le as a translation �le

� KDEV_DIALOG: speci�es a �le as a dialog �le to be interpreted by the dialog library

Further, a �le is included in the project, if "Include in Distribution" is checked. This ensures that

the �le is included in the distribution tarball or package.

If a �le has to be installed, you have to enable "Install". This will allow setting the Installation path

for the selected �le, where the �lename is already inserted.

Now, as said above, the Make�le already is capable of a set of macros for the KDE File System

Standard. These are used to set the installation path and ensure that the �les actually will land

in the KDE �le system and not somewhere else. Macros that can be used, have to be embraced in

round brackets and are marked with the dollar sign in front of the macro. When con�gure builds

the Make�les on the end-user's system, it will determine values for these macros that match the real

directory name and will expand the Make�le.am macro towards the actual destination.

When looking a standard KDE application project, you will see on the �le property of your

index.html �le that it already uses a macro to determine where it should go:

$(kde_htmldir)/en/kscribble/index.html

This says, that make should install the �le index.html in the kde-html directory, subdirectory en for

English, the application subdirectory and the �lename. You could as well use another �lename if

you like to rename the �le on the installation destination.

For the destination of your binary you currently have to edit the project's Make�le.am if your

destination should be di�erent form the "Applications" section of kpanel:

APPSDIR = $(kde_appsdir)/Applications

Possible values are (as the KDE-File System Standard says):

� Applications

� Games

� Graphics

� Internet

� Multimedia

� Settings

� System

� Utilities

14.5. Organizing Project Data 89

Setting no directory will end your applnk directly in kpanel's root.

The following list contains the macros that can be used in the installation setup for �les:

kde_htmldir Where your docs should go to. (contains lang subdirs)

kde_appsdir Where your application file (.kdelnk) should go to.

kde_icondir Where your icon should go to.

kde_minidir Where your mini icon should go to.

kde_datadir Where you install application data. (Use a subdir)

kde_locale Where translation files should go to.(contains lang subdirs)

kde_cgidir Where cgi-bin executables should go to.

kde_confdir Where config files should go to.

kde_mimedir Where mimetypes should go to.

kde_toolbardir Where general toolbar icons should go to.

kde_wallpaperdir Where general wallpapers should go to.

Use these macros in conjunction with the according necessary subdirectories and the �lename for

setting the installation properties. By default, the currently created HTML documentation �les, the

kdelnk �le, Icon, Miniicon and the translation �les (also newly create ones) are already set up for

their destination; therefore you don't have to make any changes for your default installation routine

that has been set up by the application wizard of KDevelop.

14.5 Organizing Project Data

Another issue in creating projects often appears to the programmer if he has or wants to include

additional data that have to be installed with the project. You already know where to install it, but

what about organizing it in the source tree ?

A good advice here may be to collect all data in directories that more or less match the KDE File

System Standard, e.g. your application needs additional toolbar icons. Creating these icons in the

main project directory is potentially not a good idea as they will be di�cult to locate in the real �le

viewer and a removal will result in much work for each icon. Therefore, create your icon with "File"-

"New" and choose a subdirectory toolbar; if it doesn't exist, it can be easily created with the

"select directory" dialog. Existing icons can be copied and included into the project with "Project"-

"Add existing �le(s)", where you have to choose the �les and the destination. When selecting the

destination directory, you can create the toolbar subdirectory �rst within the selection dialog. After

being �nished, press OK and the �les will be copied as well as included in the project.

As an example, a toolbar icon should go to the following:

$(kde_datadir)/<appname>/toolbar/<youricon>.xpm

Pictures or additional icons that are not used as toolbar icons should go to a subdirectory pics

instead of toolbar.

14.6 The kdelnk File

The <appname>.kdelnk �le currently included in your project will install itself in KDE's kpanel

structure. You should think it is already created and complete, therefore shouldn't require any fur-

ther noti�cation. Despite of KDevelop's advanced qualities to help you with creating, programming

and designing applications, it cannot determine the exact purpose of your application- and that is

the information you have to add to the kdelnk �le. As this is a text �le, select it from the RFV or

the LFV; it will be opened in the Header/Resource window.

90 Chapter 14. File System Usage for KDevelop Projects

The sample kdelnk �le would look like this:

KDE Config File

[KDE Desktop Entry]

Type=Application

Exec=kscribble

Icon=kscribble.xpm

DocPath=kscribble/index.html

Comment=

Comment[de]=

Terminal=0

Name=kscribble

Name[de]=kscribble

This already contains the basic con�guration for the application speci�c data such as the icon, binary

name, application name etc. You see that the section Comment is still empty. There you have to

insert the Quick-Tip that will be displayed when the mouse cursor moves over the kdelnk �le icon

on the desktop or in kpanel. If scribble would be a small drawing program, you would enter e.g.

Comment=A simple drawing program

Each comment line afterwards will contain the same description translated in the language the

brackets symbolize. Ask translators to insert a good translation in their native language or include

the kdelnk �le when asking for translating the application's po �le; the same applies to the name of

the application set in the Name lines.

Note: for more information about the purpose of the .kdelnk �le, especially its use for commandline

processing, see The KDE Library Reference Guide

Chapter 15

Programming Issues

91

92 Chapter 15. Programming Issues

Chapter 16

References

The KDevelop Programming Handbook contains information that are taken from various sources

on the Internet and by mails to various mailing lists, as:

KDoc documentation: Sirtaj S. Kang taj@.kde.org

KDE Internationalization: Matthias Elter me@kde.org

KDebug documentation: Kalle Dalheimer kalle@kde.org

The KDE File System Standard: Richard Moore rich@kde.org

KDE-Developer's mini-HOWTO: David Sweet <dsweet@chaos.umd.edu>

The contents of the according chapters are copyright of the original authors.

93

94 Chapter 16. References

Chapter 17

Copyright

KDevelop Copyright 1998,1999 The KDevelop Team.

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

95

96 Chapter 17. Copyright

Appendix A

Additional Information

A.1 Example Make�le.am for a Shared Library

Example Makefile.am for a shared library. It makes a library

called "example" as libexample.so.2.1.2

This Makefile.am was taken from the kdelibs distribution and modified

to serve as an example.

#

David Sweet

#

INCLUDES= $(all_includes)

lib_LTLIBRARIES = libexample.la

Note: If you specify a:b:c as the version in the next line,

the library that is made has version (a-c).c.b. In this

example, the version is 2.1.2.

libexample_la_LDFLAGS = -version-info 3:2:1 $(all_libraries)

include_HEADERS = header1.h header2.h\

header3.h

Which headers shouldn't be installed when a make install is done?

noinst_HEADERS = version.h

libexample_la_SOURCES = code1.cpp code2.cpp

code3.cpp

USE_AUTOMOC is great. This takes care of all of your moc'ing

dependencies.

(You still need to include, for example, header1.moc in code1.cpp.)

libexample_la_METASOURCES = USE_AUTOMOC

97

Index

.kdelnk, 18, 33, 82, 89, 90

.kdelnk �les, 81

accelerator, 23, 26�28, 39, 41, 43, 57, 58, 72

API, 7, 18, 33, 67, 68

class documentation, 11, 12, 25, 26, 62, 67

classtools, 67

closeEvent(), 38

debugging macros, 77

dialogeditor, 56

drag'n drop, 9, 37, 48

enterEvent(), 38

focusInEvent(), 12, 38

focusOutEvent(), 13, 38

help functions, 66

invokeHTMLHelp(), 86

KAccel, 26, 43, 58

kapp.h, 24, 56, 62, 71

KApplication, 16, 22, 24, 25, 29, 31, 42, 57,

78, 81, 85, 86

KASSERT, 78

KConfig, 22, 23, 29, 30, 71

KConfigBase, 29, 30

KDE applications, 9, 15, 21, 22, 37, 46, 65, 81,

87

KDE File System, 71, 81, 83, 86

KDE FSSTD, 81

KDE libraries, 7�9, 15, 17, 24, 26, 35, 37, 42,

43

KDEBUG, 77, 78

KDEBUG_ERROR, 78

KDEBUG_FATAL, 78, 79

KDEBUG_INFO, 77

KDEBUG_WARN, 78

kdecore, 43

KDEHelp, 15, 37, 65, 85

kdeui, 43

KDoc, 33, 67, 68, 93

KEdit, 37

keyboard focus, 25, 56, 72

keyPressEvent(), 13, 38

keyReleaseEvent(), 13, 38

KKeyChooser, 43

KKeyDialog, 43

KLocale, 72

KMenuBar, 25, 30

KNewPanner, 37

KQuickHelp, 63

KQuickHelp, 62

kquickhelp.h, 62

KQuickTip, 62

ksgml2html, 33, 65, 66

KTabListBox, 37

KTMainWindow, 23, 25, 26, 28, 29, 31, 32, 57,

63

KToolBar, 62

KToolBar, 26, 30, 62, 63

KTranslator, 72

KTreeList, 37

leaveEvent(), 38

mouseDoubleClickEvent(), 38

mousePressEvent(), 38

mouseReleaseEvent(), 38

moveEvent(), 38

msgid, 72

msgstr, 72

PO-�les, 72

printing, 59

Project-menu, 72

properties window, 56

QApplication, 10�12, 16, 31

QButton, 11, 48

QButtonGroup, 45

QCloseEvent, 13, 38

QComboBox, 46, 49

QEvent, 12, 13, 38

QFocusEvent, 12, 13, 38

QKeyEvent, 13, 38

98

INDEX 99

QLabel, 45, 50, 71

QMenuData, 25

QMouseEvent, 13, 38

QMoveEvent, 13, 38

QMultiLineEdit, 37

QPainter, 59

QPopupMenu, 24, 42

QPrintdialog, 59

QPrinter, 59

QResizeEvent, 13, 38

QSplitter, 37

Qt, 7�13, 15�17, 21, 22, 25, 27, 28, 35�37, 45,

47, 48, 55, 56, 59, 61, 62, 67, 77

QTableView, 37

QToolTip, 62

QToolTipGroup, 62

QWhatsThis, 63

QWidget, 11�13, 16, 23, 28, 36�38, 43, 45, 47,

55�57

resizeEvent(), 38

setFocusPolicy(), 12, 38, 63

SGML, 8, 17, 18, 33, 65, 66

shortcuts, 25, 27, 43

toolbar, 7, 8, 15, 17, 20, 23, 25�28, 30, 31, 35,

38, 41�43, 56, 57, 61�63, 82�84, 89

toolBar(), 62

translations, 72

widget properties, 56

