
The KDE Library Reference Guide
The Reference Guide to C++ Application Design for the K Desktop Environment (KDE)

Ralf Nolden <Ralf.Nolden@post.rwth-aachen.de>

The KDevelop Team Version 0.2 , Mon July 7, 1999

This handbook itself is part of the KDevelop Integrated Development Environment and is therefore also

licensed under the GNU General Public License; see 9 (Copyright) for more information.

2

Contents

1 Introduction 7

1.1 What KDE provides . 7

1.2 Notes about KDE 2 / Qt 2.0 . 8

1.3 About this Handbook . 8

2 Class Categories 9

2.1 Baseclass . 9

2.2 Application Architecture Classes . 10

2.2.1 Application objects of KDE . 10

2.2.2 KWMModuleApplication . 10

2.2.3 KControlApplication . 11

2.2.4 KWM . 11

2.2.5 Application Con�guration . 11

2.2.6 Main Windows . 11

2.3 User Interface Objects . 12

2.3.1 Views . 12

2.3.2 Dialogs . 12

2.4 Control Elements . 13

2.5 General Purpose Classes . 14

2.5.1 Files and Directories . 14

2.5.2 Data Objects . 14

2.5.3 Graphics . 14

2.5.4 Processes . 15

3 Classes of KDE Applications 17

3.1 The Application Instance . 18

3.2 Commandline Argument Processing . 19

3.3 Other Application Classes . 21

3.3.1 KControlApplication . 21

3

4 CONTENTS

3.3.2 KWMModuleApplication . 21

3.3.3 Docking of Windows . 21

3.4 The Main Window . 22

3.4.1 General Rules . 22

3.4.2 Using KTMainWindow . 22

4 Event Handling 23

4.1 Signals and Slots . 23

4.1.1 Requirements . 24

4.1.2 Emission of Signals . 25

4.1.3 Slot Implementation . 26

4.1.4 Connections . 27

4.2 The Event Queue . 28

4.2.1 Processing Events . 28

4.2.2 Event Types . 30

4.3 QWidget Virtual Methods . 38

4.4 Event Filters . 39

4.5 Synthetic Events . 40

4.5.1 Creating Events . 41

4.5.2 Sending Events . 42

4.6 Event Precedence . 42

4.7 Summary . 43

5 User Control Elements 45

5.1 The Menubar . 45

5.2 The Toolbar . 46

5.3 The Statusbar . 48

5.4 Keyboard Accelerators . 48

5.4.1 Menu Accelerators . 48

5.4.2 Tabulator and Button Accelerators . 49

5.5 Other Widgets . 49

6 KDE Dialogs 51

6.1 KMsgBox . 51

6.2 KQuickHelp . 52

6.2.1 Usage . 52

6.2.2 Text Formatting . 52

6.3 File Dialogs . 53

CONTENTS 5

6.3.1 KFileDialog . 54

6.3.2 KFileBaseDialog . 54

6.3.3 KFilePreviewDialog . 55

6.4 KColorDialog . 55

6.5 KFontDialog . 55

6.6 KIconLoaderDialog . 56

6.7 KWizard . 56

6.8 KSpellDlg . 56

6.9 DatePickerDialog . 56

6.10 Qt Dialogs . 57

6.10.1 QFileDialog . 57

6.10.2 QMessageBox . 57

6.10.3 QPrintDialog . 57

6.10.4 QProgressDialog . 57

7 Provided Views 59

7.1 The KEdit View . 59

7.1.1 KEdGotoLine: Go-to-Line dialog for editors 59

7.1.2 KEdReplace: Search and replace dialog for editors 59

7.1.3 KEdSrch: search dialog for editors . 59

7.2 The KHTML View . 59

8 Process Handling 61

8.1 KProcess . 61

8.1.1 Run mode . 61

8.1.2 Communication . 62

8.1.3 Example Usage . 63

9 Copyright 65

6 CONTENTS

Chapter 1

Introduction

1.1 What KDE provides

As the K Desktop Environment o�ers an easy way for application designers to o�er their products

with an intuitive way of user interaction, it provides all means to solve common tasks by a set

of library classes that extend the facilities of the Qt toolkit. This also allows a unique look to

applications as well as interaction with other programs and the window manager. This handbook

therefore intends to provide an introduction into the usage of the KDE libraries that ship with the

KDE to enable developers to �nd easy solutions for common programming issues and explains why

certain techniques and classes should be used when creating applications that are targeting the K

Desktop Environment.

Basically, KDE o�ers a set of standards that allow a unique look and usage of applications that

should be watched when designing programs. A lot of tasks are done automatically, such as:

� Session Management

� Standard keyboard accelerator con�guration

� Font, Color and Style changing

� Theme support (KDE 1.1.2 and higher)

� Internationalization

Therefore, theses issues only have to be mentioned in their functionality for complete information.

Application developers only have to care about what their program is intended to do and where KDE

can help. There, KDE o�ers user interfaces that extend the Qt toolkit where necessary. If both

libraries o�er similar solutions, KDE developers should (in most cases) use the methods provided

by the KDE libraries.

Here, KDE o�ers a set of widgets that can be used for creating application speci�c dialogs and views.

Examples are

� KSeparator, o�ering a common separator line

� KColorButton, o�ering a push button displaying a color

Normally, applications ask the user to select various values. Here, the libraries provide easy means

to get these values by complex widgets that are ready to use and are already known to the user by

the KDE desktop, such as:

7

8 Chapter 1. Introduction

� File dialogs,

� Color dialogs,

� Font dialogs,

� Keyboard con�guration dialogs

These should be used wherever a user setting is required as it simpli�es the programmer's work,

extends the application's facilities dramatically and provide a common look.

The Qt library is addressed in this handbook as far as it o�ers solutions not provided by KDE, but

as information about event handling and the signal/slot mechanism is hard to �nd for developers,

this turned out to be a special chapter in this handbook.

1.2 Notes about KDE 2 / Qt 2.0

As you may have guessed, this handbook explicitely adresses KDE 1.x development using the Qt

1.4x libraries. You may ask "Hey, Qt's 2.0 version is released already, why not talk only about that

?" - but there are several issues that result in a need for a KDE 1.x reference.

The issues that lead to this are �rst of all that developers should consider the KDE 1.x series the

stable desktop and development environment. As long as KDE 2 (which introduces Qt 2.0 as well)

is under development, programmers will have a hard time to follow the changes, which means a

high time-consuming search for information and, if you experience bugs, error searching. There are

projects covered by the KDE core team that ensure the KDE 2 libraries will work - the KDE itself as

well as the supplying applications and the KO�ce suite. Nevertheless, developers who are starting

or developing projects for KDE now have the choice and those that want to rely on the stable

environment will also want to port their applications to KDE 2 to make it usable on one hand and

to implement improvements that are introduced by new library functions. Therefore information

about where KDE and Qt di�er from the 1.x series in future releases have been included as footnotes

as far as changes are known to the author at the time of this writing and doesn't claim to be in any

way complete. Explanations of classes that are still in the KDE 1.x API but are already removed

in the current KDE 2 API are left out to avoid any trouble when porting to KDE 2.

In further versions of this handbook KDE 2 development will be addressed completely and the

according chapters revisited for the changes this implies.

1.3 About this Handbook

This handbook has been written in order to give developers a guideline to the usage of the KDE 1.x

libraries in general in conjunction with the Qt 1.4x library on X11 desktop systems. It cannot replace

any programming knowledge that is needed for C++ programming and covers the Qt classes where

necessary. You should in any case look at the page "Structure Overview" of the Qt online reference

which contains a general guidance to the Qt library by class usage in general. This handbook tries

to follow this structure to complete your knowledge about where KDE classes are appropriate and

explains the technique of KDE application development by describing class usage on topics.

Chapter 2

Class Categories

The KDE/Qt C++ class libraries o�er easy solutions to extend applications dramatically with a

minimum amount of coding on the side of the application programmer. This chapter therefore sorts

the classes provided towards their usage by certain categories:

� Baseclass

� Application architecture classes

� Application objects of KDE

� Application con�guration

� Main Windows

� User Interface Objects

� Views

� Dialogs

� Control Elements

� Menus

� General purpose classes

� Files

� Data objects

� Graphics

� Processes

2.1 Baseclass

Most of the KDE/Qt classes have QObject as their baseclass in their inheritance hierarchy. QObject

can be described as a baseclass because it o�ers the usage of Qt's signal/slot mechanism which allows

object interaction within the application and should be used as the baseclass for any self-created

classes that are supposed to emit signals or can connect to signals by slots.

9

10 Chapter 2. Class Categories

2.2 Application Architecture Classes

KDE applications usually consist of a set of objects that interact with each other. The programmer

has to use the provided classes to create a KDE application either by creating a class instance or by

inheritance. A typical application contains:

� One application object of KApplication

� One main window class derived from KTMainWindow

� A class derived from QWidget to create the view area

2.2.1 Application objects of KDE

The K Desktop Environment provides a set of functionality that an application can use to integrate

into the KDE. The class KApplication therefore is the baseclass for any application that targets

KDE. A KDE application only contains one object of the class KApplication that is created in

the application's main() function. The KApplication object is responsible for providing the basic

interfaces and objects towards the desktop and interprets the command-line arguments of an appli-

cation. As the instance is a non-visible, but the main application object, the following rules have to

be watched:

� the application is terminated by kapp->quit().

� the object that is representing the graphical interface has to be set the main widget with

setTopWidget() (for widgets not inherited by KTMainWindow)

The KApplication object provides:

� access to the KDE File System

� a session con�guration object

� a con�guration object

� internationalization by the locale object

� changing of the visible application objects by signals

1

Dependencies: -lkdecore -lqt

Includes: #include <kapp.h>

The kdeui library additionally o�ers two classes that inherit KApplication for specialized purposes:

2.2.2 KWMModuleApplication

Includes: #include <kwmmapp.h>

Dependencies: -lkdeui -lkdecore -lqt

The class KWMModuleApplication is the base class for KDE window-manager modules. It mainly

informs a module about all currently managed windows and changes to them (via Qt signals).

There are no methods to manipulate windows. These are de�ned in the class KWM (see kwm.h).

An example for using KWMModuleApplication is kcontrol.

1KDE 2 accesses the according instances by static methods provided by KGlobal.

2.2. Application Architecture Classes 11

2.2.3 KControlApplication

Includes: #include <kcontrol.h>

Dependencies: -lkdeui -lkdecore -lqt

KControlApplication is the common base for setup applications. It provides a tab dialog and func-

tionality common to most setup programs. The con�guration dialogs for the KDE are examples of

KControlApplications.

2.2.4 KWM

Includes: #include <kwm.h>

Dependencies: -lkdeui -lkdecore -lqt

The KWM class provides a set of static methods to interact with the window and session-manager.

Therefore, call any member with

KWM::<method()>

depending on the purpose of the desired functionality.

2.2.5 Application Con�guration

The class KConfig provides the usage of a con�guration object which can write its entries into

con�guration �les. Dependent of the values to read and write you have to call the methods of the

class KConfigBase.

The KApplication object provides an application con�guration object with a resource �le by default

which is stored in the user's kde-directory as well as the session management �le to store information

between sessions.

For internationalization, the KApplication object uses the class KLocale to translate localized

entries dependent on the selected language. Instead of using the klocale->translate() method,

KDE applications should use the i18n() macro that contains the string to be translated as the

message extraction depends on this macro.

2.2.6 Main Windows

As the application's KApplication instance is non-visible, it only provides the basic means to create

a KDE application. Therefore a KDE application needs to have a main window representing the

application towards the user graphically. The main window usually consists of a widget which can

be as simple as a pure button up to the complex KTMainWindow widget, o�ering the means to create

a full-featured main window with geometry management, session management support, menu bar,

toolbars and statusbar.

Generally, every main window has to be set main widget with KApplication's setTopWidget()

method. An exception is a main window that inherits KTMainWindow.

The main window usually takes the responsibility to terminate the application by providing a user

interface that is connected to KApplication::quit(), easily used by kapp->quit().

Most KDE applications will use KTMainWindow to represent the application graphically.

12 Chapter 2. Class Categories

2.3 User Interface Objects

This section covers the user interface object the KDE libraries provide. By category, these can be

divided by their purpose. A user interface can be:

� a view area widget, representing the data an application is intended to produce and allowing

the methods to manipulate the contents.

� dialogs, used to retrieve user input, e.g. a �le dialog

� control elements to compose application speci�c widgets

� menus, providing user interfaces to invoke application commands.

2.3.1 Views

View are generally the content area of an application. Therefore it can be the main widget or a part

of a main widget that additionally o�ers a set of functionality such as KTMainWindow

The KDE libraries o�er a set of ready to use views which can be inherited to advance the desired

functionality:

� KTabListBox: o�ers a multi-column list box where the user can change the rows with drag'n

drop.

� KEdit: the base classes for the KEdit application o�ered with KDE. This could be used instead

of QMultiLineEdit.

� KNewPanner: manages two child widgets like QSplitter.2

� KHTMLView: a HTML-interpreting widget (khtmlw)

For use with KTMainWindow, create your view instance and call setView(QWidget*) to enable the

management by the KTMainWindow instance.

Individual views are usually created by inheritance of QWidget or any provided widget that comes

closest to the desired functionality the view should o�er. For widgets that want to o�er scrolling

facilities, you could inherit from QScrollView or create a QScrollView instance and set the view

widget as the managed area with addChild().

2.3.2 Dialogs

Dialogs are a main part of the user interaction wherever the application requires parameters that

have to be set by the user. Fortunately, the KDE library already o�ers a set of dialogs that are

ready to use for standard parameters such as fonts and colors. In any case where these types of

information is requested by the user, the application should make use of these standard dialogs.

In cases where the given dialogs don't �t the requirements, you have to inherit from QWidget or

QDialog and create your own dialog either directly coded with geometry management or by creating

it visually with KDevelop's dialogeditor.

The KDE libraries o�er the following dialogs:

� KColorDialog: selects a color value

2Removed in KDE 2. Use QSplitter instead.

2.4. Control Elements 13

� KWizard: base dialog class to create wizards

� KEdGotoLine: Go-to-Line dialog for editors

� KEdReplace: Search and replace dialog for editors

� KEdSrch: search dialog for editors

� KFontDialog: font selection dialog

� KIconLoaderDialog: Icon selection dialog

� KKeyDialog: keyboard accelerator con�guration dialog

� KMsgBox: message box dialog with up to four con�gurable buttons

� KFileDialog: (k�le) �le dialog to open and save �les

� KSpellDlg: (kspell) spell-checking dialog for use with Ispell

� DatePickerDialog: (kab) date selection dialog

Additionally, the Qt library o�ers:

� QFileDialog

� QMessageBox

� QPrintDialog

� QProgressDialog

3

2.4 Control Elements

Control elements are used within visible areas of the application and can be combined together to

create a dialog or view. Beyond the control elements that the Qt library provides, KDE o�ers:

� KButton: active raise-lower button

� KButtonBox: manages buttons

� KColorButton: button displaying a color setting, calls KColorDialog

� KIconLoaderButton: button displaying a selected Icon, calls KIconLoaderDialog

� KDatePicker: Date selection widget

� KIntegerLine: line edit that only accepts integer values

� KLedLamp: LED lamp

� KLined: line edit

� KNewPanner: panner devider managing two widgets4

3Qt 2.0 introduces a QColorDialog for selecting colors and a QFontDialog for font-selection as well
4Use QSplitter instead, this is already removed in KDE 2.

14 Chapter 2. Class Categories

� KPopupMenu: popup menu with title

� KRestrictedLine: line edit that only accepts certain input

� KSelector: value selector

� KSeparator: standard separator

� KSlider: slider widget

� KTabCtl: tabulator widget

2.5 General Purpose Classes

2.5.1 Files and Directories

Qt already o�ers a set of classes to work with �les and directories. Those classes are:

� QDir

� QFileInfo

� QFile

� QFileDialog

A comparable and extended technology has been introduced by the KDE libraries and have a similar

usage like the corresponding classes of Qt. Those are:

� KDir

� KFileInfo

� KFileDialog

� KFilePreviewDialog

For loading and saving �les, use the class QFile which operates with streams.

2.5.2 Data Objects

The Qt library supports data objects by classes that o�er handling of lists, arrays, streams, strings

and the like. See the Qt documentation for mor information.

2.5.3 Graphics

Qt supports a set of graphics formats that can be used for drawings or image programs. The graphics

device for painting is QPainter.

2.5. General Purpose Classes 15

2.5.4 Processes

As applications can have di�erent types of application communication with other programs available

on the system such as standard Unix actions, developers can make use of the class KProcess to call

another application. As the application is running independently from the one that invoked it, you

can only receive the current status of the application invoked by isRunning(). Also, the invocation

can be done with various initialization values. Finally, the process can inform the application whether

it has been terminated or ended. See KProcess for details.

16 Chapter 2. Class Categories

Chapter 3

Classes of KDE Applications

The KDE libraries, in conjunction with the Qt library, are providing developers a complete frame-

work for application design. As KDE is targeted towards Unix Operating Systems running the

graphical X11 System, you would think you would have to understand Unix and X11- but as the

libraries are already encapsulating the complex graphics subsystem, you don't have to know about

that in most cases. If you're already familiar with Qt, KDE won't make too much di�erence in

regards of using classes and widgets.

Beginners, on the other hand, have a lot of problems in the sections of

� Application design with GUI components

� Application parts

� Widget construction

The following will help you to understand, where you will generally �nd classes used in KDE ap-

plications, including the according replacements of Qt classes for those developers that are familiar

with Qt, but didn't make use of KDE libraries. These will be the application objects, their behavior

and creation.You will learn about:

� the most needed objects of a KDE application

� the di�erence between your code and the application framework

� KDE application classes that encapsulate the window manager communication

� the class QWidget that all GUI components inherit

� graphical objects

� the system clipboard

More information about KDE applications can be found in the following sections:

The KDevelop Programming Handbook

KDE Application Tutorials Handbook

For information about Qt application design, see the Qt online reference documentation.

17

18 Chapter 3. Classes of KDE Applications

3.1 The Application Instance

Generally, a KDE application has to be started with creating an instance (and only one!) of the

class KApplication, which is provided by the kdecore library. The class KApplication itself is

derived from the according Qt class QApplication.

What happens exactly is that QApplication manages the application event queue, which means it

processes events from the underlying window system to its child objects, such as mouse movements

or keyboard events. This is also the reason, why only one instance of KApplication can be declared

and why this has to be the �rst thing the main() function executes.

The KApplication class extends the Qt class in terms of providing additional functionality for

a unique-looking application that integrates into other desktop components and can therefore be

in�uenced in its behavior by control applications (in KDE generally collected in the KDE Control

Center) such as keyboard accelerator con�guration and GUI style.

Corresponding to the Qt class, the KApplication class provides a static function to access the

application object within the application, KApplication::getKApplication(). This solves the

problem to pass the pointer to the application object. Further, the include �le kapp.h provides

a macro that can be used instead of the static function, kapp. Whenever you need to access the

application object, use this macro.1

The KApplication object itself provides a set of instances that are commonly used in KDE appli-

cations and lets the programmer access them by functions. You will make extensive use of them as

they avoid creating own instances. The following objects are provided by their purpose:

KCon�g

a con�guration object that is used to read and store con�guration settings in a resource

�le. Use the according methods of KConfigBase to read and write values. The con�gura-

tion object is retrieved by kapp->getConfig()2, the session managment con�guration by

kapp->getSessionConfig()

KIconLoader

an object that loads icons into QPixmaps by using the KDE File System. This takes away the

need to search for any pixmap on the �le system completely as only the �lename has to be

entered. Use the macro Icon("icon.xpm") to load an icon easily. The iconloader instance can

be addressed by kapp->getIconLoader()3

KLocale

an object that returns the actual localization settings. This makes applications appear in the

language on the desktop chosen by the user globally. Use the macro klocale to access the

application locale object. The klocale instance can be addressed by using kapp->getLocale()

(as the macro klocale does already)4

KCharsets

the charset object currently set globally by the user. This translates key events to the correctly

set charset. Retrieve the charsets instance with kapp->getCharsets().5

1In KDE 2, the application object can be retrieved with KGlobal::kApp().
2For KDE 2 use KGlobal::config() to retrieve the con�g object
3KDE 2 uses KGlobal::iconLoader() to access the icon loader instance
4Again, KDE 2 changes this with a static method of KGlobal::locale().
5Replaced by KGlobal::charsets() in KDE2.

3.2. Commandline Argument Processing 19

Further, the KApplication class provides you with the needed methods to access the KDE File

System Standard. This will prevent you from problems that will always occur when hard-coding

any directories into the code (see The KDevelop Programming Handbook for information about the

KDE-FSS). The class also provides the needed access for the application icon and mini icon, current

KDE fonts and session management support.

To use the clipboard, the according QApplication class already provides a clipboard object,

QApplication::clipboard(), which can be used to exchange text and image data between ap-

plications (see QClipboard).

Internationalization is another keyword for KDE applications. This is supported by the KLocale

object already mentioned above and is always used with the macro i18n() of kapp.h.

It just shortens the call of the KApplication pointer to the KLocale pointer and is read by gettext

to extract all macro-embraced strings into an application message �le that then can be translated.

At least, the KApplication already constructs a help menu that can be inserted into a menu bar

the application may contain with a prede�ned (can be turned on/o�) KDE hint dialog and your

application's about dialog.

You should notice that KApplication has to be lead with:

� creating the KApplication object at the beginning of the main() function

� executing the application with exec() at the end of the main() function

� terminating the application with calling the quit() slot function.

Using KApplication, you are able to catch the following event signals:

� kdisplayPaletteChanged()

� kdisplayStyleChanged()

� kdisplayFontChanged()

� appearanceChanged()

� saveYourself()

� shutDown()

As the widgets of your application will receive these signals, they will normally update themselves.

The important signals for you will be in most cases saveYourself() and shutDown() (whereby

KTMainWindow already catches saveYourself() to call KTMainWindow::saveData()).

You will be able to communicate with the KWM window manager as well by the according static

methods of kwm.h.

3.2 Commandline Argument Processing

Finally, an application usually wants to process commandline options. Those are entered by the

user if he started the application from a console for the reason to either start it non-graphically for

any processing reasons the application may be capable to execute or to start the application with a

�le. This is also important to interact with �lemanagers that can include your application to the list

of those that open a mime-type automatically when called with a �lename. The main() function

therefore is constructed with the declaration

20 Chapter 3. Classes of KDE Applications

int main(int argc(), const char* argv[])

Thereby, argc() is the number of commandline options and the array argv[] actually contains the

commandline option's texts. As the QApplication constructor is executed before the KApplication,

it is su�cient to know what is processed by possible options �rst. The already read options are au-

tomatically removed from the array and cannot be read after the KApplication instance is declared:

(taken from the Qt 1.42 online reference of QApplication)

� -nograb, tells Qt to never grab the mouse or the keyboard.

� -sync (only under X11), switches to synchronous mode for debugging.

� -display display, sets the X display (default is $DISPLAY).

� -geometry geometry, sets the client geometry of the main widget.

� -fn or -font font, de�nes the application font.

� -bg or -background color, sets the default background color and an application palette (light

and dark shades are calculated).

� -fg or -foreground color, sets the default foreground color.

� -name name, sets the application name.

� -title title, sets the application title (caption).

� -style= style, sets the application GUI style. Possible values are motif and windows

� -visual TrueColor, forces the application to use a TrueColor visual on an 8-bit display.

� -ncols count, limits the number of colors allocated in the color cube on a 8-bit display, if the

application is using the QApplication::ManyColor color speci�cation. If count is 216 then a

6x6x6 color cube is used (ie. 6 levels of red, 6 of green, and 6 of blue); for 108, a 3x3x3, and

for other values, a cube approximately proportional to a 2x3x1 cube is used.

� -cmap causes the application to install a private color map on an 8-bit display.

Then, the KApplication processes commands whose values can be set within a .kdelnk �le. Usually,

those link �les contain internationalized versions for the application description and the application

name as well as some other values such as the icon and miniicon name. The commandline options

to use these values are:

foo %i %m -caption \"%c\"

This will start the application with the value -icon something.xpm for %i and -miniicon for %m. The

application caption can be set with the -caption value %c. The class KApplication also provides

the according methods who return the values for these commandline arguments.

Now, when it comes to your own processing of commandlines, you can either access them directly

after the application object is declared to exclude any of the above values in the main() function.

Within the application itself (e.g. the mainwindow class), QApplication provides the methods

argc() and argv() to process any other options given at the commandline. These can be accessed

by the argument number, whereby the argument kapp->argv()[0] is the application name; any

other following arguments can be processed with kapp->argv()[number].6

6KDE 2 has an additional class, KStartParams, to parse additional command-line parameters.

3.3. Other Application Classes 21

The KApplication class uses different methods to change the application's style,

fonts and colors by X11 Atoms which call all open KDE applications to change their

values recursively throughout all widgets. This is done automatically when the

user changes values through using the KDE control center which causes these X11

events. The method x11eventFilter() emits the according signals to change all

values. As far as I know of, the only value not changed by KDE 1.x is the double

click interval, which is set to 400 ms by default in QApplication. Changes on

this can be made using QApplication::setDoubleClickInterval().

3.3 Other Application Classes

By "Other Application Classes" we would describe any replacements of the KApplication class.

The KDE library kdeui o�ers two more classes that inherit KApplication for more speci�c use in

KDE applications. Those are the class KControlApplication and KWMModuleApplication.

3.3.1 KControlApplication

The KControlApplication is a class for speci�c applications that are intended to serve as setup

modules. By providing a tab dialog, control modules can easily be created. The di�erences to

KApplication are:

� uses -init as commandline option to call the method init(). This one has to be overwritten

to initialize the dialog settings.

� the caption of the dialog has to be set independently of the KApplicationway with setTitle()

� provides a complete widget frameset already where your control widgets have to be inserted.

To overwrite the virtual methods like init(), you have to derive an application speci�c

KControlApplication class from KControlApplication. The class is generally used for control

applications such as used in the KDE as separate programs.

3.3.2 KWMModuleApplication

KWMModuleApplication is another class that inherits KApplication for a certain purpose: the class

provides methods that allow interaction with the window manager. An example for a KWMMod-

uleApplication is the kpager, who uses the signals that the window manager sends out to manage

the windows with the static methods of KWM.

To create a KWMModuleApplication, you �rst have to create your application instance and then

call the method connectToKWM()

3.3.3 Docking of Windows

Another issue to general KDE application design is the use of kpanel to display your running

application symbolized. KDE users are probably familiar with the display settings symbol left of

the clock in kpanel.

The way it runs is rather simple: You have to provide a widget that is the docked widget in the

panel; therefore has to be a top-level window by calling the constructor with 0 as parent. Include

the kwm.h header �le and call

22 Chapter 3. Classes of KDE Applications

KWM::setDockWindow(mywidget->winID());

Mind that for undocking hiding the widget is not enough, you have to call destroy() (see QWidget

for destroy() and create()).

3.4 The Main Window

As stated above, the �rst object to create for a KDE application is one instance of KApplication.

Indeed, it doesn't provide any widgets (visible user interfaces) except the about dialog similar to

the QApplication class as a popup menu, but that isn't seen anywhere. Therefore, any application

needs a top-widget to make itself visible.

When it comes to the visible parts, the programmer generally is free to choose which widget he

wants to derive from or use directly as his main window. It can be a simple QLabel as well as the

improved KTMainWindow that supplies all needed objects for a usual desktop application.

3.4.1 General Rules

Generally it can be said that you probably would like to use ready components that are specialized.

KDE supports this with the class KTMainWindow as a pendant to the Qt class QMainWindow. Before

describing the general guideline, we have a look at the exceptional: using any other widget.

When using QApplication as the base application class, you would �rst create the application

instance, then create the main widget. Now, it is safe to register the widget as the top widget

with the method setMainWidget(), because the user can use the close button of the window to

exit the window. He expects the application to be terminated, if the last window is closed, but

to do so, you have to call the QApplication slot quit(). You could do this in a derived class by

a re-implementation of QWidget::closeEvent(), but with the method setMainWidget() this is

already done. Now, in any case of using widgets with KApplication, things are almost the same

with the di�erence that the according method of KDE is setTopWidget(). The only exception is

when using the class KTMainWindow who automatically does this in its constructor (if there is no

other topwidget).

3.4.2 Using KTMainWindow

As usual desktop applications provide a complete user interface following a common design rule

for GUI programs, KDE provides a class that already is capable of all needed functions that an

application may make use of, KTMainWindow, which is located in the kdeui library. It is strongly

connected to KApplication and therefore very easy to use. The class provides:

� session management support

� a main widget

� a menu bar

� as many toolbars as your application may require

� a statusbar

The elements of the Widget themselves are already managed by KTMainWindow's geometry imple-

mentation, therefore you usually don't have to take care of that to re-implement an application

speci�c instance for your program.

Chapter 4

Event Handling

This chapter has a major meaning for those that want to have a better insight into the internals of

KDE and Qt programming as well as explaining details of event handling in general. Additionally,

the Signals and Slots mechanism is explained in detail as resources about the meaning and usage of

signals and slots are somehow hard to �nd in other documentation as known from users; also the

translated version allows non-english beginners a better understanding than originals.

Event handling therefore covers the communication of an application here - the communication

between the objects and between objects and the user. Especially beginners have a hard time to

work themselves into the event processing and many misconstructions only appear because of a lack

of knowledge. The signals and slots are originally not a part of event handling on themselves but

are used during the event processing often and are a major reason why simple widget elements such

as buttons don't have to be inherited by the programmer.

4.1 Signals and Slots

This section covers the Qt mechanism of advanced object communication. In this context, objects are

the instances of classes that are created during runtime by the application. The instances normally

don't know about each other, but they have to communicate to allow method calls of other object's

methods. The usual way for XWindow has been using virtual methods, but this lead to a very

complex and not very safe way to solve this. The Qt library o�ers a far more better solution to this

by a mechanism that is called signals and slots.

Before going into the technical details, I'll explain the mechanism by a comparison to everyday-life.

Imagine you have a bunch of people somewhere and someone looks into the sky. He sees a balloon

and points with his �nger to the balloon and says: "Hey, there's a balloon !". Now, what do other

people do that are standing around him ? One who is interested in balloons will look up as well

and have a look at it, maybe take a picture with a camera. Others won't because they were never

interested in balloons and don't want to know about it; they just ignore what was said.

With Signals and Slots, things are just the same, except that instead of people objects interact.

Objects are instances of classes that send out a signal in a certain situation. Other objects might be

interested in that kind of signal and react to it. While humans have the choice to react interactively,

class objects can't because they have no ears. But they can provide a kind of ears that listen to

signals that were sent out. Then, those special kind of ears have to be connected to the signal

an object emits to provide the medium to transmit the message to the receiver. Any kind of ears

that could react won't if they are not connected with the signal and therefore ignore the message

23

24 Chapter 4. Event Handling

transmission.

I hope this made somehow clear how the signal/slot mechanism works generally. The chart shows

this a bit more appropriate:

Person_1 Person_2 Person_3

signal balloon_seen(); slot i_see_it(); slot not_interested();

watch_out(){ i_see_it(){

if(balloon){ look_where();

emit balloon_seen(); }

}

}

connect (Person_1, SIGNAL(balloon_seen()), Person_2, SLOT(i_see_it()));

This would be explaining more about the functionality. The class that builds Person_1 provides

a signal balloon_seen(). Also it has a method watch_out() that symbolizes that he watches for

something. If this method detects that a balloon is there, it emits the signal and transmits the

message to the outside of its responsibility. After the emit, Person_1 is not responsible for any

actions that follow as a reaction to this signal; it just does the message invocation.

Now, the table contains the other persons Person_2 and Person_3. Both provide methods that

are slots; Person_2 has one slot that is called i_see_it() and Person_3 a slot not_interested().

Those slots are just like any method with the di�erence that they can be connected to a signal

and therefore build a receiver for the connection. They will execute the slot implementation when

the object receives the signal message. In this case, we have a typical connection method at the

last line. The connect() takes Person_1 as a signaler object. It connects the signal balloon_seen()

that the object may send out when he sees a balloon with Person_2. Person_2 is then the receiver

object. Now, the receiver has to do something with the signal; we have to tell him, which method

to execute whenever Person_1 sees a balloon. The implementation of the slot i_see_it() just calls

another method to make this example short. look_where can symbolize a method to localize the

coordinates, the color, the size of the balloon or how many people the balloon carries.

Person_3 then is anther object. The class that builds it provides a slot as well, the method

not_interested(). The implementation doesn't matter for our example here, because we don't want

Person_3 to react to Person_1's detection of a balloon. We could, if we add another connect though,

just with Person_3 instead of Person_2 and the according slot Person_3's class provides.

4.1.1 Requirements

This way of object communication is by default not provided by C++ - its a part of the Qt library

that depends on the usage of certain classes either by inheritance of your own classes or by using

the class that provides this functionality. Additionally, the signals and slots have to be declared as

such in the class-declaration for two good reasons:

1. you know which signals and slots a class provides and the parameters

2. the moc (Meta Object Compiler) of Qt can create the implementation for signals and slots

automatically and include it to the compile process

4.1. Signals and Slots 25

Now, we're going into the details of the Qt library. To make use of the signal/slot mechanism, you

have to:

� inherit from QObject or any subclass of QObject

� add the macro Q_OBJECT at the beginning of the class-declaration (without a semicolon

!)

� run moc over the header �le to produce an implementation �le to be compiled

Normally, KDE and Qt applications constructed with automake and autoconf already contain a

way to run moc automatically. This is done by the program automoc, which also does everything

needed to create the meta object implementation for signals and slots as well as incorporating the

correct headers for the implementation and the inclusion into the build-process. So you don't have

to take care of updating any moc output �les after changing header �le implementations nor about

the integration of the moc source �le output into the project. Those will be automatically generated

by detection of the Q_OBJECT macro in the class declaration.

Further, you should read yourself into the page "Using The Meta Object Compiler" of you Qt Online

Reference. It covers all restrictions on using signal and slot declarations within classes.

4.1.2 Emission of Signals

This part now actually describes the several ways of signal emission. It is important to know where

signals are emitted and for what purpose you would do so.

We separate two ways of signal usage, one which is the usual way through sub-classing QObject,

and the other to use the QSignal class from within classes that don't want to inherit from QObject

but want to use the signal emission features.

So, when deriving from QObject, we already said that we have to add the Q_OBJECT macro into

the class declaration. Then any signal that a class object will emit has to be inserted in the class

declaration with the modi�er signals:

Example:

class Foo::public QObject{

Q_OBJECT

public:

Foo();

signals:

void mySignal();

void myParameterSignal(int, int);

};

This shows the insertion into the class-declaration and also shows that you can use signals to emit

values as well. This is one of the best features and is widely used throughout KDE and Qt.

Now, this shows only one half of the work. The other is: where does the signal get emitted ? For

this, you have to use the keyword emit in connection with the signal name and the transmitted

actual parameters. The place where to emit is usually within a method that is processed and

wants to inform about the state of the object by the signal to outside objects. The keyword

26 Chapter 4. Event Handling

emit is technically only an empty #define, therefore the C++ -compiler only sees a

normal method call. The moc takes care to add the according meta-object creation

and initialization, which finally implements the signal as a member function in

the moc output.

As an example, we have a look at a snippet of code where a method of KMyClass cuts out a part of

a visible area the user works with:

void KMyClass::cut(){

int xpos=view->xPos();

int ypos=view->yPos();

view->cut(xpos, ypos);

emit cutting(xpos, ypos);

}

This method could be called e.g. from a toolbar icon "Cut" or the according menu entry of the

application's menu bar. We assume that we have a view area that we retrieve as a pointer view. The

class providing the view area o�ers cutting a selection by an x and y integer value. The actual values

can be found out with xPos() and yPos() and stored into xpos and ypos to avoid temporaries and

to reuse the values for emitting the signal. Then, we call the cutting method via the view object

by the actual parameters. Finally, we want to inform about what's being done by emitting a signal

cutting(). In case anyone needs to know about what happened, we have also included the exact

information about where we have done the action by transmitting the values with the signal.

Another way to produce a signal is, as mentioned, possible without sub-classing QObject. Qt

provides this by the class QSignal. The usage is rather simple, though inheritance of QObject

should always be preferred.

To use QSignal, write a normal C++ class. Then add the following:

1. #include <qsignal.h>

2. add a QSignal member attribute to the class declaration

3. add a method void connect(QObject* receiver, const char* member); to the class

4. create the signal in the constructor with new

5. destroy the signal in the destructor with delete

6. implement the connect() method by calling connect(receiver, member) on the signal to

emit

7. add the emission at any place in your class code with yoursignal->activate()

4.1.3 Slot Implementation

After explaining the ways of how to produce signals by objects, those can only be of important

use if an application's classes provide slots that get connected with signals. The slot themselves

are normal C++ class member functions, therefore can be called any place any time you need to,

only depending on the access rights. They just have an additional feature that they can be called

automatically during runtime by their connected signals. The main di�erence is the declaration of

the methods within the class:

4.1. Signals and Slots 27

class Foo::public QObject{

Q_OBJECT

public:

Foo();

public slots:

void mySlot();

void myParameterSlot(int, int);

};

Above, you see that the class Foo has two slots declared in the class-declaration. As the modi�er is

also preset, here to public, it follows that you can also restrict slot usage by access rights to public,

protected and private. The only thing to watch out for is that all methods after public slots:

are slots, so you have to start with public: again, if you want to add public methods behind the

slots declarations. Whe connecting signals to slots, the sender can only connect to slots the receiver

allows to call depending on the access rights e.g. a private slot cannot be called by an instance of

another class than the own (which means only instances of the same class can connect signals to

this slot).

Another restriction is the return type. As slots are most often called by signals, where should they

deliver any return values ? Therefore, your slots will always have void as return type.1

4.1.4 Connections

The last section of this chapter deals with connecting signals and slots. As stated in the Signals

section, there are two ways to produce signals, and in the Slots section we saw that slots are methods

which have modi�ers as well.

When it comes to connecting them, you generally will use the static method of QObject to send a

signal to a method:

bool connect(const QObject* sender, const char* signal,

const QObject* receiver, const char* member)

bool disconnect(const QObject* sender, const char* signal,

const QObject * receiver, const char* member)

Both are static public members of QObject and can be called everywhere in the code if you want to

connect/disconnect a sender and receiver by certain signals and slots. The signal in these methods

have to be used with the SIGNAL() macro; the slot of the receiver has to be used with the macro

SLOT().

Note: within classes that inherit QObject you don't have to use the static

variant, so instead of using QObject::connect(), you can also use the overloaded

methods that either the sender provides (such as QMenuData to connect activated()

directly to the receiver's slot while inserting a menu entry) or just call

connect() directly.

Further, the signal and slot should have the same parameter list as parameters are translated from the

signal to the slot method. Slot implementations that don't require using any transmitted parameter

1For all restrictions of implementing slots in classes, see the Qt online reference documentation, section

The Meta Object Compiler .

28 Chapter 4. Event Handling

only have to declare the type but do not need a formal parameter. This avoids the unused parameter

warnings you usually get when declaring formal parameters which aren't processed in the method.

The slot methods itself can also have less parameters than the signal emits.

Also, signals can be forwarded. This means, you can use the connect() method to connect two

signals, meaning that the sender's signal will cause the receiver to emit the connected signal. A signal

can furthermore be connected to several slots, where the slot execution depends on the connection

order.

4.2 The Event Queue

As the previous chapter dealt with the object communication by Qt's signal/slot mechanism, we

know how an application can arrange a certain functionality. But this leaves out the events the user

produces. Generally, he communicates with an application by the keyboard and the mouse. When

running an application under XWindow, the X11 protocol ensures that the right application is called

to process the events - so only the application object receives the event and therefore has to provide

means to handle them. This is called event handling. The application object therefore has to keep

an event queue when initialized where events run into and get processed to the right application

window. The application itself is running in a so-called main event loop, which indicates that

it waits for user interaction until the user quits the application either via the quit() slot or by

calling exit(). The exit() function also returns the value to the main() function's call of exec()

to terminate. If the number exit() is called with is higher than 0, errors occurred. The exec()

function call in main() also starts the event handling.

The event handling executes fetching the window system events it claims responsible to process.

Usually this means that the event queue �lls up with events the user releases and which are processed

to the application object. By the QEvent class, all events are translated into Qt events which can

therefore be handled much easier.

The translated event is then processed by QApplication's notify() function. This sends all re-

ceivers that are derived from QObject and are part of the application the according event with

receiver->event(QEvent* event). The application objects therefore get noti�ed about any event

that happened and can process the event via the re-implemented event() method of QObject if

needed. QObject also allows a self-created event �lter functionality by installing an event �lter on

the class. The event �lter is processed �rst if one is installed and then the event method returns

control over the event if the event �lter returned false. If the event()method doesn't �nd any event

processing, it returns false and the application gets to know that the object didn't sign responsible

for the event. If the event was successfully processed and the event() returns true, the event is

deleted from the event queue.

4.2.1 Processing Events

Now, Qt and KDE applications will use a graphical interface to make themselves visible. A window

of the application on the other hand has to be derived from QWidget, as this is the baseclass for

any graphical object drawn in windows. Independent of how the widget is created, the application

object notices all widgets that are created and keeps a list of these. Further, the windows can have

several states dependent on how they are created.

The QWidget class is most important to understand because it re-implements the event() method

already to transform the incoming event to some commonly occurring events, e.g. a mouse event, and

creates appropriate �lter event functions which are easier to re-implement for the special purpose

4.2. The Event Queue 29

a widget may need. This is e.g. used for any widget that inherits the QWidget class, because

those events can be used to send out signals that are avoiding any sub-classing of common widgets

such as pushbuttons. The pressed() signal e.g. is emitted on the re-implementation of QWidget's

mousePressEvent(), showing that you don't have to subclass a simple pushbutton to �nd out the

event and to get noti�ed that the user pressed it.

Re-implementing these methods is one of the common tasks of a programmer writing his own widgets,

therefore you will have to know about the virtual event functions of QWidget and the event queue

processing very well.

Above, we mentioned that a widget can have several states. This prede�nes the behavior of the

widget towards the user as well as towards the application object.

A widget can be:

1. a main widget when set as the main widget with QApplication's setMainWidget() or

KApplication's setTopWidget.

2. a top widget when the parent of the widget is 0.

3. a modal widget usually a QDialog which has its own event loop

4. a semimodal widget like a QDialog, but without its own event loop

5. a popup widget when the widget �ag is set to WType_Popup, is also a top widget

The specialized behavior of the widgets depending on their creation is then:

1. main widget: a main widget is the most important widget of the application, but the ap-

plication doesn't need to have a main widget of course. If it has, and the main widget gets

closed, the application terminates automatically by calling quit(). The QApplicationmethod

mainWidget() returns the pointer to the main widget.

2. top widget: a top widget is a widget which has 0 as its parent. All other widgets that have

non-zero parents are sub-widgets of the parent. The list of top level widgets can be found with

QApplication::topLevelWidgets(). If an application doesn't have a main widget but only

top widgets, connect quit() to QApplication::lastWindowClosed() to terminate the appli-

cation, otherwise the application object will still exist even if all windows are closed. The appli-

cation �nds the currently active (focus enabled) widget with QApplication::focusWidget().

3. modal widget: a modal widget is a widget derived from QDialog. QDialogwidgets have their

own local event loop which is entered when calling exec() on the dialog object. The dialog

is modal, if the third widget �ag is set to true, meaning that the dialog has to be terminated

before the event processing can return to other application windows. All events are sent to

the dialog by the application object. The current modal widget is found by the application by

QApplication::activeModalWidget().

4. semimodal widget: is a widget that disables events to other widgets like a modal dialog but

does not have its own event loop. The modal �ag has to be set to true like for a QDialog,

although the semimodal dialog is derived from QWidget.

5. popup widget: a popup widget is a popup that, when it appears, makes the application

object send all events to it. The popup has to be �nished before the event returns to any

other widget, except for another popup. The current popup widget is found by the application

object by QApplication::activePopupWidget() to post the events to.

30 Chapter 4. Event Handling

The application object itself keeps track of all widgets that it is responsible for. The list of widgets

can be retrieved by QApplication::allWidgets().

Summary: The application object is responsible for retrieving the events that were invoked by the

user from the underlying window system. Then it converts these events via QEvent and can sent

the event to any widget that is currently active. The widget itself is responsible to process the event

either by accepting the event after �nding out that it has an event-handler (or to be precise: the

event handler has to return true to the notifying of the application's event posting). The event is

deleted from the queue if an event handler was found, if all possible event handlers return false, the

application is not responsible for the event and the event is ignored (deleted from the queue as well).

What is left to explain about event processing is the installation of own event �lters for widgets or

any other object derived from QObject and the way QWidget contains a pre-de�ned event handling

that has to be overwritten for processing events on custom widgets. Mind that as a guideline to

de�ne own event handling, you should reimplement QObject::event() for all classes that do not

inherit QWidget and the more specialized event handlers described below for all QWidget inherited

classes. Also, preserve the declarations as virtual protected to ensure reusability and consistency for

your code.

4.2.2 Event Types

The events sent to the application are, as described, converted by QEvent to Qt events. The event

type can be found out by using the type()method of QEvent, which can then be compared with the

event that you want to know about. Now, the event type that type() delivers is an integer number;

those are declared with #de�ne in the �le qevent.h.2After �ltering events for the specialized event

class, more information can be found out by explicit conversion to the event class to retrieve exact

data about the event.

Example:

bool MyClass::event(QEvent* event){

if(event->type() == Event_MouseButtonPress){

if((QMouseEvent*)event->button() == RightButton){

// do something with the event, eg. pop up a contextmenu

return true;

}

else{

return false;

}

}

else return false;

}

The event has been explicitely converted to QMouseEvent* here to �nd out the button type. You

could also �nd out the position of the mouse pointer at the time of the event, see the following

section about mouse events

2Qt 2.0 uses an enum for all available event-types whose entries are similar to the current de�nes but

generally leave out the Event_ pre�x. The event type can be retrieved as described above, so you only have

to change the comparison of the event type.

4.2. The Event Queue 31

As there are so many event types that can occur, I have sorted the events de�ned in qevent.h

logically according to the general event type and the subclasses that provide an event handling and

o�er the exact information about speci�c events. The sorting contains:

� 4.2.2 (Window Events)

� 4.2.2 (Focus Events)

� 4.2.2 (Mouse Events)

� 4.2.2 (Keyboard Events)

� 4.2.2 (Drag'n Drop Events)

This will allow you to logically have a look at what might be interesting to reimplement or use before

having to browse the Qt online documentation in depth.

Window Events

By window events, all events that are produced by the window system in regards to handling any

visible part of the application windows. This does also include the event processing in the other

direction, because by methods like QWidget::close() or QWidget::repaint() events are sent to

the window system to execute a synthetic events to manipulate the window behavior (either inside

the window or a�ecting the whole window).

This is sometimes a bit hard to understand, so I will give another short example here. Assuming

you have an application that has a window on the desktop. This window can be manipulated by

the user through actions like:

� resizing

� moving

� obscuring with another window

� closing

� showing by execution

These are incoming events that are sent to the application. The event type is determined by

QWidget's event() re-implementation and converted to the according event class that provides

methods to handle the event speci�cally. Now, when you have a look at the QWidget class, a lot of

methods are provided for window manipulation, e.g. resize(). You're using these methods, but I

guess you never thought about their way of execution. In e�ect, these methods work the other way

round: they produce an event that is sent to the display by qt_ functions to execute actions like

simulating a user action. This way, events can also be produced to gain synthetic events (see below

).

Within a window, the widgets are arranged somehow. As each widget is treated like a separate

window internally (it always is a QWidget or inherits it), the same events can be processed randomly

inside the window for incoming events as well as manipulating internal parts of a window.

The following chart shows the according event classes with the event types they process:

� QShowEvent: Processed by QWidget::show()

32 Chapter 4. Event Handling

� Event_Show

� QHideEvent: Processed by QWidget::hide()

� Event_Hide

� QCloseEvent: Processed by QWidget::close()

� Event_Close

� event handler: QWidget::closeEvent(QCloseEvent*)

� QResizeEvent: Processed by QWidget::resize()

� Event_Resize

� event handler: QWidget::resizeEvent(QResizeEvent*)

� QPaintEvent: Processed by QWidget::repaint() calling the event handler directly, and

QWidget::update() which generates a window system paint event.

� Event_Paint

� event handler: QWidget::paintEvent(QPainEvent*)

� QChildEvent: not included in the release version of Qt; to handle these events reimplement

QObject::event() or install an event �lter. Child events are inserting a child widget or

removing it

� Event_ChildInserted

� Event_ChildRemoved

� Event_LayoutHint

3

Focus Events

Focus events are somehow special to windows, but I have added a separate section for those due to

the �ltering of focus events in QWidget. A focus event is generally the fact that a window consists

of several widgets who have a focus policy, which means that there can only be one widget at a

time that can have the current input focus. The focus itself can be activated by a mouse click to

activate the clicked widget or pressing the TAB key to forward the focus to the next widget in the

tabring focus. Backwards focus setting can be done with SHIFT+TAB. This is a common usability

and users expect windows to have this behavior so they can navigate the focus to the next widget.

A good example for this is a dialog. If the dialog is a modal widget, it has to be �nished �rst,

otherwise is active when it gets the focus if it is the active window. Now, on dialogs widgets can be

disabled as well to prohibit any user input. These disabled widgets don't get the focus either and

are painted disabled.

The QWidget class de�nes the focus handling already when receiving an event. If the event type is

Event_FocusIn, the widget gets the keyboard focus by event()'s conversion into a QFocusEvent.

This already catches a key event of the keys TAB and the combination SHIFT+TAB without

processing these keys to QKeyEvent if there is a widget the focus can be forwarded to. Anyway, you

can in�uence this �ltering by setting focus policy. The focus policy can be set to:

3Qt 2.0 includes another event class QWheelEvent to handle events that occur by wheel-mice. The QWidget

class also provides an already existing event handler for this, wheelEvent(QWheelEvent*). Also all drag'n

drop events have their event-handlers already in QWidget, see the notes for drag'n drop

4.2. The Event Queue 33

� QWidget::TabFocus TAB-focusing

� QWidget::ClickFocus focus on mouse clicks

� QWidget::StrongFocus focus on TAB and mouse clicks

� QWidget::NoFocus no focus at all

The QFocusEvent class delivers information about the focus event by comparing the event type with

type(). The method gotFocus() returns true on Event_FocusIn and lostFocus() returns true

on Event_FocusOut. The QWidget prede�ned event handlers are:

focusInEvent(QFocusEvent*) for Event_FocusIn

focusOutEvent(QFocusEvent*) for Event_FocusOut

You have a lot of choices to in�uence the default focus handling by the methods provided by QWidget,

e.g. you can forward the focus to another widget with setting another focus order. Mind that the

focus is arranged in a ring and your implementation of this manipulation should take care that it

doesn't break the focus handling. The default focus ring depends on the declaration of your widgets

while constructing; if your tests result in a fuzzy focus order you have to recheck the declaration.

The default design should always be left to right and top to bottom for forwarding the tab-focus.

When using the geometry layout management you should declare your widget order �rst and then

implement the layout.

Hint: if your widgets use multilineedits, the user expects the tab key to produce a tab in the text,

not the forwarding of the focus. Therefore a simple method is to use setFocusPolicy(NoFocus) or

setFocusPolicy(ClickFocus)on all additional widgets that are in the current window. Menubars

and Toolbars do not have the tabfocus by default, so you don't have to set the focus policy there.

An exception is the QWhatsThis button, which although mostly used in a toolbar, receives the input

focus on TAB.

Mouse Events

Mouse events are, as the word says, generated by the user's handling of the mouse. As these will only

be of interest if the mouse is over a widget, the best use to process mouse events is to reimplement

the virtual methods QWidget provides for this. Now, the window system sends the following event

types to the application by mouse actions:

Event_MouseButtonPress

Event_MouseButtonRelease

Event_MouseButtonDblClick

Event_MouseMove

This means, that the user can handle the mouse with moving the cursor in X and Y direction, press

any button and release it. A button can also be doubleclicked, which is a special event and requires

special handling. As the event message is �ltered by the event() method of QWidget, these event

types are converted from a QEvent to a QMouseEvent. Then, the mouse event is processed, whereby

QWidget provides a set of event handlers already. What is interesting about a mouse event is not

only the type, but the other parameters, as mentioned, to implement certain actions on speci�c

events. One of the most recently used event types are probably a right button press over a widget

34 Chapter 4. Event Handling

to open a context menu to allow quick access to commands that are available. This requires the

exact position of the event's occurrence and a comparison of the button type. Double clicks are

processed by the user as producing a mouse press event followed by a mouse release event and

another mouse press event. As the time between the release and the next press cannot be easily

determined, the QApplication class has methods to de�ne the click time which is by default 400

milliseconds: QApplication::setDoubleClickInterval(int ms) is what you need.

The QMouseEvent class allows �nding out the exact event by providing information about: Button

type: using button()

NoButton

LeftButton

RightButton

MidButton

Mouse Position:

pos() : relative mouse position within the widget (x,y)

globalPos() : absolute mouse position on the desktop (x,y)

globalX() : global x position of the mouse pointer from left to right

globalY() : global y position of the mouse pointer from top to bottom

x(): relative mouse position within the widget from left to right

y(): relative mouse position within the widget from top to bottom

Additional Keyboard presses at the same time: using state() and OR'ed with Left,Right

and MidButton

ShiftButton

ControlButton

AltButton

The provided event handlers are:

� Event_MouseButtonPress

� virtual void mousePressEvent (QMouseEvent *)

� Event_MouseButtonRelease

� virtual void mouseReleaseEvent (QMouseEvent *)

� Event_MouseButtonDblClick

� virtual void mouseDoubleClickEvent (QMouseEvent *)

� Event_MouseMove

� virtual void mouseMoveEvent (QMouseEvent *)

4.2. The Event Queue 35

Thereby, the mouseDoubleClickEvent() by default only produces a mousePressEvent. You have

to reimplement the mouseDoubleClickEvent() to receive the event and process it as it is produced

as an hypothetic event, not produced by the window system under X11. Set the double click time

with QApplication::setDoubleClickInterval().

For MouseMove events, you have to watch that the mouse event is only handled if a button is pressed.

This can be con�gured by QWidget::setMouseTracking(true) to receive all mouse movements as

QMouseEvents in the event handler. The implementation therefore is on QWidget: the event is

raised, event() asks if mousetracking is set to true. If not (default), the event is ignored, if yes, the

event is converted to a QMouseEvent and delivered to the mouseMoveEvent() event handler.

Additionally, the widget can detect if the mouse enters the widget's space. This is done by �ltering

out the mouse movement before generating the QMouseEvent in QWidget::event():

� Event_Enter

� virtual void enterEvent (QEvent *)

� Event_Leave

� virtual void leaveEvent (QEvent *)

An example for reimplementing an enter and leave event is QToolButton. The buttons in the toolbar

have a automatic raising behavior in windows style, therefore the widget uses an enter event to raise

the button in 3D and lowers it when the mouse leaves the widget area.4

Keyboard Events

A keyboard event is generally sent to the application if the user pressed or released a keyboard

button, therefore can determine the event by:

Event_KeyPress

Event_KeyRelease

Handling Now, the QWidget class converts a keyboard event from QEvent to a QKeyEvent if the

widget has the keyboard input focus; if the widget has tabfocus policy, the TAB and SHIFT+TAB

key-presses are �ltered out to produce a QFocusEvent instead a QKeyEvent. The QKeyEvent class

provides more convenient methods to process the key event. Those have some specialties which I

want to discuss.

Event Handlers:

QWidget provides two event handlers for the two event types the keyboard produces:

virtual void keyPressEvent(QKeyEvent*) for Event_KeyPress

virtual void keyReleaseEvent(QKeyEvent*) for Event_KeyRelease

Acceptance:

The widget that receives a QKeyEvent and re-implements the event handlers from QWidget has to

determine if it wants to accept or ignore the keyevent, so the widget can sent it back to the parent

4Wheel mice are o�ering an additional functionality for scrolling by the wheel. Qt 2.0 o�ers solutions for

handling wheel events in a separate event class QWheelEvent, therefore these are not handled as mouse-events.

36 Chapter 4. Event Handling

widget. Therefore you have to know that the accept �ag is set to true in the constructor of a

QKeyEvent. You can clear this �ag with calling ignore() if you don't want to process the key and

sent it back.

Modi�ers

The user can press so-called key-modi�ers. Those are the ShiftButton, ControlButton and AltBut-

ton. The currently pressed modi�er keys can be found out with state(), which returns the modi�ers

OR'ed together.

Key Values

The key values for all keyboard keys are de�ned in the include �le qkeycode.h.5 The key that

produced the event can be retrieved with key() and then compared to the de�ned keycode. The

ASCII value can be found with ascii(). Mind that the symbolic constants for key values are

platform independent and allow the best usage as they are simple to remind.

Keyboard Accelerator Questions A question that often occurs is the implementation of key-

board accelerators. As this handbook primarily targets KDE programming, I will go into that as

well.

Qt has a class QAccel which o�ers connections of key presses with actions. This is done by installing

an event �lter that �lters out keyboard events that match any item inserted into the QAccel object.

The keyboard accelerator itself has to be a combination of the CTRL, SHIFT or ALT keys with a

normal keyboard key. Another value can be ASCII_ACCEL here to use the ASCII keyboard value for

the accelerator.

An accelerator instance is then created by using the widget that it should work for as an event �lter

with the widget as its parent. Insert the keys with insertItem(keycode, ID). Although setting

the ID is not necessary, you should write yourself a logical ID table containing integer value de�nes

that allow using the ID later to �nd the accelerator item and helps keeping an overview over the

used numbers.

Then, the item has to be connected to the object and slot it shall work for on its signal

activated(int ID) using the connectItem() method instead of the usual QObject::connect()

variant.

Popup menus (only within menu-bars) already provide accelerator usage without explicitely creating

a QAccel instance. You only have to use setAccel() there; see QMenuData for more details.

Now, when it comes to KDE, things will be a bit di�erent because KDE o�ers some additional

features. First of all, you have to use the class KAccel instead of QAccel; the usage is almost the

same. The KAccel class (part of kdecore) also o�ers an insertion into menus and con�guration of

accelerator keys, which then can change the menu entry as well.

Further, KDE provides globally con�gured accelerators for standard keys.Those are de�ned in

kaccel.h and only have to be inserted. The class documentation also shows the usage of stan-

dard accelerators and accelerators in general by examples.

Whenever an application o�ers keyboard accelerators, users often feel uncomfortable with the given

values and want to change them themselves. Also, the programmer usually sets keyboard accelerators

for those slots that he thinks are the most needed functions in his program; in fact he should in any

case add accelerators to all of his available menu entries and functions. Further, KDE has two ways

to o�er con�gurating the KAccel object as well as saving the con�guration to the application con�g

�le by providing a ready-to use dialog for con�guration as well as a widget that can be used within

a custom con�guration dialog (most often a tab dialog) to con�gure the keys.

5Qt 2.0 has all keycodes coded into namespaces of the class Qt located in qnamespace.h, enum keys.

4.2. The Event Queue 37

For accelerator con�guration dialogs, see section 5.4 (Keyboard Accelerators).

Drag'n Drop Events

One of the most advanced techniques to allow application communication is drag'n drop. This

o�ers users a cool and fast feature to handle the objects they work with in an application by an

intuitive interface, catching it by a symbolic icon or by marking parts of a document and move the

dragged object away from the current area. The area the dragged object comes from is therefore

called a dragsource. Then the user moves the object away to another area of the application, to

the desktop or into the area of another application. After releasing the mouse button over there,

he expects the data dragged to be dropped into the drop area. Therefore the drop area is also

called a drop site or a drop sink. The window system provides a protocol for this, the XDND

protocol, which causes the emission of the according events. The application windows can support

these events by providing methods to drag object out of the window and methods to accept a drop

event. Qt implements this by a class QDropSite.6 The widget that wants to use drag'n drop has to

inherit this class additionally to the base widget class. Then, the QDropSite o�ers additional event

handlers that convert the QEvent types for drag'n drop to one of the according specialized event

classes. The programmer also has to take care in his re-implementation of the mouse event handlers

by which mouse button holding a drag can occur. Also, Qt currently provides two types of data to

decode, text and images, which should be the most common usage. The following chart contains the

window system events, the event classes handling these events and the event handlers of QDropSite:

� Event_DragEnter

� QDragEnterEvent

� event handler:virtual void dragEnterEvent(QDragEnterEvent*)

� Event_DragMove

� QDragMoveEvent

� event handler:virtual void dragMoveEvent(QDragMoveEvent*)

� Event_DragLeave

� QDragLeaveEvent

� event handler:virtual void dragLeaveEvent(QDragLeaveEvent*)

� Event_Drop

� QDropEvent

� event handler:virtual void dropEvent(QDropEvent*)

The event handlers are all implemented as public and reimplementations should preserve to

Note: the system event Event_DragResponse is automatically handled by the application object

internally through the Qt implementation. It causes a QDragResponseEvent that accepts/rejects

the drag action.

KDE 1.x also contains another implementation of Drag'n Drop functionality. The

description of using KDE 1.x Drag'n Drop has been left out because this will be

6Qt 2.0 makes this a lot easier. QWidget already contains all event handlers that are mentionend here for

the class QDropSite, therefore you only have to remove the inheritance from QDropSite of your drag'n drop

enabled widget and add a call to setAcceptDrops(TRUE) in the widget's constructor.

38 Chapter 4. Event Handling

removed in KDE 2 and only the Qt 2.0 implementation is going to be used with an

extended implementation of the XDND protocol. You should use the Qt drag'n drop

functionality as this can be ported easily to Qt 2.0 and KDE 2 without any major

problems.

4.3 QWidget Virtual Methods

As the event handling generally is implemented by virtual protected methods, especially the event()

method provided by QObject, the QWidget class reimplements this function in order to sort out

the incoming event and convert it to other event types that can be handled by more specialized

classes. Further, it calls the provided additional virtual methods by default implementations. The

programmer has a good advantage by this pre-selection of events as the widgets he creates are all

derived from QWidget and therefore will need one or more special event handler implementation.

The most common events that are processed are mouse events and for text input mostly keyboard

events. The other events mostly deal with focus handling, which moves on the keyboard input focus

from one widget to the next. Programmers need to know about focus handling well, because the

user will expect a certain behavior over his widget when using the TAB key and the SHIFT+TAB

combination to move the input focus forward.

Like explained in the Event Queue chapter, the QApplication takes care of converting window

system events to objects of the QEvent class that are handled by the QObject::event() method.

Therefore all classes that are derived from QObject can process event handling. The class QWidget

already contains an overwritten event() method. It �rst checks for installed event �lters (which are

additionally created event �lters by the programmer to rede�ne the default behavior by processing

the event themselves or only the wanted events). Then it decides by the type() of the event which

kind of event was called and converts it to one of the following event classes derived from QEvent

who are delivered to the according virtual methods:

� QCloseEvent

� virtual void closeEvent (QCloseEvent *)

� QFocusEvent: keyboard input focus event; widget gets the focus and looses it due to preselec-

tion of TAB and SHIFT+TAB by event()

� virtual void focusInEvent (QFocusEvent *)

� virtual void focusOutEvent (QFocusEvent *)

� QMouseEvent: mouse events

� virtual void mousePressEvent (QMouseEvent *)

� virtual void mouseReleaseEvent (QMouseEvent *)

� virtual void mouseDoubleClickEvent (QMouseEvent *)

� virtual void mouseMoveEvent (QMouseEvent *) :with pressed mouse button by default.

Use setMouseTracking(true) to receive all movements

� QMoveEvent: window move event, position change

� virtual void moveEvent (QMoveEvent *)

� QKeyEvent: keyboard events

� virtual void keyPressEvent (QKeyEvent *)

4.4. Event Filters 39

� virtual void keyReleaseEvent (QKeyEvent *)

� QResizeEvent: widget is resized

� virtual void resizeEvent (QResizeEvent *)

� QPaintEvent: widget needs repainting

� virtual void paintEvent (QPaintEvent *)

Additionally, two events are called that don't match any other event type but may be important

sometimes:

virtual void enterEvent (QEvent *): the mouse enters the widget space

virtual void leaveEvent (QEvent *): the mouse leaves the widget space

Reimplementing is always needed if your custom widget wants to process the event and react to

it. The reason why the event gets split up to other QEvent types is that the other event classes

provide methods that are suitable to directly retrieving the needed event-speci�c data. This means,

that e.g. a QMouseEvent can be asked for the button that caused the event or was active at that

particular event as well as the global and relative mouse position where the event occurred. Mouse

events are always used to pop up context menus over widgets which need to know the button (right

mousebutton) and the position, because the user expects the context menu to pop up at the same

position the mouse cursor currently is.

The paint event is often needed if a widget has to draw something. Instead of creating a synthetic

event (a logical event caused by the program internally), call repaint() here.

4.4 Event Filters

In addition to the normal processing of the event queue that is provided by the application object,

the programmer can in�uence the default behavior by installing event �lters. As explained above,

all QObject inherited classes use event processing through the event() method. Instead of writing

a completely new event handling in situations where you only need some events processed by your

own methods, you should write an event �lter. The event �lter gets installed where you like to and

�lters out the event directly when QObject::event() is called internally.

To write an event �lter, your class has to overwrite the QObject::eventFilter() method and call

installEventFilter() as well as removeEventFilter(). The declaration of these methods in

QObject are:

bool QObject::eventFilter (QObject *, QEvent *) [virtual]

void QObject::installEventFilter (const QObject * obj)

void QObject::removeEventFilter (const QObject * obj)

The implementation of an event �lter can be done in several ways. One that is possible is to create a

new class for special event �lters and create an instance of this class in the program. Then you can

install the event �lter on every instance you like to to achieve the same event �lter on all instances

independent of their class as well as rede�ning event processing of existing classes without inheriting

them.

An example would be:

40 Chapter 4. Event Handling

// Classdeclaration

class KMyAppFilter: public QObject

{

protected:

virtual bool eventFilter(QObject* object, QEvent* event);

};

// Filterimplementation

bool KMyAppFilter::eventFilter(QObject* object, QEvent* event){

if(event->type() == [the eventtype you like to filter])

{

[your filter implementation]

return true; // the event has been caught and processed

}

else

{

return false; // return false to continue processing the event with QObject::event()

}

}

// installing the filter

QObject* myfilter= new KMyAppFilter();

QPushButton* mybutton= new QPushButton();

mybutton->installEventFilter(myfilter);

Another solution would be to reimplement the eventFilter() method in your inherited class as

long as the base class is QObject, e.g. if your view area of your application wants to process a certain

event that is not covered by the virtual methods QWidget provides. Then you have to install the

event �lter at the place you like to; normally this would be in the constructor of your class. With

removeEventFilter() you can stop the event �lter from processing the events any time.

Note: KApplication already has a global application event filter installed to

filter out CTRL+ALT+F12 for KDebug

4.5 Synthetic Events

Before describing what synthetic events are and how they can be used by the programmer, I want

to review the last sections in brief.

We saw that the application object receives the window system events, processes them and creates

event objects from the classes the library provides. The converted event can then be handled by

event handlers that are specialized on the event class to retrieve further information about the event.

Finally, we can in�uence the event handling itself by installing event �lters and overwriting provided

event handlers.

This does the "normal" job of an application to execute actions according to user invoked events.

On the other side, this system o�ers another possibility: the fact that the events are converted to

class instances can be reversed - a so-called synthetic event can be created which fakes an original

4.5. Synthetic Events 41

window system event. The next advantage is that these events are independent of the underlying

window system.

A good possibility where this feature could be used would be e.g. for learning programs. Those are

almost non-existent for Unix but could o�er a market to teach beginners how to handle programs

similar to commercial products already available on other platforms. Also this could be a part of a

help-system which an application can provide.

An example description how to implement this:

Provide a help window with a button that invokes a step e.g. "Show me". On pressing the button,

the cursor will move to the desired location, e.g. to a pushbutton on the screen. The implementation

then has to �nd out the exact position of the button and calculate the center coordinates the mouse

pointer has to move to. Then the mouse pointer could move there by construction of a QCursor and

using setPos(). The start position can be found out in the mouse event that called the function.

Then, the cursor has to move visually by using setPos() in a loop where a QTimer could be used

to run between positions to slow down the move so that the user can follow the mouse pointer.

4.5.1 Creating Events

Now, to come to the actual implementation of a synthetic event, you have to know the event you

want to create. Therefore, you need the constructor parameters for the event classes. The following

list contains the constructors including the event-classes hierarchy:

QEvent(int type)

type is one of the events declared in qevent.h7

QCloseEvent()

takes no parameter. Mind that the accept �ag is set to false

QFocusEvent(int type)

type is either Event_FocusIn or Event_FocusOut.

QKeyEvent(int type, int key, int ascii, int state)

takes Event_KeyPress and Event_KeyRelease as type. key is one of the keys de�ned in

qkeycode.h. state is ShiftButton, ControlButton, AltButton OR'ed.

QMouseEvent (int type, const QPoint & pos, int button, int state)

The type parameter must be Event_MouseButtonPress, Event_MouseButtonRelease,

Event_MouseButtonDblClick or Event_MouseMove. The button is LeftButton,

RightButton, MidButton, NoButton. state is ShiftButton, ControlButton

and AltButton OR'ed for event Event_MouseButtonRelease, for events

Event_MouseButtonPress, Event_MouseButtonDblClick state includes LeftButton,

RightButton, MidButton.

QMoveEvent(const QPoint & pos, const QPoint & oldPos)

pos is the new position the widget shall move to, oldPos the old position. Retrieve the old

position before creating the event with QWidget::pos().

QPaintEvent(const QRect & paintRect)

raise a paint event to repaint the area paintRect

7Qt 2.0 uses all events from an enum instead of the #de�nes. See QEvent. The types are almost the same

except they leave out the Event_ pre�x.

42 Chapter 4. Event Handling

QResizeEvent(const QSize & size, const QSize & oldSize)

resizes the widget from oldSize to size. Retrieve the old size before creating the event with

QWidget::size().

An example on how to create an event would be:

QMouseEvent press_quit(Event_MouseButtonPress,

quit_button->pos(), LeftButton, LeftButton);

This creates a mousePressEvent() for the widget quit_button with the left button.

4.5.2 Sending Events

After creation, the event has to be sent to the application instance to call its execution. Thereby,

two ways can be used: one that directly processes the event and one that will place the event in the

event queue at the last position:

Direct execution:

QApplication::sendEvent(quit_button, &press_quit);

The sendEvent() waits for the result and returns true or false depending if the event has been

accepted or not.

Placement into event queue:

QApplication::postEvent(quit_button, &press_quit);

The event for postEvent() must be allocated on the heap as it gets deleted

immediately after the posing.

To turn a posted event into a send event, use sendPostedEvents(QObject * receiver, int

event_type). This requires the options given at the constructor. As you may see, some constructors

don't need an event type, therefore the according event type can be found in 4.2.2 (Event Types)

but is also simple to guess as they are only responsible for one event type. Example: QCloseEvent

only takes Event_Close, QPaintEvent only takes Event_Paint.

4.6 Event Precedence

In relation to in�uence the event behavior of the application, the programmer often faces situations

where long operations block the Event_Paint and lead to a scrambled look of the application

windows. These situations can be solved either by using a progressdialog that indicates the operation

progress or by event precedence. This means that the current event gets stopped and the event

queue is processed. The class QApplication o�ers a solution for this by two methods which are

identical except the parameters. One is processEvents(), which processes pending events for 3

seconds or until there are no more events in the event queue. The other, more likely used method

is processEvents(int maxtime), where maxtime is the time in milliseconds during which pending

events can be processed.

On one hand this means stopping the current long operation which then would take even longer to

get �nished if pending events are in the queue, but the user cares more about the visible state of an

4.7. Summary 43

application than if an operation which takes some time will take a second longer (or even parts of a

second).

KDE o�ers an additional library for I/O operations in the upcoming KDE 2, which is under de-

velopment. This will allow running the long I/O operations outside the application's process as

multi-threading is not supported by Qt directly.

4.7 Summary

After this long chapter about signals, slots and events, I want to append a short summary so you

can recapitulate the collected knowledge about application behavior.

� An application can communicate internally by signals and slots

� Signals are sent out without caring about who will catch it

� Slots are normal methods that can connect to signals and react as well as they can be called

where allowed by their access attribute

� The user communicates with the application through the window system

� The window system reports the events to the application

� The application converts window system events to QEvents

� The events are proceeded through an eventual application global event �lter

� The event that passes the �lter gets forwarded to the according window e.g. the current modal

window

� The widget receives the event and can have an event �lter that comes �rst when the reimple-

mented QObject::event() is called.

� If the event passes the widget event �lter, event() proceeds to convert it to the according

Q***Event class

� The event �lters for these event types are called to react on the event

Further, we saw that the programmer can in�uence the behavior by:

� reimplementing any stage of virtual methods �ltering events

� creating synthetic events

� sending synthetic events directly or into the event queue

� the event queue can be given precedence that stop long processes to allow execution of waiting

events to be processed

Finally, I hope this has given at least experienced C++ programmers a good insight and explanation

on how Qt and KDE work. I have collected the information by working myself into the class structure

and I hope that this collection makes it a lot easier for other programmers to get started especially

in the advanced chapters of application design and programming. The information value is therefore

not granted to be exact; if you may �nd any misconcepted or incorrect information, please contact

me via email.

44 Chapter 4. Event Handling

Chapter 5

User Control Elements

5.1 The Menubar

The menu bar is a central component of the main window. It allows the user to execute operations

that the application (or to be precise: the mainview) o�ers in regards of manipulating the main view's

contents. In opposition to Qt's QMenuBar, KDE o�ers the use of the class KMenuBar. Additionally,

the menu bar is already constructed for the programmer when using KTMainWindow with the �rst

call of menuBar().

The menu bar itself, independent which class is going to be used, contains entries that the user can

select with the mouse or by using keyboard accelerators with the ALT-key and the underlined char-

acter. The menus that have to pop up on a selection have to be created with the class QPopupMenu,

which itself only provides the popups, entries have to be inserted using the methods provided by

QMenuData.

Mind that menu-bars should always contain all functions a program has to o�er except those that

can be accessed by additional dialogs. The menu bar also makes use of the KApplication help menu

already provided. Inserting the menu is just easy with

menuBar()->insertItem(i18n("Help"), kapp->getHelpMenu());

Example construction of a menu bar with using KTMainWindow and setting the menu bar explicitely:

my_menubar=new KMenuBar(this,"my_menubar");

file_menu = new QPopupMenu;

file_menu->insertItem(Icon("filenew.xpm"),i18n("&New..."),

this,SLOT(slotFileNew()),0,ID_FILE_NEW);

file_menu->insertItem(Icon("open.xpm"),i18n("&Open..."),

this, SLOT(slotFileOpen()),0 ,ID_FILE_OPEN);

file_menu->insertItem(i18n("&Close"),

this, SLOT(slotFileClose()),0,ID_FILE_CLOSE);

file_menu->insertSeparator();

file_menu->insertItem(Icon("save.xpm"),i18n("&Save"),

this, SLOT(slotFileSave()),0 ,ID_FILE_SAVE);

file_menu->insertItem(i18n("Save &As..."),

this, SLOT(slotFileSaveAs()),0 ,ID_FILE_SAVE_AS);

45

46 Chapter 5. User Control Elements

file_menu->insertItem(Icon("save_all.xpm"),i18n("Save All"),

this, SLOT(slotFileSaveAll()),0,ID_FILE_SAVE_ALL);

file_menu->insertSeparator();

file_menu->insertItem(Icon("fileprint.xpm"),i18n("&Print..."),

this, SLOT(slotFilePrint()),0 ,ID_FILE_PRINT);

file_menu->insertSeparator();

file_menu->insertItem(i18n("E&xit"),

this, SLOT(slotFileQuit()),0 ,ID_FILE_QUIT);

my_menubar->insertItem(i18n("&File"), file_menu);

setMenu(my_menubar);

The example creates a menu bar and a popup menu �rst. Then the popup menu is �lled with entries.

The used method of QMenuData here allows an implicit connection to the method to call when the

popup menu emits SIGNAL(activated(int)). The zero parameters after the slot declaration is left

out as the example assumes the program will use KAccel to set the according keyboard accelerators

with changeMenuAccel(). Further you can see that the integer value ID is inserted like the method

name with all uppercase letters and underscores to separate the words. The menu id's themselves

are set with #de�ne in a separate �le to keep track of the used numbers. You would think that you

don't need the menu id if the activated() signal is already connected - in fact the id can be used

to forward the signal highlighted(int) to a method that compares the id by a switch statement

and sets a statusbar help message for the menu entry. You could as well do that for the signal

activated(int) as well to call the according method by a switch statement. Then you have to add

a connect() for each popup menu you want to use.

You can as well insert a separator into the menu bar with my_menubar->insertSeparator(). This

will align all entries inserted after the separator to the right in Motif style, in windows style this has

no e�ect.

The creation of a separate menu bar allows the creation of several menubars which can be set as

the actual menu with setMenu(). This is how we did it in KDevelop to change the menu bar when

switching to the dialogeditor and back to the project editor.

Finally, the ampersand in the menu entry sets the following character as the keyboard accelerator

when the user presses ALT+ the character.

5.2 The Toolbar

Toolbars are another component that enhance user interaction with symbols representing most

needed functions that an application provides. The KDE libraries are again o�ering another class to

use with KDE applications, KToolBar. As KTMainWindow already handles the geometry management

for all user interface elements, it also provides methods to add toolbars. Now, the good thing is that

you can use as many toolbars as your application may require and the creation is done easily with

toolBar(). This method also takes a parameter which is the according toolbarnumber. The �rst

toolbar has by default number 0, so the parameter can be left out there; the next has to be called

with toolBar(1) etc. You can also make this more variable with a de�ne for your toolbar and use

a descriptive name; this avoids changing the toolbarnumber everywhere when you decide to set a

toolbar to another position.

Now, when using a toolbar, you have many choices. The class KToolBar provides a whole set of

methods to insert user elements such as buttons, which is probably the most recently used method,

5.2. The Toolbar 47

delayed popups, lineedits, combos and generally a widget of your choice. Further you need to know

that toolbars are created with using the full width of the parent window - but that is con�gurable.

All following toolbars are then appended to the end of the last toolbar. Also you can set the toolbar

to show at a certain position. This is often used by applications that o�er painting facilities. The

following example shows you how to use a toolbar with KTMainWindow:

1 // first call of toolBar() - creates the toolbar 0.

2 toolBar()->insertButton(Icon("new.xpm"), ID_FILE_NEW, true, i18n("New File"));

3 QPopupMenu* select_menu = new QPopupMenu();

4 toolBar()->insertButton(Icon("select.xpm"), ID_OPTIONS_SELECT, select_menu, true, i18n("Select O

5 connect(toolBar(), SIGNAL(clicked(int)), SLOT(slotSelected(int)));

6 Foo::slotSelected(int id){

7 switch (id){

8 case ID_FILE_NEW:

9 slotFileNew();

10 break;

11 }

12 }

The above explains some specialities for toolbars - we will discuss these now in detail. First of

all, you see that we used the toolBar() method. This returns a pointer to the according toolbar

and creates one if the toolbar doesn't exist. We use the insertButton() method to add a toolbar

button representing the standard "New File" action. Now, when looking at the class-documentation

of KToolBar, you see that there is a QPixmap required as the �rst parameter. Here, we only set

the name of the pixmap embraced by the Icon() method. This is a macro which makes inserting

icons very easy, provided by kapp.h. In fact, it makes the application's KIconLoader instance load

the icon with the �lename new.xpm for you using a list of standard directories within the KDE File

System. Additionally, the icon new.xpm is already provided - you don't have to paint it yourself.

The KDE libraries come with a whole set of toolbar icons that are ready to use for insertion. This is

also the reason why, when testing an application, sometimes a button looks a bit scrambled although

you have painted the pixmap - it just can't be found if it isn't installed at the correct location within

the KDE FSSTD; whereas standard icons are already present.

The exact execution of the Icon() macro is therefore:

KApplication::getKApplication()->getIconLoader()->loadIcon("new.xpm")

which implicitely uses the kapp macro to get the application object. You see that using this macro

saves lots of code but o�ers a very nice way to load an icon for a toolbar button.

The second parameter, the ID of the button, is a macro that our application speci�es itself to name

certain actions logically by a #de�ne. Obviously, you could think that using another method of

KToolBar would do the same when directly specifying the receiver object and the slot to call, but

this way you save a lot of code. The �rst place is that you only have to write one connect() (line

5) to connect all toolbar elements. The other is, that by this way you can use the same ID for your

toolbar items as well as for your menubar items. The following code completes this example with

the according menubar action:

48 Chapter 5. User Control Elements

QPopupMenu* file_menu = new QPopupMenu();

file_menu->insertItem(Icon("filenew.xpm"),i18n("&New..."),0,ID_FILE_NEW);

connect(file_menu, SIGNAL(activated(int)), SLOT(slotSelected(int)));

menuBar()->insertItem(file_menu, i18n("&File"));

By this, the file_menu is already connected to the slotSelected()method and the corresponding

entry "New File" executes the same action. Just collect all your ID's as #de�nes into one �le and

you can keep a good overview over the used numbers (which naturally have to be integer values).

The next example in line 3 and 4 add a button that opens a popup menu when the user presses the

button. This can be used if the button itself does not perform any action but represents a better

access method for e.g. a list of entries. Just create your popup menu and insert it with the according

ID and pointer as a button.

Besides the example you can do a lot of other things like making a button a toggle button. This

is useful if the button executes an on/o� action (which in the corresponding menubar popup is

represented by a checkmark). See the complete reference of KToolBar for more information.

5.3 The Statusbar

KDE also provides the pendant to Qt's QStatusBar, KStatusBar. The statusbar can contain labels

as well as widgets, such as progress bars (those have to have the statusbar as parent). The statusbar

is used to display information about the current state of the application and gives hints about the

usage of commands e.g. over toolbars and menubars.

5.4 Keyboard Accelerators

Keyboard accelerators are a good enhancement for any kind of application. GUI application de-

signers often think that the user can access all methods with the provided graphical interface, but

advanced users usually want to work as fast as possible and using the mouse to call actions doesn't

make an application very attractive. The more a user will make use of your application, the more he

will miss keyboard accelerators. Fortunately, the Qt and KDE libraries provide a whole set of func-

tions and classes to support keyboard accelerators in conjunction with GUI elements. This section

therefore collects all these classes and shows the possible implememtation for various situations.

5.4.1 Menu Accelerators

The �rst thing where keyboard accelerators are used without much e�ort from the programmer's

side is over menuentries. The menubar, as mentioned above, consists of a set of QPopupMenus, which

are inserted in the order they will appear later from left to right. The popup menu itself can be

called by the user by a keyboard shortcut if he presses the ALT-key together with the underlined

character of the desired menu of the menubar. The menuentry itself has to de�ne the underlined

character at the time you insert the popup into the menubar.

Example:

menuBar()->insertItem(i18n("&File"), file_menu);

5.5. Other Widgets 49

Mind the ampersand in front of "File". This makes the "F" the key with which the user can pop up

the popup menu file_menu when pressed together with the ALT-key. The same goes with entries

within the popups, where the user, after a popup is active, only has to press the key to invoke the

desired action. Selfexplaining, you should watch the usage of underlined characters very closely,

because a key that is used twice either in the menubar or within the same popup makes the last

inserted item the one that is activated and this makes the previously de�ned shortcuts useless.

Using the menu-accelerators is therefore very easy for the programmer - just select the key you want

to be used and set an ampersand in front of it while inserting the entry. As the KDE applications

get internationalized, translators take over the responsibility to place the keys in their translated

version later. They should watch the same principles for placing the keys and shouldn't only translate

one-to-one but test the application later if everything is accessible again by their keyboard shortcuts.

5.4.2 Tabulator and Button Accelerators

The keyboard accelerators with the ALT-key don't only work with the menus - they do the same

over dialogs, tab-pages and on buttons. Therefore it should be used whereever possible, the principle

is the same: on a dialog, you have to watch the used keys, on e.g. a QTabDialog you have to watch

the keys for each page plus the used keys to activate the pages in the addTab() methods.

Within the user interface, buttons have an additional option - as mentionend, the keyboard input

focus is forwarded in user interfaces with the TAB and SHIFT-TAB keys. When a button receives

the focus, it gets a slight frame like other active elements, the user has to press the SPACE-key to

execute the action connected to the button. Now, this can be changed by using setDefault(true)

on one button or by setting setAutoDefault(true) on several buttons on the dialog. The di�erence

is that if the User presses the ENTER-key, the default button will be pressed. If several buttons

shall provide this behavoir, setAutoDefault() has to be used on those. If one of them receives the

keyboard input focus, it will automatically become the default button.

KKeyDialog: keyboard accelerator con�guration dialog KKeyChooser KAccel

5.5 Other Widgets

Control elements are used within visible areas of the application and can be combined together to

create a dialog or view. Beyond the control elements that the Qt library provides, KDE o�ers:

KButton: active raise-lower button KButtonBox: manages buttons KColorButton: button dis-

playing a color setting KIconLoaderButton: button displaying a selected Icon KCombo: similar to

QComboBox KDatePicker: Date selection widget KIntegerLine: lineedit that only accepts integer

values KLedLamp: LED lamp KLined: line edit KPanner: panner devider KNewPanner: panner

devider managing two widgets KPopupMenu: popup menu with title KRestrictedLine: lineedit that

only accepts certain input KSelector: value selector KSeparator: standard separator KSlider: slider

widget KTabCtl: tabulator widget

50 Chapter 5. User Control Elements

Chapter 6

KDE Dialogs

A very useful thing of the KDE libraries is that they provide already constructed dialogs for various

purposes that are common to a lot of desktop applications. This has two reasons: a) the user feels

comfortable using these dialogs if he knows them already from an application and b) lessens the

programmer's work a lot. In section 5.4 (Keyboard Accelerators), you already got to know one of

these dialogs that KDE provides to con�gure keybindings. For the other dialogs that are mostly part

of the kdeui library, the usage is mostly as simple as for the KKeyDialog and enhances applications

within seconds of coding e�orts. You should always �rst look for an already existing solution for

general value requests from the user before starting to implement a new dialog from scratch. Further,

you don't have to care about internationalization as these dialogs are part of the KDE libraries and

are already translated.

6.1 KMsgBox

The KMsgBox class provides a whole set of message boxes that match everyday life usage in appli-

cations. Using KMsgBox has a lot of advantages: you can use one of the static methods to retrieve

results on standard questions and you can still in�uence the behavior by setting text, window text,

symbol and button text.

� message(): providing a single message box with an OK button to inform the user

� yesNo(): provides a yes/no question box.

� yesNoCancel(): provides a yes/no/cancel box with three buttons. Used e.g. to quit an ap-

plication with the question: Document has been modi�ed. Would you like to save changes ?.

Then the yes-button would mean saving changes and exiting the application, no would mean

exit without saving and cancel would stop any exiting and just returns.

If this doesn't match your actual need, you could as well create a new KMsgBox instance that can

have up to four buttons. This can be used by applications that have multiple open �les but don't

want the user to ask if he would like to save changes for each �le separately; therefore these will

need a button "Save All" or something. Then you could program the dialog towards your needs like

the static methods and will receive the correct result.

As usual with dialogs, the return value is that what a programmer usually has to process by retrieving

it into a variable and then compare with if() for the actions to execute.

51

52 Chapter 6. KDE Dialogs

6.2 KQuickHelp

The KQuickHelp class provides a good way to add quick-help dialogs to widgets. The user can access

the quick-help by a context-menu entry "Quick-Help" and is therefore easy to use and gives enough

information where a Help-button for the manuals would be too much and a QToolTip would be too

less. The reason I include KQuickHelp into the provided dialogs is that the class-documentation

itself contains example usage, but doesn't cover all formatting possibilities, therefore these are listed

in detail here.

6.2.1 Usage

A quick-help window therefore can always be added to a widget by using the static method add(),

also one help message can be used for more than one widget. The example shows this by adding one

message that applies to two widgets that are providing a funcitionality that depends on each other:

#include <kquickhelp.h>

#include <kapp.h>

#include "mydialog.h"

MyDialog::MyDialog(QWidget* parent, const char* name): QDialog(parent, name)

{

file_lineedit= new QLineEdit(this, "file_lineedit");

file_select_button= new QPushButton(this, "file_select_button");

KQuickHelp::add(file_lineedit,

KQuickHelp::add(file_select_button, i18n("Select the filename to process.\n"

"You can use the lineedit or the\n"

"button to select the filename.")));

}

6.2.2 Text Formatting

The text inside your quick-help window can also be formatted to �t various needs, even hyperlinks.

Using the KDE-FSSTD, you can also access your online-documentation to provide a link for further

information by just using your html �lename. This is considered a nice way to give the user the

best information in some cases where the purpose of certain functions is too di�cult to explain in a

quick-help window.

The followindg list contains the valid tags for text formatting:

Font Attributes Tag Short-form Tag

bold font <bold></bold>

italic font <italic></italic> <i></i>

underlines <underline></underline> <u></u>

Font Size Tag Short-form Tag

increase <FONTSIZE +> <+>

decrease <FONTSIZE -> <->

6.3. File Dialogs 53

Font Selection Tag Short-form Tag

default font <DEFAULT>

fixed font <FIXED>

Indentation Tag Short-form Tag

right indent <INDENT +> <i+>

left indent <INDENT -> <i->

Color

RGB color <COLOR #>

red text <COLOR RED> ><red>

green text <COLOR GREEN> <green>

blue text <COLOR BLUE> <blue>

white text <COLOR WHITE> <white>

yellow text <COLOR YELLOW> <yellow>

black text <COLOR BLACK> <black>

brown text <COLOR BROWN> <brown>

magenta text <COLOR MAGENTA> <magenta>

cyan text <COLOR CYAN> <cyan>

Newline

Hyperlinks <link linkname></link>

Thereby, valid linknames are:

� http://yourlink

� info://yourlink

� ftp://yourlink

� �le://yourlink

� mailto:your_address@your_domain

These links will be opened using the kfm (KDE File Manager). All other linknames assume that

you want to access your application's online-help documentation and therefore use the linkname as

the �le you want to access and tries to open it with the KDEHelp program.

6.3 File Dialogs

As the kfile library provides several dialogs for retrieving �lenames as well as directories, those

have to be separated towards which class and method to use for which purpose.

Generally, the kfile library o�ers:

54 Chapter 6. KDE Dialogs

� a KFileDialog class, which is a specialized KFileBaseDialog and provides the most needed

static methods to retrieve �lenames.

� the KFileDialog class itself, which can be subclassed but also be used for retrieving several

�lenames and directories.

� the KFilePreviewDialog class, which o�ers �le-dialogs that can display selected �les by their

contents if the developer provides a preview module that is able to show a preview of the

�lecontents

For general �le/directory services, the classes KFileInfo and KDir can be used.

The following sections will discuss the usage and handling of the according �le-dialogs in applications.

6.3.1 KFileDialog

The KFileDialog class provides four static methods to ask the user for a �lename. As the �ledialog

itself can handle the creation of new folders, storing bookmarks etc, the user will be thankful if you

use this dialog to ask for a �lename to open and a �lename to save �les to. The KFileDialog class

itself is a specialized class that is based on KFileBaseDialog, so if the given methods don't �t your

needs you can always inherit from KFileBaseDialog to customize the settings.

The following examples show the usage for each purpose:

// request a filename to open

QString open_filename;

open_filename=KFileDialog::getOpenFileName()

if(!open_filename.isEmpty())

{

// read the file

}

This asks the user for a �lename to open. The KFileDialog shows and retrieves the information.

If the user cancels the �ledialog, the return string will be null, therefore you have to test �rst if

QString::isEmpty() doesn't return true before opening the �le actually.

The same goes with the static methods getSaveFileName(), getOpenFileURL(),

getSaveFileURL(), whereby each function takes parameters to set the starting directory,

mime-types and, as usual, the QWidget parent,name parameters.

The parallel methods for getSaveFile and getOpenFile behave identically for retrieving remote

and/or local �les with the URL dialogs.

6.3.2 KFileBaseDialog

The class KFileBaseDialog provides the basic interfaces for building �ledialogs; therefore �ledialogs

can be customized in wide ranges towards your needs and is the most �exible way to construct

�ledialogs. Besides that, the class provides additional functionality for other standard cases like

retrieving a directory name. Further functionality can be achieved by inheritance.

Retrieving a directory name

The class provides retrieving a directory name by the static method getDirectory(). The following

example shows the usage:

6.4. KColorDialog 55

QString the_directory;

the_directory=KFileBaseDialog::getDirectory();

if(!the_directory.isEmpty())

{

// do something

}

1

6.3.3 KFilePreviewDialog

The class KFilePreviewDialog provides another specialized, but more seldomly used �ledialog. Its

best feature is that it provides an area where the programmer can use a preview widget for his �le

format to open. The best usage is made within graphic programs that operate on pictures.

6.4 KColorDialog

The KColorDialog provides an easy-to use interface to receive color values from the user. Color

values are always requested, if the application is a drawing or painting program to select the current

brush as well as for e.g. KDevelop's dialogeditor to set color values for widgets.

The usage itself is often combined with a KColorButton, which is a speci�c QPushButton imple-

mented in kdeui that displays a color and calls the KColorDialog already when the user presses

the button. Anyway, you can call the color dialog from your menu bar or toolbar as well to retrieve

a color value from the user.

Using the colordialog is very easy inside applications. The class provides a static method which can

be called to retrieve the color value:

#include <kcolordlg.h>

QColor myColor;

int result = KColorDialog::getColor(myColor);

This creates an instance of QColor to store a color value and by calling the static method getColor()

the color gets the selected value. The returned integer value will probably be of no interest - its the

result code of QDialog that speci�es the dialog has been exited via the OK or Cancel button.

6.5 KFontDialog

The KFontDialog will retrieve you a value for a font currently avaliable on the system. Therefore

using the fontdialog will mostly only make sense where you will need a font; the most recent usage

is made by text editors but could also be used to get a formatting for a text to draw inside a widget

as well as into a picture.

1Of course, you can also use KFileDialog instead of KFileBaseDialog if you like your API to be more

consistent.

56 Chapter 6. KDE Dialogs

To retrieve the font value, you probably will use the static methods of KFontDialog. The example

shows the usage:

QFont myFont;

int res = KFontDialog::getFont(myFont);

This is it already - you only have to create a QFont instance to contain the font value. Then call the

font dialog with the font and after the dialog was executed, your font will have the selected value.

Then you have the methods of QFont to determine which type of font the user selected etc. to use

the font within the application.

6.6 KIconLoaderDialog

For applications requiring an icon selection, KDE provides the KIconLoaderDialog. The main

purpose is to select an icon on the system to draw it on a button for example. Usage is made by

the KDE window manager to select the icons for mounted/unmounted states of device links. Then

the values for the link are displayed on the according button to display the current selection; the

�lenames get stored in the link �le and can be drawn on the desktop as a symbol by loading the

icons dependent on the state of the connected device. There, an additional widget of the kdeui

libary is used, the KIconLoaderButton. Like the KColorButton, this class will call the icon loader

dialog when the user presses the button and will display the selected icon on the button.

As the KIconLoaderDialog class does not provide any static methods, you have to create an instance

�rst and then call QDialog's exec() method to display the dialog. Another possibility would be to

call selectIcon() to execute the dialog but retrieve a QPixmap value instead. The selected Icon

will be in your KIconLoader instance (depending on the used constructor which one - the standard

constructor uses the application's KIconLoader), therefore the value can be processed with the

according methods of KIconLoader.

6.7 KWizard

The KWizard class already contains a prede�ned dialog to construct wizards that lead the user

through an input process. Thereby, the wizard dialog provides the necessary buttons and draws the

according page numbers already, so that you only have to construct your widgets you want to use

as the single pages for the dialog and insert them in the order you want the user to proceed while

calling the wizard.

6.8 KSpellDlg

(kspell) spell checking dialog for use with Ispell

6.9 DatePickerDialog

(kab) date selection dialog

6.10. Qt Dialogs 57

6.10 Qt Dialogs

6.10.1 QFileDialog

6.10.2 QMessageBox

6.10.3 QPrintDialog

6.10.4 QProgressDialog

58 Chapter 6. KDE Dialogs

Chapter 7

Provided Views

7.1 The KEdit View

7.1.1 KEdGotoLine: Go-to-Line dialog for editors

7.1.2 KEdReplace: Search and replace dialog for editors

7.1.3 KEdSrch: search dialog for editors

7.2 The KHTML View

59

60 Chapter 7. Provided Views

Chapter 8

Process Handling

The KDE UI library provides the classes KProcess and KShellProcess to run external processes

that are invoked within the application that needs to run another application. This has generally

two advantages:

� you don't have to reinvent the wheel when commandline programs already exist

� your application's event queue is not blocked by long operations

A lot of applications already make wide use of these classes as they are very �exible and provide the

necessary interface not only to start another application but to control its output and termination.

As mentioned, a lot of Unix applications are already available but only work on commandline. The

commandline arguments are hard to remember and most users won't ever touch them if they don't

need them really. For occasional usage, the interface is too complex and therefore not very user-

friendly. As KDE applications target a desktop system where even unexperienced users can feel

themselves at home, this is the best way to write so-called front-ends for terminal applications.

Another possible use even for KDE programmers would be to write their target application as a

commandline program and provide a user-friendly GUI interface.

The following sections will describe the KProcess class �rst, then the usage of KShellProcess, as

this is a subclass of KProcess, therefore di�ers only in its usage.

8.1 KProcess

The KProcess class is based on QObject, therefore able to communicate by signals and slots. It

can be used to start any executable binary as a child process on the local system and control it

by communication and run mode. To use KProcess, include kprocess.h and create an instance of

KProcess. If the instance has been created and used already, you have to call clearArguments()

to ensure the arguments are empty before the next usage. The actual usage is to transmit the

complete commandline argument to the process instance using the operator << as strings. Then

the actual process is called with start(). This function has to be called with the run mode and

communication.

8.1.1 Run mode

The run mode of the external application can be set when calling start() as the �rst argument.

The run mode can be one of DontCare, NotifyOnExit, Block. Now, what does this mean to the

61

62 Chapter 8. Process Handling

application that is called and to the application that calls the process ?

� DontCare: The child process is called and started with the given commandline arguments.

Easy to guess, DontCare means that the caller is not interested if the child process has exited

or not. The two applications run concurrently, but the invoking process (usually the GUI

application) doesn't get noti�ed and runs like without starting any process.

� NotifyOnExit: both processes run concurrently like in DontCare run mode. The di�erence

is that the process controller can emit the signal processExited(), which can be caught to

determine the child process has �nished. The noti�cation can be used to reset any statusbar

message informing the user that the process is running, this should be used as a guideline to

inform the user about the current state of the application. Mind that the invoking application

is responsible for the child process as it is unlikely that non-experienced users will control and

other process that they see.

� Block: the child process blocks the caller's event handling and program execution. This is

not recommended to use within GUI applications as even the call processEvents() won't be

executed; therefore the event handling cannot be called to execute even by event precedence.

The start() method also returns if the start has been successful or not. Therefore you should

always call the method with an if() statement to display a message box if starting the process

returns false. Reasons for start() to return false could be:

� the commandline argument list is empty (which is your implementations's fault)

� the process which is to be called is already running

� starting the child process failed

To inform the user why the process cannot be executed, you have to investigate these three possibil-

ities. The �rst possibility, an empty commandline, depends on your GUI that provides the methods

setting the commandline options. Normally, you would retrieve them by a dialog where the user

sets the options on how to start the application. The GUI for these dialogs normally uses radio

buttons to let the user choose one of several options (or more if the process allows this), a lineedit

for �lenames (with an additional �le-selection button to call a KFileDialog::getOpenFileName()),

eventually a lineedit for output locations, also with a KFileDialog::getSaveFileName().

The second possibility mostly occurs in situations where the application has been started twice or

the user has opened another instance of its main window where or by which he caused another

process call. In this case, you could use getPid() to determine the current process ID which can be

used in a message box to show that the process is already running.

Finally, failing a call of a child process often means that the program is not available on the system.

There, you should inform the user that he has to install the program to ensure functionality. Another

option would be to test the PATH environment variable of the user for the directories he uses to call

applications. Then you could test with QFile::exists(), if the binary is there even before trying

to start it.

8.1.2 Communication

� NoCommunication

� Stdin

8.1. KProcess 63

� Stdout

� Stderr

� AllOutput

� All

8.1.3 Example Usage

64 Chapter 8. Process Handling

Chapter 9

Copyright

KDevelop Copyright 1998,1999 The KDevelop Team.

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

65

