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Abstract

Mathematical Programming is Turing complete, and can be used as a general-purpose declarative
language. We present a new constructive proof of this fact, and showcase its usefulness by discussing
an application to finding the hardest input of any given program running on a Minsky Register
Machine. We also discuss an application of Mathematical Programming to software verification
obtained by relaxing one of the properties of Turing complete languages.

1 Introduction

Since the introduction of Linear Programming (LP), the Operations Research community has been using
LP and its various generalizations — e.g. Mixed-Integer Linear Programming (MILP), Nonlinear Pro-
gramming (NLP), Mixed-Integer Nonlinear Programming (MINLP) and others — as a language to define
(and solve) all kinds of optimization problems. Some definitions of Mathematical Programming (MP) as
a formal language can be found in the literature, e.g. the AMPL grammar [11, Appendix A], the GNU
MathProg language [24] (whose grammar is written in open-source pure C), and the GAMS language [4],
to name but a few. As with any programming language, it is natural to inquire about the limits of its
expressive power: can any algorithm be cast in the MP language?

It is well known that the answer is yes (see Sect. 2 for details). We give a new, constructive proof of
this fact by means of a reduction from a certain universal computer (i.e. a computer which can simulate
any other computer) to a MINLP. The interesting feature of our proof is that it provides a practical
tool for answering an interesting question about programs, e.g., what is the input of given size yielding
the longest running time of a given code? Moreover, we look at another application of MP to software
verification (already briefly discussed in [23, 14]), which relaxes one of the “pillars” of universal languages,
i.e. the juxtaposition of commands [3], to compute program invariants.

The rest of this paper is organized as follows. Preliminary notions are defined and discussed in Sect. 2.
We prove in Sect. 3 that MP is Turing complete, show the application to finding the hardest input for
a given program in Sect. 4, and finally, in Sect. 5, we discuss another application of MP the problem of
proving the absence of certain types of bugs from computer programs.

2 Preliminary notions

A Universal Turing Machine (UTM) is a Turing Machine (TM) which can simulate any other TM on
arbitrary input [29, 26]. Marvin Minsky described a UTM, close to today’s computers, now called
Minsky’s register machine [19, Ch. 4]. This consists in a countably infinite number of registers, each of
which can contain a natural number, a finite set of states, and two types of instructions: (1) add 1 to a
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given register and change to a given state; (2) test whether a given register is 0, if so change to a given
state, else subtract one and change to a given state. Minsky’s Register Machine (MRM) is a model of an
extremely simple CPU that can carry out two parametrizable instructions in Random Access Memory
(RAM).

2.1 Minsky’s Register Machine

The MRM is a UTM with infinitely many registers, each of which can hold an arbitrary natural number,
and two types of parametrizable instructions:

1. add 1 to a register then switch to a new state;

2. test whether a register holds a positive number: if so subtract 1 then switch to a new state; else
switch to a new (different) state.

States are used to index instructions of the MRM, so that “change to a given state” effectively means,
in today’s terminology, “jump to a given instruction”.

2.1 Definition

A MRM is a quadruplet (R,N, S, c) where:

1. R = (R1, R2, . . .) is an infinite sequence of registers each of which can hold an arbitrary natural
number;

2. N = {0, . . . , n}, where n ∈ N, and N+ = N r {0} is the set of states;

3. S : N+ → N× {0, 1}×N ×N , is a program, and Si = (j, b, k, ℓ) is an instruction of type b ∈ {0, 1}
for all i ∈ N+, whose meaning is explained below;

4. c ∈ N holds the current instruction index.

The program S works as follows. For an instruction i ∈ N+, let Si = (j, b, k, ℓ):

1. if b = 0 then Rj ← Rj + 1 and c← k;

2. if b = 1 and Rj = 0 then c← ℓ;

3. if b = 1 and Rj > 0 then Rj ← Rj − 1 and c← k.

If c = 0 the execution stops. We remark that if b = 0 then ℓ is unused.

2.2 Example

The example of MRM program in Fig. 1 (found in [19]) uses 3 registers and 8 states (including the stop
state called S0). Its purpose is to add to R1 twice the content found initially in R2, using R3 as temporary
storage space.

2.2 Programming languages and interpreters

Let L be a programming language for the UTM U ; as is well known, L need not be aware of the physical
characteristics of U . A special software I (which is aware of those characteristics), called interpreter for

L on U , is employed to translate any program P (taking c as input, producing x as output, and written
in L), into a sequence of instructions that can be performed by U . In other words, I takes as input P
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Algorithm:

R1 ← R1 + 2R2

S1 = (3, 1, 1, 2)

S2 = (2, 1, 3, 6)

S3 = (3, 0, 4, 0)

S4 = (1, 0, 5, 0)

S5 = (1, 0, 2, 0)

S6 = (3, 1, 7, 0)

S7 = (2, 0, 6, 0).

while (R3 > 0)
R3--;

while (R2 > 0) {
R2--; R3++;

R1++; R1++;

}
while (R3 > 0) {

R3--;

R2++;

}
S0

S1

S2

S3

S4S5

S6

S7

R3−1

R3−1

R2−1

R3+1

R1+1

R1+1

R2+1

Figure 1: The MRM example from [19]: the meaning (top left), in MRM “language” (middle left), in
C-like pseudocode (bottom left), and as a finite state automaton (right).

and c and tells U how to perform the computation whose output is x. The interpreters for imperative
programming languages, such as Fortran, C/C++, Java and so on, are usually simple and efficient: each
high-level instruction in L is translated into the machine language employed by the CPU being used to
perform the computation.

Declarative programming languages, such as MP, Prolog [27] or Constraint Programming (CP) [1], do
not prescribe sequences of instructions, but rather define computable functions via a set of conditions,
or constraints: for example, a simple linear program P (c1, c2) might ask for a vector (x1, x2) maximizing
the linear form c1x1 + c2x2 subject to the constraints x1 + 2x2 ≤ 1, x1 ≥ 0, x2 ≥ 0. Interpreters for
declarative programming languages are usually rather complicated, and may be very inefficient. Typical
conditions expressed in MP, CP or Prolog programs would generally look like “find x ∈ X such that
f(x) = 0”, where X is a decidable set and f is a computable function. Since the interpreter must be able
to interpret any program in the language, it might have to apply brute force to test all x in X for the
property f(x) = 0. Interpreters for declarative languages are often based on tree-like search methods,
such as Branch-and-Bound (BB).

2.3 Turing completeness

If a programming language can be used to program a UTM via an interpreter, then it is Turing complete.
The fact that MP is Turing complete is a simple corollary to the existence of Universal Diophantine
Equations (UDE) [20], insofar as a Diophantine equation is an Integer Polynomial Programming (IPP)
feasibility problem, and IPP is a proper subclass of MP. UDEs are polynomial equations pxi (y1 . . . , yn),
parametrized by x, i, such that

∀i ∈ N, x ∈ Xi ⇔ ∃y ∈ Z
n (pxi (y) = 0),

where X1, X2, . . . is an enumeration of all recursively enumerable sets (it is known that such an enumer-
ation is possible). Efforts to find UDEs of ever smaller sizes (in terms of the number n of variables and
the degree d) led to values of n, d as low as n = 9 or d = 4, but not both: some small known (n, d)
pairs are (58, 4), (38, 8), (32, 12), (29, 16) [8]. This also shows that MP is Turing complete even when it
is limited to programs having a fixed number of variables. It is known that setting d = 2 is not possible,
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since quadratic Diophantine equations are decidable [20]; we remark, however, that Integer Quadratic
Programming is not decidable [18], because of the presence of an objective function.

In Sect. 3 we present a MP that simulates the MRM, which we then use in Sect. 4 to automatically
find the most difficult input (of given size) for a given algorithm. Specifically, we construct a pure
feasibility IPP of degree 3 which takes as input a program P for the MRM and its input c, and describes
a feasible set containing the intermediate and final computation steps carried out by the MRM running
P on c. Although the size of our MP grows with the size of P and c, and must actually have infinite
size to accommodate programs for which no upper bound on the computation time to termination can
be estimated, it can still be useful for practical purposes, as shown in Sect. 4. Specifically, for programs
involving values within a given upper bound, our MP can be reformulated (exactly) to an Integer Linear
Program (ILP), for which reasonably good off-the-shelf solvers exist.

We also remark that Cook’s famous theorem proving that the Satisfiability (SAT) problem is NP-
hard [9] may also be used to construct a reduction from a UTM to MP (via SAT). From a practical point
of view, however, such a reduction presents the following shortcomings (of both practical and theoretical
nature).

• Programming a UTM is more difficult than programming the MRM.

• Solving the SAT obtained by Cook’s reduction by means of a SAT solver would make it hard or
inefficient to add an objective function, which is crucial to our application in Sect. 4.

• A further reduction of the SAT to MP would yield IPPs of any degree (∧ within literals being
represented by products between boolean variables), making them difficult to solve in practice.

• Cook’s theorem actually reduces a nondeterministic polynomial time bounded UTM to SAT, whereas
in this setting we are interested in deterministic TMs without regard to time constraints. Hence
the reduction would require some nontrivial adaptation.

2.4 Software verification

It was shown in [3] that imperative programming languages that are able to express juxtaposition of
commands, tests and loops are Turing complete. In the universal MP of Sect. 3, “juxtaposition of com-
mands” refers to the fact that the MP explicitly models every instruction of the program. In consequence
of this, every program variable is assigned a unique value at each step; or, in other words, every variable
symbol is assigned a sequence of values which is as long as the number of timesteps taken by the program
execution. In our application to software verification we relax the command juxtaposition requirement:
instead of a sequence, every variable symbol is assigned a set containing at least all of the values in the
sequence (and perhaps some more). The order of the timestep (and hence the command juxtaposition) is
lost. What we gain are insights about the domain of of the variable, which can be useful to detect bugs.

Static analysis by abstract interpretation [6, 7] aims to find program invariants as over-approximations
(also called abstract semantics) of the sets of values (also called concrete semantics) that the program
variables can take at each control point of the program during the whole execution. Abstract semantics
are usually restricted to belong to a pre-specified class of sets, e.g. intervals, boxes, spheres, polyhedra
and so on. Given one such class L and the inclusion lattice (L,⊆), the action of the program can be
interpreted in the abstract semantics as a function F : L → L.

The interpretation of a program as a function on a lattice is best explained using the simple example
in Fig. 2. Essentially, the j-th variable symbol occurring in statement i is replaced by the set Xij ∈ L,
which is equated to an expression involving other Xkℓ’s on the right hand side of the equation; if we let
X be the vector of all Xij ’s and F be the lattice function representing the expression on the right hand
side, then the set of equations has the form:

X = F (X), (1)



3 A UNIVERSAL MP 5

which are fixed point equations, also called semantic equations in this context. An over-approximation
X ∈ L is invariant with respect to F if it does not change when F is applied to it, i.e. it satisfies the
fixed point equations. In particular, a Least Fixed Point (LFP) X∗ of F in L, i.e. a lattice set which is
smallest with respect to inclusion, is a smallest invariant of the computer program encoded by F .

If L is the concrete semantics, then X∗ is the set of all values taken by all variables during the program
execution. Since finding such a set in general is easily seen to be equivalent to solving the halting problem,
X∗ is not a decidable set. It turns out, however, that X∗ is decidable for certain abstract semantics that
still give useful information about the program.

Take for example an array x with size 10, indexed by a counter variable i. An abstract semantic with
an invariant X , whose projection on the i coordinate is contained in the interval [0, 9], yields a rigorous
proof that no memory error will result from writing or reading out of array bounds. Since these types
of runtime errors are typically very difficult to catch, and may yield disastrous as well as unpredictable
outcomes, a strategy for proving their absence is valuable. This also explains why large invariants are
less interesting: the interval [−∞,∞] might be an invariant, but it can only prove the trivial property
i ∈ [−∞,∞].

Two existing solution methods for finding X such that Eq. (1) holds are Kleene’s Iteration (KI) [6]
and Policy Iteration (PI) [5, 12, 13]. KI is an iterative, possibly nonterminating procedure based on
applying F to the largest possible domain in the L until convergence to a fixed point is attained. PI is a
kind of “Newton’s method on lattices”, which only converges to a guaranteed LFP under some additional
conditions on F , namely non-expansiveness, playing the same role as convexity in in a classical setting.

The alternative approach proposed here consists in describing the feasible set defined by (1) using a
MP which can be solved in exponential time whenever (1) only involve integer affine arithmetic. Such a
MP is of the same type of the UMP of Sect. 3: its solution set is essentially the trace (in the abstract
semantics) of an algorithm given in imperative language. A preliminary version of these ideas was given
in [22].

3 A universal MP

We now propose a Universal MP (UMP) whose solution set is precisely the output of the MRM together
with the set of all values generated during all steps of the computation. The UMP introduces integer
decision variables for each register at each time step (or iteration) t ∈ N as well as two sets of binary
decision variables: one verifies whether a given register contains 0 at a given time step; the other verifies
whether c is assigned a given state at a given time step. Intuitively, the proposed UMP works by
reformulating the following conditional constraints

b = 0 ⇒ (Rj = Rj + 1) ∧ (c = k) (2)

(b = 1) ∧Rj = 0 ⇒ c = ℓ (3)

(b = 1) ∧Rj > 0 ⇒ (Rj = Rj − 1) ∧ (c = k). (4)

to integer polynomial equations.

Here follows the definition of the UMP.

• Sets:

1. N: the set of natural numbers (which includes 0);

2. N+: the set of positive natural numbers;

3. N = {0, . . . , n}: set of all states;

4. N+ = N r {0}: set of all non-stop states.
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• Parameters:

– n ∈ N: the number of states;

– h : N → N: register index j targeted by instruction;

– b : N → {0, 1}: instruction type;

– k : N → N : next state for type 0 instructions, conditional next state otherwise;

– ℓ : N → N : conditional next state for type 1 instructions;

– r0 : N→ N: the initial values held in the registers, i.e. the input;

– S0 ∈ N: the initial state.

• Decision variables:

1. value held by register j at iteration t, added by 1 (this is to avoid rjt taking 0 as a value, which
would invalidate some of the constraints below — the value contained in Rj at iteration t is
rjt − 1):

∀j ∈ N, t ∈ N rjt ∈ N+;

2. test whether register j has value 0 at iteration t:

∀j ∈ N, t ∈ N ρjt =

{

1 if rjt ≥ 2
0 if rjt = 1

3. test whether the current instruction at iteration t is i:

∀i ∈ N, t ∈ N xit =

{

1 if c = i at iteration t
0 otherwise.

• Objective functions: none, this is a pure feasibility problem. Objective functions can be used in
possible applications of the UMP, see Sect. 4.

• Constraints:

– initial register values:
∀j ∈ N rj0 = r0j ; (5)

– initial state:
x10 = 1; (6)

– if c = i and b = 0, set Rhi
← Rhi

+ 1:

∀t ∈ N+, i ∈ N+ xi,t−1 (1− bi) rhit = xi,t−1 (1 − bi) (rhi,t−1 + 1); (7)

– if c = i and b = 0, set c← ki:

∀t ∈ N+, i ∈ N+ xkit xi,t−1 (1− bi) = xi,t−1 (1− bi); (8)

– if c = i, b = 1 and Rhi
> 0, set Rhi

← Rhi
− 1:

∀t ∈ N+, i ∈ N+ xi,t−1 bi ρhi,t−1 rhit = xi,t−1 bi ρhi,t−1 (rhi,t−1 − 1); (9)

– if c = i, b = 1 and Rhi
> 0, set c← ki:

∀t ∈ N+, i ∈ N+ xi,t−1 bi ρhi,t−1 xkit = xi,t−1 bi ρhi,t−1; (10)

– if c = i, b = 1 and Rhi
= 0, fix Rhi

:

∀t ∈ N+, i ∈ N+ xi,t−1 bi (1− ρhi,t−1) rhit = xi,t−1 bi (1 − ρhi,t−1) rhi,t−1; (11)
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– if c = i, b = 1 and Rhi
= 0, set c← ℓi:

∀t ∈ N+, i ∈ N+ xi,t−1 bi (1− ρhi,t−1) xℓit = xi,t−1 bi (1− ρhi,t−1); (12)

– if c = i and j 6= hi, fix Rj :

∀t ∈ N+, i ∈ N+, j ∈ Nr {hi} rjt xi,t−1 = rj,t−1 xi,t−1; (13)

– if c = 0 then stop:
∀t ∈ N+ x0t x0,t−1 = x0,t−1; (14)

– if c = 0 then fix Rj :
∀t ∈ N+, j ∈ N rjtx0,t−1 = rj,t−1x0,t−1; (15)

– c can only take one value at any given iteration:

∀t ∈ N

∑

i∈N

xit = 1; (16)

– definition of ρ variables in terms of r variables:

∀j ∈ N, t ∈ N rjt − 1 ≥ ρjt (17)

∀j ∈ N, t ∈ N (rjt − 1) (1− ρjt) = 0. (18)

The fact that the formulation has an infinite number of variables and constraints, albeit countable,
prevents it from being solved in practice with standard software. This, however, does not matter when
proving Turing completeness: after all even UTMs require an infinite storage tape whereas all existing
computers have a finite amount of memory. The crucial fact is that if the MRM terminates on a given
input, then the above set of constraints is satisfied by a unique feasible solution (r∗, x∗, ρ∗), which
corresponds to the output of the program running on the MRM, as shown in Cor. 3.2. If we give an
upper bound on the program running time (we let the index t run over a finite set T ⊆ N) and on the
number of registers (we let the index j run over a finite set M ⊆ N), then the above program is a MINLP
which can be solved exactly, using for example a spatial Branch-and-Bound (sBB) solver [2], coded so
that it uses precise rational arithmetic and configured with an ε tolerance equal to zero.

3.1 Theorem

Every sequence (r, x, ρ) feasible in (5)-(18) has the property that, whenever t∗ = min{t ∈ T | x0t = 1}−1
is defined, R∗ = (r1t∗ − 1, r2t∗ − 1, . . .) is exactly the output R of a MRM with input r0 which terminates
after t∗ timesteps.

Proof. We prove this by induction on t. Let (r, x, ρ) be feasible in (5)-(18). When t = 0, Rj = rj0 − 1
for all j ∈ N by (5) and the definition of the decision variables r on page 6. Consider a timestep t and
suppose Rj = rj,t−1 − 1 for all j at timestep t− 1. Let Si = (j, bi, k, ℓ) be the MRM instruction applied
at timestep t − 1. At time t, by (13), for all j′ 6= j we have rj′t = rj′,t−1, so that, by the induction
hypothesis, Rj′ = rj′t− 1. If j′ = j and bi = 0, then by (7) we have rjt = rj,t−1+1, and by the induction
hypothesis Rj = rjt−1. If bi = 1 and Rj > 0 at timestep t−1, by (9) rjt = rj,t−1−1 and by the induction
hypothesis Rj = rjt−1 at timestep t; otherwise, if Rj = 0 at t−1, then its value is fixed by (11) at time t.
Mutual exclusivity of these three choices is enforced by multiplying (7)-(12) by respectively bi and ρj,t−1,
which by (17)-(18) is 1 if and only if Rj > 0. The next instruction to be executed is always correctly
chosen by (8), (10), (12). Notice (7)-(15) are all multiplied by xi,t−1 for i 6= 0; by (16), whenever x0t′ = 1
(i.e., c = 0), xit′ = 0 for all i 6= 0 and all t′: this implies (7)-(15) are trivially satisfied as 0 = 0, the only
nontrivial constraints being (14)-(18). In particular, by (15) rjt = rj,t−1 for all j whenever c = 0, which
means, by (6), that t∗ is by definition the first timestep index when c = 0, i.e. R∗ contains the output of
the MRM. ✷
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3.2 Corollary

If the MRM terminates on a given input, the UMP has a unique solution.

Proof. This follows because the MRM is deterministic. ✷

3.3 Example

Continuing with Example 2.2, the behaviour of the MRM in Fig. 1 with input R1 = R2 = R3 = 1 is
given in the table below (t is the iteration counter, c is the current state, R1, R2, R3 are the contents of
the three registers).

t c R1 R2 R3 Comment h b k ℓ

0 1 1 1 1 initial state 3 1 1 2
1 1 1 1 0 zero R3 3 1 1 2
2 2 1 1 0 switch to state 2 2 1 3 6
3 3 1 0 0 get the value of R2 3 0 4 0
4 4 1 0 1 and copy it in R3 1 0 5 0
5 5 2 0 1 add it to R1 1 0 2 0
6 2 3 0 1 twice 2 1 3 6
7 6 3 0 1 switch to state 6 3 1 7 0
8 7 3 0 0 get the value of R3 2 0 6 0
9 6 3 1 0 and restore it to R2 3 1 7 0
10 0 3 1 0 stop - - - -

Updated registers are marked in boldface. These values have been found by solving an AMPL [11]
implementation of the bounded version of the UMP (5)-(18).

3.1 Reformulation to MILP in the bounded case

If the program running on the MRM is bounded, i.e. there is an upper bound M such that for all j ∈ N we
have Rj ≤ M , then (5)-(18) can be reformulated exactly to an Mixed Integer Linear Program (MILP),
by applying the Int2Bin exact reformulation [21] to replace the r variables by sets of added binary
variables, and then the ProdBin exact reformulation [21] to replace all bilinear products αβ of binary
variables α, β with continuous added variables γ ∈ [0, 1] and the Fortet constraints [10] γ ≤ α, γ ≤ β,
γ ≥ α+ β − 1.

This means that we can solve the (bounded) UMP using a practically efficient MILP solver, such as
CPLEX [17].

4 Finding the hardest input

Besides simulating the MRM, our UMP has some interesting possible uses insofar as it can be easily
adapted to solve some associated inverse problems, by simply declaring some parameters to be decision
variables and fixing some decision variables to appropriate values. For example, in order to bench-test a
new algorithm targeting the solution of a given problem, it is useful to find inputs for which the algorithm
takes longest. This can be done as follows:

• declare r0 (the input) to be decision variables;

• adjoin the objective function:

min
∑

t∈N

x0t. (19)
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By setting as few of the x0t to 1 as possible, Eq. 19 essentially tells the UMP to terminate execution as
late as possible, whilst being computationally consistent with the r0 being chosen. In other words, find
an input which causes the MRM to continue its computation for as long as possible.

4.1 Exact integer division

We provide a proof of concept example which is simple enough so that the approach works with an off-the-
shelf tool (CPLEX [17]), and the corresponding bounded UMP is solved within acceptable computation
times. We consider the following algorithm for establishing whether n mod k = 0, for given n ≥ k:

1. n← n− k ;

2. if n = 0 return YES, else if n < 0 return NO, else goto 1,

and ask for what input k the algorithm runs longest, given a fixed n.

The above pseudocode can be implemented in a MRM with 4 registers and 8 states. We limit
the analysis of the code to 100 time steps. Register 1 encodes n; registers 2,3 encode k, k′ (k′ is a
complementary storage for k: whenever k changes, k′ stores the original value of k); register 4 is the
output bit a: 0 if NO, 1 if YES. The actual semantics of the MRM is slightly different from the algorithm
above, in that it decreases k incrementally, and n at the same time. The MRM program is as follows,
and starts execution with state 1 and k′, a initialized to 0.

State Instruction Meaning Comment

0 - - - - stop
1 2 1 2 4 if k > 0 decrease k and goto 2, else 4 start here
2 3 0 3 0 increase k′ and goto 3 invariant: k + k′

3 1 1 1 0 if n > 0 decrease n and goto 1, else 0 n = 0 before k ⇒ k 6 |n
4 1 1 5 8 if n > 0 decrease n and goto 5, else 8 n, k = 0: ⇒ k|n
5 1 0 6 0 increase n and goto 6 restore 1 to n
6 3 1 7 1 if k′ > 0 decrease k′ and goto 7, else 1 restore k using k′

7 2 0 6 0 increase k and goto 6

8 4 0 0 0 increase a and goto 0 set a = 1

We then feed the set of instructions of this MRM to our universal MINLP, modified as above with an
objective function, to determine the most computationally expensive input k with n fixed, and find, for
n ∈ {5, . . . , 10}, that k = 1.

5 Debugging code using MP

In this section we discuss the application of MP to software verification. This MP is obtained by relaxing
the Turing completeness requirement about commands juxtaposition [3], as explained in Sect. 2.4.

5.1 Reducing code to a graph

Flowcharts (i.e., directed graph representations of computer programs) are known to be Turing complete
[16]. It is not hard to show that Turing completeness is not lost if we require that no flowchart node
has more than two incoming arcs. Given such a flowchart (also called a program graph) G = (V,A),
representing a computer program with n variables x = (x1, . . . , xn), where V is the set of control points
of the program and A = {a1, . . . , am} is the set of arcs in the program graph, linking a control point
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to the next, we assign a sequence of intervals Xi = (Xi1, . . . , Xin) to each arc ai, for all i ≤ m. For all
i ≤ m, j ≤ n, Xij is an over-approximation of the set of values taken by variable xj on the arc i over the
whole program execution.

Control points in the program are assigned one of the following labels: Entry, eXit, Assignment, Join
(i.e. the start of the loop), Test. A sequence of operators (Fvj)j≤n is assigned to each control point
v ∈ V according to its label. For every flow arc ai = (v, u) and j ≤ n, we state the rules that change Xij

according to the program as Xij = Fvj(X), where X = (X1, . . . , Xm). Since each arc has exactly one
head vertex, we can index the operators by arc i instead of control point v, so that we obtain the fixed
point equations (1) in the form:

∀i ≤ m, j ≤ n Xij = Fij(X). (20)

Notationwise, we let F = (F1 . . . , Fm) where Fi = (Fi1, . . . , Fin) for all i ≤ m. An example is given in
Fig. 2.

//(1)

int x = 1; //(2)

//(3)

while(x <= 100){ //(4)

x = x + 1; //(5)

}

//(6)

1(E)

6(X)

2(A) 4(T)3(J)

5(A)

τ4=
[−∞,100]

φ2(x̄) = 1

φ5(x̄) = x̄+ 1

n = 1; a1 = (1, 2), a2 = (2, 3), a3 = (3, 4), a4 = (4, 5), a5 = (4, 6), a6 = (5, 3)

X11 = Id(input)

X21 = φ2(X11)

X31 = X21 ∪X61

X41 = X31 ∩ τ4

X51 = φ5(X41)

X61 = X31 ∩ (X r τ4)

X11 = [−∞,∞]

X21 = [1, 1]

X31 = [1, 1] ∪X61

X41 = X31 ∩ [−∞, 100]

X51 = X41 + [1, 1]

X61 = X31 ∩ [101,∞]

Figure 2: A simple example: program graph (top), semantic equations (bottom left), replacing variable
symbols with interval (abstract) semantics (bottom right).

The operator for labels E, X is the identity Id, the operators for label A are the interval arithmetic
operators +, c×, ↑ d,×, 1÷ (where +,× are binary operators, c× is the constant multiplication, ↑d is the
power to constant, c is a real and d is a positive constant) [15], the operator for label J is the interval
union ∪ (i.e. the union of two disjoint intervals is the smallest interval containing them) and the operator
for label T is the intersection ∩.

5.2 An interval MP for computing least fixed points

As over-approximations of the sets of values taken by program variables during execution, we consider
the inclusion-wise lattice (I,⊆) of all closed real intervals. For all i ≤ m, j ≤ n we represent the interval
Xij by a triplet (xL

ij , x
U
ij , x̄ij) ∈ R

2 × {0, 1} (subject to xL
ij ≤ xU

ij) such that Xij = [xL
ij , x

U
ij ] if and only if

x̄ij = 1 and Xij = ∅ otherwise. We also define the following width function:

|Xij | = x̄ij(x
U
ij − xL

ij) + log x̄ij , (21)
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and extend it to |X | =
∑

i,j |Xij |. This width function is unbounded below if and only if Xij is the
empty interval, and is equal to the standard interval width otherwise. Applied to a box X , this width
function is unbounded below if and only if X is empty (i.e. at least one of the intervals in the definition
of X is empty). Thus, the bottom element ⊥ of any inclusion sublattice of I is smallest with respect to
the width function | · | restricted to the sublattice.

It is not difficult to establish that all the considered operators are ⊆-monotonic in I. By Tarski’s
lattice fixed point theorem [28], the LFP of (20) is

argmin{|X | : X ⊇ F (X)}. (22)

Eq. (22) can be used to construct a mathematical program as follows. For every operator Fij appearing
in the computer program, we define the set {X | Xij ⊇ Fij(X)} in terms of inequality constraints
gij(xL, xU , x̄, y) ≤ 0 involving the decision variables xL, xU , x̄ and possibly some added binary decision
variables y.

The intended semantics of the MP below, which models (22), is as follows:

• it provides the LFP of Eq. (20) as a globally optimal solution if and only if it is a nonempty bounded
box;

• it is infeasible or unbounded if only if the LFP of Eq. (20) contains some unbounded intervals
and/or is the empty set.

We prove this in Sect. 5.3.15 below.

5.3 Interval operators

As mentioned above, we need to model the operators for labels E, X, A, J, T, i.e. the identity operator,
some interval arithmetic operator, interval union and interval intersection. In this section we model the
semantics of each operator using MP constraints. We remark that there are many different formulations
that model such constraints. In this setting we aim to achieve clarity of exposition, so we give a natural
formulation rather than one which is computationally convenient. Computationally more convenient
formulations were used to obtain the computational results in [14].

5.3.1 Conditional constraints

To model certain interval operators using MP, we shall need some constraints to hold conditionally to
some binary variables taking value zero or one. Suppose g(x) ≤ g0 is one such constraint (where x is the
vector of all decision variables, g is a function, and g0 is a constant), and y ∈ {0, 1} is a binary variable.
To mean that g(x) ≤ g0 holds conditionally to y = 1, we simply write yg(x) ≤ yg0: if y = 0, then the
constraint obviously reduces to 0 ≤ 0, which does not change the feasible region of the MP in any way.
In the sequel, we use the shorthand notation y → g(x) ≤ g0 to mean yg(x) ≤ yg0.

We remark that, if y → g(x) ≤ g0 and (1 − y) → g(x) ≥ g0, then g(x) ≤ g0 implies y = 1 and
g(x) ≥ g0 implies y = 0 for practical purposes in MP. Thus, we write y ↔ g(x) ≤ g0 to mean:

yg(x) ≤ yg0 ∧ (1− y)g(x) ≥ (1 − y)g0.

5.3.2 Interval consistency

For all i ≤ m, j ≤ n, Xij is the interval [xL
ij , x

U
ij ], so the following MP constraints hold:

xL
ij ≤ xU

ij .
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5.3.3 Constant

The constant fixed point equation is Xij = [βL, βU ] for some i ≤ m and j ≤ n, where βL, βU ∈ R; the
semantics of this operator must also explicitly account for Xij = ∅ if and only if [βL, βU ] is a non-empty
interval. The corresponding MP constraints are:

x̄ij =

{

1 if βL ≤ βU

0 otherwise.

x̄ij → xL
ij ≤ βL

x̄ij → xU
ij ≥ βU .

5.3.4 Identity

The identity fixed point equation is Xij = Xhj for some i 6= k ≤ m and j ≤ n; the semantics of this
operator must also explicitly account for Xij = ∅ if and only if Xkj = ∅. The corresponding MP
constraints are:

x̄ij = x̄kj

x̄ij → xL
ij ≤ xL

kj

x̄ij → xU
ij ≥ xU

kj .

5.3.5 Positive constant scaling

The fixed point equation for positive constant scaling is Xij = αXkh for some i 6= k ≤ m, j, h ≤ n and
α > 0; the semantics of this operator must also explicitly account for Xij = ∅ if and only if Xkh = ∅.
The corresponding MP constraints are:

x̄ij = x̄kh

x̄ij → xL
ij ≤ αxL

kh

x̄ij → xU
ij ≥ αxU

kh.

5.3.6 Negative constant scaling

The fixed point equation for negative constant scaling is Xij = αXkh for some i 6= k ≤ m, j, h ≤ n and
α < 0; the semantics of this operator must also explicitly account for Xij = ∅ if and only if Xkh = ∅.
The corresponding MP constraints are:

x̄ij = x̄kh

x̄ij → xL
ij ≤ αxU

kh

x̄ij → xU
ij ≥ αxL

kh.

5.3.7 Positive odd power

The fixed point equation for positive odd power is Xij = Xd
kh, for some i 6= k ≤ m, j, h ≤ n and d

(mod 2) = 1; the semantics of this operator must also explicitly account for Xij = ∅ if and only if
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Xkh = ∅. The corresponding MP constraints are:

x̄ij = x̄kh

x̄ij → xL
ij ≤ (xL

kh)
d

x̄ij → xU
ij ≥ (xU

kh)
d.

5.3.8 Positive even power

The fixed point equation for positive even power is Xij = Xd
kh, for some i, k ≤ m, j, h ≤ n and d

(mod 2) = 0; the semantics of this operator must also explicitly account for Xij = ∅ if and only if
Xkh = ∅. As usual, this is imposed by

x̄ij = x̄kh.

Since the even power function is not monotonic, we distinguish two cases:

1. 0 ≤ xL
kh ≤ xU

kh or xL
kh ≤ xU

kh ≤ 0, in which case xL
ij ≤ min{(xL

kh)
d, (xU

kh)
d} and xU

ij ≥ max{(xL
kh)

d, (xU
kh)

d};

2. xL
kh ≤ 0 ≤ xU

kh, in which case xL
ij ≤ 0 and xU

ij ≥ max{(xL
kh)

d, (xU
kh)

d}.

Since xU
ij ≥ max{(xL

kh)
d, (xU

kh)
d} holds in both cases, we use the constraints:

x̄ij → xU
ij ≥ (xU

kh)
d

x̄ij → xU
ij ≥ (xL

kh)
d.

The first case is equivalent to xL
khx

U
kh ≥ 0; the second is equivalent to xL

khx
U
kh ≤ 0. We introduce a

binary variable ykh ∈ {0, 1} which takes value 0 if xL
khx

U
kh ≤ 0, and enforce this condition by means of

the constraint:
xL
khx

U
khykh ≥ 0. (23)

Next, we use ykh in the constraints on xL
ij :

x̄ij → xL
ij ≤ (xU

kh)
dykh

x̄ij → xL
ij ≤ (xL

kh)
dykh.

5.3.9 Inverse

The fixed point equation for inverse is Xij = 1
Xkh

, for some i, k ≤ m and j, h ≤ n; the semantics of this

operator must also explicitly account for Xij = ∅ if and only if Xkh = ∅, and Xij = ⊤ (the largest
element of the interval lattice) if 0 ∈ Xkh. As in Sect. 5.3.8, this is equivalent to xL

khx
U
kh ≤ 0, which we

model using an added binary variable ykh ∈ {0, 1} subject to (23). We obtain:

x̄ij = x̄kh

xL
khx

U
khykh ≥ 0

x̄ijykh → xL
ij ≤

1

xU

x̄ijykh → xU
ij ≥

1

xL
.

In a MP, however, there is no computationally viable way to constrain an interval to be ⊤. Formally, we
can write:

x̄ij(1− ykh)→ xL
ij ≤ −∞

x̄ij(1− ykh)→ xU
ij ≥ ∞,
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where we take ∞ to be a formal symbol with the meaning of “unbounded”; but in practice we must
replace ∞ by a finite (large) number M , as mentioned in Sect. 5.4 below. In the following, we simply
assume that there is no inverse operator in the computer code being analyzed; a weaker assumption would
be that 0 6∈ Xkh, but this is harder to verify aprioristically.

5.3.10 Sum

The fixed point equation for the interval sum operator is Xij = Xkh+Xℓf for some distinct i, k, ℓ ≤ m and
j, h, f ≤ n. If there are empty intervals, the semantics are: Xij = ∅ if and only if Xkh = ∅ ∨Xℓf = ∅.
The corresponding MP constraints are:

x̄ij = x̄khx̄ℓf

x̄ij → xL
ij ≤ xL

kh + xL
ℓf

x̄ij → xU
ij ≥ xU

kh + xU
ℓf .

5.3.11 Product

The fixed point equation for the interval sum operator is Xij = XkhXℓf for some distinct i, k, ℓ ≤
m and j, h, f ≤ n. If there are empty intervals, the semantics are: Xij = ∅ if and only if Xkj =
∅ ∨ Xℓj = ∅. The corresponding MP constraints are derived from the interval product [a, b][c, d] =
[min{ac, ad, bc, bd},max{ac, ad, bc, bd}]:

x̄ij = x̄khx̄ℓf

x̄ij → xL
ij ≤ xL

khx
L
ℓf

x̄ij → xL
ij ≤ xL

khx
U
ℓf

x̄ij → xL
ij ≤ xU

khx
L
ℓf

x̄ij → xL
ij ≤ xU

khx
U
ℓf

x̄ij → xU
ij ≥ xL

khx
L
ℓf

x̄ij → xU
ij ≥ xL

khx
U
ℓf

x̄ij → xU
ij ≥ xU

khx
L
ℓf

x̄ij → xU
ij ≥ xU

khx
U
ℓf .

5.3.12 Union

The fixed point equation for interval union is Xij = Xkh∪Xℓf for some distinct i, k, ℓ ≤ m and j, h, f ≤ n.
If there are empty intervals, the semantics are: Xij = ∅ if and only if Xkj = ∅ ∧Xℓj = ∅.

Notice that the union of two intervals is the smallest interval containing both; since the objective
function aims to reduce the sum of all interval widths, we need our constraints to only enforce containment,
i.e. xL

ij ≤ min(xL
kh, x

L
ℓf ) and xU

ij ≥ max(xU
kh, x

U
ℓf ), which are easily seen to be equivalent to:

(1 − x̄ij) = (1 − x̄kh)(1− x̄ℓf )

x̄ij → xL
ij ≤ xL

kh

x̄ij → xL
ij ≤ xL

ℓf

x̄ij → xU
ij ≥ xU

kh

x̄ij → xU
ij ≥ xU

ℓf .
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5.3.13 Intersection

The fixed point equations for a program node labeled by T with a test condition xh ≤ xf is Xij =
Xkh ∩ Xℓf for some distinct i, k, ℓ ≤ m and j, h, f ≤ n. This test condition is well known to be enough
to make the language Turing complete.

If there are empty intervals, the semantics are: Xij = ∅ if and only if Xkj = ∅∨Xℓj = ∅. Moreover,
and differently from above, Xij could be empty even though Xkh and Xℓf are non-empty but disjoint:
specifically, this happens if xU

kh < xL
ℓf or xL

kh > xU
ℓf .

Notice that MP constraints can never be strict inequalities; one way around the issue is to write the
inequality a < b as a = b− e−t, where t is a continuous unconstrained decision variable. We remark that
this solves the issue from a theoretical point of view, but is not a computationally convenient expedient,
due to its non-convexity. In practice, we would just pick a small enough number ǫ > 0 and write a < b
as a ≤ b− ǫ.

Two intervals Xkh = [xL
kh, x

U
kh] and Xℓf = [xL

ℓf , x
U
ℓf ] could be in exactly one of six configurations

(shown in Fig. 3):

1. non-overlapping left: xL
kh ≤ xU

kh < xL
ℓf ≤ xU

ℓf , in which case Xij = ∅;

2. non-overlapping right: xL
ℓf ≤ xU

ℓf < xL
kh ≤ xU

kh, in which case Xj = ∅;

3. overlapping left: xL
kh ≤ xL

ℓf ≤ xU
ℓf ≤ xU

kh, in which case Xij = Xℓf ;

4. overlapping right:xL
ℓf ≤ xL

kh ≤ xU
kh ≤ xU

ℓf , in which case Xij = Xkh;

5. covering top: xL
kh ≤ xL

ℓf ≤ xU
kh ≤ xU

ℓf , in which case Xij = [xL
ℓf , x

U
kh];

6. covering bottom: xL
ℓf ≤ xL

kh ≤ xU
ℓf ≤ xU

kh, in which case Xij = [xL
kh, x

U
ℓf ].

6

1

2

3

4

5

Figure 3: There are six possible interval pair configurations.

The two configurations leading to Xij = ∅ correspond to strict inequalities xU
kh < xL

ℓf or xU
ℓf < xL

kh. We

introduce two binary variables z1ij , z
2
ij ∈ {0, 1} with the meaning:

z1ij =

{

1 if xU
kh < xL

ℓf

0 otherwise

z2ij =

{

1 if xU
ℓf < xL

kh

0 otherwise.

The four configurations leading to Xij 6= ∅ are described by:

xL
ij ≤ max(xL

kh, x
L
ℓf ) (24)

xU
ij ≥ min(xU

kh, x
U
ℓf ). (25)
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Unlike the case of the union operator (Sect. 5.3.12), we cannot simply stack constraints to model Eq. (24)-
(25): we need to introduce two binary variables y1ij , y

2
ij ∈ {0, 1} with the following meaning:

y1ij =

{

1 if max(xL
kh, x

L
ℓf ) = xL

kh

0 otherwise

y2ij =

{

1 if min(xU
kh, x

U
ℓf ) = xU

kh

0 otherwise.

Finally, we need to state that only one of the six configurations can happen at any one time (Eq. (33)).
Specifically: Case 1 ⇔ z1ij = 1, Case 2 ⇔ z2ij = 1, Case 3 ⇔ (1 − y1ij)y

2
ij = 1, Case 4 ⇔ y1ij(1 − y2ij) = 1,

Case 5 ⇔ (1− y1ij)(1− y2ij) = 1, Case 6 ⇔ y1ijy
2
ij = 1.

Thus, the intersection operator is thus modelled by the following constraints and additional continuous
unconstrained variables t1ij , t

2
ij :

x̄ij = x̄khx̄ℓf (1 − z1ij)(1− z2ij) (26)

z1ij ↔ xU
kh = xL

ℓf − e−t
1

ij (27)

z2ij ↔ xU
ℓf = xL

kh − e−t
2

ij (28)

y1ij ↔ xL
kh ≥ xL

ℓf (29)

y2ij ↔ xU
kh ≤ xU

ℓf (30)

x̄ij → xL
ij ≤ y1ijx

L
kh + (1− y1ij)x

L
ℓf (31)

x̄ij → xU
ij ≥ y2ijx

U
kh + (1− y2ij)x

U
ℓf (32)

1 = z1ij + z2ij + y1ijy
2
ij + (1− y1ij)y

2
ij + y1ij(1 − y2ij) + (1− y1ij)(1− y2ij). (33)

As stated previously, for practical purposes we remove the negative exponentials in t1ij , t
2
ij by replacing

Eq. (27)-(28) with:

z1ij ↔ xU
kh ≤ xL

ℓf − ǫ (34)

z2ij ↔ xU
ℓf ≤ xL

kh − ǫ. (35)

We remark that the intersection constraints are simpler (several decision variables are replaced by
fixed constants) if one of xh,xf is a constant interval. This happens e.g. if the test has the form xh ≤ α,
where α is a constant.

5.3.14 Objective function

The objective function minimizes the total width, i.e.:

min
∑

i≤m

j≤n

(x̄ij(x
U
ij − xL

ij) + log x̄ij). (36)

Optimizing the objective subject to the constraints generated for each of the fixed point equations yields
the (unique) LFP of Eq. (1).

5.3.15 Semantics

Let P be the MP defined in Sect. 5.3.2-5.3.14, and let X∗ = (X∗ij | i ≤ m ∧ j ≤ n) be the LFP of
(20). We say that P is feasible if it has at least one solution satisfying all the constraints, and infeasible

if it has none; a feasible P is bounded if it has at least one optimal solution, and unbounded if it has
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none. Moreover, X∗ is empty if at least one X∗ij is the empty interval, and non-empty otherwise; X∗ is
unbounded if at least one X∗ij has at least one infinite interval bound, and bounded otherwise. P can only
be one of: feasible and bounded, feasible and unbounded, or infeasible. X∗ can be only one of: non-empty
and bounded, non-empty and unbounded, empty and bounded, empty and unbounded. In particular, a
box is empty and unbounded if one of the constituting intervals is empty and another is unbounded.

The following proofs are valid for codes not involving the inverse operator (Sect. 5.3.9); more specif-
ically, they hold as long as P is not unbounded because of an operation 1/xj occurring at line i where
the interval Xij assigned to xj contains 0.

5.1 Lemma

If X∗ is unbounded, then P is infeasible.

Proof. Let i ≤ m and j ≤ n such that X∗ij = [xL
ij , x

U
ij ], where either or both bounds are ±∞; and suppose

for simplicity that xU
ij =∞ (the other cases are similar). By the constraints of P , this can only happen if

both the following conditions hold: (a) there is a cycle C in the program graph with a subsequence of A
nodes whose combined action on xj is a strictly increasing function; and (b) there is no upper bounding
T node on xj in C. Suppose then that a subset of the semantic equations (20) indexed by nodes in C
projects on Xij so that Xij = F (Xhj) for some appropriate h < i and interval operator F which strictly
increases xU

ij ; and suppose further that any intersection operator on Xij only involves intersecting with
intervals having the form [a,∞]. Let k be the J node at the beginning of the cycle C, and (p, k), (q, k)
be the two incoming arcs on k, with p < k being the node prior to entering C and q > k being the
last node in C. Then, by Sect. 5.3.12, xU

kj ≥ max(xU
pj , x

U
qj). By Sect. 5.3.4 and condition (b) above,

xU
hj ≥ xU

kj . By condition (a), xU
ij > xU

hj . Again by Sect. 5.3.4 and condition (b), xU
qj ≥ xU

ij . So we obtain

xU
kj ≥ xU

qj ≥ xU
ij > xU

hj ≥ xU
kj , which implies that P is infeasible. ✷

5.2 Lemma

If X∗ is bounded, then P is feasible.

Proof. Since X∗ is bounded, then X∗ is contained in the box [−M,M ] for some large enough real
constant M . For each i ≤ m, j ≤ n, set x̄ij = 0, xL

ij = −M and xU
ij = M if X∗ij = ∅. Otherwise, set

x̄ij = 1 and [xL
ij , x

U
ij ] = X∗ij . We claim (x̄, x) is a feasible solution of P . Suppose not: then there must

be i ≤ m and j ≤ n such that the corresponding constraints of P are not satisfied by (x, x̄). Whatever
label i takes in {A,T, J}, the corresponding constraints in P only depend on decision variables indexed
by (i, j), (k, h), and possibly (ℓ, f) where k, ℓ ≤ m and h, f ≤ n, depending on the interval operator on
the right hand side of the assignment, test, or join semantic equation (20). Now a long but simple case
analysis through the constraints in Sect. 5.3.3-5.3.13 shows that supposing some constraint block indexed
by (i, j) is not satisfied by (x, x̄) would imply that X∗ is not a fixed point, against the assumption. This
leaves the interval consistency constraints of Sect. 5.3.2, but again supposing these constraints are not
satisfied by x would imply that X∗ is not a box, again against the assumption. ✷

5.3 Corollary

If P is infeasible, then X∗ is unbounded.

5.4 Lemma

X∗ is empty and bounded if and only if P is unbounded.

Proof. (⇒) If X∗ = ∅ then there must be X∗ij = ∅, so, by the constraints enforced by P on x̄, we have
x̄ij = 0, which causes the objective function to be unbounded. Since all of the other intervals defining
the box X∗ are bounded, then, by Lemma 5.2, P is feasible, so P must be unbounded.
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(⇐) Assume P is unbounded; because of the optimization direction (Eq. (36)), this can only happen if
there are i ≤ m and j ≤ n such that x̄ij = 0, i.e. X∗ij = ∅, which implies X∗ = ∅. ✷

5.5 Proposition

X∗ is non-empty and bounded if and only if P is feasible and bounded. Moreover, X∗ is the global
optimum of P .

Proof. Assume X∗ is non-empty and bounded. By the correctness of the formulation of Sect. 5.3.2-
5.3.14, it follows by an easy induction on the size of the program graph that X∗ must be the unique
global optimum of P , which is therefore feasible and bounded. Conversely, let Y be the global optimum
of P : again by the correctness of the constraints of P , Y is a fixed point of Eq. (20). Because the width
function | · | is monotonic with the inclusion direction of the interval lattice, Y = X∗. ✷

Putting all of the previous results together, we have:

5.6 Theorem

P is feasible and bounded if and only if X∗ is non-empty and bounded; P is feasible and unbounded if
and only if X∗ is empty and bounded; P is infeasible if and only if X∗ is unbounded.

5.4 Solution methods

The above MP is a MINLP which cannot in general be solved exactly. Solutions with an approximation
guarantee on the objective value can be obtained using the sBB algorithm [2] — such solutions are
practically useful as every feasible solution is an invariant overapproximation of the LFP.

As long as the computer program only uses integer affine arithmetic (i.e. it does not involve powers,
inverses and products, and ǫ can be taken to be 1 in Sect. 5.3.13), we obtain a MINLP only involving
products of binary variables x̄ by unbounded continuous variables x. This MINLP has then an important
property: once the binary variables are fixed, the resulting subproblem is an LP. It can thus be solved
exactly in exponential time as follows. For all binary vectors α of size |x̄|, fix x̄ = α and solve the resulting
LP; if the LP is feasible and its solution has better objective function value than the incumbent, update
the incumbent. Since LPs can be solved in polynomial time, the whole algorithm runs in exponential time
in |x̄|. This provides a theoretical improvement to the running time of Kleene’s iteration on unbounded
interval lattices (which, in the worst case, may fail to converge in finite time [25]). In fact, there is a
strongly polynomial algorithm for solving this problem [13]; the trade-off is generality: the polynomial
time algorithm relies on all program variables being integer and all arithmetic being affine; whereas the
approach we propose can be easily generalized in many different directions.

In practice, however, it is usually possible to find a constant M > 0 such that all program variables
only attain values in [−M,M ]. If this is the case, all continuous decision variables x in the MINLP
are bounded in [−M,M ]; assuming affine (possibly floating point) arithmetic, the MINLP can then be
linearized to a MILP using the ProdBinCont reformulation [21]. This MILP can be solved exactly using
an off-the-shelf Branch-and-Bound solver such as CPLEX [17]. Computational experiments in this sense
[14] gave correct solutions in acceptable CPU times on small and medium-sized instances.

6 Conclusion

In this work we provided a new proof that mathematical programming is Turing complete. We then
showcased the use of mathematical programming techniques to solve two problems arising in software
verification. As a declarative paradigm, MP benefits of several advantages with respect to empirical
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analysis or iterative procedures, i.e., flexibility, proof of optimality, suitability for parallel computation.
A few issues such as scalability and comparison with other techniques, e.g., SAT-based model checking,
are worthy of investigation in a future work.
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