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Abstract. The search tree size of the spatial Branch-and-Bound algo-
rithm for Mixed-Integer Nonlinear Programming depends on many fac-
tors, one of which is the width of the variable ranges at every tree node.
A range reduction technique often employed is called Feasibility Based
Bounds Tightening, which is known to be practically fast, and is thus de-
ployed at every node of the search tree. From time to time, however, this
technique fails to converge to its limit point in finite time, thereby slow-
ing the whole Branch-and-Bound search considerably. In this paper we
propose a polynomial time method, based on solving a linear program,
for computing the limit point of the Feasibility Based Bounds Tightening
algorithm applied to linear equality and inequality constraints.
Keywords: global optimization, MINLP, spatial Branch-and-Bound, ran-
ge reduction, constraint programming.

1 Introduction

In this paper we discuss an important sub-step, called Feasibility Based Bounds
Tightening (FBBT) of the spatial Branch-and-Bound (sBB) method for solving
Mixed-Integer Nonlinear Programs (MINLP) of the form:

min xn

g(x) ∈ G0

x ∈ X0

∀i ∈ Z xi ∈ Z,















(1)

where x ∈ Rn are decision variables, I is the set of all real intervals, G0 =
[g0L, g0U ] ∈ I m and X0 = [x0L, x0U ] ∈ I n are vectors of real intervals, also
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called boxes, Z is a given subset of {1, . . . , n} encoding the integrality constraints
on some of the variables, and g : Rn → Rm are continuous functions. Let X

be the feasible region of (1). We remark that every MINLP involving a general
objective function min f(x) can be reformulated exactly to the formulation (1)
at the cost of adjoining the constraint xn ≥ f(x) to the constraints g(x) ∈ G0.

The sBB is a ε-approximation algorithm (with a given ε > 0) for problems
(1) which works by generating a sequence of upper bounds x′

n and lower bounds
x̄n to the optimal objective function value x∗

n. The upper bounding solution x′ is
found by solving (1) locally with MINLP heuristics [1, 2], whilst the lower bound
is computed by automatically constructing and solving a convex relaxation of
(1). If x′

n − x̄n ≤ ε then x′ is feasible and at most ε-suboptimal; if x′ is the best
optimum so far, it is stored as the incumbent. Otherwise X0 is partitioned into
two boxes X ′,X ′′ along a direction xi at a branch point pi, and the algorithm
is called recursively on (1) with X0 replaced by each of the two boxes X ′,X ′′

in turn. This generates a binary search tree: nodes can be pruned if the convex
relaxation is infeasible or if x̄n is greater than the objective function value at
the incumbent. The sBB converges if the lower bound is guaranteed to increase
strictly whenever the box X of ranges of x at the current node decreases strictly.
In general, the sBB might fail to converge in finite time if ε = 0, although some
exceptions exist [3, 4].

An important step of the sBB algorithm is the reduction of the variable
ranges X at each node. There are two commonly used range reduction tech-
niques in Global Optimization (GO): Optimization Based Bounds Tightening
(OBBT) and FBBT. The former is slower and more effective, involves the so-
lution of 2n Linear Programs (LP) and is used either rarely or just at the root
node of the sBB search tree [18]. The latter is an iterative procedure based on
propagating the effect of the constraints g(x) ∈ G0 on the variable ranges using
interval arithmetic; FBBT is known to be practically efficient and is normally
used at each sBB node. Practical efficiency notwithstanding, the FBBT some-
times converges to its limit point in infinite time, as the example of Eq. (3.11)
in [5] shows. The same example also shows that an artificial termination con-
dition enforced when the range reduction extent becomes smaller than a given
tolerance might yield arbitrarily large execution times.

The FBBT was borrowed from Artificial Intelligence (AI) and Constraint
Programming (CP) as a bounds filtering technique. Its origins can be traced to
[6]; it is known not to achieve bound consistency [7] (apart from some special
cases [8]), a desirable property for Constraint Satisfaction Problems (CSP): a
CSP is bound consistent if every projection of its feasible region on each range
Xi is Xi itself [5]. The FBBT was employed as a range reduction technique
for Mixed Integer Linear Programs (MILP) in [9, 10] and then for MINLPs in
[11]. Within the context of GO, the FBBT was discussed in [12] and recently
improved in [13] by considering its effect on common subexpressions of g(x).

The main result of this paper is to show that if g(x) are linear forms, then
there exists an LP whose solution is exactly the limit point of the FBBT, which
is therefore shown to be computable in polynomial time. If g(x) are nonlinear
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functions (as is commonly the case for general MINLPs) we can replace them
either by a linear relaxation ḡ(x) ∈ Ḡ0 of X or simply consider the largest linear
subset ĝ(x) ∈ Ĝ0 of the constraints g(x) ∈ G0, according to the usual trade-off
between computational effort and result quality (we follow the latter approach
in our computational results section).

The rest of this paper is organized as follows. In Sect. 2 we define an FBBT
iteration formally as an operator in the interval lattice and show it has a fixed
point. In Sect. 3 we show how to construct a linear relaxation of (1). In Sect. 4 we
describe an LP the solution of which is the limit point of the FBBT algorithm. In
Sect. 5 we discuss computational results on the MINLPLib showing the potential
of the LP-based technique.

2 The FBBT algorithm

The FBBT algorithm works by propagating the variable range vector X0 ∈ I n

to the operators in g(x) (using interval arithmetic) in order to derive the interval
vector G ∈ I m consisting of lower and upper bounds on g(x) when x ∈ X0;
the vector G ∩ G0 is then propagated back to a variable range vector X using
inverse interval arithmetic. The interval vector X ∩ X0 therefore contains valid
and potentially tighter variable ranges for x. If X∩X0 ( X0, then the procedure
can be repeated with X0 replaced by X ∩X0 until no more change occurs. The
FBBT algorithm can be shown to converge to a fixed point (fp), see Sect. 2.3.
As mentioned in the introduction, the FBBT might fail to converge to its fp in
finite time. With a slight abuse of terminology justified by Thm. 2.2 we shall
refer to “nonconvergence” to mean “convergence to the fp in infinite time”.

2.1 Expression graphs

We make the assumption that the functions g appearing in (1) are represented
by expressions built recursively as follows:

1. any element of {x1, . . . , xn} ∪R is an expression (such primitive expressions
are called atoms);

2. if e1, e2 are expressions, then e = e1 ⊗ e2 is an expression for all operators
⊗ in a given set O; e1, e2 are said to be subexpressions of e.

Let E be the set of all expressions built by the repeated applications of the two
above rules, and for all e ∈ E let function(e) be the function f : Rn → R which e

represents (this correspondence can be made precise using an evaluation function
for expressions [19], p. 244); conversely, to all functions in f ∈ function(E) we
let expression(f) be the expression e representing f . Each expression e ∈ E can
also be associated to its recursion directed acyclic graph (DAG) dag(e) whose
root node is e and whose other nodes are subexpressions of e, subexpressions of
subexpressions of e and so on. An arc (u, v) in dag(e) implies a subexpression
relation where v is a subexpression of u; with a slight abuse of notation we
identify non-leaf nodes of dag(e) with operators (labelled ⊗v for an operator
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⊗ ∈ O at a node v) and leaf nodes with atoms (labelled either xi if the node
is a variable, or the real constant that the node represents). For all nodes u of
dag(e) we indicate by δ+(u) the outgoing star of the node u, i.e. all vertices v

such that (u, v) is an arc in dag(e).
We assume that O contains: the infix n-ary sum +, the infix binary difference

−, left multiplication operators a× for each nonzero real constant a ∈ R r {0},
the infix n-ary product ×, the infix binary division ÷, right raising operators
(·)q for each rational constant q ∈ Q, the left unary exponential operator exp,
its inverse log and the left unary trigonometric operators sin, cos, tan. We also
let O ′ = {+,−, a×} be the set of linear operators. Endowed with the operator
set O, the MINLP formulation (1) can express all practically interesting MP
problems from Linear Programming (LP), where O is replaced by O ′ and Z = ∅,
Mixed-Integer Linear Programming (LP), where O is replaced by O ′ and Z 6= ∅,
Nonlinear Programming (NLP), where Z = ∅, to MINLPs, where Z 6= ∅. By
letting atoms range over matrices, formulation (1) can also encode Semidefinite
Programming (SDP) [14]. Black-box optimization problems, however, cannot be
described by formulation (1).

The expression representation for functions is well known in computer science
[15], engineering [16, 17] and GO [18–20] where it is used for two substeps of the
sBB algorithm: lower bound computation and FBBT. More formal constructions
of E can be found in [21], Sect. 3 and [22], Sect. 2.

2.2 The problem DAG

We can also associate a DAG to the whole problem (1) to describe its symbolic
nonlinear structure:

D′ =
⋃

i≤m

dag(expression(gi)) (2)

D = contract(D′, {x1, . . . , xn}), (3)

where contract(G,L) is the result of contracting all vertices of G labelled by ℓ

for all ℓ ∈ L, i.e. of replacing each subgraph of G induced by all vertices labelled
by ℓ ∈ L by a single node labelled by ℓ. The difference between D′ and D

is that in D′ some variable nodes are repeated; more precisely, if xj occurs in
both gi and gh, xj will appear as a leaf node in both dag(expression(gi)) and
dag(expression(gh)).

For all v in D (resp. D′) we let index(v) be i if v is the root node for gi, j if
v is the node for xj , and 0 otherwise. If v is a constant atom, we let cv be the
value of the constant.

2.3 Formal definition of the FBBT operator

An iteration of the FBBT consists of an upward phase, propagating variable
ranges X to an interval vector G such that g(x) ∈ G, and of a downward phase,
propagating G ∩ G0 down again to updated variable ranges X. Propagation
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occurs along the arcs of D. To each node v of D we associate an interval Yv;
initially we set Y = Y 0 where for all v representing variable nodes we have
Y 0

v = X0
index(v), for root nodes representing constraints we have Y 0

v = G0
index(v),

and Y 0
v = [−∞,∞] otherwise. Operators ⊗v act on intervals by means of interval

arithmetic [23]. The upward propagation occurs along the arcs in the opposite
direction, as shown in Alg. 1.

Algorithm 1 up(v, Y )

Require: v (node of D), Y

Ensure: Y

1: if v is not an atom then

2: for all u ∈ δ+(v) do

3: Y = up(u, Y )
4: end for

5: Let Yv = Yv ∩ ⊗v(Yu | u ∈ δ+(v))
6: else if v is a constant atom then

7: Yv = [cv, cv]
8: end if

9: return Y

The downward propagation is somewhat more involved and follows the arcs of
D′ in the natural direction. For each non-root node v in D′ we define parent(v) as
the unique node u such that (u, v) is an arc in D′, the set siblings(v) = δ+(v)r{v}
and the set family(v) = {parent(v)} ∪ siblings(v), i.e. the siblings and the parent

of v. Let z = parent(v); then ⊗z induces a function R|δ+(z)| → R such that:

wz = ⊗z(wu | u ∈ δ+(z)). (4)

We now define the operator ⊗−1
v as an “inverse” of ⊗z in the v coordinate. If

there is an expression e ∈ E such that wv = function(e)(wu | u ∈ family(v)) if and
only if (4) holds, let ω−1

v = function(e); otherwise, let ⊗−1
v map every argument

tuple to the constant interval [−∞,∞]. The downward propagation, shown in
Alg. 2, is based on applying ⊗−1

v recursively to D′.

We remark that down is defined on D′ rather than D for a technical reason,
i.e. family relies on nodes having a unique parent, which is the case for D′ since
it is the union of several DAGs; however, leaf nodes of D′ representing the same
variable j ≤ n are contracted to a single node in D, which therefore loses the
parent uniqueness property at the leaf node level. Notwithstanding, Y is indexed
on nodes of D rather than D′, so that in Line 3 (Alg. 2), when u is a variable
node we have Yu = Xindex(u), so that the update on Yu is carried out on the
interval referring to the same variable independently of which DAG was used in
the calling sequence.

If p is the number of vertices in D, up and down are operators I p → I p.
Since the up operator only changes the intervals in Y relating to a single expres-
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Algorithm 2 down(v, Y )

Require: v (node of D′), Y

Ensure: Y

1: if v is not an atom then

2: for all u ∈ δ+(v) s.t. u is not a constant atom do

3: Yu = Yu ∩ ⊗−1
u (family(u))

4: end for

5: for all u ∈ δ+(v) do

6: Y = down(u, Y )
7: end for

8: end if

9: return Y

sion DAG, we extend its action to the whole of D:

U(Y ) =
⋂

i≤m

up(ḡi, Y ), (5)

where ḡi denotes the root node of dag(expression(gi)). Similarly, since down needs
to be applied to each root node of D′, we define:

D(Y ) =
⋂

i≤m

down(ḡi, Y ). (6)

Finally, we define the FBBT operator:

F(Y ) = D(U(Y ∩ Y 0) ∩ Y 0). (7)

Lemma 2.1. The operators U , D, F are monotone and inflationary in the in-

terval lattice I p ordered by reverse inclusion ⊇.

Proof. Monotonicity follows because all the interval arithmetic operators in O

are monotone [23], the composition of monotone operators is monotone, the
functions represented by expressions in E are compositions of operators in O.
Inflationarity follows because of the intersection operators in Lines 5 of Alg. 1
and 3 of Alg. 2 and those in (5)-(7). ⊓⊔

Theorem 2.2. The operator F has a unique least fixed point.

Proof. This follows by Lemma 2.1 and Thm. 12.9 in [24]. ⊓⊔

We remark that since we ordered I p by reverse inclusion, the least fixed point
(lfp) of Thm. 2.2 is actually the greatest fixed point (gfp) with respect to stan-
dard interval inclusion.
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3 Linear relaxation of the MINLP

Different implementations of the sBB algorithm construct the lower bound x̄n

to the optimal objective function value x∗
n in different ways. Some are based on

the factorability of the functions in g(x) [25–27], whilst others are based on a
symbolic reformulation of (1) based on the problem DAG D [18–20]. We employ
the latter approach: each non-leaf node z in the vertex set of D is replaced by
an added variable wz and a corresponding constraint (4) is adjoined to to the
formulation (usually, two variables wv, wu corresponding to identical defining
constraints are replaced by one single added variable). The resulting reformula-
tion, sometimes called Smith standard form [18], is exact [14]. A linear relaxation
of (1) can automatically be obtained by the Smith standard form by replacing
each nonlinear defining constraints by lower and upper linear approximations. In
order for the sBB convergence property to hold, the coefficients of these linear
approximations are functions of the variable ranges X = [xL, xU ], so that as the
width of Xi decreases for some i ≤ n, the optimal objective function value of
the linear relaxation increases.

4 FBBT in the linear case

In this section we assume that the nonlinear part g(x) ∈ G0 of (1) is either
replaced by its linear relaxation ḡ(x) ∈ Ḡ0 as discussed in Sect. 3 or by the
largest subset of linear constraints ĝ(x) ∈ Ĝ0 in (1), called the linear part of (1).

If X̄ = {x ∈ Rn | ḡ(x) ∈ Ḡ0} and X̂ = {x ∈ Rn | ĝ(x) ∈ Ĝ0} are the feasible

regions of the relaxation and of the linear part of (1), then X̄ ⊆ X̂ . Both X̄

and X̂ can be represented by systems of linear equations and inequalities:

Ax ∈ B0, (8)

where A = (aij) is a m× n real matrix. A system (8) encoding X̄ is a lifting in
the w added variables and has in general many more constraints than a system
(8) encoding X̂ . Performing the FBBT on the relaxation will generally yield
tighter ranges than on the linear part. For the purposes of this section, the
construction of the LP yielding the gfp will be exactly the same in both cases.

The constraints in (8) are of the form b0L ≤ ai·x ≤ b0U , where B0 = [b0L, b0U ]
and ai is the i-th row of A. Letting Ji = {j1, . . . , jki

} be such that aij 6= 0 for all
j ∈ Ji and aij = 0 otherwise, we write gi(x) =

∑

j∈Ji

aijxj , e = expression(gi) =

aij1 × xj1 + · · · + aijki
× xjki

and hence dag(e) is the DAG shown in Fig. 1.
Because of their simple structure, the intervals Yv where v represents oper-

ators such as aij× can be disposed of, and closed form interval expressions for
U , D can be derived that act on an interval vector (X,B) where X ∈ I n and
B ∈ I m. Specifically, U becomes:

U(X,B) = (X, (Bi ∩
∑

j∈Ji

aijXj | i ≤ m)) (9)
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. . .

. . .

+

aij1× aijki
×

xj1 xjki

Fig. 1. The expression DAG of a row of (8).

and D becomes:

down(X,B) = ((Xj ∩
⋂

i≤m

aij 6=0

1

aij

(Bi −
∑

ℓ 6=j

aiℓXℓ) | j ≤ n), B), (10)

where the products and the sums are interval operations [23]. The equivalence
of (9) with (5) in the linear case follows by simply replacing aijXj with an
interval Yv for a node v in D representing the operator aij×, and similarly for
the equivalence of (10) with (6), where we remark that the interval inverse ⊗−1

v of
a linear form in each component is simply another linear form. We consequently
re-define F for the linear case as follows:

F(X,B) = D(U(X ∩ X0, B ∩ B0)). (11)

4.1 Greatest fixed point via Linear Programming

The gfp of F with respect to interval inclusion is, by definition,

gfp(F) = sup⊆{(X,B) ∈ I
n+m | (X,B) = F(X,B)}. (12)

Consider the interval vector width sum function | · | : I n → R+ given by
|X| =

∑

j≤n(xU
j − xL

j ). It is easy to see that it is monotonic with the lattice
order ⊆ on I n, in the sense that if X ⊆ X ′ then |X| ≤ |X ′| (the converse may
not hold). Furthermore, for (X,B) ∈ I n+m we have |(X,B)| = |X| + |B|.

4.1 Proposition

|gfp(F)| ≥ |X| + |B| for all fixed points (X,B) of F .

Proof. Since (X∗, B∗) = gfp(F) is the inclusion-wise greatest of all fixed points
of F , it is also maximal with respect to all the other fixed points that are included
in it. Suppose, to get a contradiction, that there is a fixed point (X ′, B′) of F with
|X ′| + |B′| > |X∗| + |B∗|; by assumption, (X ′, B′) is not included in (X∗, B∗).
Since the set of fixed points of F is a complete lattice by Tarski’s Fixed Point
theorem [28], there must be a fixed point (X ′′, B′′) of F which includes both
(X ′, B′) and (X∗, B∗). By monotonicity of | · |, |X ′| + |B′| ≤ |X ′′| + |B′′|, and
hence |X∗| + |B∗| < |X ′′| + |B′′|, showing that (X ′′, B′′) ) (X∗, B∗) and hence
that (X∗, B∗) is not the gfp of F , against the hypothesis. ⊓⊔
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4.2 Theorem

The following interval programming problem:

max |X| + |B|
(X,B) ⊆ (X0, B0)
(X,B) ⊆ U(X,B)
(X,B) ⊆ D(X,B)















(13)

has a unique global optimum equal to gfp(F).

Proof. By Tarski’s Fixed Point Theorem [28], the gfp of F is the join of all its
pre-fixed points, so we can replace = with ⊆ in (12). The equivalence of (13)
with (12) then follows by Prop. 4.1 and (11). Uniqueness of solution follows by
uniqueness of the gfp. ⊓⊔

We remark that (13) can be reformulated as an ordinary LP by simply replac-
ing each interval Xj = [xL

j , xU
j ] by pairs of decision variables (xL

j , xU
j ) with the

constraint xL
j ≤ xU

j (for all j ≤ n and similarly for B = [bL, bU ]). The constraints
for U can be trivially reformulated from interval to scalar arithmetic; the equiv-
alent reformulation for constraints in D is a little more involved but very well
known [18, 19, 5]. The LP encoding the gfp of the FBBT is given in (14)-(34).
The z variables have been added for clarity — they simply replace products aijxj

appropriately, depending on the sign of aij . Let S+ = {i ≤ m, j ≤ n | aij > 0}
and S−{i ≤ m, j ≤ n | aij < 0}.

max
x,b,z

X

j≤n

(x
U
j − x

L
j ) +

X

i≤m

(b
U
i − b

L
i ) (14)

∀j ≤ n x
L
j ≥ x

0L
j (15)

∀j ≤ n x
U
j ≤ x

0U
j (16)

∀i ≤ m b
L
j ≥ b

0L
i (17)

∀i ≤ m b
U
j ≤ b

0U
i (18)

∀(i, j) ∈ S
+

z
L
ij = aijx

L
j (19)

∀(i, j) ∈ S
+

z
U
ij = aijx

U
j (20)

∀(i, j) ∈ S
−

z
L
ij = aijx

U
j (21)

∀(i, j) ∈ S
−

z
U
ij = aijx

L
j (22)

∀i ≤ m b
L
i ≥

X

j≤n

z
L
ij (23)

∀i ≤ m b
U
i ≤

X

j≤n

z
U
ij (24)

∀(i, j) ∈ S
+

x
L
j ≥

1

aij

(b
L
i −

X

ℓ 6=j

z
U
iℓ) (25)

∀(i, j) ∈ S
+

x
U
j ≤

1

aij

(b
U
i −

X

ℓ 6=j

z
L
iℓ) (26)

∀(i, j) ∈ S
−

x
L
j ≥

1

aij

(b
U
i −

X

ℓ 6=j

z
L
iℓ) (27)

∀(i, j) ∈ S
+

x
U
j ≤

1

aij

(b
L
i −

X

ℓ 6=j

z
U
iℓ) (28)

∀j ≤ n x
L
j ≤ x

U
j (29)

∀i ≤ m b
L
i ≤ b

U
i (30)

∀i ≤ m, j ≤ n z
L
ij ≤ z

U
ij (31)

x
L

, x
U

∈ R
n

(32)

b
L

, b
U

∈ R
m

(33)

z
L

, z
U

∈ R
mn

. (34)

Constraints (15)-(18) encode (X,B) ⊆ (X0, B); constraints (19)-(24) encode
(X,B) ⊆ U(X,B); constraints (25)-(28) encode (X,B) ⊆ D(X,B); and con-
straints (29)-(31) encode the fact that the decision variables xL, xU , bL, bU (as
well as the auxiliary variables zL, zU ) represent intervals.

If we formalize the problem of finding the gfp of the FBBT operator as a
decision problem (for example deciding if the gfp width sum is smaller than
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the original bounds X0 by at least a given constant γ > 0), then Thm. 4.2
shows that this problem is in P. It is interesting to remark that [29] proves
that essentially the same problem (with a few more requirements on the type of
allowed constraints in Ax ∈ G0) is NP-complete as long as variable integrality
constraints are enforced.

5 Computational results

Our testbed consists of the MINLPLib [30] instance library. We first artificially
restricted each instance to X ∈ {−104, 104} in order for | · | to be bounded. Sec-
ondly, we ran the FBBT on the linear constraints ĝ(x) ≤ Ĝ0, with a termination
condition set at |Xk△Xk−1| ≤ 10−6 on slow progress at iteration k. We then
computed the fixed point by solving the LP (14)-(34) applied to ĝ(x) ≤ Ĝ0. The
FBBT, as well as the automatic construction of the LP (14)-(34), were imple-
mented in ROSE [31, 32]. LPs were solved using CPLEX 11 [33]. All results were
obtained on one core of an Intel Core 2 Duo at 1.4GHz with 3GB RAM running
Linux.

Out of 194 MINLPs in the MINLPLib we obtained results for 172 (the re-
maining ones failing on some AMPL [34] error). For each successful instance
we computed the width sum |X| of the obtained solution and the user CPU
time taken by the traditional FBBT method and by the LP based one. As these
methods would be typically used in a sBB algorithm, we ignored the LP con-
struction time, since this would be performed just once at the root node and
then simply updated with the current node interval bounds X0. The full ta-
ble can be accessed at http://www.lix.polytechnique.fr/~liberti/fbbtlp_
table-1007.csv. Table 1 only reports the totals, averages and standard devia-
tions of the sample.

FBBT LP-based
Statistic |X| CPU |X| CPU

Total 9.38 × 107 394.37 9.16 × 107 9.07
Average 5.4 × 105 2.29 5.3 × 105 0.05
Std. dev. 1.365 × 106 17.18 1.362 × 106 0.18

Table 1. Totals, averages, standard deviations of the width sum and CPU times taken
by FBBT and LP on 172 MINLPLib instances.

Table 1 is consistent with what was empirically observed about the FBBT:
it often works well but it occasionally takes a long time converging to the fixed
point. The LP-based method addresses this weakness perfectly, as shown by the
markedly better CPU time statistics. Since the LP finds the guaranteed gfp, it
also produces somewhat tighter interval bounds, although the savings in terms
of |X| are not spectacular. The traditional FBBT was strictly faster than the
LP-based method in 43% of the instances. The bulk of the CPU time savings of
the LP-based method is due to twelve FBBT CPU time outliers taking > 1s (the
results are shown in Table 2). For nine of these the large CPU time is actually
due to problem size, i.e. the number of FBBT iterations is low (< 5). Three of
the instances displayed clear signs of nonconvergence.
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Name FBBT CPU time FBBT iterations
cecil 13 27.6 29
nuclear14b 16.25 2
nuclear14 5.96 1
nuclear24b 16.19 2
nuclear24 5.89 1
nuclear25b 18.97 2
nuclear25 6.78 1
product 11.21 4
risk2b 2.28 2
space960 218.41 2
super3t 39.96 15
util 12.78 321

Table 2. FBBT CPU time outlier instances.
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