The Discretizable Molecular Distance Geometry Problem

Antonio Mucherino

Laboratorie d'Informatique, Ecole Polytechnique

joint work with: L. Liberti, C. Lavor and N. Maculan

ARS Workshop, Oct 31st 2008

LIX

< ≣⇒

A. Mucherino

Introdution
0000000

Outline

1 Introdution

- The MDGP
- The Discretizable MDGP

2 The Branch & Prune algorithm

- The algorithm
- Computational experiments
- 3 Open problems and future work
 - Always a power of 2 number of solutions?
 - Accuracy of the instances

ntrodution •oooooo •oooooo	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work oo oo	Summary o
The MDGP			

Outline

- The Discretizable MDGP
- 2 The Branch & Prune algorithm
 - The algorithm
 - Computational experiments
- 3 Open problems and future work
 - Always a power of 2 number of solutions?
 - Accuracy of the instances

Open problems and future work

Summary o

The MDGP

Introduction to the problem

Let $X = \{x_1, x_2, ..., x_n\}$ be a set of points in a three-dimensional space

- Let us suppose that the coordinates of the points x_i are unknown
- Let us suppose that some of the distances d_{ij} between couples of points x_i and x_j are known
- Problem: can we find all the coordinates x_i from the known distances d_{ij} ??

A. Mucherino

Open problems and future work

Summary o

The MDGP

Introduction to the problem

- Let $X = \{x_1, x_2, ..., x_n\}$ be a set of points in a three-dimensional space
- Let us suppose that the coordinates of the points x_i are unknown
- Let us suppose that some of the distances d_{ij} between couples of points x_i and x_j are known
- Problem: can we find all the coordinates x_i from the known distances d_{ij} ??

A. Mucherino

Open problems and future work

Summary o

The MDGP

Introduction to the problem

- Let $X = \{x_1, x_2, ..., x_n\}$ be a set of points in a three-dimensional space
- Let us suppose that the coordinates of the points x_i are unknown
- Let us suppose that some of the distances d_{ij} between couples of points x_i and x_j are known
- Problem: can we find all the coordinates x_i from the known distances d_{ij} ??

A. Mucherino

Open problems and future work

Summary o

The MDGP

Introduction to the problem

- Let $X = \{x_1, x_2, ..., x_n\}$ be a set of points in a three-dimensional space
- Let us suppose that the coordinates of the points x_i are unknown
- Let us suppose that some of the distances d_{ij} between couples of points x_i and x_j are known
- Problem: can we find all the coordinates x_i from the known distances d_{ij} ??

イロト イポト イヨト イヨト

Introdution	The Branch & Prune algorithm	Open problems and future work	Sumn
0000000 00000000	000 00000000	00	
The MDOD			

Introduction to the problem

$$\{d_{ij}: x_i, x_j \in X\} \supseteq D \longrightarrow X = \{x_1, x_2, \dots, x_n\} ???$$

If X is a molecular conformation, and each x_i represent an atom, this problem is known as

MOLECULAR DISTANCE GEOMETRY PROBLEM (MDGP)

Introdution	The Branch & Prune algorithm	Open problems and future work	Summa
0000000 00000000	000 00000000		

Introduction to the problem

If X is a molecular conformation, and each x_i represent an atom, this problem is known as

MOLECULAR DISTANCE GEOMETRY PROBLEM (MDGP)

Introdution 0000000 0000000	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work oo oo	Summary o
The MDGP			
The MDGF Formulation I	0		

A molecular conformation is solution for the MDGP if and only if

$$||\mathbf{x}_i - \mathbf{x}_j|| = d(\mathbf{x}_i, \mathbf{x}_j).$$

This is a constraint satisfation problem

A. Mucherino

Introdution ooooo●o ooooooo	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work oo oo	Summary o
The MDGP			
The MDG	C		

Let us define the function

$$g(X) = \sum_{\{i,j\}} (||\textbf{x}_i - \textbf{x}_j||^2 - d_{ij}^2)^2.$$

- A conformation X is solution for the MDGP if and only if g(X) = 0
- Solutions can be found by minimizing the function g(X)
- This is an unconstrained global optimization problem

→ E > < E >

< < >> < <</>

Introdution 00000●0 0000000	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work oo oo	Summary o
The MDGP			
The MDG	P		

Let us define the function

$$g(X) = \sum_{\{i,j\}} (||\textbf{x}_i - \textbf{x}_j||^2 - d_{ij}^2)^2.$$

- A conformation X is solution for the MDGP if and only if g(X) = 0
- Solutions can be found by minimizing the function g(X)
- This is an unconstrained global optimization problem

イロト イポト イヨト イヨト

Introdution 00000●0 0000000	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work oo oo	Summary o
The MDGP			
The MDG	P		

Let us define the function

$$g(X) = \sum_{\{i,j\}} (||x_i - x_j||^2 - d_{ij}^2)^2.$$

- A conformation X is solution for the MDGP if and only if g(X) = 0
- Solutions can be found by minimizing the function g(X)

This is an unconstrained global optimization problem

Introdution 000000● 00000000	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work oo oo	Summary o
The MDGP			
The MDGF Formulation III)		

Let G = (V, E, d) be a weighted undirected graph, where

- V is the set of indeces i of the atoms in X (the vertices of G);
- E is the subset of couples of atoms whose distance is known (the edges of G);

\blacksquare *d* is the set of known distances (the weights of *G*).

X is a solution for the MDGP if there is a function x such that

$$X = \{x(v) : v \in V\}, \text{ where } x : G \to \mathbb{R}^3$$
$$||x(u) - x(v)|| = d(u, v) \text{ for each } \{u, v\} \in E$$

イロト イポト イヨト イヨト

Introdution	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work oo oo	Summary o
The MDGP			
The MD	GP		

- Let G = (V, E, d) be a weighted undirected graph, where
 - V is the set of indeces i of the atoms in X (the vertices of G);
 - E is the subset of couples of atoms whose distance is known (the edges of G);

\blacksquare *d* is the set of known distances (the weights of *G*).

X is a solution for the MDGP if there is a function x such that

■
$$X = \{x(v) : v \in V\}$$
, where $x : G \to \mathbb{R}^3$
■ $||x(u) - x(v)|| = d(u, v)$ for each $\{u, v\} \in E$

Formulation III

Introdution 000000● 00000000	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work oo oo	Summary o
The MDGP			
The MDGI	>		

- Let G = (V, E, d) be a weighted undirected graph, where
 - V is the set of indeces i of the atoms in X (the vertices of G);
 - E is the subset of couples of atoms whose distance is known (the edges of G);
 - \blacksquare *d* is the set of known distances (the weights of *G*).
- X is a solution for the MDGP if there is a function x such that
 - $X = \{x(v) : v \in V\}$, where $x : G \to \mathbb{R}^3$ ■ ||x(u) - x(v)|| = d(u, v) for each $\{u, v\} \in E$

Formulation III

・ロン ・聞 と ・ ヨ と ・ ヨ と

Introdution ○○○○○○● ○○○○○○○	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work	Summary o
The MDGP			
The MD	GP		

- Let G = (V, E, d) be a weighted undirected graph, where
 - V is the set of indeces i of the atoms in X (the vertices of G);
 - E is the subset of couples of atoms whose distance is known (the edges of G);
 - \blacksquare *d* is the set of known distances (the weights of *G*).
- X is a solution for the MDGP if there is a function x such that

< < >> < <</>

■
$$X = \{x(v) : v \in V\}$$
, where $x : G \to \mathbb{R}^3$
■ $||x(u) - x(v)|| = d(u, v)$ for each $\{u, v\} \in E$

A. Mucherino

The Discretizable MDGP

Formulation III

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 •0000000	000 000000	00	
The Discretizable MDGP			

Outline

Introdution The MDGP

The Discretizable MDGP

2 The Branch & Prune algorithm

- The algorithm
- Computational experiments

3 Open problems and future work

- Always a power of 2 number of solutions?
- Accuracy of the instances

イロト イポト イヨト イヨト

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary	
0000000	000	00		
0000000	00000000			
The Discretizable MDGP				

Our approach

Assumption I

E contains all cliques on quadruplets of consecutive vertices:

$$\forall i \in \{4, \dots, n\} \; \forall j, k \in \{i - 3, \dots, i\} \quad \{j, k\} \in E$$

LIX

A. Mucherino

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 0000000	000 00000000	00	
The Discretizable MDGP			

Our approach

Assumption II

The following strict triangular inequality holds:

$$d_{i-1,i+1} < d_{i-1,i} + d_{i,i+1}, \quad i = 2, \dots, n-1$$

LIX

A. Mucherino

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 0000000	000	00	
The Discretizable MDGP			

The DMDGP

If Assumptions I and II hold, each atom can be placed in two possible positions only.

By exploiting the known distances and angles, the cosine of the torsion angle among 4 consecutive atoms can be computed.

A. Mucherino

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	000 0000000	00	
The Discretizable MDGP			

The DMDGP

If Assumptions I and II hold, each atom can be placed in two possible positions only.

The cosine corresponds to two torsion angles ω , having opposite sign.

LIX

A. Mucherino

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	000 000000	00	
The Discretizable MDGP			

The DMDGP

We call **Discretizable** MDGP (DMDGP) the problem of finding a function

$$x: G \to \mathbb{R}^3$$

such that

$$||x(u) - x(v)|| = d(u, v) \quad \{u, v\} \in E$$

LIX

where G = (V, E, d) is a weighted undirected graph and Assumptions I and II hold.

A. Mucherino

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	000 00000000	00 00	
The Discretizable MDGP			

Symmetry

It is possible to prove that:

- If the DMDGP problem has a solution, then it has at least another symmetric solution
- Couples of solutions of the DMDGP are symmetric

Theorem

Let $x : G \to \mathbb{R}^3$ be a solution for the DMDGP, defined by the torsion angles $\omega_{1,4}, \ldots, \omega_{n-3,n}$. If we invert the sign of $\sin \omega_{i-3,i}$, for i = 4, ..., n, then we obtain a new solution $x' : G \to \mathbb{R}^3$ for the DMDGP.

LIX

・ロト ・四ト ・ヨト ・ヨト

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	000 00000000	00 00	
The Discretizable MDGP			

Symmetry

It is possible to prove that:

- If the DMDGP problem has a solution, then it has at least another symmetric solution
- Couples of solutions of the DMDGP are symmetric

Theorem

Let $x : G \to \mathbb{R}^3$ be a solution for the DMDGP, defined by the torsion angles $\omega_{1,4}, \ldots, \omega_{n-3,n}$. If we invert the sign of $\sin \omega_{i-3,i}$, for i = 4, ..., n, then we obtain a new solution $x' : G \to \mathbb{R}^3$ for the DMDGP.

I IX

イロン イボン イヨン イヨン

Introdution 0000000 0000000	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work oo oo	Summary o
The Discretizable MDGP			

The two conformations look the same, but they are actually different!

(ロ) (四) (注) (注) (注) (注)

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	• 00 •••••	00	
The algorithm			

Outline

Introdution
 The MDGP
 The Discretizable MDGP

- 2 The Branch & Prune algorithmThe algorithm
 - Computational experiments
- 3 Open problems and future work
 - Always a power of 2 number of solutions?
 - Accuracy of the instances

イロト イポト イヨト イヨト

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000	000	00	
The algorithm			

- The BP algorithm mimicks the structure of the problem closely: we build a tree of possible choices for the atomic positions.
- At each step, the *i*-th atom can be placed in two possible positions x_i, x'_i
 - the two positions are both feasible: the search is branched;
 - only one position is feasible: the search procedees torwards one direction only;
 - both the positions are infeasible: the branch is pruned and the search is backtracked.

How to check the feasibility of atomic positions? Using pruning tests.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	000 00000000	00	
The algorithm			

- The BP algorithm mimicks the structure of the problem closely: we build a tree of possible choices for the atomic positions.
- At each step, the *i*-th atom can be placed in two possible positions x_i, x'_i
 - the two positions are both feasible: the search is branched;
 - only one position is feasible: the search procedees torwards one direction only;
 - both the positions are infeasible: the branch is pruned and the search is backtracked.
- How to check the feasibility of atomic positions? Using pruning tests.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	000 00000000	00	
The algorithm			

- The BP algorithm mimicks the structure of the problem closely: we build a tree of possible choices for the atomic positions.
- At each step, the *i*-th atom can be placed in two possible positions x_i, x'_i
 - the two positions are both feasible: the search is branched;
 - only one position is feasible: the search procedees torwards one direction only;
 - both the positions are infeasible: the branch is pruned and the search is backtracked.
- How to check the feasibility of atomic positions? Using pruning tests.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	000 00000000	00	
The algorithm			

- The BP algorithm mimicks the structure of the problem closely: we build a tree of possible choices for the atomic positions.
- At each step, the *i*-th atom can be placed in two possible positions x_i, x'_i
 - the two positions are both feasible: the search is branched;
 - only one position is feasible: the search procedees torwards one direction only;
 - both the positions are infeasible: the branch is pruned and the search is backtracked.
- How to check the feasibility of atomic positions? Using pruning tests.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	000 00000000	00	
The algorithm			

- The BP algorithm mimicks the structure of the problem closely: we build a tree of possible choices for the atomic positions.
- At each step, the *i*-th atom can be placed in two possible positions x_i, x'_i
 - the two positions are both feasible: the search is branched;
 - only one position is feasible: the search procedees torwards one direction only;
 - both the positions are infeasible: the branch is pruned and the search is backtracked.
- How to check the feasibility of atomic positions? Using pruning tests.

イロト イポト イヨト イヨト

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000 00000000	000 00000000	00	
The election			

Two pruning tests

- Direct Distance Feasibility (DDF)
 - Known and obtained distances are compared and, if they differ, the new atom position is infeasible
 - $||\mathbf{x}_j \mathbf{x}_i|| \neq d_{ij} \Longrightarrow j \text{ is infeasible}$

Dijkstra Shortest-Paths (DSP)

- If $D(i, k) < ||x_h x_i|| d_{hk}$ for all feasible $x : G \to \mathbb{R}^3$, then the BP search node for atomic position x_i can be pruned, where
 - $\blacksquare h < i < k$
 - **D**(i, k) is the shortest path between *i* and *k* in the graph *G*;
 - $||x_h x_i||$ is the computed distance between x_h and x_i ;
 - d_{hk} is the known distance between x_h and x_k .

DDF: simple and efficient;

DSP: more complex and more efficient.

A. Mucherino

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000	000 00000000	00	
The election			

Two pruning tests

- Direct Distance Feasibility (DDF)
 - Known and obtained distances are compared and, if they differ, the new atom position is infeasible
 - $||\mathbf{x}_j \mathbf{x}_i|| \neq d_{ij} \Longrightarrow j \text{ is infeasible}$

Dijkstra Shortest-Paths (DSP)

- If $D(i, k) < ||x_h x_i|| d_{hk}$ for all feasible $x : G \to \mathbb{R}^3$, then the BP search node for atomic position x_i can be pruned, where
 - $\bullet h < i < k$
 - **D**(i, k) is the shortest path between *i* and *k* in the graph *G*;
 - $||x_h x_i||$ is the computed distance between x_h and x_i ;
 - d_{hk} is the known distance between x_h and x_k .

DDF: simple and efficient;

DSP: more complex and more efficient.

Introdution The Branch & Prune algorithm		Open problems and future work	Summary			
0000000 00000000	000 00000000	00 00				
Computational experiments						

Outline

Introdution The MDGP The Discretizable MDGP

2 The Branch & Prune algorithmThe algorithm

- Computational experiments
- 3 Open problems and future work
 - Always a power of 2 number of solutions?
 - Accuracy of the instances

イロト イポト イヨト イヨト

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000	000 00000000	00	
Computational ava	rimonto		

A software procedure

A software procedure has been developed in C programming language.

Legend of the following Tables:

- Name instance name;
- *n* instance dimension;
- |E| number of known distances;
- #Sol number of found solutions;
- #DDF number of times DDF pruned atoms;
- #DSP number of times DSP pruned atoms;
- CPU CPU time;
- LDE Largest Distance Error:

$$LDE = \frac{1}{|E|} \sum_{(i,j) \in E} \frac{||x_i - x_j|| - d_{ij}|}{d_{ij}}$$

→ 프 → < 프 →</p>

< < >> < <</>

Introdution	The Branch & Prune algorithm
0000000	000
00000000	0000000

Open problems and future work

Computational experiments

Experiments on artificial instances

Only one pruning test

Experiments have been carried out on a set of artificially generated instances [Lavor, 2006]. Only the pruning test DDF is used here.

Instance		BP-One			BP-All			
Name	n	<i>E</i>	CPU	#DDF	LDE	CPU	#DDF	#Sol
lavor10	10	24	0.00	0	1.63e-16	0.00	0	64
lavor15	15	70	0.00	7	1.08e-09	0.00	11	1
lavor20	20	103	0.00	9	1.28e-09	0.00	16	1
lavor25	25	106	0.00	10	1.62e-09	0.00	49	2
lavor30	30	219	0.00	15	3.86e-09	0.00	381	2
lavor35	35	166	0.00	13	1.22e-09	0.00	169	16
lavor40	40	306	0.00	16	5.61e-06	0.00	136	2
lavor45	45	351	0.00	30	4.79e-09	0.00	58	1
lavor50	50	203	0.00	49	6.50e-10	0.07	23364	512
lavor55	55	224	0.00	26	1.43e-09	3.45	1304580	262144
lavor60	60	227	0.00	17	2.05e-09	0.62	262428	8192
lavor65	65	455	0.00	1165	7.89e-09	0.02	5184	8
lavor70	70	331	0.00	25	1.23e-08	16.30	2798220	4194304

Note that the symmetric solutions that can be found by the Theorem on symmetry are

not included.

A. Mucherino

The Discretizable MDGP

Introdution	
0000000	

Open problems and future work

→ 프 → < 프 →</p>

Computational experiments

Experiments on artificial instances

Two pruning tests

Both the pruning tests DDF and DSP are here used.

the computational time usually increases.

Inst	ance			BP-One			BP-All			
Name	n	E	CPU	#DDF	#DSP	LDE	CPU	#DDF	#DSP	#Sol
lavor10	10	24	0.00	0	0	1.63e-16	0.00	0	0	64
lavor15	15	70	0.00	7	0	1.08e-09	0.00	11	0	1
lavor20	20	103	0.00	9	0	1.28e-09	0.00	16	0	1
lavor25	25	106	0.00	8	1	1.62e-09	0.00	24	5	2
lavor30	30	219	0.00	15	0	3.86e-09	0.00	277	10	2
lavor35	35	166	0.00	9	1	1.22e-09	0.00	145	8	16
lavor40	40	306	0.00	16	0	5.61e-06	0.00	64	4	2
lavor45	45	351	0.00	17	2	4.79e-09	0.00	39	3	1
lavor50	50	203	0.00	24	8	6.50e-10	0.05	5924	5648	512
lavor55	55	224	0.00	22	2	1.43e-09	7.02	1173508	65536	262144
lavor60	60	227	0.00	13	2	2.05e-09	1.22	221462	16387	8192
lavor65	65	455	0.00	720	115	7.89e-09	0.01	3200	528	8
lavor70	70	331	0.00	25	0	1.23e-08	38.50	2732664	32774	4194304

DDF+DSP are more efficient, because they prune atoms earlier on the search tree, but

Ŀx

A. Mucherino

Introdution	
0000000	

Open problems and future work

Summary o

Computational experiments

Comparisons to DGSOL

We compared the BP algorithm to DGSOL [Moré and Wu, 1999].

Inst	ance	DGSOL		
Name	n	<i>E</i>	CPU	LDE
lavor10	10	24	0.03	3.01e+01
lavor15	15	70	0.05	0.00e+00
lavor20	20	103	0.08	0.00e+00
lavor25	25	106	0.24	2.62e-02
lavor30	30	219	1.02	4.43e-07
lavor35	35	166	1.38	1.00e-01
lavor40	40	306	0.57	1.94e-06
lavor45	45	351	1.33	9.47e-07
lavor50	50	203	1.55	7.43e-02
lavor55	55	224	2.06	2.31e-03
lavor60	60	227	0.41	1.50e+03
lavor65	65	455	2.94	1.27e-01
lavor70	70	331	5.10	9.60e-02

The computational time and quality of the solutions are not comparable with the ones of the BP algorithm.

・ロン ・回 と ・ ヨン ・ ヨン

A. Mucherino

Introdution	T
0000000	
	0

ne Branch & Prune algorithm ○○ ○○○○●○○○ Open problems and future work

Summary o

Computational experiments

Creating real instances

PDB file \Longrightarrow MDGP instance

- the three-dimensional conformation of a protein molecule can be downloaded from the PDB
- all the distances between its atoms can be computed
- all the distances smaller than 6Å can be used for generating an instance for the MDGP
- this simulates data obtained from NMR experiments, which are able to detect only distances within such a range
- in these experiments, only the backbone atoms *N*, C_{α} and *C* are considered

イロン イ理 とくほう くほう

Introdution	The Branch & Prune algorithm
0000000	000
00000000	00000000

Open problems and future work

Summary o

Computational experiments

Creating real instances

$\mathsf{PDB} \text{ file} \Longrightarrow \mathsf{MDGP} \text{ instance}$

the three-dimensional conformation of a protein molecule can be downloaded from the PDB

- all the distances between its atoms can be computed
- all the distances smaller than 6Å can be used for generating an instance for the MDGP
- this simulates data obtained from NMR experiments, which are able to detect only distances within such a range
- in these experiments, only the backbone atoms *N*, C_{α} and *C* are considered

イロト イポト イヨト イヨト

Introdution	The Branch & Prune algorithm	Open problems and future work
0000000	000	
	000000000	

Creating real instances

PDB file \Longrightarrow MDGP instance

- the three-dimensional conformation of a protein molecule can be downloaded from the PDB
- all the distances between its atoms can be computed
- all the distances smaller than 6Å can be used for generating an instance for the MDGP
- this simulates data obtained from NMR experiments, which are able to detect only distances within such a range
- in these experiments, only the backbone atoms *N*, C_{α} and *C* are considered

I IX

イロト イポト イヨト イヨト

Summary

A Mucherino

Introdution	The Branch & Prune algorithm	Open problems and future work	
0000000	000	00	
	000000000		

Creating real instances

PDB file \Longrightarrow MDGP instance

- the three-dimensional conformation of a protein molecule can be downloaded from the PDB
- all the distances between its atoms can be computed
- all the distances smaller than 6Å can be used for generating an instance for the MDGP
- this simulates data obtained from NMR experiments, which are able to detect only distances within such a range
- in these experiments, only the backbone atoms *N*, C_{α} and *C* are considered

イロト イポト イヨト イヨト

Introdution	The Branch & Prune algorithm	Open problems and future work	
000000	000		
	00000000		

Creating real instances

PDB file \Longrightarrow MDGP instance

- the three-dimensional conformation of a protein molecule can be downloaded from the PDB
- all the distances between its atoms can be computed
- all the distances smaller than 6Å can be used for generating an instance for the MDGP
- this simulates data obtained from NMR experiments, which are able to detect only distances within such a range
- in these experiments, only the backbone atoms *N*, C_{α} and *C* are considered

イロト イポト イヨト イヨト

Introdution	The Branch & Prune algorithm	Open problems and future work	
00000000	000000000	00	

Creating real instances

PDB file \Longrightarrow MDGP instance

- the three-dimensional conformation of a protein molecule can be downloaded from the PDB
- all the distances between its atoms can be computed
- all the distances smaller than 6Å can be used for generating an instance for the MDGP
- this simulates data obtained from NMR experiments, which are able to detect only distances within such a range
- in these experiments, only the backbone atoms N, C_{α} and C are considered

イロン イ理 とくほう くほう

odution	The Branch & Prune algorithm	Open problems and future work
00000	000 000000000	00

Summary o

Computational experiments

Experiments on real instances

	Instance	nstance		P-One	BP-All		DGSOL		
Name	n	<i>E</i>	CPU	LDE	CPU	#Sol	CPU	LDE	
1aqr	120	929	0.00	1.86e-09	0.00	2	7.77	4.88e-01	
2erl	120	1136	0.00	1.33e-14	0.00	1	9.38	2.92e-01	
lcrn	138	1250	0.00	2.24e-13	0.00	1	9.47	2.24e-01	
lahl	147	1205	0.00	1.50e-09	0.00	8	6.95	1.46e-01	
1brz	159	1394	0.00	3.53e-13	0.00	2	11.39	4.66e-01	
1hoe	222	1995	0.00	3.18e-13	0.00	1	16.83	2.06e-01	
11fb	232	2137	0.00	5.31e-14	0.00	1	38.94	2.88e-01	
1pht	249	2283	0.00	2.73e-12	0.00	1	42.50	2.00e-01	
1jk2	270	2574	0.00	2.09e-13	0.00	1	86.98	4.05e-01	
1f39a	303	2660	0.00	2.68e-12	0.00	1	37.24	2.80e-01	
lacz	324	3060	0.00	3.15e-12	0.02	4	35.97	3.97e-01	
1poa	354	3193	0.00	1.36e-13	0.00	1	64.03	4.67e-01	
lfs3	378	3443	0.00	8.08e-13	0.01	1	54.68	2.69e-01	
1mbn	459	4599	0.00	1.36e-09	0.00	1	124.24	4.46e-01	
1rgs	792	7626	0.00	4.22e-13	0.01	1	237.93	4.69e-01	
1m40	1224	20382	0.02	1.00e-12	5.26	1	1142.49	4.89e-01	
1bpm	1443	14292	0.02	2.85e-13	0.02	1	398.29	5.06e-01	
ln4w	1610	16940	0.02	1.19e-12	0.02	1	994.51	5.26e-01	
lmqq	2032	19564	0.02	4.90e-12	0.06	1	451.58	5.40e-01	
1rwh	2265	21666	0.02	2.08e-13	0.06	1	934.29	5.38e-01	
3b34	2790	29188	0.07	1.17e-11	0.07	1	940.95	6.47e-01	
2e7z	2907	42098	0.08	4.26e-12	0.09	1	915.39	6.40e-01	
lepw	3861	35028	0.16	3.19e-12	0.25	1	2037.86	4.92e-01	

A. Mucherino

3

Ŀx

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000	000		
	000000000		
Computational expe	eriments		

The instance lagr

The sequence of signs of the sine values in the 4 solutions of the instance lagr.

There are only 2 non-symmetric solutions.

Their only difference stands in the 8th torsion angle.

fror	n ator	n 1 to	atom	20															
+	+	+	+	+	+	-	÷	+	-	-	+	+	-	+	+	-	+	-	-
+	+	+	+	+	+	-	1.1	+	-	-	+	+	-	+	+	-	+	-	-
+	+	+	-	-	-	+	+	-	+	+	-	-	+	-	-	+	-	+	+
+	+	+	-	-	-	+	1.1	-	+	+	-	-	+	-	-	+	-	+	+
fror	n ator	n 21 ta	o aton	n 40															
+	-	-	+	-	+	+	-	-	+	-	+	+	+	-	+	+	-	+	+
+	-	-	+	-	+	+	-	-	+	-	+	+	+	-	+	+	-	+	+
-	+	+	-	+	-	-	+	+	-	+	-	-	-	+	-	-	+	-	-
-	+	+	-	+	-	-	+	+	-	+	-	-	-	+	-	-	+	-	-
fror	n ator	n 41 to	o aton	1 60															
-	+	+	-	+	+	-	+	+	-	+	-	-	+	-	-	+	+	-	+
-	+	+	-	+	+	-	+	+	-	+	-	-	+	-	-	+	+	-	+
+	-	-	+	-	-	+	-	-	+	-	+	+	-	+	+	-	-	+	-
+	-	-	+	-	-	+	-	-	+	-	+	+	-	+	+	-	-	+	-

Only the first 60 backbone atoms are shown.

A. Mucherino

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary				
0000000	000	00					

The instance lagr

All the solutions of the instance lagr.

A. Mucherino

Introdution 0000000 0000000	The Branch & Prune algorithm ০০০ ০০০০০০০০০	Open problems and future work ●0 ○0	Summary o
Always a power of 2	number of solutions?		
Outline			

_

The MDGP

- The Discretizable MDGP
- 2 The Branch & Prune algorithm
 - The algorithm
 - Computational experiments

3 Open problems and future work

Always a power of 2 number of solutions?

(< ≥) < ≥)</p>

LIX

Accuracy of the instances

A. Mucherino

ntrodution	The Branch & Prune algorith
0000000	000 00000000

Open problems and future work ○● Summary o

Always a power of 2 number of solutions?

An instance with 27 solutions

- You might have noted that the BP algorithm always found a power of 2 solutions for each considered instance.
- However, there are instances whose number of solutions is not a power of 2.
- For example, we have an instance with 27 solutions.
- Might the power of 2 rule hold only for protein conformations?

A. Mucherino

Introdution	The Branch & Prune algorithm	Open problems and future work	Summary
0000000	000	00	
00000000	00000000	0	
Accuracy of the instances			

Outline

Introdution

- The MDGP
- The Discretizable MDGP

2 The Branch & Prune algorithm

- The algorithm
- Computational experiments

3 Open problems and future work

Always a power of 2 number of solutions?

イロト イポト イヨト イヨト

LIX

Accuracy of the instances

Introdution	
0000000	

Open problems and future work

Summary o

Accuracy of the instances

What if the accuracy lowers?

- Our final goal is to use data from NMR for generating protein conformations;
- data from the NMR are affected by experimental errors:
 - systematic uncertainty on each distance;
 - a certain percentage of completely wrong distances.
- the BP algorithm needs to be improved for managing experimental errors.

A. Mucherino

- We discussed the Discretizable Distance Geometry Problem
- We presented a Branch & Prune algorithm for DMDGP
- We showed that the Branch & Prune algorithm is able to solve instances of DMDGP related to protein conformations (artificially generated or real)
- We showed the effeciency and effectiveness of two possible pruning tests
- We showed the open problems on which we are still working

→ E → < E →</p>

Summary

- We discussed the Discretizable Distance Geometry Problem
- We presented a Branch & Prune algorithm for DMDGP
- We showed that the Branch & Prune algorithm is able to solve instances of DMDGP related to protein conformations (artificially generated or real)
- We showed the effeciency and effectiveness of two possible pruning tests
- We showed the open problems on which we are still working

Introdution
0000000

Summary

- We discussed the Discretizable Distance Geometry Problem
- We presented a Branch & Prune algorithm for DMDGP
- We showed that the Branch & Prune algorithm is able to solve instances of DMDGP related to protein conformations (artificially generated or real)
- We showed the effeciency and effectiveness of two possible pruning tests
- We showed the open problems on which we are still working

< < >> < <</>

Summary

- We discussed the Discretizable Distance Geometry Problem
- We presented a Branch & Prune algorithm for DMDGP
- We showed that the Branch & Prune algorithm is able to solve instances of DMDGP related to protein conformations (artificially generated or real)
- We showed the effeciency and effectiveness of two possible pruning tests
- We showed the open problems on which we are still working

Summary

- We discussed the Discretizable Distance Geometry Problem
- We presented a Branch & Prune algorithm for DMDGP
- We showed that the Branch & Prune algorithm is able to solve instances of DMDGP related to protein conformations (artificially generated or real)
- We showed the effeciency and effectiveness of two possible pruning tests
- We showed the open problems on which we are still working

Open problems and future work

Bibliography

Bibliography

C. Lavor, On Generating Instances for the Molecular Distance Geometry Problem, In: L. Liberti and N. Maculan (Eds.), Global Optimization: from Theory to Implementation, Springer, New York, 405–414, 2006.

C. Lavor, L. Liberti, and N. Maculan, *Computational Experience with the Molecular Distance Geometry Problem,* In: Global Optimization: Scientific and Engineering Case Studies, J. Pintér (Ed.), 213–225. Springer, Berlin, 2006.

C. Lavor, L. Liberti, and N. Maculan, *Molecular distance geometry problem*, In: Encyclopedia of Optimization, C. Floudas and P. Pardalos (Eds.), 2nd edition, Springer, New York, 2305–2311, 2009.

L. Liberti, C. Lavor, and N. Maculan, *Discretizable Molecular Distance Geometry Problem*, Tech. Rep. q-bio.BM/0608012, arXiv, 2006.

L. Liberti, C. Lavor, and N. Maculan, A Branch-and-Prune Algorithm for the Molecular Distance Geometry Problem, International Transactions in Operational Research **15** (1): 1–17, 2008.

C. Lavor, L. Liberti, A. Mucherino and N. Maculan, *On a Discretizable Subclass of Instances of the Molecular Distance Geometry Problem*, Proceedings of the Conference SAC09, Honolulu, Hawaii, March 8/12, 2009.

J.J. Moré and Z. Wu, *Distance geometry optimization for protein structures*, Journal of Global Optimization **15**: 219–223, 1999.

イロン イ理 とくほう くほう