
1

Mahdi Namazifar
Industrial and Systems Engineering Department
University of Wisconsin-Madison

Andrew J. Miller
RealOpt, INRIA Bordeaux Sud-Ouest
Université de Bordeaux 1

(with thanks to Michael C. Ferris)

This research is funded by NSF, CMMI and CIEG 0521953:This research is funded by NSF, CMMI and CIEG 0521953:
Exploiting Exploiting Cyberinfrastructure Cyberinfrastructure to Solve Real-time Integer Programsto Solve Real-time Integer Programs

A Parallel Macro PartitioningA Parallel Macro Partitioning
Framework for Solving MixedFramework for Solving Mixed
Integer ProgramsInteger Programs

ARS08 Workshop, LIX, ARS08 Workshop, LIX, Ecole PolytechniqueEcole Polytechnique, Paris, Paris

Outline
 Background
 Parallel branch-and-

bound: current state of
the art

 Parallel computing
architectures
 Massively parallel
 Grid computing

 Challenges in
parallelizing MIP solvers

 MIP heuristics
 A Macro Partitioning

Approach
 Brancher
 Assigner
 Workers

 Early computational
results

 To-do lists

3

THE DIFFICULTY: Problems of realistic size are often hard
to solve…and even harder to solve quickly.

THE OPPURTUNITY: Increasing availability of multiple CPUs
in parallel architectures.

THE CHALLENGE: How can we fully exploit available
computational resources in the solution of large MIPs?

Background
We consider a general 0-1 mixed integer programming

(MIP) problem

Example: MIP2003
 A library of test problems, available at

http://miplib.zib.de/
 These problems come from a variety of

applications and many remained unsolved for
years
 atlanta-ip (21732 constraints 106 general integer variables

46667 binary variables, 1965 continuous variables):
unsolvable before 2006, Xpress-MP can now solve this
in about five hours with specified settings

 protfold (2112 constraints,1835 binary variables):
Xpress-MP can solve this in several days on a dual core
machine with optimized settings

 dano3mip (3202 constraints, 13321 continuous variables,
552 binary variables): still unsolved

 Numerous other problems are still unsolved, or take
many hours or even days of computation time to solve.
These instances are not particularly large!

NSF-CMMI 0521953: Real-Time
Mixed Integer Programming

 Premise: MIP has proven to be a
powerful methodolgy for solving design
and strategic problems; less so for
real-time operational problems

 Can we use all the computational
power at our disposal to turn MIP into
a technology that can provide decision
support in real time?
 Optimization: either the true problem or a

“pre-computing” stage
 Re-optimization: sensitivity analysis,

warm starts, etc.

A Great Unsolved Problem
Until recently, most applications of integer programming have
been to planning models where solution time is not an issue.
Significant improvements in methodology, high-speed
computing and data availability have made it possible to apply
integer programming at the operational level for instances of
modest size, where solution time may take minutes…The next
challenge is real-time mixed-integer programming (RTMIP).
While such problems are prevalent in numerous application
areas, the technology available for their solution is still at the
research level…We believe that this pioneering use of
cyberinfrastructure will open up new possibilities for the
operations research community to exploit the computational
resources, data storage capabilities and communication
bandwidth that are now available for use in real-time decision-
making.

-George Nemhauser, “Need and Potential for Real-Time
Mixed-Integer Programming”, Great Unsolved Problems in
OR feature, ORMS Today, February 2007.
http://www.lionhrtpub.com/orms/orms-2-07/frinside.html

Parallel Computing: Massively
Parallel Computers
 many, many dedicated processors
 very centralized: if one processor crashes, the whole

system may be affected
 emphasis on defining subproblems quickly (ramp-up

process); otherwise, many dedicated processors are
doing nothing at the beginning

 strong emphasis on load balancing (otherwise, many
dedicated processors are doing nothing at the end)

 little emphasis on reducing the amount of
information passed…but little is not 0!

 This is framework that we will focus on in this
talk…but we will keep the other one in mind.

Parallel Computing: Grid
Computing
 many spare processors
 very decentralized: if one processor

crashes, the work will be re-started,
and the rest keep going without
noticing

 large emphasis on reducing the
amount of information passed

 significant emphasis on load balancing
(defining work for many processors)

 less emphasis on efficient ramp-up

The current state of the art

 The most robust methods for solving
general MIPs are LP-based branch-and-
bound and branch-and-cut methods.

 A number of researchers have investigated
parallelizing these methods (Linderoth,
Perumalla, Savelsbergh [1997]; Ralphs
(2002); Ferris, Pataki, Schmieta (2003);
Eckstein (2003))

 The best commercial solvers can use up to
32 processors in their branch-and-cut codes

The current state of the art
 Considerable speedup (though not

close to linear) can often be obtained
through the right search strategies:
 passing only “long, skinny” subtrees
 sophisticated subtree allocation to

processors based on regular
checkpointing

 However, this approach has evident
performance bottlenecks:
 Generating enough “interesting”

subtrees (not too large, not too
trivial)

 Passing all this information
 Hence the lack of implementation for

more than ~32 processors

11

If we want to be able to use hundreds or thousands of
processors to solve MIPs, we need to re-think the framework
that we use. In particular, we need to address at least the
following questions.

Question: What should each processor do? How can we
effectively use many at once?

Answer: We need to partition the problem into many non-
overlapping, tractable, nontrivial sub-problems very quickly
(so that each can be assigned to a different processor).

Question: How can we define these subproblems? (We have seen
that we need alternatives to single variable branching.)

Answer: We use LP-and-FIX, RINS, Local Branching, and Solution
Crossing cuts.

Research Issues

12

Primal HeuristicsPrimal Heuristics

Two main classes:
 Construction heuristicsConstruction heuristics:: These

produce a feasible solution from scratch
(Example: LP-and-FIX).

 Improvement heuristicsImprovement heuristics:: These try to
improve a given feasible solution
(Example: RINS, Local Branching, and
Solution Crossing).

13

LP-and-FIXLP-and-FIX

IDEA:IDEA: Explore a sub-space defined by the
current LP relaxation solution.

HOW:HOW: Fix the variables with integral value in
LP relaxation solution and solve the
resulting problem:

(Relaxation Induced Neighborhood Search)
[E. Danna, E. Rothberg, and C. Le Pape 2005]

IDEA:IDEA: Explore the sub-space defined by the intersection
of the LP relaxation solution and an MIP feasible
solution .

HOW:HOW: If a binary variable has the same value in both
solutions, fix the its value:

14

RINSRINS

15

Local BranchingLocal Branching

IDEA:IDEA: The same as RINS (Explore the neighborhood
around an MIP feasible solution) Fischetti and] ‏
Lodi 2003]

HOW:HOW: The neighborhood consists of vectors that do not
differ from in more than indices‏

Note that this strategy is “orthogonal” to that defined by RINS.

16

Solution CrossingSolution Crossing

IDEA:IDEA: Using concepts of Evolutionary Methods in improving the
existing feasible solutions ([E. Rothberg 2007])

HOW:HOW:
o Population: A set of feasible solutions
o Combination: (Similar to RINS)‏

o Mutation:

17

A Parallel Macro Partitioning
Framework (PMaP)

BrancherBrancher:: Generates sub-problems
(single processor)‏

Workers:Workers: Solve sub-problems
(Many processors)‏

Assigner:Assigner: Assigns the generated
sub-problems by Brancher to Slaves
(single processor)‏

18

BrancherBrancher

 Starts solving the main problem using Branch and Bound
 At each node of Branch and Bound tree if there exist any feasible

solution, for each one generates a RINS problem, puts this problem in
the sub-problem pool, and adds the following cut to the problem it is
solving:

S0: Set of variables with value 0 in the feasible solution
S1: Set of variables with value 1 in the feasible solution

 At each node of Branch and Bound tree if there is no feasible solution,
generates a LP-and-FIX problem, puts it in the sub-problem pool, and
adds the following cut to the problem it is solving:

S0: Set of variables with value 0 in the LP relaxation solution
S1: Set of variables with value 1 in the LP relaxation solution

The complement of the LP-and-FIX cut

The complement of the RINS cut

19

BrancherBrancher

Brancher
Worker

Assigner

Sub-problem
Pool

Feasible
Solution

Pool

Worker

Worker

Worker

20

Worker ProcessorWorker Processor

 Waits until one sub-problem is assigned to it

 Starts solving the sub-problem using Branch and
Bound

 Whenever finds a feasible solution, writes that into
the Feasible Solution Pool

 When the solution process is over, sends a message
to assigner

 Waits until the next sub-problem is assigned to it and
does the same procedure

21

WorkerWorker

Brancher
Worker

Assigner

Sub-problem
Pool

Feasible
Solution

Pool

Worker

Worker

Worker

22

AssignerAssigner

While the program is running
o Checks the sub-problem pool.
o If there exists one or more sub-problems

in the sub-problem pool, gets one of
them; Otherwise waits until one appears.

o Checks the status of worker processors.
o If there is any idle worker processor,

assigns the problem in hand to that;
otherwise waits until one becomes free
and then assigns the problem.

o Updates the status of worker processors

23

AssignerAssigner

Brancher
Worker

Assigner

Sub-problem
Pool

Feasible
Solution

Pool

Worker

Worker

Worker

24

The FrameworkThe Framework

Brancher
Worker

Assigner

Sub-problem
Pool

Feasible
Solution

Pool

Worker

Worker

Worker

25

 Implemented using Cbc-COIN
 Communication between processors is done through

two channels:
• MPI (Message Passing Interface)
• Text Files

 We run the program on the Datastar machine in the
San Diego Supercomputer Center (SDSC)
• DataStar consists of nodes of two types: 8-way p655+ and 32-

way p690+ nodes
• For test runs we usually use p690+ nodes with 128GB memory

per node and 1.7GHz CPU’s
 PMaP is at a preliminary stage. There is still a long way

to go!

Some Notes!Some Notes!

ResultsResults

Problem COIN-Cbc PMaP (using Cbc) Optimal
Solution

aflow40b 1274 1168 1168

seymour 435 425 423

harp2 -7.29769e+7 -7.38998e+7 -7.38998e+7

markshare1 14 4 1

markshare2 33 16 1

mas74 12886 11801.2 11801.2

mas76 40935.1 40005.05 40005.05

nsrand-ipx 54560 54080 54080

• The experiments
ran for 30 minutes.

• We used 35
processors for
each run of PMaP.

27

Newer ResultsNewer Results

Problem COIN-Cbc PMaP (using Cbc) Optimal Solution

dano3mip 791.385 719.782 ?

protfold - -21 -31

sp97ar - 685860294.1 ?

glass4 2.20002e+9 1.90002e+9 1.20001e+9

• Again each problem ran for 30 minutes, and PMaP used
35 processors.

-31-21-20protfold

65.666765.666765.6667Danoint

?719.782698.6296Dano3mip

11503.412054.811790.1684A1c1s1

1.20001e+091.60001e+091.60001e+09glass4

90.009995.0098-atlanta-ip

?6.8753e+086.62541e+08sp97ar

423425425seymour

467.407577730.1swath

?18701236liu

147markshare1

Problem CPLEX PMaP (with Cbc) Optimal Solution

markshare2 25 16 1

• We compare the results with parallel CPLEX 10 installed on Datastar.
• Each problem ran for 30 minutes.
• We used 32 processors for each run of PMaP and CPLEX.
• CPLEX can be run on the limited number of processors which share the same memory (on Datastar at most

32), but PMaP can be run on as many processors as the machine has.

The Most The Most RecentRecent Results Results

29

Preliminary ConclusionsPreliminary Conclusions

PMaP is capable of using many
different processors to considerable
advantage (it improve both COIN-
CBC and MINTO enormously).

PMaP is already competitive with the
best commercial solvers on the most
powerful parallel frameworks that
these solvers can use.

30

To-Do List: OngoingTo-Do List: Ongoing

Explore re-optimization possibilities
(we are excited about the potential
here).

31

To-Do List: ImmediateTo-Do List: Immediate

Extract lower bounds from PMaP.
Test PMaP on lots of processors

(>1000).
Implement local branching cuts.
Implement solution crossing cuts.
Compare the performance of PMaP

with other parallel solvers.

32

To-Do List: Immediately After ThatTo-Do List: Immediately After That

Incorporate multiple brancher
capability.

Fine-tune the number of variables
fixed, and other parameterers) to
perform better dynamic load
balancing.

Optimize pre-processing at worker
nodes.

