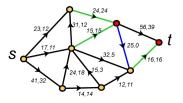
Lucas Létocart

ARS Workshop

Markov Random Fields minimization and minimal cuts in image restoration

October 31, 2008



Lucas Létocart

François Malgouyres Nicolas Lermé

LIPN and LAGA – Université Paris 13

Context

Exact total variation minimization

Total variation and regularization TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Outline

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization *TV* models Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion Perspectives

- Exact total variation minimization
 Total variation and regularization
- TV models

Context

Minimization

Minimal cut (graph cut) as energy minimization

- Notations
- General principle
- Maximum flow / minimal cut
- Energy representation
- Results
- More results
- Further results for 3D images

2

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization *TV* models Minimization

Minimal cut (graph cut) as energy minimization

Notations

Context

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Main context

Image degradation

 $v = Hu + \eta$

• $v \rightarrow \text{Observed image}$

- $u \rightarrow \text{Original image}$
- $\eta \rightarrow \text{Noise}$
- $H \rightarrow$ Linear degradation

Goal

Obtain the best estimation \bar{u} from u when H = identity.

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Energy minimization

First approach

Restoration corresponds to find the minimum of

$$\Xi(u, v) = \sum_{p \in \Omega} F_p(u_p, v_p)$$

with $\Omega \subset \mathbb{R}^2.$

- Inverse problem (Hadamard) \Rightarrow noise amplification (when H \neq Id).
- Need to regularize the solution.

$$E(u, v) = \sum_{\rho \in \Omega} \underbrace{F_{\rho}(u_{\rho}, v_{\rho})}_{\text{Data fidelity term}} + \beta \cdot \sum_{\substack{\rho, q \in \Omega \\ \{\rho, q\} \in \mathcal{N}}} \underbrace{G_{\rho, q}(u_{\rho}, u_{q})}_{\text{Regularization}} \qquad \forall \beta \in \mathbb{R}^{+}_{*}$$

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Energy minimization

Standard minimization methods

\rightarrow Continuous

- Gradient descent.
- Graduated Non Convexity (GCN).

\rightarrow Discrete

- Oynamic programming (only in 1D).
- Simulated annealing.
- Iterated Conditional Modes.

Problems

- No or poor convergence guarantees.
- Solution not ever optimal.

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization *TV* models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion Perspectives

Exact total variation minimization

Regularization

Regularization (Tikhonov)

- From : Introduce by A. N. Tikhonov in 1963
- Goal : Consider restoration as find the minimum of

$$\Xi(u) = \|u - v\|_{L^2}^2 + \beta \cdot \|\nabla u\|_{L^2}^2 \quad \text{where} \quad \|u\|_{L^p} = \left(\int_{\Omega} |u(x)|^p \, dx\right)^{\frac{1}{p}}$$

Problem

"Cubes" image $\sigma_b = 30$

Tikhonov restoration

Solution

- Regularize differently.
- Decrease the weight of big gradients.

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

BV Space

Definition

 $BV \Rightarrow$ Space of functions with bounded variations.

$$BV(\Omega) = \{ u \in L^1(\Omega) \mid \int_{\Omega} |\nabla u| < +\infty \}$$

Exact definition uses duality, because $|\nabla u|$ can be a measure.

with the semi-norm

$$|u|_{BV} = \int_{\Omega} |\nabla u| = TV(u) \implies \text{Total Variation}$$

Advantages

- Discontinuities are authorized along curves.
- Good space for geometric images.
- Existence and unicity of the solution.

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Total Variation

Definition (co-area - continuous)

Let $u \in BV(\Omega)$. Total variation of u is

$$TV(u) = \int_{\Omega} |\nabla u| = \int_{\mathbb{R}} \int_{d\{u \leq \lambda\}} ds \, d\lambda,$$

where $\{u \leq \lambda\}$ is equivalent to $\{u(x) \in \Omega \mid u(x) \leq \lambda\}$.

Definition (co-area – discrete)

Let u be a discrete function. Total variation of u is

$$TV(u) = \sum_{\lambda=0}^{L-2} \sum_{\{p,q\} \in \mathcal{N}} w_{p,q} |u_p^{\lambda} - u_q^{\lambda}| \quad \text{where} \quad u_p^{\lambda} = \mathbf{1}_{\{u_p \ge \lambda\}}$$

Remarks

- (-) Details suppression (textures).
- (+) Allows sharp contours.

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

TV models

Definition

Let $v \in L^1(\Omega)$ the observed image. The TV model consist of finding

 $\underset{u \in BV(\Omega)}{\operatorname{argmin}} TV(u) + \beta \|u - v\|_{L^{\alpha}}^{\alpha} \qquad \alpha \in \{1, 2\}$

TV + L₂ Model / ROF (Rudin Osher Fatemi 92)

- (+) Strictly convex \Rightarrow unicity.
- (-) Lost of contrast (iterative regularization).
- Gaussian noise.

$TV + L_1$ Model (Nikolova 2004)

- (-) Convex \Rightarrow not unicity.
- (+) No contrast lost.
- Impulsive noise.

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Level set approach

Principle

- Occompose the image in order to solve a succession of quadratic binary optimization problems \bar{u}^{λ} (MRF)
- 2 Solve each problem \bar{u}^{λ} where the solution is a level set
- **3** Reconstruct \bar{u} from \bar{u}^{λ} (trivial)

Level set decomposition λ

• Upper-set
$$\rightarrow U^{\lambda}(u) = \{p \in \Omega \mid u_p \geq \lambda\}$$

• Lower-set $\rightarrow L^{\lambda}(u) = \{p \in \Omega \mid u_p \leq \lambda\}$

Reconstruction

$$u_p = \sup\{\lambda \in \mathcal{L} \mid p \in U_\lambda(u)\} \quad \forall p \in \Omega$$

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Level set approach

Reformulation - $TV + L_1$

$$\underset{u^{\lambda} \in \{0,1\}^{N}}{\operatorname{argmin}} E_{1}^{\lambda}(u^{\lambda}) = TV(u^{\lambda}) + \beta \sum_{\rho \in \Omega} [(1 - y_{\rho})u_{\rho}^{\lambda} + y_{\rho}(1 - u_{\rho}^{\lambda})]$$

with

$$y_p = \mathbf{1}_{\{v_p \ge \lambda\}}$$

Reformulation - $TV + L_2$

$$\underset{u^{\lambda} \in \{0,1\}^{N}}{\operatorname{argmin}} E_{2}^{\lambda}(u^{\lambda}) = TV(u^{\lambda}) + 2\beta \sum_{\rho \in \Omega} \left((\lambda - 0.5)u_{\rho}^{\lambda} + v_{\rho}(1 - u_{\rho}^{\lambda}) \right)$$

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Level set approach

Reformulation

- Here, MRF are positive-negative quadratic pseudo-boolean functions, ie all the linear terms are positive and all the quadratic terms are negative (equivalent to submodular functions).
- Solve MRF is thus equivalent to find a maximal independant set in a bipartite graph, ie find a maximal flow – minimal cut in an associated graph.

Theorem

Minimizing *E* is equivalent to minimizing all the E^{λ} for each level.

Total energy $E(u) = \sum_{\lambda=0}^{L-2} E^{\lambda}(u^{\lambda})$ can be minimized because $\{\bar{u^{\lambda}}\}_{\lambda=0...L-2}$ is monotonous, ie:

$$\bar{u}^{\lambda} \leq \bar{u}^{\mu} \qquad \forall \lambda < \mu.$$

The optimal solution is given by

$$\forall p \in \Omega, \, \bar{u}_p = max\{\lambda, \, \bar{u}^\lambda = 1\}.$$

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion Perspectives

Minimal cut (graph cut) as energy minimization

Notations

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a directed weighted graph with two terminals s, t where

•
$$\mathcal{V} = \{1, ..., k\} \cup \{s\} \cup \{t\}, n = |\mathcal{V}|$$

•
$$\mathcal{E} = \{(i, j) \mid 1 \le i, j \le n, i \ne j\}, m = |\mathcal{E}|$$

• Capacity
$$\Rightarrow c : \mathcal{E} \to \mathbb{R}^+ \cup +\infty$$

• Flow
$$\Rightarrow f : \mathcal{E} \to \mathbb{R}$$

Vocabulary

Node s	\rightarrow	source
Node t	\rightarrow	sink
N-links	\rightarrow	arcs (<i>i</i> , <i>j</i>)
T-links	\rightarrow	arcs (s, i) and (i, t)

Example of a graph for a 3 \times 3 image.

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Definitions

Definition (flow)

Let \mathcal{G} be a graph. f(i, j) must verify

- 1) Capacity constraints
- 2) Flow symmetry
- 3) Kirchhoff law

(i.i) ∈ E

 $\begin{array}{ll} \textbf{nts} & f(i,j) \leq c(i,j) & \forall i, j \in \mathcal{V} \text{ et } \forall (i,j) \in \mathcal{E} \\ f(i,j) = -f(j,i) & \forall i, j \in \mathcal{V} \text{ et } \forall (i,j) \in \mathcal{E} \\ \sum_{j \in \mathcal{V} - \{s,t\}} f(i,j) = 0 & \forall i \in \mathcal{V} - \{s,t\} \end{array}$

Definition (cut)

Cut is a partition C = (S, T) of V such

$$s \in S, t \in T$$
 et $S \cap T = \emptyset, S \cup T = V$

Definition (Cut capacity)

The capacity of a cut C is

$$|\mathcal{C}| = \sum_{\substack{i \in \mathcal{S}, j \in \mathcal{T} \\ (i,j) \in \mathcal{E}}} c(i,j)$$

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

General principle

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion Perspectives

Theorem (Energy minimization (Greig Porteous Seheult 89))

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a directed weighted graph and E be an energy function. E can be minimized using a minimal cut in \mathcal{G} for the image binary case.

Principle

Construct a graph G.

2 Compute a minimal cut C = (S, T) in $\mathcal{G} \Rightarrow$ minimize E.

Assign a value to each up such that

$$\begin{cases} u_p = 0 & \text{if } p \in S \\ u_p = 1 & \text{if } p \in T \end{cases}$$

Maximum flow / minimal cut

Maximum flow algorithms

Augmenting paths
 Principle : Find iteratively a non saturated path from s to t in G.

Algorithms :

Ford-Fulkerson \rightarrow $O(m \cdot f)$, where f = maximum flowEdmons-Karp \rightarrow $O(nm^2)$ Dinic \rightarrow $O(n^2m)$ Boykov-Kolmogorov \rightarrow $O(n^2m|\mathcal{C}|)$

Push-relabel

Principe : Propagate an excess of flow repeatedly from s to t in G.

Algorithms :

General push flow relabel Push flow relabel with dynamic trees $\begin{array}{ll} \rightarrow & O(n^2m) \\ \rightarrow & O(nmlog(n)) \end{array}$

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Energy representation

Questions

- Which energies can be minimized via minimal cuts ?
- How construct the graph to minimize E ?

Definition (representation (Kolmogorov Zabih 02))

Let E be an energy function with n binary variables

$$E(x_1,...,x_n) = \sum_i E_i(x_i) + \sum_{i < j} E_{i,j}(x_i,x_j)$$
 with $x_i \in \{0,1\}.$

Every function with one variable can be represented by a graph.

Every function with two variables can be represented by a graph iff

 $E_{i,j}(0,0) + E_{i,j}(1,1) \le E_{i,j}(0,1) + E_{i,j}(1,0)$ (submodular)

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Energy representation

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion



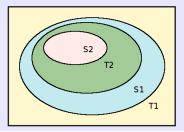
Minimization algorithms

Sequential algorithm

- Proposed by : Darbon, Chambolle, Zalesky.
- **Principle** : Do *L* independant optimizations.
- Complexity : O(L × F) with O(F) the complexity to find the maximal flow minimal cut.
- **Execution time** : < 1 min.

Dyadic algorithm

- Proposed by : Darbon, Chambolle, Hochbaum.
- Principle : Use the overlap between the level sets.
- Complexity : O(log₂(L)).



ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Results

ARS Workshop

Lucas Létocart

Tests caracteristics

- Computer: AMD Athlon 64 X2 Dual Core 6000+, 2Go of RAM.
- Implementation under MegaWave2.
- Kolmogorov *et al.* library to compute the maximum flow.
- Images 256² and 512².
- Averages over 10 launchings.

Images



Image "Circles"

Image "Man"

Image "Elaine"

Context

Exact total variation minimization

Total variation and regularization

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Results - $TV + L_1$

Neighborhood: 4-connexity

Image	Algorithm	$\beta = 0.25$	$\beta = 0.5$	$\beta = 1.0$	$\beta = 2.0$	$\beta = 4.0$
	Sequential	0.07	0.07	0.06	0.06	0.06
"Circles" 256 ²	Dyadic	0.11	0.09	0.09	0.09	0.08
"O'	Sequential	0.29	0.27	0.27	0.27	0.27
"Circles" 512 ²	Dyadic	0.41	0.37	0.36	0.36	0.36
	Sequential	5.14	3.63	2.89	2.45	2.25
"Man" 256 ²	Dyadic	0.46	0.35	0.23	0.13	0.10
2	Sequential	19.65	14.18	11.73	10.30	9.67
"Man" 512 ²	Dyadic	1.89	1.37	0.92	0.54	0.43
	Sequential	4.05	2.96	2.40	2.12	2.01
"Elaine" 256 ²	Dyadic	0.43	0.32	0.23	0.13	0.10
*FI.:	Sequential	15.85	11.67	9.97	9.14	8.71
"Elaine" 512 ²	Dyadic	1.98	1.37	0.95	0.56	0.43

Neighborhood: 8-connexity

Image	Algorithm	$\beta = 0.25$	$\beta = 0.5$	$\beta = 1.0$	$\beta = 2.0$	$\beta = 4.0$
"Circles" 256 ²	Sequential	0.23	0.18	0.16	0.16	0.16
Circles 256-	Dyadic	0.37	0.26	0.23	0.22	0.21
"Circles" 512 ²	Sequential	0.79	0.67	0.64	0.64	0.63
"Circles" 512-	Dyadic	1.19	0.94	0.87	0.85	0.85
	Convential	19.84	12.14	8.68	7.01	6.19
"Man" 256 ²	Sequential					
Wall 200	Dyadic	1.61	0.97	0.69	0.48	0.27
2	Sequential	74.19	44.80	35.66	27.97	25.01
"Man" 512 ²	Dyadic	6.94	3.93	2.89	1.85	1.10
	Sequential	13.87	9.52	7.36	6.11	5.54
"Elaine" 256 ²	Dyadic	1.49	0.87	0.66	0.47	0.27
	Sequential	56.59	36.39	27.48	24.17	22.57
"Elaine" 512 ²	Dyadic	6.15	3.75	2.63	1.89	1.12

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion

Perspectives

Results - $TV + L_2$

Neighborhood: 4-connexity

Image	Algorithm	$\beta = 0.01$	$\beta = 0.02$	$\beta = 0.04$	$\beta = 0.08$	$\beta = 0.16$
	Sequential	3.46	2.76	2.46	2.32	2.26
"Circles" 256 ²	Dyadic	0.21	0.49	0.28	0.15	0.10
"Circles" 512 ²	Sequential	14.41	11.74	10.26	9.68	9.57
"Circles" 512-	Dyadic	4.60	2.23	0.91	0.48	0.39
	Sequential	4.03	3.36	2.96	2.70	2.55
"Man" 256 ²	Dyadic	0.55	0.39	0.30	0.24	0.20
	Sequential	17.27	14.16	12.40	11.26	10.64
"Man" 512 ²	Dyadic	2.37	1.74	1.35	1.08	0.84
	Sequential	4.01	3.34	2.91	2.64	2.47
"Elaine" 256 ²	Dyadic	0.53	0.42	0.33	0.26	0.20
"EL:	Sequential	17.25	14.38	12.29	11.08	10.48
"Elaine" 512 ²	Dyadic	2.74	1.96	1.46	1.13	0.85

Neighborhood: 8-connexity

Image	Algorithm	$\beta = 0.01$	$\beta = 0.02$	$\beta = 0.04$	$\beta = 0.08$	$\beta = 0.16$
"Circles" 256 ²	Sequential	10.34	8.13	6.91	6.36	6.03
Circles 256-	Dyadic	0.66	0.38	0.92	0.60	0.31
"Circles" 512 ²	Sequential	43.84	32.68	27.79	24.90	23.99
"Circles" 512-	Dyadic	2.12	7.02	4.05	1.66	1.04
	Sequential	11.24	9.24	7.98	7.23	6.75
"Man" 256 ²			•			
Wall 200	Dyadic	1.00	0.90	0.73	0.57	0.48
	Sequential	46.66	37.18	31.91	28.78	26.83
"Man" 512 ²	Dyadic	5.29	4.40	3.08	2.49	2.03
	Sequential	11.06	9.25	8.02	7.30	6.77
"Elaine" 256 ²	Dyadic	1.09	0.89	0.77	0.62	0.51
	Sequential	48.13	38.25	33.07	29.49	27.39
"Elaine" 512 ²	Dyadic	5.87	4.88	3.44	2.70	2.12

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion

Perspectives

More results

Tests caracteristics

- Impulsive noise: $d_b = 20\%$ and $d_b = 40\%$.
- Gaussian noise: $\sigma_b = 15$ and $\sigma_b = 30$.
- Images 512².
- Connexity 8.

Images

Image "Cubes"

Image "Man"

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

/ v modela

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

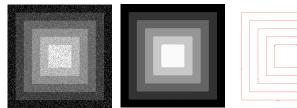
Results

More results

Further results for 3D images

Conclusion

Results - $TV + L_1 - d_b = 20\%$



Noise - SNR = 3.44

Result - $\beta = 0.65$

Level lines

Bruit - SNR = 2.11

Result - $\beta = 3.8$

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

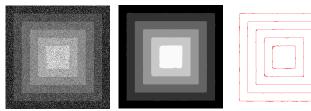
Results

More results

Further results for 3D images

Conclusion

Results - $TV + L_1 - d_b = 40\%$



Noise - SNR = 0.47

Result - $\beta = 0.65$

Level lines

Noise - SNR = -0.88

Result - $\beta = 2.8$

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

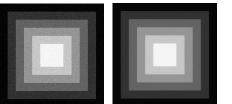
Further results for 3D images

Conclusion

Results - $TV + L_2 - \sigma_b = 15$

ARS Workshop

Lucas Létocart



Noise - SNR = 14.70

Result - $\beta = 0.04$

Level lines

Noise - SNR = 12.1

Result - $\beta = 0.1$

Context

Exact total variation minimization

Total variation and regularization TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

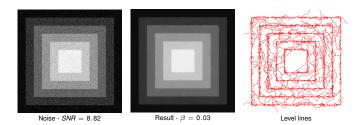
Further results for 3D images

Conclusion

ARS Workshop

Lucas Létocart

Results - $TV + L_2 - \sigma_b = 30$



Noise - SNR = 6.25

Result - $\beta = 0.06$

Context

Exact total variation minimization

Total variation and regularization TV models

I V models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion Perspectives

Image	Algorithm	$\beta = 0.25$	$\beta = 0.5$	$\beta = 1.0$	$\beta = 2.0$	$\beta = 4.0$
SPHERE-40	Sequential	0.10	0.05	0.04	0.04	0.04
SFRENE-40	Dyadic	0.60	0.17	0.18	0.15	0.15
SPHERE-40+db	Sequential	17.98	11.56	6.92	5.95	6.12
SFRERE-40+0b	Dyadic	0.72	0.22	0.20	0.20	0.21
SPHERE-80	Sequential	0.75	0.49	0.44	0.43	0.42
SFRENE-OU	Dyadic	2.09	1.82	1.77	1.75	1.75
	Sequential	234.65	90.49	69.89	63.65	65.88
SPHERE-80+db	Dyadic	2.96	2.38	2.24	2.19	2.33
510705/50 /*	Sequential	10.93	8.62	6.72	5.91	5.04
FACTORIES-40	Dyadic	1.93	0.84	0.77	0.33	0.19
FACTORIES-40+dh	Sequential	10.41	9.21	7.31	6.43	5.59
FACTORIES-40+0b	Dyadic	0.95	0.96	0.79	0.37	0.19
FACTORIES-80	Sequential	154.71	96.00	73.69	62.15	55.72
FAGTORIES-00	Dyadic	19.42	12.38	5.60	3.18	1.96
FACTORIES-80+dh	Sequential	166.67	108.72	80.44	67.14	60.26
1701011123-00+06	Dyadic	20.01	10.37	6.90	3.59	2.01

Table: Computation times (seconds) for $TV + L^1$ with 6 connexity. 3D images: 40³ and 80³.

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion Perspectives

Image	Algorithm	$\beta = 0.25$	$\beta = 0.5$	$\beta = 1.0$	$\beta = 2.0$	$\beta = 4.0$
SPHERE-40	Sequential	0.51	0.49	0.46	0.22	0.16
SITIENE-40	Dyadic	3.53	3.40	3.14	0.68	0.62
SPHERE-40+db	Sequential	110.38	110.06	106.39	56.08	28.82
SFRERE-40+0b	Dyadic	4.73	4.48	3.78	0.97	0.84
SPHERE-80	Sequential	8.01	7.39	2.52	1.52	1.31
SFRENE-00	Dyadic	59.35	54.78	6.69	5.72	5.51
SPHERE-80+db	Sequential	1802.33	1643.56	873.04	299.68	218.54
SFRENE-00+0b	Dyadic	73.46	63.76	9.33	7.31	7.16
FACTORIES-40	Sequential	44.16	43.96	52.74	43.61	29.97
FAGTORIES-40	Dyadic	5.48	4.91	4.84	4.25	3.07
FACTORIES-40+dh	Sequential	42.76	42.42	46.45	45.33	32.96
FACTORIES-40+0b	Dyadic	5.48	5.12	7.77	5.48	3.72
FACTORIES-80	Sequential	587.27	1027.61	783.87	410.16	259.07
FACTORIES-00	Dyadic	78.69	119.34	129.47	95.27	23.31
FACTORIES-80+dh	Sequential	530.08	720.27	819.68	477.99	286.81
FAUTURIES-80+0b	Dyadic	73.00	168.33	141.93	65.86	29.39

Table: Computation times (seconds) for $TV + L^1$ with 26 connexity. 3D images: 40³ and 80³.

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion

Perspectives

Image	Algorithm	$\beta = 0.01$	$\beta = 0.02$	$\beta = 0.04$	$\beta = 0.08$	$\beta = 0.16$
SPHERE-40	Sequential	7.52	6.19	5.55	5.34	5.05
SFRENE-40	Dyadic	0.15	0.15	0.15	0.15	0.15
SPHERE-40+dh	Sequential	7.29	6.18	5.74	5.46	5.36
SFRENE-40+0b	Dyadic	0.45	0.40	0.35	0.38	0.32
SPHERE-80	Sequential	81.86	67.72	63.29	57.48	56.52
3FRERE-60	Dyadic	1.74	1.74	1.74	1.74	1.74
SPHERE-80+dh	Sequential	78.92	68.82	63.94	60.42	59.70
SFRENE-00+0b	Dyadic	4.32	3.80	3.86	3.65	3.79
FACTORIES-40	Sequential	9.63	7.50	6.52	5.90	5.54
FACTORIES-40	Dyadic	0.99	0.94	0.56	0.41	0.36
EACTORIES 40. d	Sequential	9.60	7.64	6.69	6.04	5.62
FACTORIES-40+db	Dyadic	0.99	0.88	0.55	0.40	0.35
FACTORIES-80	Sequential	110.99	83.62	71.53	64.97	60.73
FACTORIES-60	Dyadic	19.58	11.02	6.34	5.14	4.50
FACTORIES-80+dh	Sequential	112.19	84.65	72.29	65.26	61.34
FACTORIES-00+0b	Dyadic	18.28	10.40	6.23	4.36	3.65
CELLULES-40	Sequential	6.33	6.72	6.00	5.46	5.19
	Dyadic	0.93	1.18	0.89	0.55	0.54
CELLULES-80	Sequential	107.74	84.60	68.65	61.70	58.07
GELLULES-80	Dyadic	29.35	33.07	12.75	7.58	4.94

Table: Computation times (seconds) for $TV + L^2$ with 6 connexity. 3D images: 40³ and 80³.

Lucas Létocart

Context

Image	Algorithme	$\beta = 0.01$	$\beta = 0.02$	$\beta = 0.04$	$\beta = 0.08$	$\beta = 0.16$
SPHERE-40	Sequential	66.48	42.82	30.55	24.54	21.71
	Dyadic	0.65	0.61	0.60	0.61	0.60
SPHERE-40+db	Sequential	64.45	41.20	29.81	25.01	22.64
	Dyadic	2.32	2.19	1.85	1.66	1.56
SPHERE-80	Sequential	598.28	378.50	274.36	219.81	209.11
3FHERE-00	Dyadic	5.87	5.54	5.50	5.62	5.65
SPHERE-80+dh	Sequential	550.09	347.81	260.82	219.12	196.73
SFRERE-00+0b	Dyadic	27.87	20.94	17.62	15.52	14.38
	Sequential	66.24	54.15	39.77	30.34	25.40
FACTORIES-40	Dyadic	8.90	5.69	3.75	3.55	2.12
	Sequential	65.75	54.01	39.59	30.29	25.75
FACTORIES-40+db	Dyadic	8.59	5.68	3.86	3.22	2.15
FACTORIES-80	Sequential	1099.51	673.16	391.58	281.06	227.92
FAGTURIES-80	Dyadic	173.10	75.40	52.07	38.89	21.55
FACTORIES-80+dh	Sequential	1086.86	662.72	387.27	281.60	231.48
FACTORIES-00+0b	Dyadic	108.21	67.50	49.87	33.01	20.38
	Sequential	23.09	23.98	24.71	26.91	24.28
CELLULES-40	Dyadic	3.05	3.43	3.76	5.24	3.03
CELLULES-80	Sequential	262.14	277.04	373.07	294.75	239.85
CELLULES-80	Dyadic	50.98	61.38	126.01	67.98	48.13

minimization Total variation and regularization TV models Minimization Minimal cut (graph cut) as energy minimization Notations General principle

Exact total variation

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion

Perspectives

Table: Computation times (seconds) for $TV + L^2$ with 26 connexity. 3D images: 40³ and 80³.

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization *TV* models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

Conclusion

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion

Perspectives

TV minimization

- (+) Exact solutions.
- (+) Quick results.
- (-) Restricted energy classes.
- (-) Over-smoothing along the discontinuities.

Perspectives

Parametric flow

Objectif : re-use the flow value.

Conditions :

- Arcs $(s, i) \rightarrow$ non-increasing capacities.
- Arcs $(i, t) \rightarrow$ non-decreasing capacities.
- Arcs $(i, j) \rightarrow$ constant capacities.

Results : Less improvements than for the dyadic technique (Darbon Chambolle 08). **Applications** : interactive segmentation, video segmentation. Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion

Perspectives

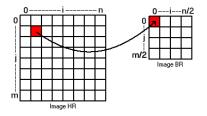
Perspectives

Extension to multiway cut

Multi-labelling

Extension to other operators

Goal : generalize restoration to other operators *H* (convolution, sampling). **Applications** : confocal microscopy, IRM.



Extension to other energy minimization models

Potts model

ARS Workshop

Lucas Létocart

Context

Exact total variation minimization

Total variation and regularization TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion

Perspectives