# Convex relaxations for quadrilinear terms 

Sonia Cafieri

LIX, École Polytechnique
joint work with:

Jon Lee
IBM T.J. Watson Research Center, N.Y.

Leo Liberti
LIX, École Polytechnique

ARS Workshop, Oct $31^{\text {st }} 2008$

## Outline

Background and Motivations
Motivations
Existing convex envelopes

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$
Investigated convex relaxations
Computational assessment
Computational results

Applications to known problems
MDGP and HFP problems
A bound evaluation algorithm
Computational results

## Outline

## Background and Motivations <br> Motivations

Existing convex envelopes

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$
Investigated convex relaxations
Computational assessment
Computational results

Applications to known problems
MDGP and HFP problems
A bound evaluation algorithm
Computational results

## Motivations

- The convex envelopes of graphs of all monomials of degree 2 and 3 on an arbitrary box are explicitly known.
- Such a description is unknown, in general, for degree at least 4 .

■ Branch-and-Bound based global optimization methods, applied to formulations involving multivariate polynomials, rely on such convex envelopes.

## Outline

## Background and Motivations

Motivations
Existing convex envelopes

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$
Investigated convex relaxations
Computational assessment
Computational results

Applications to known problems
MDGP and HFP problems
A bound evaluation algorithm
Computational results

## Existing convex envelopes

- The bilinear term $x_{j} x_{k}$ is replaced by a new variable $x_{i}$, and the following linear inequalities are added to the problem relaxation:

$$
\begin{aligned}
x_{i} & \geq x_{j}^{L} x_{k}+x_{k}^{L} x_{j}-x_{j}^{L} x_{k}^{L} \\
x_{i} & \geq x_{j}^{U} x_{k}+x_{k}^{U} x_{j}-x_{j}^{U} x_{k}^{U} \\
x_{i} & \leq x_{j}^{L} x_{k}+x_{k}^{U} x_{j}-x_{j}^{L} x_{k}^{U} \\
x_{i} & \leq x_{j}^{U} x_{k}+x_{k}^{L} x_{j}-x_{j}^{U} x_{k}^{L}
\end{aligned}
$$

(McCormick's envelope)

## Existing convex envelopes

- The trilinear term $x_{j} x_{k} x_{h}$ is replaced by a variable $x_{i}$, and linear inequalities are added to the problem relaxation depending on the signs of the bounds on variables (Meyer \& Floudas, 2004).

$$
\begin{aligned}
& \text { e.g. } \quad \text { case } x^{L} \geq 0, y^{L} \geq 0, z^{L} \leq 0, z^{U} \geq 0 \text { : } \quad\left(x, y, z \text { permutation of } x_{j}, x_{k}, x_{h}\right) \\
& x_{i} \leq y^{U} z^{U} x+x^{U} z^{U} y+x^{U} y^{U} z-2 x^{U} y^{U}{ }_{z}{ }^{U} \\
& x_{i} \leq y^{U} z^{L} x+x^{L} z^{U} y+x^{L} y^{U} z-x^{L} y^{U} z^{L}-x^{L} y^{U} z^{U} \\
& x_{i} \leq y^{U} z^{L} x+x^{L} z^{L} y+x^{L} y^{L} z-x^{L} y^{U} z^{L}-x^{L} y_{z}^{L}{ }^{L} \\
& x_{i} \leq y^{L} z^{U} x+x^{U} z^{L} y+x^{U} y^{L} z-x^{U} y^{L} z^{U}-x^{U} y^{L} z^{L} \\
& x_{i} \leq y^{L} z^{L} x+x^{U} z^{L} y+x^{L} y^{L} z-x^{U} y^{L} z^{L}-x^{L} y^{L} z^{L} \\
& x_{i} \leq y^{L} z^{U} x+x^{L} z^{U} y+\left(\theta /\left(z^{U}-z^{L}\right)\right) z+\left(-\left(\theta z^{L}\right) /\left(z^{U}-z^{L}\right)-x^{L} y^{U} z^{U}-x^{U} y^{L} z^{U}+x^{U} y^{U} z^{L}\right) \\
& x_{i} \geq y^{U} z^{L} x+x^{U} z^{L} y+x^{U} y^{U} z-2 x^{U} y^{U} z^{L} \\
& x_{i} \geq y^{L} z^{L} x+x^{U} z^{U} y-x^{U} y^{L} z-x^{U} y^{L} z^{U}-x^{U} y^{L} z^{L} \\
& x_{i} \geq y^{U} z^{U} x+x^{L} z^{U} y+x^{L} y^{L} z-x^{L} y^{U}{ }_{z}^{U}-x^{L} y^{L} z^{U} \\
& x_{i} \geq y^{U} U^{U} x+x^{L} L_{y}+x^{L} U_{z}-x^{L_{y}} U_{z}^{U}-x^{L_{y}}{ }^{U}{ }_{z}^{L} \\
& x_{i} \geq y^{L_{z}}{ }^{U} x+x^{U} z^{U} y+x^{L} L^{L} z-x^{U} y^{L_{z}}{ }^{U}-x^{L} y^{L}{ }_{z}{ }^{U} \\
& x_{i} \geq y^{L} z^{L} x+x^{L} z^{L} y+\left(\bar{\theta} /\left(z^{L}-z^{U}\right)\right) z+\left(-\left(\bar{\theta} z{ }^{U}\right) /\left(z^{L}-z^{U}\right)-x^{U} y^{L} z^{L}-x^{L} y^{U} z^{L}+x^{U} y^{U} z^{U}\right) \text {, } \\
& \theta:=x^{L} y^{U}{ }_{z}^{U}-x^{U} y^{U} z^{L}-x^{L} y_{z} z^{U}+x^{U} y^{L} z^{U}, \quad \bar{\theta}:=x^{U} y^{L} z^{L}-x^{U} y^{U} z^{U}-x^{L} y^{L} z^{L}+y^{L} y^{U} z_{z}^{L} \text {. }
\end{aligned}
$$

## Existing convex envelopes

- The concave univariate function $f\left(x_{j}\right)$ is replaced by a variable $x_{i}$ and two inequalities are added to the problem relaxation:

$$
\begin{aligned}
x_{i} & \leq f\left(x_{j}\right) \\
x_{i} & \geq f\left(x_{j}^{L}\right)+\frac{f\left(x_{j}^{U}\right)-f\left(x_{j}^{L}\right)}{x_{j}^{U}-x_{j}^{L}}\left(x_{j}-x_{j}^{L}\right) .
\end{aligned}
$$

- The convex univariate function $f\left(x_{j}\right)$ is replaced by a variable $x_{i}$ and two inequalities are added to the problem relaxation:


[^0]
## Existing convex envelopes

- The concave univariate function $f\left(x_{j}\right)$ is replaced by a variable $x_{i}$ and two inequalities are added to the problem relaxation:

$$
\begin{aligned}
x_{i} & \leq f\left(x_{j}\right) \\
x_{i} & \geq f\left(x_{j}^{L}\right)+\frac{f\left(x_{j}^{U}\right)-f\left(x_{j}^{L}\right)}{x_{j}^{U}-x_{j}^{L}}\left(x_{j}-x_{j}^{L}\right) .
\end{aligned}
$$

- The convex univariate function $f\left(x_{j}\right)$ is replaced by a variable $x_{i}$ and two inequalities are added to the problem relaxation:

$$
\begin{aligned}
x_{i} & \leq f\left(x_{j}^{L}\right)+\frac{f\left(x_{j}^{U}\right)-f\left(x_{j}^{L}\right)}{x_{j}^{U}-x_{j}^{L}}\left(x_{j}-x_{j}^{L}\right) \\
x_{i} & \geq f\left(x_{j}\right) .
\end{aligned}
$$

For concave (convex) $f\left(x_{j}\right)$, the first (second) constraint is a nonlinear over (under)-estimator which is usually replaced by a pre-determined number of tangents to $f$ at various given points.

## Existing convex envelopes

- The term $x_{j}^{2 k}$ for any $k \in \mathbb{N}$ is replaced by a variable $x_{i}$ and treated as a convex univariate function.
> $\Rightarrow$ The term $x_{i}^{2 k+1}$ for any $k \in \mathbb{N}$ is replaced by a variable $x_{i}$. If the range of $x_{j}$ does not include 0 , the function is convex or concave. Otherwise, the convex/concave envelope is given in (Liberti \& Pantelides, 2003) - a tight linear relaxation is:



## Existing convex envelopes

- The term $x_{j}^{2 k}$ for any $k \in \mathbb{N}$ is replaced by a variable $x_{i}$ and treated as a convex univariate function.
- The term $x_{j}^{2 k+1}$ for any $k \in \mathbb{N}$ is replaced by a variable $x_{i}$. If the range of $x_{j}$ does not include 0 , the function is convex or concave. Otherwise, the convex/concave envelope is given in (Liberti \& Pantelides, 2003) - a tight linear relaxation is:

$$
\begin{aligned}
\left(x_{j}^{L}\right)^{2 k+1}\left(1+R_{k}\left(\frac{x_{j}}{x_{j}^{L}}-1\right)\right) & \leq x_{i} \leq\left(x_{j}^{U}\right)^{2 k+1}\left(1+R_{k}\left(\frac{x_{j}}{x_{j}^{U}}-1\right)\right) \\
(2 k+1)\left(x_{j}^{U}\right)^{2 k} x_{j}-2 k\left(x_{j}^{U}\right)^{2 k+1} & \leq x_{j} \leq(2 k+1)\left(x_{j}^{L}\right)^{2 k} x_{j}-2 k\left(x_{j}^{L}\right)^{2 k+1}
\end{aligned}
$$

$$
R_{k}=\frac{r_{k}^{2 k+1}-1}{r_{k}-1}
$$

| $k$ | $r_{k}$ | $k$ | $r_{k}$ |
| :--- | :--- | :--- | :--- |
| 1 | -0.5000000000 | 6 | -0.7721416355 |
| 2 | -0.6058295862 | 7 | -0.7921778546 |
| 3 | -0.6703320476 | 8 | -0.8086048979 |
| 4 | -0.7145377272 | 9 | -0.8223534102 |
| 5 | -0.7470540749 | 10 | -0.8340533676 |

## Outline

## Background and Motivations <br> Motivations <br> Existing convex envelopes

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$ Investigated convex relaxations
Computational assessment Computational results

## Applications to known problems MDGP and HFP problems A bound evaluation algorithm Computational results

## Obtaining convex relaxations

Basic idea: given a sufficiently rich set of "elementary" convex envelopes, compose convex relaxations (albeit not envelopes) of complex functions relatively easily.

> Example: given $f(x), g(x)$ with known convex/concave envelopes, in order to obtain a convex relaxation for $f(x) g(x)$ :
> apply the bilinear convex envelope to the product $w_{1} w_{2}$, replace the necessary "defining constraints":

by the convex/concave envelopes of $f, g$.

Note: this strategy may yields non-unique ways of combining terms (due to the associativity of the product).

## Obtaining convex relaxations

Basic idea: given a sufficiently rich set of "elementary" convex envelopes, compose convex relaxations (albeit not envelopes) of complex functions relatively easily.

Example: given $f(x), g(x)$ with known convex/concave envelopes, in order to obtain a convex relaxation for $f(x) g(x)$ :

- apply the bilinear convex envelope to the product $w_{1} w_{2}$,
- replace the necessary "defining constraints":

$$
\begin{aligned}
& w_{1}=f(x) \\
& w_{2}=g(x)
\end{aligned}
$$

by the convex/concave envelopes of $f, g$.

Note: this strategy may yields non-unique ways of combining terms (due to the associativity of the product).

## Obtaining convex relaxations

Basic idea: given a sufficiently rich set of "elementary" convex envelopes, compose convex relaxations (albeit not envelopes) of complex functions relatively easily.

Example: given $f(x), g(x)$ with known convex/concave envelopes, in order to obtain a convex relaxation for $f(x) g(x)$ :

- apply the bilinear convex envelope to the product $w_{1} w_{2}$,
- replace the necessary "defining constraints":

$$
\begin{aligned}
& w_{1}=f(x) \\
& w_{2}=g(x)
\end{aligned}
$$

by the convex/concave envelopes of $f, g$.

Note: this strategy may yields non-unique ways of combining terms (due to the associativity of the product).

## Quadrilinear term: 3 convex relaxations

Given a quadrilinear term

$$
x_{1} x_{2} x_{3} x_{4}
$$

we consider the following three types of term grouping:

$$
\begin{array}{r}
\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4} \\
\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right) \\
\left(x_{1} x_{2} x_{3}\right) x_{4}
\end{array}
$$

and derive three corresponding linear convex relaxations for $x_{1} x_{2} x_{3} x_{4}$.

## Quadrilinear term: 3 convex relaxations

Let us consider:

$$
\begin{aligned}
& S_{1}=\left\{(x, w) \in \mathbb{R}^{4} \times \mathbb{R}^{3} \mid x_{i} \in\left[x_{i}^{L}, x_{i}^{U}\right], w_{1}=x_{1} x_{2}, w_{2}=w_{1} x_{3}, w_{3}=w_{2} x_{4}\right\} \\
& S_{2}=\left\{(x, w) \in \mathbb{R}^{4} \times \mathbb{R}^{3} \mid x_{i} \in\left[x_{i}^{L}, x_{i}^{U}\right], w_{1}=x_{1} x_{2}, w_{2}=x_{3} x_{4}, w_{3}=w_{1} w_{2}\right\} \\
& S_{3}=\left\{(x, w) \in \mathbb{R}^{4} \times \mathbb{R}^{2} \mid x_{i} \in\left[x_{i}^{L}, x_{i}^{U}\right], w_{1}=x_{1} x_{2} x_{3}, w_{2}=w_{1} x_{4}\right\}
\end{aligned}
$$

## Quadrilinear term: 3 convex relaxations

Let us consider:

$$
\begin{aligned}
& S_{1}=\left\{(x, w) \in \mathbb{R}^{4} \times \mathbb{R}^{3} \mid x_{i} \in\left[x_{i}^{L}, x_{i}^{U}\right], w_{1}=x_{1} x_{2}, w_{2}=w_{1} x_{3}, w_{3}=w_{2} x_{4}\right\} \\
& S_{2}=\left\{(x, w) \in \mathbb{R}^{4} \times \mathbb{R}^{3} \mid x_{i} \in\left[x_{i}^{L}, x_{i}^{U}\right], w_{1}=x_{1} x_{2}, w_{2}=x_{3} x_{4}, w_{3}=w_{1} w_{2}\right\} \\
& S_{3}=\left\{(x, w) \in \mathbb{R}^{4} \times \mathbb{R}^{2} \mid x_{i} \in\left[x_{i}^{L}, x_{i}^{U}\right], w_{1}=x_{1} x_{2} x_{3}, w_{2}=w_{1} x_{4}\right\}
\end{aligned}
$$

$S_{1}$ : bilinear envelope exploited thrice
$S_{2}$ : bilinear envelope exploited thrice
$S_{3}$ : bilinear envelope + trilinear envelope
Which one yields the tightest bounds?

## Quadrilinear term: 3 convex relaxations

Let us consider:

$$
\begin{aligned}
& S_{1}=\left\{(x, w) \in \mathbb{R}^{4} \times \mathbb{R}^{3} \mid x_{i} \in\left[x_{i}^{L}, x_{i}^{U}\right], w_{1}=x_{1} x_{2}, w_{2}=w_{1} x_{3}, w_{3}=w_{2} x_{4}\right\} \\
& S_{2}=\left\{(x, w) \in \mathbb{R}^{4} \times \mathbb{R}^{3} \mid x_{i} \in\left[x_{i}^{L}, x_{i}^{U}\right], w_{1}=x_{1} x_{2}, w_{2}=x_{3} x_{4}, w_{3}=w_{1} w_{2}\right\} \\
& S_{3}=\left\{(x, w) \in \mathbb{R}^{4} \times \mathbb{R}^{2} \mid x_{i} \in\left[x_{i}^{L}, x_{i}^{U}\right], w_{1}=x_{1} x_{2} x_{3}, w_{2}=w_{1} x_{4}\right\}
\end{aligned}
$$

$S_{1}$ : bilinear envelope exploited thrice
$S_{2}$ : bilinear envelope exploited thrice
$S_{3}$ : bilinear envelope + trilinear envelope
Which one yields the tightest bounds?

## Outline

## Background and Motivations

Motivations
Existing convex envelopes

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$
Investigated convex relaxations
Computational assessment
Computational results

Applications to known problems MDGP and HFP problems A bound evaluation algorithm Computational results

## Test instances

- 80 test instances generated varying signs of the bounds/bound interval widths.
- 20 combinations by varying the signs of bounds on the 4 variables (missing cases are equivalent to covered cases by simple symmetry considerations).
- same initial width of the bound intervals for all variables. Then progressively, for $i=1,2,3$, the width of the bound interval of $x_{i}$ is reduced.

This simulates the exploration of a single branch of a typical sBB search tree, whose nodes have decreasing range widths.

## Comparison of relaxations

The comparison among the considered relaxations is made in terms of the volume of the corresponding enveloping polytopes.

Exploiting envelopes for bilinear and trilinear terms leads to an increased number of variables $\Longrightarrow$ the obtained polytopes belong to $\mathbb{R}^{7}$ and $\mathbb{R}^{6}$.
$\Longrightarrow$ Projection of the polytopes onto the space of $\left(x, f(x):=x_{1} x_{2} x_{3} x_{4}\right) \in \mathbb{R}^{5}$.

- Computation of the projections: cdd software (Fukuda, 2008).
- Computation of the volume of the projected polytopes: Irs software (Avis, 2006).

All the results are computed in exact arithmetic.

## Comparison of relaxations

The comparison among the considered relaxations is made in terms of the volume of the corresponding enveloping polytopes.

Exploiting envelopes for bilinear and trilinear terms leads to an increased number of variables $\Longrightarrow$ the obtained polytopes belong to $\mathbb{R}^{7}$ and $\mathbb{R}^{6}$.
$\Longrightarrow$ Projection of the polytopes onto the space of $\left(x, f(x):=x_{1} x_{2} x_{3} x_{4}\right) \in \mathbb{R}^{5}$.

- Computation of the projections: cdd software (Fukuda, 2008).
- Computation of the volume of the projected polytopes: lrs software (Avis, 2006).

All the results are computed in exact arithmetic.

## Outline

## Background and Motivations <br> Motivations <br> Existing convex envelopes

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$
Investigated convex relaxations
Computational assessment
Computational results

Applications to known problems MDGP and HFP problems A bound evaluation algorithm Computational results

## Convex relaxations for quadrilinear terms

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$
Computational results

## Results

| Inst. | $x_{1}$ |  | $x_{2}$ |  | $x_{3}$ |  | $x_{4}$ |  | $\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}$ | $\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)$ | $\left(x_{1} x_{2} x_{3}\right) x_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - | sign | . | sign | - | sign | . | sign |  |  |  |
| inst1 | 2 | +, + | 2 | +, + | 2 | $-,+$ | 2 | $-,+$ | 8282/45 | 1474/15 | 1508117/8640 |
| inst2 | 2 | +, + | 2 | + + + | 2 | $-,+$ | 2 | -, - | 10922/45 | 298793/1215 | 1928777/8640 |
| inst 3 | 2 | +, + | 2 | $-,+$ | 2 | $-,+$ | 2 | - , + | 2080/27 | 2080/27 | 3136/45 |
| inst 4 | 2 | +, + | 2 | - , + | 2 | - , + | 2 | -, - | 3424/27 | 3056/15 | 4576/45 |
| inst5 | 2 | - , + | 2 | - , + | 2 | - , + | 2 | - , + | 416/15 | 416/15 | 416/15 |
| inst 6 | 2 | - , + | 2 | - , + | 2 | - , + | 2 | , - | 736/15 | 2080/27 | 736/15 |
| inst 7 | 2 | +, + | 2 | $-,+$ | 2 | -, - | 2 | - , + | 1664/9 | 3056/15 | 4736/27 |
| inst 8 | 2 | +, + | 2 | - , + | 2 | -, - | 2 | , | 736/3 | 298793/1215 | 6032/27 |
| inst9 | 2 | - , + | 2 | -, - | 2 | -, - | 2 | - , + | 1664/9 | 3056/15 | 4736/27 |
| inst10 | 2 | - , + | 2 | -, - | 2 | , | 2 | -, - | 736/3 | 298793/1215 | 6032/27 |
| inst11 | 2 | - , + | 2 | $-,+$ | 2 | -, - | 2 | - , + | 3136/45 | 2080/27 | 3728/45 |
| inst12 | 2 | - , + | 2 | - , + | 2 | -, - | 2 | -, - | 4576/45 | 1474/15 | 6608/45 |
| inst13 | 2 | +, + | 2 | + , + | 2 | + + + | 2 | - , + | 40166/195 | 298793/1215 | 38288/195 |
| inst14 | 2 | +, + | 2 | +, + | 2 | +, + | 2 | , | 53686/195 | 359936/1215 | 48688/195 |
| inst15 | 2 | +, + | 2 | +, + | 2 | -, - | 2 | - , + | 40166/195 | 298793/1215 | 38288/195 |
| inst16 | 2 | +, + | 2 | + + + | 2 | -, - | 2 | -, - | 53686/195 | 359936/1215 | 48688/195 |
| inst17 | 2 | +, + | 2 | - | 2 | , | 2 | - , + | 40166/195 | 298793/1215 | 38288/195 |
| inst18 | 2 | +, + | 2 | - | 2 | , - | 2 | , | 53686/195 | 359936/1215 | 48688/195 |
| inst19 | 2 | -, - | 2 | -, - | 2 | -, - | 2 | - , + | 40166/195 | 298793/1215 | 4983841/44928 |
| inst20 | 2 | -, - | 2 | - | 2 | - | 2 | - | 53686/195 | 359936/1215 | 48688/195 |

Convex relaxations for quadrilinear terms
Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$

- Computational results


## Results

| Inst. | $x_{1}$ |  | $x_{2}$ |  | $x_{3}$ |  | $x_{4}$ |  | $\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}$ | $\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)$ | $\left(x_{1} x_{2} x_{3}\right) x_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . | sign | . | sign | . | sign | . | sign |  |  |  |
| inst21 | 1 | +, + | 2 | +, + | 2 | $-,+$ | 2 | $-,+$ | 48958/675 | 1886/45 | 47746613/691200 |
| inst22 | 1 | +, + | 2 | +, + | 2 | $-,+$ | 2 | -, - | 63358/675 | 21847/225 | 59852213/691200 |
| inst23 | 1 | +, + | 2 | $-,+$ | 2 | $-,+$ | 2 | $-,+$ | 11368/375 | 11368/375 | 2128/75 |
| inst24 | 1 | +, + | 2 | $-,+$ | 2 | $-,+$ | 2 | -, - | 6056/125 | 781148/10125 | 3128/75 |
| inst25 | 1 | - , + | 2 | $-,+$ | 2 | - , + | 2 | $-,+$ | 104/15 | 104/15 | 104/15 |
| inst26 | 1 | $-,+$ | 2 | $-,+$ | 2 | $-,+$ | 2 | -, - | 184/15 | 520/27 | 184/15 |
| inst27 | 1 | +, + | 2 | $-,+$ | 2 | -, - | 2 | $-,+$ | 81008/1125 | 781148/10125 | 15584/225 |
| inst28 | 1 | +, + | 2 | $-,+$ | 2 | -, - | 2 | -, - | 104408/1125 | 7503097/81000 | 19484/225 |
| inst29 | 1 | $-,+$ | 2 | -, - | 2 | -, - | 2 | $-,+$ | 416/9 | 764/15 | 1184/27 |
| inst 30 | 1 | $-,+$ | 2 | -, - | 2 | -, - | 2 | , - | 184/3 | 298793/4860 | 1508/27 |
| inst 31 | 1 | - , + | 2 | $-,+$ | 2 | -, - | 2 | - , + | 784/45 | 520/27 | 932/45 |
| inst 32 | 1 | $-,+$ | 2 | $-,+$ | 2 | -, - | 2 | -, - | 1144/45 | 737/30 | 1652/45 |
| inst 33 | 1 | +, + | 2 | +, + | 2 | +, + | 2 | - , + | 8842/105 | 21847/225 | 30404/315 |
| inst 34 | 1 | +, + | 2 | +, + | 2 | +, + | 2 | -, - | 11362/105 | 695674/6075 | 50144/315 |
| inst 35 | 1 | +, + | 2 | +, + | 2 | -, - | 2 | $-,+$ | 8842/105 | 21847/225 | 25364/315 |
| inst 36 | 1 | +, + | 2 | +, + | 2 | -, - | 2 | -, - | 11362/105 | 695674/6075 | 31244/315 |
| inst 37 | 1 | +, + | 2 | -, | 2 | -, - | 2 | $-,+$ | 8842/105 | 21847/225 | 25364/315 |
| inst 38 | 1 | +, + | 2 | -, - | 2 | -, - | 2 | , - | 11362/105 | 695674/6075 | 31244/315 |
| inst 39 | 1 | -, - | 2 | -, - | 2 | -, - | 2 | $-,+$ | 8842/105 | 21847/225 | 458469/5600 |
| inst40 | 1 |  | 2 |  | 2 |  | 2 |  | 11362/105 | 695674/6075 | 50144/315 |

## Convex relaxations for quadrilinear terms

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$
-Computational results

## Results

| Inst. | $x_{1}$ |  | $x_{2}$ |  | $x_{3}$ |  | $x_{4}$ |  | $\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}$ | $\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)$ | $\left(x_{1} x_{2} x_{3}\right) x_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - | sign | - | sign | - | sign | - | sign |  |  |  |
| inst41 | 1 | +, + | 1 | +, + | 2 | $-,+$ | 2 | - , + | 335651/12000 | 8453/480 | 161590649/6144000 |
| inst42 | 1 | +, + | 1 | +, + | 2 | - , + | 2 | -, | 421651/12000 | 874021/24000 | 196456649/6144000 |
| inst43 | 1 | +, + | 1 | $-,+$ | 2 | $-,+$ | 2 | $-,+$ | 2842/375 | 2842/375 | 532/75 |
| inst44 | 1 | +, + | 1 | $-,+$ | 2 | $-,+$ | 2 | -, - | 1514/125 | 195287/10125 | 782/75 |
| inst45 | 1 | - , + | 1 | - , + | 2 | - , + | 2 | $-,+$ | 26/15 | 26/15 | 26/15 |
| inst46 | 1 | - , + | 1 | $-,+$ | 2 | - , + | 2 | -, - | $46 / 15$ | 130/27 | 46/15 |
| inst47 | 1 | +, + | 1 | - , + | 2 | , - | 2 | $-,+$ | 20252/1125 | 195287/10125 | 3896/225 |
| inst48 | 1 | +, + | 1 | - , + | 2 | -, - | 2 | -, - | 26102/1125 | 7503097/324000 | 4871/225 |
| inst49 | 1 | $-,+$ | 1 | -, - | 2 | -, - | 2 | - , + | 20252/1125 | 195287/10125 | 3896/225 |
| inst50 | 1 | $-,+$ | 1 | -, - | 2 | -, - | 2 | -, - | 26102/1125 | 7503097/324000 | 4871/225 |
| inst51 | 1 | - , + | 1 | $-,+$ | 2 | , - | 2 | $-,+$ | 196/45 | 130/27 | 233/45 |
| inst52 | 1 | - , + | 1 | - , + | 2 | -, - | 2 | -, - | 286/45 | 737/120 | 413/45 |
| inst53 | 1 | + , + | 1 | $+,+$ | 2 | $+,+$ | 2 | $-,+$ | 47921/1440 | 874021/24000 | 3961/99 |
| inst54 | 1 | +, + | 1 | + + + | 2 | +, + | 2 | -, | 59201/1440 | 56957/1350 | 6568/99 |
| inst55 | 1 | + , + | 1 | + , + | 2 | , - | 2 | - , + | 47921/1440 | 874021/24000 | 15757/495 |
| inst56 | 1 | +, + | 1 | +, + | 2 | -, - | 2 | -, - | 59201/1440 | 56957/1350 | 18727/495 |
| inst57 | 1 | + , + | 1 | -, - | 2 | -, - | 2 | $-,+$ | 47921/1440 | 874021/24000 | 969001783/35371875 |
| inst58 | 1 | + , + | 1 | -, - | 2 | , - | 2 | -, | 59201/1440 | 56957/1350 | 368725761/11790625 |
| inst59 | 1 | -, | 1 | -, - | 2 | , - | 2 | $-,+$ | 47921/1440 | 874021/24000 | 3307195027/243302400 |
| inst 60 | 1 | -, | 1 | -, | 2 | -, | 2 | - | 59201/1440 | 56957/1350 | 6568/99 |

## Convex relaxations for quadrilinear terms

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$

- Computational results


## Results

| Inst. | $x_{1}$ |  | $x_{2}$ |  | $x_{3}$ |  | $x_{4}$ |  | $\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}$ | $\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)$ | $\left(x_{1} x_{2} x_{3}\right) x_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . | sign | . | sign | . | sign | . | sign |  |  |  |
| inst61 | 1 | +, + | 1 | +, + | 1 | $-,+$ | 2 | $-,+$ | 335651/48000 | 8453/1920 | 161590649/24576000 |
| inst 62 | 1 | + , + | 1 | +, + | 1 | $-,+$ | 2 | -, - | 421651/48000 | 874021/96000 | 196456649/24576000 |
| inst 63 | 1 | +, + | 1 | $-,+$ | 1 | $-,+$ | 2 | $-,+$ | 1421/750 | 1421/750 | 133/75 |
| inst 64 | 1 | +, + | 1 | $-,+$ | 1 | $-,+$ | 2 | -, - | 757/250 | 195287/40500 | 391/150 |
| inst 65 | 1 | $-,+$ | 1 | $-,+$ | 1 | - , + | 2 | - , + | 13/30 | 13/30 | 13/30 |
| inst 66 | 1 | $-,+$ | 1 | , + | 1 | $-,+$ | 2 | -, - | 23/30 | 65/54 | 23/30 |
| inst 67 | 1 | + , + | 1 | $-,+$ | 1 | -, - | 2 | - , + | 12851/1875 | 1733/240 | 20/3 |
| inst68 | 1 | +, + | 1 | $-,+$ | 1 | -, - | 2 | -, | 10609/1250 | 3203327/360000 | 97/12 |
| inst 69 | 1 | $-,+$ | 1 | -, - | 1 | -, - | 2 | - , + | 12851/1875 | 1733/240 | 20/3 |
| inst 70 | 1 | -, + | 1 | , | 1 | -, - | 2 | -, - | 10609/1250 | 3203327/360000 | 97/12 |
| inst71 | 1 | - , + | 1 | $-,+$ | 1 | -, - | 2 | - , + | 133/75 | 1421/750 | 641/300 |
| inst 72 | 1 | $-,+$ | 1 | - , + | 1 | -, - | 2 | -, - | 391/150 | 943/360 | 1141/300 |
| inst 73 | 1 | $+,+$ | 1 | +, + | 1 | +, + | 2 | - , + | 1162283/94080 | 1673383477/129600000 | 34879/2940 |
| inst 74 | 1 | +, + | 1 | +, + | 1 | +, + | 2 | -, - | 1377883/94080 | 24832097/1620000 | 39779/2940 |
| inst 75 | 1 | +, + | 1 | +, + | 1 | -, - | 2 | - , + | 1162283/94080 | 1673383477/129600000 | 34879/2940 |
| inst 76 | 1 | + , + | 1 | +, + | 1 | -, - | 2 | -, | 1377883/94080 | 24832097/1620000 | 39779/2940 |
| inst 77 | 1 | + + + | 1 | - , - | 1 | -, - | 2 | - , + | 1162283/94080 | 1673383477/129600000 | 34879/2940 |
| inst 78 | 1 | +, + | 1 | -, - | 1 | -, - | 2 | -, - | 1377883/94080 | 24832097/1620000 | 39779/2940 |
| inst79 | 1 | -, - | 1 | - , - | 1 | -, - | 2 | - , + | 1162283/94080 | 1673383477/129600000 | 45232093/516096000 |
| inst 80 | 1 |  | 1 |  | 1 |  | 2 |  | 1377883/94080 | 24832097/1620000 | 39779/2940 |

## Outline

## Background and Motivations

Motivations
Existing convex envelopes

Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$
Investigated convex relaxations
Computational assessment
Computational results

Applications to known problems
MDGP and HFP problems
A bound evaluation algorithm
Computational results

## Molecular Distance Geometry Problem

- The MDGP is the problem of finding an embedding in $\mathbb{R}^{3}$ of a weighted graph $G=(V, E)$ such that all Euclidean distances between points in the embedding are the same as the corresponding edge weights in the graph.

The main application is to find the 3-dimensional structure of a molecule given a subset of the atomic distances.

- Given a set $V$ of $n$ atoms, a set $E$ of inter-atomic distances $d_{i j}=d(\{i, j\})$ for $\{i, j\} \in E$, a NLP formulation of the MDGP is:


## Molecular Distance Geometry Problem

- The MDGP is the problem of finding an embedding in $\mathbb{R}^{3}$ of a weighted graph $G=(V, E)$ such that all Euclidean distances between points in the embedding are the same as the corresponding edge weights in the graph.

The main application is to find the 3-dimensional structure of a molecule given a subset of the atomic distances.

- Given a set $V$ of $n$ atoms, a set $E$ of inter-atomic distances $d_{i j}=d(\{i, j\})$ for $\{i, j\} \in E$, a NLP formulation of the MDGP is:

$$
f(x)=\sum_{\{i, j\} \in E}\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2} .
$$

## Molecular Distance Geometry Problem

A typical term $\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}$ expanded is:
(each 3-vector $x_{i}$ has components $\left(x_{i 1}, x_{i 2}, x_{i 3}\right)$ )

$$
\begin{aligned}
\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}= & -4 x_{i 2} x_{j 2} x_{i 3}^{2}-4 x_{i 1} x_{j 1} x_{i 2}^{2}-4 x_{i 1} x_{j 1} x_{j 2}^{2}-4 x_{i 1} x_{j 1} x_{i 3}^{2}+4 x_{i 1} x_{j 1} d_{i j}^{2} \\
& -4 x_{i 1}^{2} x_{i 2} x_{j 2}-4 x_{j 1}^{2} x_{i 2} x_{j 2}-4 x_{i 2}^{2} x_{i 3} x_{j 3}-4 x_{i 1} x_{j 1} x_{j 3}^{2}-4 x_{j 1}^{2} x_{i 3} x_{j 3} \\
& +4 x_{i 2} x_{j 2} d_{i j}^{2}-4 x_{i 2} x_{j 2} x_{j 3}^{2}+4 x_{i 3} x_{j 3} d_{i j}^{2}-4 x_{j 2}^{2} x_{i 3} x_{j 3}-4 x_{i 1}^{2} x_{i 3} x_{j 3} \\
& +8 x_{i 1} x_{j 1} x_{i 2} x_{j 2}+8 x_{i 1} x_{j 1} x_{i 3} x_{j 3}+8 x_{i 2} x_{j 2} x_{i 3} x_{j 3}+x_{i 1}^{4}+x_{j 1}^{4}+x_{i 2}^{4} \\
& +x_{j 2}^{4}+x_{i 3}^{4}+x_{j 3}^{4}-4 x_{i 1}^{3} x_{j 1}+6 x_{i 1}^{2} x_{j 1}^{2}+2 x_{i 1}^{2} x_{i 2}^{2}+2 x_{i 1}^{2} x_{j 2}^{2} \\
& +2 x_{i 1}^{2} x_{i 3}^{2}+2 x_{i 1}^{2} x_{j 3}^{2}-2 x_{i 1}^{2} d_{i j}^{2}-4 x_{i 1} x_{j 1}^{3}+2 x_{j 1}^{2} x_{i 2}^{2}+2 x_{j 1}^{2} x_{j 2}^{2} \\
& +2 x_{j 1}^{2} x_{i 3}^{2}+2 x_{j 1}^{2} x_{j 3}^{2}-2 x_{j 1}^{2} d_{i j}^{2}-4 x_{i 2}^{3} x_{j 2}+6 x_{i 2}^{2} x_{j 2}^{2}+2 x_{i 2}^{2} x_{i 3}^{2} \\
& +2 x_{i 2}^{2} x_{j 3}^{2}-2 x_{i 2}^{2} d_{i j}^{2}-4 x_{i 2} x_{j 2}^{3}+2 x_{j 2}^{2} x_{i 3}^{2}+2 x_{j 2}^{2} x_{j 3}^{2}-2 x_{j 2}^{2} d_{i j}^{2} \\
& -4 x_{i 3}^{3} x_{j 3}+6 x_{i 3}^{2} x_{j 3}^{2}-2 x_{i 3}^{2} d_{i j}^{2}-4 x_{i 3} x_{j 3}^{3}-2 x_{j 3}^{2} d_{i j}^{2}+d_{i j}^{4} .
\end{aligned}
$$

## Hartree-Fock Problem

It is a known problem in quantum chemistry: finding spatial orbitals of electrons in a closed-shell atomic system.

- Non-relativistic time-independent Schrödinger equation: $H \Psi_{n}=E \Psi_{n}$ ( $H=$ Hamiltonian operator of the system, representing the total energy).
- HF model: the electrons in atoms and molecules move independently of each other, the motion of each one of the electrons being determined by the attractive electrostatic potential of the nuclei and by a repulsive average field due to all the other electrons of the system.
- The approximate solutions $\Phi_{n}$ of the Schrödinger equation are products of orbitals $\left\{\varphi_{i}\right\}$, which are solutions of the HF equations.
- Orbitals approximated by suitable bases $\left\{\chi_{s} \mid s \leq b\right\}$ :



## Hartree-Fock Problem

It is a known problem in quantum chemistry: finding spatial orbitals of electrons in a closed-shell atomic system.

- Non-relativistic time-independent Schrödinger equation: $H \Psi_{n}=E \Psi_{n}$ ( $H=$ Hamiltonian operator of the system, representing the total energy).
- HF model: the electrons in atoms and molecules move independently of each other, the motion of each one of the electrons being determined by the attractive electrostatic potential of the nuclei and by a repulsive average field due to all the other electrons of the system.
- The approximate solutions $\Phi_{n}$ of the Schrödinger equation are products of orbitals $\left\{\varphi_{i}\right\}$, which are solutions of the HF equations.
- Orbitals approximated by suitable bases $\left\{\chi_{s} \mid s<b\right\}$


## Hartree-Fock Problem

It is a known problem in quantum chemistry: finding spatial orbitals of electrons in a closed-shell atomic system.

- Non-relativistic time-independent Schrödinger equation: $H \Psi_{n}=E \Psi_{n}$ ( $H=$ Hamiltonian operator of the system, representing the total energy).
- HF model: the electrons in atoms and molecules move independently of each other, the motion of each one of the electrons being determined by the attractive electrostatic potential of the nuclei and by a repulsive average field due to all the other electrons of the system.
- The approximate solutions $\Phi_{n}$ of the Schrödinger equation are products of orbitals $\left\{\varphi_{i}\right\}$, which are solutions of the HF equations.
- Orbitals approximated by suitable bases $\left\{\chi_{s} \mid s \leq b\right\}$ :

$$
\bar{\varphi}_{i}:=\sum_{s \leq b} c_{s i} \chi_{s}
$$

$\bar{\varphi}_{i}$ approximations of $\varphi_{i}$.

## Hartree-Fock Problem

- HFP: finding a set of coefficients $c_{s i}$ such that the $\bar{\varphi}_{i}$ are the best possible approximations of the spatial orbitals.
- NLP problem: minimize a suitable energy function (quality of the approximation) s.t. $\left\{\bar{\varphi}_{i}\right\}$ is an orthonormal set:

orthonormality constraints are quadratic in the decision variables $c$.


## Hartree-Fock Problem

- HFP: finding a set of coefficients $c_{s i}$ such that the $\bar{\varphi}_{i}$ are the best possible approximations of the spatial orbitals.
- NLP problem: minimize a suitable energy function (quality of the approximation) s.t. $\left\{\bar{\varphi}_{i}\right\}$ is an orthonormal set:

$$
\begin{array}{ll}
\min & E(c) \\
\text { s.t. } & \left\langle\sum_{s \leq b} c_{s i} \chi_{s}, \sum_{s \leq b} c_{s j} \chi_{s}\right\rangle=\delta_{i j} \quad \forall i \leq j \leq n \\
& c^{L} \leq c \leq c^{U}
\end{array}
$$

orthonormality constraints are quadratic in the decision variables $c$.

## Outline

## Background and Motivations <br> Motivations <br> Existing convex envelopes <br> Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$ <br> Investigated convex relaxations <br> Computational assessment <br> Computational results

Applications to known problems
MDGP and HFP problems
A bound evaluation algorithm
Computational results

## Bound evaluation algorithm

- The natural application of tight lower bounds computed through a convex relaxation is within the sBB algorithm.
- Our alternative: a simplified partial $s B B$ algorithm.

At each branching step, the algorithm only records the most promising node and discards the other, thus exploring a single branch up to a leaf.

- A very simple branching strategy (the variable index $i$ maximizing $\mid x_{i}^{*}-$ $\left.\bar{x}_{i} \mid\right)$; termination: either on iteration limit or on reaching a node that is infeasible or that contains the global optimum.


## Bound evaluation algorithm

■ The natural application of tight lower bounds computed through a convex relaxation is within the sBB algorithm.

■ Our alternative: a simplified partial $s B B$ algorithm.
At each branching step, the algorithm only records the most promising node and discards the other, thus exploring a single branch up to a leaf.

- A very simple branching strategy (the variable index $i$ maximizing $\mid x_{i}^{*}-$ $\bar{x}_{i} \mid$; termination: either on iteration limit or on reaching a node that is infeasible or that contains the global optimum.


## Constructing the convex relaxation

## solver_RQuarticConvex within ROSE

- Step1: replace each nonlinear term by an added variable
- Step2: add a defining constraint "added variable $=$ nonlinear term" to the problem
- Step 3: replace each defining constraint by a convex relaxation.

Note: The 3 different convex relaxations yielded by the different defining constraints due to the different associativity precedences in

$$
\begin{gathered}
\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\left(x_{1} x_{2} x_{3}\right) x_{4} \\
\text { are implemented. }
\end{gathered}
$$

## Outline

## Background and Motivations <br> Motivations <br> Existing convex envelopes <br> Convex relaxations for $x_{1} x_{2} x_{3} x_{4}$ <br> Investigated convex relaxations <br> Computational assessment <br> Computational results

Applications to known problems
MDGP and HFP problems
A bound evaluation algorithm
Computational results

## Computational results

| Instance | $\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}$ | $\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)$ | $\left(x_{1} x_{2} x_{3}\right) x_{4}$ |
| :--- | :---: | :---: | :---: |
| lavor5 | -1580.81 | -1758.4 | $\mathbf{- 6 8 3 . 8 2}$ |
| lavor6 | -2652.05 | -2746.92 | $\mathbf{- 1 1 1 7 . 0 5}$ |
| lavor7 | -3427.96 | -3411.96 | $\mathbf{- 2 3 7 8 . 5 3}$ |
| beryllium | $\mathbf{- 2 2 . 6 8 8 7}$ | -21.8208 | -17.988 |
| neon | -1292.64 | -1306.4 | $\mathbf{- 1 3 4 2 . 7 1}$ |

## Conclusions

- We proposed a computational approach to determine the best among three convex relaxations for quadrilinear terms.
- The results suggest that a strategy taking into account widths and signs of the input bounds could be used in a sBB solver in order to automatically select the best relaxation procedure.


## Future work

- Computational experiences on large scale instances.
- Implementation of a full sBB.
- Theoretical study on the relaxation strenght of quadrilinear terms.


## Conclusions

- We proposed a computational approach to determine the best among three convex relaxations for quadrilinear terms.
- The results suggest that a strategy taking into account widths and signs of the input bounds could be used in a sBB solver in order to automatically select the best relaxation procedure.

Future work

- Computational experiences on large scale instances.
- Implementation of a full sBB.
- Theoretical study on the relaxation strenght of quadrilinear terms.


## Conclusions

- We proposed a computational approach to determine the best among three convex relaxations for quadrilinear terms.
- The results suggest that a strategy taking into account widths and signs of the input bounds could be used in a sBB solver in order to automatically select the best relaxation procedure.

Future work

- Computational experiences on large scale instances.
- Implementation of a full sBB.
- Theoretical study on the relaxation strenght of quadrilinear terms.


[^0]:    For concave (convex) $f\left(x_{j}\right)$, the first (second) constraint is a nonlinear over (under)-estimator which is usually replaced by a pre-determined number of tangents to $f$ at various given points.

