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Données initiales

1 une partition Mul ] Lex of F ∪ S tq S ⊆ Lex ;
2 un préordre bien-fondé ≥FS sur
F ∪ {@} ∪ S ∪ {→}, la précédence, telle que:
(i) ≥FS est l’union de ses restrictions à
F ∪ {@} et S ∪ {→},
(ii) ∀s ∈ S : s 6=FS→;
(iii) ∀f ∈ F : f >FS @;
(iv) si f : σ → σ =FS g : τ → τ , alors
a. σ =TS τ , et
b. f ∈ Lex ssi g ∈ Lex ,
arity(f ) = arity(g) = n et σ (=FS)

n τ ;
3 >FS s’étend à F ∪ {@} ∪ X ∪ S ∪ {→} ∪ S∀

par ajout des paires x ≥FS x ∀x ∈ X ∪ S∀.
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Définition de HORPO sur T ∪ TS∀

s : σ�t : τ ssi
Type : σ = τ = ∗ ou σ�τ

et

Clôture: s .
= f (s) et ∃u ∈ CC(s, t): u�t

Prec: s .
= f (s), t .

= g(t), f >FS g et A

Prec@: s .
= f (s), f ∈ F , t .

= @(t) et A

Precλ: s .
= f (s), f ∈ F , t .

= λx : α.v , x 6∈ Var(v)
et s�v
Mul: s .

= f (s), t .
= g(t), f =FS g ∈ Mul et s�mul t

Lex: s .
= f (s), t .

= g(t), f =FS g ∈ Lex , s�lex t , A

Mul@: s .
= @(s1, s2), t .

= @(t) et {s1, s2}�mul t



Définition, suite

Monλ: s .
= λx : α.u, t .

= λy : β.v , α=TSβ et
u�v{y 7→ x}
Mon→: s .

= α → β, t .
= α′ → β′, α=TSα

′ et β�β′

Reduction: s .
= @(λx .u, v) et u{x 7→ v}�t

A .
= ∀v ∈ t: s�v ou ∃u ∈ CC(s): u�v

CC(f (s), t) .
= s ∀f ∈ F ∪ {@}

CC(λx : σ.u, t) .
= {u} si x 6∈ Var(t) sinon ∅

CC(α → β, τ)
.
= {β}

@(t)d est, une application étendue de t
� .

= �∪=, où = est l’équivalence sur T (F ,X )
engendrée par permutation de Mul ⊆ F
=T et =TS les restriction de = à T (F ,X ) et TS∀



Bonne définition de HORPO

1 � est défini par récurrence sur l’ordre
(−→β ∪B, B)lex appliqué à la paire
d’arguments (s, t).

2 Cet ordre bien-fondé sera utilisé dans
certaines preuves sous le terme
“récrurrence sur la définition” (de HORPO).
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Exemple: terminaison d’un itérateur polymorphe

{x : α, l : list(α), X : α → α} `
1 But:

map(cons(x , l), X )� cons(@(X , x), map(l , X ))
2 Prec:

map(cons(x , l), X )�{@(X , x), map(l , X )}
3 Type: list(α)�α (par Clôture )
4 Prec@: X �X (trivial) et cons(x , l)� x
5 Type: list(α)�α → α (par Prec )
6 Prec: x � x (trivial)
7 Mul: {cons(x , l), X}�mul{l , X}
8 X �X (trivial)
9 Prec: l � l (trivial et FIN)
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Propriété fondamentale de HORPO

Theorem (jouannaud and Rubio)
1 La fermeture transitive de la restriction de �

à TS∀ est un ordre de récriture du premier
ordre;

2 La fermeture transitive de la restriction de �
à T (F ,X ) est un ordre de récriture d’ordre
supérieur.



Méthode de preuve

L’inclusion de � sur les types dans le rpo de
Dershowitz (noté �rpo

TS∀
) montre la bonne

fondation sur les types qui joue un rôle crucial.
Pour les termes, la preuve de normalisation est
basée sur la méthode de Tait-Girard. On va
donc introduire un prédicat de réductibilité,
montrer qu’il implique la normalisation, et que
tout terme est réductible. Notre prédicat sera
défini comme plus petit point fixe d’une
fonctionnelle positive sur le treillis des parties
des termes “candidats”, c-a-d typables à
équivalence près pour la congruence =TS .
Toutes les propriétés de HORPO seront
prouvées pour les termes candidats.



Termes candidats

Variables :
x : σ ∈ Γ σ′ =TS σ

Γ `F x :C σ′

Fun :
f : σ1 × . . .× σn → σ ∈ F

ξ some type substitution of domain ⊆
⋃

i Var(σi)
Γ `F t1 :C σ1ξ . . . Γ `F tn :C σnξ τ =TS σξ

Γ `F f (t1, . . . , tn) :C τ

Abstraction :
Γ · {x : σ} `F t :C τ θ =TS σ

Γ `F (λx : σ.t) :C θ → τ

Application :
Γ `F s :C σ → τ Γ `F t :C σ

Γ `F @(s, t) :C τ



Termes candidats, suite

Definition
Terms typable in the previous type system are
called candidate terms.

Lemma

Let Γ `F s :C σ. Then Γ `F s :C τ iff σ =TS τ .

Proof.
By induction on the type derivation, and by case
on the last judgement applied.



Proof

Variables is trivial. For Functions , the if
direction results from the transitivity of =TS . For
the converse, let σ1ξ, . . . , σnξ be the types of
t1, . . . , tn in the first type derivation, and
σ1ξ

′, . . . , σnξ
′ the types of t1, . . . , tn in the second

derivation. By induction hypothesis, σiξ
′ =TS σiξ,

hence σξ′ =TS σξ by property of =TS , and we
conclude by transitivity of =TS . Abstraction
uses the fact that σ → τ =TS σ′ → τ ′ iff σ′ =TS σ

and τ ′ =TS τ and the induction hypothesis.
Application uses the induction hypothesis on t
to have τ ′ =TS τ and the induction hypothesis on
s to ajust the type for the application rule to
make sense.



Basic properties of candidate terms

1 Because β-reduction is type preserving, the
set of candidate terms is closed under
β-reductions;

2 Because β-reduction is strongly normalizing
for a typed λ-calculus with arbitrary
constants, the set of candidate terms is
well-founded with respect to β-reductions
(consider a signature in which
f : σ′1 × . . .× σ′n → σ′ ∈ F provided
f : σ1 × . . .× σn → σ ∈ F with σ′i =TS σi for
every i ∈ [1..n] and σ′ =TS σ);

3 HORPO applies to candidate terms as well,
by keeping the same definition.



Propriétés de HORPO sur les candidats

1 � est monotone;
(récurence facile sur les contextes)

2 � est stable;
(récurence sur la définition)

3 � est compatible;
(découle des propriétés du typage)

4 � est fonctionnel;
(bati dans la définition)

5 � est polymorphe;
(récurence sur la définition)

6 Reste la bonne fondation.
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(récurence sur la définition)
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Interpretations

The family of candidate interpretations {[[σ]]}σ∈TS
is the family of subsets of the set of candidates
whose elements are the least sets satisfying the
following properties:
(i) If σ is a data type, then s :C σ ∈ [[σ]] iff
t ∈ [[τ ]] ∀t :C τ such that s� t
(ii) If s :C σ = τ → ρ then s ∈ [[σ]] iff @(s, t) ∈ [[ρ]]
for every t ∈ [[τ ]];
(iii) If σ is a variable, then s :C σ ∈ [[σ]] iff
sξ :C σξ ∈ [[σξ]] ∀ξ ground.
A candidate term s of type σ is said to be
computable if s ∈ [[σ]]. A vector s of terms is
computable iff so are all its components.



Basic assumptions and properties

We assume without loss of generality that
1 types are ground
2 functional types are in canonical form:

σ = σ1 → . . . → σn → τ with τ basic and
n > 0.

Two basic simple properties are:
1 (i) Assume σ =TS τ . Then [[σ]] = [[τ ]].
2 (ii) Let σ = σ1 → . . . → σn → τ , where n > 0.

Then s ∈ [[σ]] iff @(s, t1, . . . , tn) ∈ [[τ ]] for all
t1 ∈ [[σ1]], . . . , tn ∈ [[σn]].
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Computability Properties

1 (i) Every computable term is SN;
2 (ii) Assuming that s is computable and s� t ,

then t is computable;
3 (iii) A neutral term s is computable iff t is

computable for every t such that s� t ;
4 (iv) If t be a vector of computable terms s.t.

@(t) is a candidate, then @(t) is computable;
5 (v) λx : σ.u is computable iff u{x 7→ w} is

computable for every computable w :C σ;
6 (vi) Let s :C σ ∈ T min

S . Then s is computable
iff it is strongly normalizable.

7 (vii) Let f : σ → τ ∈ F and s :C σ a vector of
computable terms. Then f (s) is computable.
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Lemme principal et Preuve du théorème

Lemma

Let γ be a computable substitution and t be an
algebraic λ-term. Then tγ is computable.

We can now show that HORPO is SN:

Proof.
Given an arbitrary term t , let γ be the identity
substitution. Since γ is computable, t = tγ is
computable by Lemma 4, and strongly
normalizable by Property 1 (i).

We are left with the proof of the lemma, which
proceeds by induction on the size of t .



Preuve du lemme principal

1 t ∈ X . tγ is computable by assumption.
2 t .

= λx .u. By Property (v), tγ is computable if
so is uγ{x 7→ w} for every computable w .
Since x may not occur in γ, we define
δ

.
= γ ∪ {x 7→ w}. Then

uγ{x 7→ w} = u(γ ∪ {x 7→ w}). As δ is
computable and |t | > |u|, uδ is computable
by induction hypothesis.

3 t .
= @(t1, t2). Then t1γ and t2γ are

computable by induction hypothesis, hence t
is computable by Property (iv).

4 t .
= f (t1, . . . , tn). Then tiγ is computable by

induction hypothesis, hence tγ is
computable by property (vii).
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induction hypothesis, hence tγ is
computable by property (vii).
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Propriétés (i,ii,iii)

Note first that the only if part of property (iii) is
property (ii). We are left with (i), (ii) and the if
part of (iii), which are together spelled out as
follows:

Given a type σ, a term s :C σ ∈ [[σ]], a term t :C τ

such that s� t , and a neutral term u :C σ such
that w :C θ ∈ [[θ]] for every w such that u�w , we
prove by induction on the definition of [[σ]] that
(i) s is strongly normalizable,
(ii) t is computable,
(iii) u is computable.
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σ is a data type

(i) All reducts of s are computable by definition
of the interpretations, hence strongly
normalizable by induction hypothesis, and
therefore, so is s.

(ii) By definition of the candidate interpretations.

(iii) By definition of the candidate interpretations.
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(i) All reducts of s are computable by definition
of the interpretations, hence strongly
normalizable by induction hypothesis, and
therefore, so is s.

(ii) By definition of the candidate interpretations.

(iii) By definition of the candidate interpretations.



σ is a functional type. Property (i)

Let s :C σ = θ0� s1 :C θ1 . . .� sn :C θn � . . . be a
derivation issuing from s. sn ∈ [[θn]] by repeated
applications of property (ii) (and assumption for
n = 0). Such derivations are of two kinds:
(a) σ >TS θn for some n. Then, sn is strongly

normalizable by induction hypothesis and
the derivation issuing from s is finite;

(b) θn =TS σ for all n. The sequence of terms
@(sn, y :C σ1) :C σ2 → . . . σn → τ is
well-typed, and strictly decreasing by
monotonicity. Since σ �rpo

TS∀
σ1, y :C σ1 is

computable by induction hypothesis (iii). By
definition, @(sn, y) is computable and the
sequence finite by induction hypothesis (i).
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σ1, y :C σ1 is

computable by induction hypothesis (iii). By
definition, @(sn, y) is computable and the
sequence finite by induction hypothesis (i).



Property (ii)

Let σ = θ → ρ. By arrow preservation and arrow
decreasing properties, there are two cases:

(a) ρ ≥TS τ . Since s is computable, @(s, u) is
computable for every u ∈ [[θ]]. Let y :C θ. By
induction hypothesis (iii), y ∈ [[θ]], hence
@(u, y) is computable. Since
@(s, y) :C ρ� t :C τ by case Clôture , t is
computable induction hypothesis (ii).

(b) τ = θ′ → ρ′, with θ =TS θ′ and ρ ≥TS ρ′. Since
s is computable, given u ∈ [[θ]], then
@(s, u) ∈ [[ρ]], hence, by induction hypothesis
(ii) @(t , u) ∈ [[ρ′]]. Since [[θ]] = [[θ′]] by
Lemma 1, t ∈ [[τ ]] by definition of [[τ ]].
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Propriété (iii)

Let σ = σ1 → . . . → σn → τ , with n > 0 and τ a
data type. t is computable iff @(t , u1, . . . , un) is
computable for arbitrary u1 ∈ [[σ1]], . . . , un ∈ [[σn]],
hence SN by Property (i), and
@(t , u1, . . . , un) :C τ is computable iff so are its
reducts.
We prove by induction on multiset {u1, . . . , un}
of computable terms ordered by (�)mul the
property (H) stating that terms w strictly smaller
than @(t , u1, . . . , ui) in � are computable. The
property corresponds to i = n. If i = 0, terms
strictly smaller than t are computable by
assumption. If (i + 1) ≤ n, we consider all w
strictly smaller than @(@(t , u1, . . . , ui), ui+1).
Since t is neutral, there are two cases.



First case:

@(@(t , u1, . . . , ui), ui+1)�w by Case Clôture .
There are again two possibilities:

@(t , u1, . . . , ui)�w , and therefore
@(t , u1, . . . , ui)�w for type reason since w is
also a reduct of @(t , u1, . . . , ui+1). We then
conclude by induction hypothesis (H).

ui+1�w . We conclude by assumption and
induction property (ii).
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Second case:

@(@(t , u1, . . . , ui), ui+1)�w .
= @(w) by

Case Mul@. By definition of multiset extension
and for type reasons, there are two possibilities:

for all v ∈ w , either @(t , u1, . . . , ui)� v , and v
is computable by induction hypothesis (H), or
ui+1� v , in which case v is computable by
assumption and induction property (ii). It
follows that w is computable by Property (iv).
w1 = @(t , u1, . . . , ui) and ui+1�w2, implying
that w2 is computable by assumption and
induction property (ii). By induction property
(H), all reducts of w are computable. Since
w and t have the same (data) type, w is
computable by induction property (iii).
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Propriété (v)

The only if part follows from property (ii) and the
definition of [[]]. Assume conversely that
u{x 7→ s} is computable for an arbitrary
computable s. We show that @(λx .u, w) is
computable for an arbitrary computable w .
Since variables are computable by property (iii),
u = u{x 7→ x} is computable by assumption. By
property (i), u and w are SN. Since λx .u� v
implies u� v or v = λx .u′ and u�u′, λx .u is SN
by induction on u. We prove that @(λx .u, w) is
computable by induction on the pair {λx .u, w}
ordered by (�)lex . By property (iii), the neutral
term @(λx .u, w) is computable iff so are all v s.t.
@(λx .u, w)� v .



Cas Clôture

1 If w � v , we conclude by property (ii).
2 If λx .u� v , there are two cases. If u� v by

case Clôture , we conclude by property (ii)
again. Otherwise, v = λx .u′ and u�u′,
hence u{x 7→ w}�u′{x 7→ w} by stability
property. By assumption and property (ii),
u′{x 7→ w} is therefore computable. Hence,
@(v , w) is computable by induction
hypothesis applied to the pair (v = λx .u′, w).
We then conclude by definition of the
interpretations that v is computable.
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We then conclude by definition of the
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Cas Reduction et Mul@

1 If @(λx .u, w)� v by case Reduction , then
u{x 7→ w}� v . By assumption, u{x 7→ w} is
computable, and hence v is computable by
property (ii).

2 If the comparison is by case Mul@, then
v = @(v) and all terms in {v} are smaller
than w or λx .u. There are two cases.
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Cas Mul@, suite

1 v1 = λx .u and w � vi for i > 1. Then vi is
computable by property (ii) and, since
u{x 7→ v2} is computable by the main
assumption, @(v1, v2) is computable by
induction hypothesis. If v = @(v1, v2), we are
done, and we conclude by bqasic property
(ii) otherwise.

2 For all other cases, terms in v are reducts of
λx .u and w . Reducts of w and reducts of
λx .u which are themselves reducts of u are
computable by property (ii).
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λx .u and w . Reducts of w and reducts of
λx .u which are themselves reducts of u are
computable by property (ii).



Cas Mul@, fin

1 If all terms in v are such reducts, v is
computable by basic property (ii).

2 Otherwise, for typing reason, v1 is a reduct
of λx .u of the form λx .u′ with u�u′, and all
other terms in v are reducts of the previous
kind. By the main assumption, u{x 7→ v ′′} is
computable. Besides,
u{x 7→ v ′′}�u′{x 7→ v ′′} by stability property
of the ordering. Therefore u′{x 7→ v ′′} is
computable by Property (ii). By induction
hypothesis, @(v1, v2) is again computable. If
v = @(v1, v2), we are done, otherwise v is
computable by basic property (ii).
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Propriété (vi)

The only if direction is property (i). For the if
direction, let s be a strongly normalizable term
of type σ ∈ T min

S . We prove that s is computable
by induction on �. Since σ is a data type, s
must be neutral. Let now s� t :C τ , hence
σ ≥TS τ . By definition of T min

S , τ =TS σ, hence, τ

is a data type by definition of =TS , and since σ is
minimal, so is τ , hence τ ∈ T min

S . By assumption
on s, t must be strongly normalizable, and by
induction hypothesis, it is therefore computable.
Since this is true of all reducts of s, by definition
s is computable.



Preuve de (vii)

Since terms in s are computable, by Property
(i), they are strongly normalizable. We use this
remark to build our induction argument: we
prove that f (s) is computable by induction on
the pair (f , s) ordered lexicographically by
(>F , (�)statf )lex . Since f (s) is neutral, by

Property (iii), it is computable iff every t such
that f (s)� t is computable, which we prove by
an inner induction on the size of t . We discuss
by cases according to the definition of �.
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Cas Clôture et Prec

Let f (s)� t by case Clôture , hence si � t for
some si ∈ s. Since si is computable, t is
computable by Property (ii).

Let s = f (s)� t by case Prec . Then t = g(t),
f >F g and for every v ∈ t either s� v , in which
case v is computable by the inner induction
hypothesis, or u� v for some u ∈ s and v is
computable by Property (ii). Therefore, t is
computable, and since f >F g, t is computable
by the outer induction hypothesis.
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Cas Mul et Lex

If f (s)� t by case Mul , then t = g(t), f =F g,
and s(�)mul t . By definition of the multiset
comparison, for every ti ∈ t there is some sj ∈ s,
s.t. sj � ti , hence, by Property (ii), ti is
computable. This allows us to conclude by the
outer induction hypothesis that t is computable.

If f (s)� t by case Lex , then t = g(t), f =F g,
s(�)lex t and for every v ∈ t either f (s)� v or
u� v for some u ∈ s. As in the precedence
case, this implies that t is computable. Then,
since s(�)lex t , t is computable by the outer
induction hypothesis.
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Cas Prec@ et Precλ

If f (s)� t by case Prec@, let @(t1, . . . , tn) be the
partial left-flattening of t used in that proof. By
the same token as in case Prec , every term in t
is computable, hence t is computable by
Property (iv).

If f (s)� t by case Precλ, then t = λx .u with
x 6∈ Var(u), and f (s)�u. By the inner induction
hypothesis, u is computable. Hence,
u{x 7→ w} = u is computable for any
computable w , and therefore, t = λx .u is
computable by Property (v).



Cas Prec@ et Precλ

If f (s)� t by case Prec@, let @(t1, . . . , tn) be the
partial left-flattening of t used in that proof. By
the same token as in case Prec , every term in t
is computable, hence t is computable by
Property (iv).

If f (s)� t by case Precλ, then t = λx .u with
x 6∈ Var(u), and f (s)�u. By the inner induction
hypothesis, u is computable. Hence,
u{x 7→ w} = u is computable for any
computable w , and therefore, t = λx .u is
computable by Property (v).



Clôture calculable

Le rôle de la clôture calculable CC(s, t) du terme
s dans les preuves (t joue un rôle très marginal)
est de collecter des termes réductibles au sens
de Tait-Girard. Nous allons donc profiter des
propriétés de réductibilité pour construire une
définition inductive de cette clôture (l’ ancienne
définition sera le cas de base) de manière à
accroı̂tre son expressivité et utiliser le cas
Clôture de la définition du HORPO de manière
plus systématique.
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