Ordered Resolution and Paramodulation

October 25, 2005

<ロト <回ト < 国ト < 国ト < 国ト 三 里

Cutine Equality Ordered Resolution and Paramodulation Rules Herbrand equality interpretations Semantic trees Generating Interpretation Refutational Completeness of \mathcal{ORPF} Conclusion

Outline

- Equality
- Ordered Resolution and Paramodulation Rules
- Herbrand equality interpretations
- Semantic trees
- Generating Interpretation
- 6 Refutational Completeness of ORPF
 - Conclusion

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline Equality Ordered Resolution and Paramodulation Rules Herbrand equality interpretations Semantic trees Generating Interpretation Refutational Completeness of \mathcal{ORPF} Conclusion

< □ > < □ > < □ > < Ξ > < Ξ > ...

∃ 990

Axiomes de l'égalité

(reflexivity) $\mathbf{X} = \mathbf{X}$ (symmetry) $x = y \lor \neg y = x$ $x = z \lor \neg x = y \lor \neg y = z$ (transitivity) (fonctional (monotonicity) $f(\overline{x}) = f(\overline{y}) \lor \neg \overline{x} = \overline{y}$ (predicative monotonicity) $P(\overline{x}) = P(\overline{y}) \lor \neg \overline{x} = \overline{y}$

The are as many fonctional (resp. predicative) monotonicity axioms as the number of function (resp. predicate) symbols in the vocabulary.

- Adding these axioms for each equality predicate leads to a blow up in the number of clauses generated by ordered resolution, most of which are useless.
- Example (take the order rpo(f > a))

$$\neg a = f(a)$$
 $f(x) = f^2(x)$

 Robinson et Wos proposed to replace all equality axioms except reflexivity by one, specific, less prolific inference rule:

$$\frac{C \lor l = r \qquad \pm D \lor A[u]}{C\sigma \lor D\sigma \lor \pm A[r\sigma]} \quad \text{si} \begin{cases} u \notin \mathcal{X} \\ \sigma = mgu(l = u) \end{cases}$$

《曰》 《聞》 《臣》 《臣》 三臣 …

- Adding these axioms for each equality predicate leads to a blow up in the number of clauses generated by ordered resolution, most of which are useless.
- Example (take the order rpo(f > a))

$$eg a = f(a)$$
 $f(x) = f^2(x)$

 Robinson et Wos proposed to replace all equality axioms except reflexivity by one, specific, less prolific inference rule:

$$\frac{C \lor l = r \qquad \pm D \lor A[u]}{C\sigma \lor D\sigma \lor \pm A[r\sigma]} \quad \text{si} \begin{cases} u \notin \mathcal{X} \\ \sigma = mgu(l = u) \end{cases}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

- Adding these axioms for each equality predicate leads to a blow up in the number of clauses generated by ordered resolution, most of which are useless.
- Example (take the order rpo(f > a))

$$\neg a = f(a)$$
 $f(x) = f^2(x)$

 Robinson et Wos proposed to replace all equality axioms except reflexivity by one, specific, less prolific inference rule:

$$\frac{C \lor l = r \pm D \lor A[u]}{C\sigma \lor D\sigma \lor \pm A[r\sigma]} \quad \text{si } \begin{cases} u \notin \mathcal{X} \\ \sigma = mgu(l = u) \end{cases}$$

<ロ> (四) (四) (三) (三) (三)

Outline Equality Ordered Resolution and Paramodulation Rules Herbrand equality interpretations Semantic trees Generating Interpretation Refutational Completeness of ORPF Conclusion

Ordered Resolution and Paramodulation

イロン 不得 とくほ とくほう 一座

 $\begin{array}{c} \textbf{Resolution} \\ \underline{+A \lor C \quad -A' \lor C'} \\ \hline C\sigma \lor C'\sigma \\ \end{array} \quad \begin{array}{c} \sigma = mgu(A = A') \\ A\sigma \not\prec B \forall B \in C\sigma \lor C'\sigma \\ \end{array}$

Factoring
$$+A \lor +A' \lor C$$
 $+A\sigma \lor C\sigma$ $A\sigma \not\prec B \forall B \in C\sigma$

Reflexivity $-u = v \lor C$ $\sigma = mg(u = v)$ $C\sigma$ $u\sigma = v\sigma \not\prec B \forall B \in C\sigma$

《曰》 《聞》 《臣》 《臣》 三臣 …

ORPF continued: Paramodulation

Ordered Paramodulation

$$\frac{C \lor I = r \quad D \lor \pm A[u]}{C\sigma \lor D\sigma \lor \pm A\sigma[r\sigma]}$$

$$\begin{cases} \sigma = mgu(I = u) \\ I\sigma \not\prec r\sigma \\ I\sigma = r\sigma \not\prec B \forall B \in C\sigma \\ A\sigma \not\prec B \forall B \in D\sigma \end{cases}$$

Monotonic Ordered Paramodulation

$$\frac{C \lor I = r \quad D \lor \pm A[u]}{C\sigma \lor D\sigma \lor \pm A\sigma[r\sigma]}$$

$$\sigma = mgu(I = u)$$

$$A\sigma[I\sigma] \not\prec A\sigma[r\sigma]$$

$$I\sigma = r\sigma \not\prec B \forall B \in C\sigma$$

$$A\sigma \not\preceq B \forall B \in D\sigma$$

Completeness Theorem

 \mathcal{ORPF} is refutationally complete for any partial quasi-ordering \succeq satisfying the following properties:

- \succeq is stable on terms,
- In the second secon
- Is extended to litterals and clauses in a natural way.
- South rules coincide under these conditons.

Monotonic paramodulation is incomplete:

{
$$fb \neq fa, b = fb, a = fb$$
}
 $ffa \succ ffb \succ a \succ b \succ fa \succ fb$

Ordered paramodulation generates:

 $\{f^{m}b \neq fa, f^{n+1}b \neq f^{m+1}b, \\ a = f^{m}b, f^{n}b = f^{m}b, a = b \mid n \ge 0, m > 0\} \cup \{\Box\}$

Monotonic paramodulation is incomplete:

$$\{ fb \neq fa, \ b = fb, \ a = fb \}$$

$$ffa \succ ffb \succ a \succ b \succ fa \succ fb$$

$$\frac{b = fb \quad a = fb}{NO} \qquad \frac{ffb = fb \quad a = fb}{NO}$$

$$\frac{fb \neq fa \quad b = fb}{NO} \qquad \frac{fb \neq fa \quad a = fb}{NO}$$

Ordered paramodulation generates:

 $\{f^{m}b \neq fa, f^{n+1}b \neq f^{m+1}b, \\ a = f^{m}b, f^{n}b = f^{m}b, a = b \mid n \ge 0, m > 0\} \cup \{\Box\}$

Monotonic paramodulation is incomplete:

fb $ eq$ fa	b = tb	fb $ eq$ fa	a = tb
NO		NO	

Ordered paramodulation generates:

 $\{f^{m}b \neq fa, f^{n+1}b \neq f^{m+1}b, \\ a = f^{m}b, f^{n}b = f^{m}b, a = b \mid n \ge 0, m > 0\} \cup \{\Box\}$

Monotonic paramodulation is incomplete:

$$\{fb \neq fa, b = fb, a = fb\}$$

 $ffa \succ ffb \succ a \succ b \succ fa \succ fb$

$$\frac{b = fb \quad a = fb}{NO} \qquad \frac{ffb = fb \quad a = fb}{NO}$$

$$\frac{\mathit{fb} \neq \mathit{fa} \quad \mathit{b} = \mathit{fb}}{\mathit{NO}} \qquad \frac{\mathit{fb} \neq \mathit{fa} \quad \mathit{a} = \mathit{fb}}{\mathit{NO}}$$

Ordered paramodulation generates:

$$\{f^{m}b \neq fa, f^{n+1}b \neq f^{m+1}b, \\ a = f^{m}b, f^{n}b = f^{m}b, a = b \mid n \ge 0, m > 0\} \cup \{\Box\}$$

Monotonicity violated

Monotonic paramodulation is incomplete:

$$\{gb = b, fg^2b \neq fb\}$$

 $fg^3b \succ fgb \succ fb \succ fg^2b \succ gb \succ b$

The set of (ground unit) clauses is already closed.

Using ordered paramodulation:

 $\{gb = b, fg^2b \neq fb, fgb \neq fb, fb \neq fb, \Box\}$

Completeness of ordered paramodulation does not need monotonicity [Bachmair, Ganzinger, Nieuwenhuis, Rubio, 2003]

Monotonicity violated

Monotonic paramodulation is incomplete:

$$\{gb = b, fg^2b \neq fb\}$$

 $fg^3b \succ fgb \succ fb \succ fg^2b \succ gb \succ b$

The set of (ground unit) clauses is already closed.

Using ordered paramodulation:

$$\{gb = b, fg^2b \neq fb, fgb \neq fb, fb \neq fb, \Box\}$$

Completeness of ordered paramodulation does not need monotonicity [Bachmair, Ganzinger, Nieuwenhuis, Rubio, 2003]

Monotonicity violated

Monotonic paramodulation is incomplete:

$$\{gb = b, fg^2b \neq fb\}$$

 $fg^3b \succ fgb \succ fb \succ fg^2b \succ gb \succ b$

The set of (ground unit) clauses is already closed.

Using ordered paramodulation:

$$\{gb = b, fg^2b \neq fb, fgb \neq fb, fb \neq fb, \Box\}$$

Completeness of ordered paramodulation does not need monotonicity [Bachmair, Ganzinger, Nieuwenhuis, Rubio, 2003]

- Compactness yields a finite unsatisfiable set of ground clauses;
- Build the tree of equality interpretations;
- Define the branch ending at an inference node;

- Compactness yields a finite unsatisfiable set of ground clauses;
- Build the tree of equality interpretations;
- Define the branch ending at an inference node;

- Compactness yields a finite unsatisfiable set of ground clauses;
- Build the tree of equality interpretations;
- Define the branch ending at an inference node;

- Compactness yields a finite unsatisfiable set of ground clauses;
- Build the tree of equality interpretations;
- Define the branch ending at an inference node;

Herbrand equality interpretations

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ○ ■ | の < ♡

Let *I* a node in the tree interpreting the atoms $\{A_j\}_{0 \le j < i}$ such that E_l is the set of equalities interpreted in *T* by *I* which we turn into a set of rules E_l .

We want exactly three cases now:

(i) A_i is s = s that we interpret in T;

(ii) A_i is reducible in E_i to some atom B and both interpretations must be the same;

(iii) A_i is irreducible and has two successors.

These three cases correspond respectively to reflexivity, paramodulation and resolution.

- *E_I* must be confluent to ensure consistent decisions;
- The atom *B* must belong to $\{A_j\}_{0 \le j < i}$.
- For an arbitrary finite unsatisfiable set of ground instances of the clauses, these assumptions are usually not met.

Completion of the set of atoms

 \mathcal{A} : finite set of atoms \mathcal{E} be the set of equalities in \mathcal{A}

$$\begin{array}{c} A \longrightarrow_{\mathcal{E}} B \\ \text{if} \\ A = A[s], \ B = A[t], \ s = t \in \mathcal{E}, \ s \succ t \end{array}$$

Ordered completion:

$$\frac{\mathcal{A} \cup \{A\} \quad A \longrightarrow_{\mathcal{E}} B}{\mathcal{A} \cup \{B\}}$$

Observation: the tree of all possible completion sequences is finite.

<ロト <回ト < 国ト < 国ト < 国ト 三 里

Completion of the set of atoms

 \mathcal{A} : finite set of atoms \mathcal{E} be the set of equalities in \mathcal{A}

$$\begin{array}{c} A \longrightarrow_{\mathcal{E}} B \\ \text{if} \\ A = A[s], \ B = A[t], \ s = t \in \mathcal{E}, \ s \succ t \end{array}$$

Ordered completion:

$$\frac{\mathcal{A} \cup \{A\}}{\mathcal{A} \cup \{B\}} \xrightarrow{A \longrightarrow_{\mathcal{E}} B}$$

Observation: the tree of all possible completion sequences is finite.

《曰》 《聞》 《臣》 《臣》 三臣 …

Key property of Ordered Completion

Lemma

Let A be a finite set of atoms. \mathcal{E} be its subset of equality atoms, \mathcal{A} the closure of \mathcal{A} under all possible sequences of ordered completion, and $\overline{\mathcal{E}}$ its subset of equality atoms. Then (i) $\overline{\mathcal{A}}$ is finite; (ii) $\overline{\mathcal{E}}$ is closed under critical pair computation, hence defines a convergent set of rules again written $\overline{\mathcal{E}}$: (iii) $\overline{\mathcal{A}}$ is closed under rewriting with $\overline{\mathcal{E}}$.

Proof: easy.

Ordered Completion achieves its goals

We assume that $\overline{A} = A$, hence $\overline{\mathcal{E}} = \mathcal{E}$. Let E_H be the subset of equalities (rules) in \mathcal{E} interpreted by T in the Herbrand interpret. *H*.

Lemma

Let $\{A_i\}_{i < j \le n}$ be an initial segment of \mathcal{A} , and Han equality interpretation of $\{A_i\}_{i < j}$. Then, (i) $A_i \longrightarrow_{E_H} B$ implies that $B = A_k$ for some k < i, (ii) E_H is a convergent subset of \mathcal{E} .

Proof: Since \mathcal{A} is closed under ordered completion, $B \in \mathcal{A}$, and $A_i \succ B$ implies k < i. A critical pair between two rules of $\{A_i\}_{i < j}$ belongs to $\{A_i\}_{i < j}$ by (i), hence to E_H by def. \Box The tree of Herbrand equality interpretations over $\mathcal{A} = \{A_j\}_j$ is defined inductively. Each node *I* in the tree defines a partial equality interpretation of $\{A_j\}_{j < i}$ and a set E_l of equalities interpreted by true in *I*.

- Assume that A_i has the form s = s. Then, *I* has one successor *J* s.t. $[A_i]_J = T$
- Solution Sector Assume otherwise that $A_i \longrightarrow_{R_i} A_j$ with i > j. Then *I* has one successor *J* s.t. $[A_i]_J = [A_j]_I$.
- Otherwise, *I* has a left successsor *J* and a right *K* s.t. $[A_i]J = T$ and $[A_i]_K = F$.

The tree of Herbrand equality interpretations over $\mathcal{A} = \{A_j\}_j$ is defined inductively. Each node *I* in the tree defines a partial equality interpretation of $\{A_j\}_{j < i}$ and a set E_l of equalities interpreted by true in *I*.

- Assume that A_i has the form s = s. Then, I has one successor J s.t. $[A_i]_J = T$
- Solution Assume otherwise that $A_i \longrightarrow_{R_i} A_j$ with i > j. Then *I* has one successor *J* s.t. $[A_i]_J = [A_j]_I$.
- Otherwise, *I* has a left successsor *J* and a right *K* s.t. $[A_i]J = T$ and $[A_i]_K = F$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

The tree of Herbrand equality interpretations over $\mathcal{A} = \{A_j\}_j$ is defined inductively. Each node *I* in the tree defines a partial equality interpretation of $\{A_j\}_{j < i}$ and a set E_l of equalities interpreted by true in *I*.

- Assume that A_i has the form s = s. Then, I has one successor J s.t. $[A_i]_J = T$
- Solution Assume otherwise that $A_i \longrightarrow_{R_i} A_j$ with i > j. Then *I* has one successor *J* s.t. $[A_i]_J = [A_j]_I$.
- Otherwise, *I* has a left successsor *J* and a right *K* s.t. $[A_i]J = T$ and $[A_i]_K = F$.

Lemma

The set of leaves is in bijection with the set of equality Herbrand interpretations of A.

Proof: We show that *H* is a partial Herbrand equality interpretation over an initial segment $\{A_i\}_{i < j \le n}$ iff (a) for any atom $s = s \in \{A_i\}_{i < j}$, $[s = s]_H = T$, (b) for any two atoms A_k , A_l such that j > k > l and $A_k \longrightarrow_{E_H} A_l$, then $[A_k]_H = [A_l]_H$.

Clearly, an Herbrand equality interpretation satisfies (i) and (ii). We show the converse.

Proof

Let $s = t \in E_H$ and $u[s] = u[t] \in \{A_i\}_{i < j}$ for some $u[] \neq []$. Then $u[s] = u[t] \longrightarrow_{E_H} u[t] = u[t]$ which belongs to $\{A_i\}_{i < j}$ by previous lemma (i), assuming $u[s] \succ u[t]$. By (a) and (b), $[u[s] = u[t]]_H = [u[t] = u[t]]_H = T$, hence $u[s] = u[t] \in E_H$.

Assuming now that $A_k \longleftrightarrow_{E_H}^* A_l$ with k > l, we show that $[A_k]_H = [A_l]_H$ by induction on k. By previous lemma (ii), there exist atoms B, C such that $A_k \longrightarrow_{E_H} B \longrightarrow_{E_H}^* C \longleftarrow_{E_H}^* A_l$. By previous lemma (i), $B = A_m$ for some m < k. By induction hypothesis, $[A_m]_H = [A_l]_H$. By assumption (b), $[A_k]_H = [A_m]_H$. We conclude by transitivity.

Tree of equality interpretations for $fb \succ fa \succ a \succ b$

Semantic trees

- + ロト + 御 ト + 画 ト + 画 ト - 画 - - のへで

Generating Interpretation

- ◆ □ ▶ → 個 ▶ → 画 ▶ → 画 ● ● ● ●

We assume an unsatisfiable set \mathcal{G} of ground clauses built upon the atoms in \mathcal{A} , which is closed under the rules in \mathcal{ORPF} .

Definition

We call *failure node* a partial equality interpretation *J* for which there exists $C \in \mathcal{G}$ such that $[C]_J = F$ and $[C]_I$ is undefined for any I < J. We call semantic tree associated with \mathcal{G} the tree obtained from the tree of equality interpretations by replacing each failure node *J* by a leaf labelled with a clause in \mathcal{G} refuting *J*.

Inductive set of generating interpretations

- If the partial interpretation *I* is a leaf, done.
- If *I* has a unique successor *I'* in the semantic tree, choose *I'*.
- If *I* has two successors *J* (the left one) and *K* (the right one) such that *K* is a failure node, choose *J*. In case *K* is labelled by the clause $s = t \lor D$ such that s = t is maximal, we say that s = t is generated.
- If *I* has two successors *J* (the left one) and *K* (the right one) such that *K* is not a failure node and *A*_{|*I*|} is an equality atom, choose *K*.
- Otherwise, choose either *J* or *K*.

G will denote any generating interpretation.

Lemma

Assume that G is a generating interpretation of a semantic tree associated with the unsatisfiable set $\mathcal{G} = \{A_i\}_{i < n}$ of ground clauses closed under the rules in \mathcal{ORPF} . Let us assume that A_i is reducible by E_G . Then, there exists a generating clause $s = t \lor C$ in \mathcal{G} such that:

《口》 《聞》 《臣》 《臣》

(i)
$$A_i \longrightarrow_{s=t \in E_G} A_j \in A$$
, with $s \succ t$,
(ii) $s = t \succ A$ for every atom A of C,
(iii) $[C]_G = F$.

proof

- **Proof** A straightforward key property of *G* is that the generated equations are exactly the equations s = t irreducible in $E_{G \setminus \{s=t\}}$. Let *I* be the father of *G*.
- (i). We need proving that each reducible atom A_i rewrites to atom $B \in A$ with an irreducible equation.

Let s = t, $s \succ t$, be an equation reducing A_i , that is, $A_i = A_i[s]$ and $A_j = A_i[t]$ for some j < i, such that (s, t) is minimal with respect to \succ .

If *t* is reducible to *t'* by some equation u = vinterpreted in *T* by *G*, then $s = t' \in E_G$, hence A_i is reducible by a smaller equation. Contradiction.

proof

If s is reducible by some equation u = vinterpreted in T by G, then, by monotonicity, w[s] is reducible by u = v, hence A_i is reducible by an equation smaller than s = t. Contradiction, or s = u, t = v up to renaming. Therefore, s = t is irreducible for $E_G \setminus \{s = t\}$. (ii) and (iii). Since s = t is the last atom enumerated by G, it is maximal in the clause. Since \mathcal{G} is closed under positive factoring, we can assume that $s = t \notin C$, hence $[C]_G = [C]_I = F$ and s = t is strictly bigger than any atom in C.

Since I has two successors, by definition of the tree of Herbrand equality interpretations, s and t must be irreducible by E_l . Let now $u = v \in E_G \setminus (E_I \cup \{s \to t\})$ and assume without loss of generality that $u \succ v$. By definition of the tree of Herbrand equality interpretations, $u = v \succ s = t$. By properties of \succ , $u \succ s$ and $u \succ t$, hence u is not a subterm of s or of t. It follows that s = t cannot be reduced by $u \rightarrow v$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

Refutational Completeness of ORPF

▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで

Theorem

A set of clauses C is unsatisfiable iff the empty clause belongs to its closure under ORPF.

Proof: By compactness, we chose a finite unsatisfiable set \mathcal{G} of ground instances of \mathcal{C} , built over a finite set \mathcal{A} of ground atoms. By ordered completion, we complete \mathcal{A} into a new finite set $\overline{\mathcal{A}}$. We can now generate a new set of ground instances of \mathcal{C}

 $\overline{\mathcal{G}} = \{ \mathbf{C}\gamma \mid \mathbf{C} \in \mathcal{C}, \ \mathbf{C}\gamma \text{ ground }, \mathbf{A} \in \overline{\mathcal{A}} \ \forall \mathbf{A} \in \mathbf{C}\gamma \}$

By construction, $\overline{\mathcal{G}}$ contains \mathcal{G} , hence is unsatisfiable, and is closed under \mathcal{ORPF} .

Proof continued

We construct a minimal semantic tree \mathcal{W} for \mathcal{G} , for the ordering comparing in $(>_{\ensuremath{N}}, \succ_{\it mul})_{\it lex}$ the pair ($|\mathcal{W}|$, {clauses refuting the leaves of \mathcal{W} }). Assume \mathcal{W} is non-empty: choose an arbitrary generating interpretation J with father node I. By definition of \mathcal{W} , J is refuted by a clause $\pm B \lor C$, in which $B = P(\overline{u}\gamma)$ is last enumerated atom, hence is maximal in C. By minimality assumption and closure of \mathcal{G} under positive factoring, B does not occur in C when positive. By minimality assumption, definition of equality interpretations, closure of \mathcal{A} under ordered paramodulation and construction of \mathcal{G} , γ can be assumed in normal form for E_J .

 $\mathcal{O} \mathcal{O} \mathcal{O}$

We now exhibit an inference between the clause refuting *J* and another clause in W. The infered clause will belong to G and refute the interpretation *I*, therefore contradicting our minimality assumption.

This is done by cases upon the definition of *G*. **1.** $P(\overline{u}\gamma)$ is of the form s = s, in which case *I* has *J* as single successor labelled by

 $\neg s = s \lor C$. By closure property of \mathcal{G} under the rules in \mathcal{ORPF} , \mathcal{G} contains C. There are two cases. If $s = s \in C$, then C refutes J, otherwise it refutes a node N < J, contradicting our minimality assumption in both cases.

Proof continued

2. $P(\overline{u}\gamma)$ is irreducible by a rule in E_I . Then, I has two successors, and by definition, J must be the left successor of I and the right successor must be itself a leaf. Hence / has two successors labelled by clauses in both of which the atom $P(\overline{u}\gamma)$ is maximal. Let these clauses be $+P(\overline{u}\gamma) \vee C$, in which $P(\overline{u}\gamma)$ is strictly bigger than any atom occuring in C, and $-P(\overline{u}\gamma) \vee D$. By construction, \mathcal{G} contains the clause $C \vee D$ obtained by ordered resolution from both previous clauses. By definition of \succ , $C \lor D$ is strictly smaller than the clause $-P(\overline{u}\gamma) \vee D$, hence refuting a node N < J, which contradicts our minimality assumption. ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Proof, end

3. $P(\overline{u}\gamma)$ is reducible by E_l . Since γ is irreducible, $P(\overline{u}\gamma)$ must be reducible at a non-variable position p of $P(\overline{u})$ by an equation $s = t \in E_l$, yielding the atom $B = P(\overline{u}\gamma)[t]_p \in A$. By Lemma, s = t is generated by a clause $s = t \lor D$ such that $s \succ t$ and s = t is strictly bigger than any atom in D. Therefore, there is an ordered paramodulation between $I = r \vee D$ and the clause $\pm P(\overline{u}\gamma) \vee C$, yielding $B \vee C \vee D$, which belong to \mathcal{G} by construction. Then, the infered clause refutes an ancestor node, the obtained semantic tree is smaller than the starting one, a contradiction again.

Conclusion

- Apply compactness before anything else;
- Inductive construction of the tree of interpretations requires the subterm property;
- Interpretation of Bachmair-Ganzinger model generation technique as a maximal branch of the semantic tree;

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

No lifting needed !