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Abstract. Small degree extensions of �nite �elds are commonly used
for cryptographic purposes. For extension �elds of degree 2 and 3, the
Karatsuba and Toom Cook formulæ perform a multiplication in the ex-
tension �eld using 3 and 5 multiplications in the base �eld, respectively.
For degree 5 extensions, Montgomery has given a method to multiply
two elements in the extension �eld with 13 base �eld multiplications.
We propose a faster algorithm, which requires only 9 base �eld multi-
plications. Our method, based on Newton's interpolation, uses a larger
number of additions than Montgomery's one but our implementation of
the two methods shows that for cryptographic sizes, our algorithm is
much faster.
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1 Introduction

E�cient implementation of a cryptosystem often relies on high performance
arithmetic in a �nite �eld Fq or over some extension �eld of small degree. In
view of recent proposals for torus-based cryptography [17] and pairing-based
cryptography [7], we propose a method to implement the arithmetic of the �nite
�eld Fq5 , if the characteristic of Fq is greater than 11. Our method, based on
Newton's interpolation method for multiplying two polynomials, is faster than
previously known methods to perform multiplication in such �elds.

We begin by enumerating several uses of degree �ve extension �elds in cryp-
tography. Firstly, Rubin and Silverberg [16] considered the problem of compres-
sion (i.e. representing elements in a �nite �eld subgroup with fewer bits than
classical algorithms) for extension �elds in terms of algebraic tori Tn(Fq) (i.e.
the elements of F∗

qn whose norm is one down to every proper sub�eld of Fqn/Fq).
Rubin and Silverberg developed the CEILIDH cryptosystem based on T6(Fq).
In [17], van Dijk et al. gave applications based on T30(Fq), such as El Gamal



encryption, El Gamal signatures and voting schemes. Van Dijk et al. proposed
an implementation of T30(Fq), based on some techniques used to implement
CEILIDH. More precisely, they implemented Fq5 by using a degree 5 sub�eld
of the degree 10 extension Fq[X]/Φ11(X), with Φ11(X) the eleventh cyclotomic
polynomial. Their operation count shows that multiplication in Fq5 requires
15Mq + 75Aq, where Mq and Aq denote the costs of multiplication and addition
in Fq.

Secondly, we note that several families of elliptic curves having embedding
degree 10, 15, 30 or 35 have been proposed for pairing-based cryptography [7,8].
These families are recommended for implementations at high security levels,
i.e. 192 and 256. On such curves, we need an e�cient implementation of an
extension �eld whose degree is divisible by 5. This is generally done by using
tower �elds and thus requires an e�cient arithmetic of Fq5 . Moreover, note that
the pairing values can be represented in compressed form by using algebraic tori.
Up to the present, such implementations were done for supersingular curves in
characteristic 3 (see [9]) and for Barreto-Naehrig curves (see [15]). The arithmetic
of T30(Fq) may be used for compressible pairings on curves with embedding
degree 30, for example.

Bodrato [4] proposed a method to speed up the Toom Cook algorithm for
degree 5 extension �elds with characteristic 2. In [2], the multiplication in Fq5 is
computed with two applications of the Karatsuba method and requires
14Mq + 34Aq. To the best of our knowledge, the fastest known formula for
computing multiplication over Fq5 with char(Fq) > 5 can be derived from
Montgomery's method to multiply two �ve-term polynomials [14]. The
complexity of his method is 13Mq + 62Aq.

We propose a method to perform multiplication over Fq5 which relies on
Newton's interpolation method. Interpolation methods require performing a
certain number of divisions. Divisions are generally expensive, but we show that
with Newton's interpolation, it is possible to choose the interpolation values such
that we only need to perform a small number of divisions by small constants.
Our operation count gives a total cost of 9Mq + 137Aq for a multiplication in
Fq5 . In order to apply Montgomery's method to multiplication in Fq5 , some
extra additions are needed. Even though our algorithm performs a great number
of additions, our method is faster than Montgomery's one if Mq > 18Aq. Our
method can be adapted for degree 6 and 7 extension �elds. Our operation count
shows that we need 11Mq +196Aq for a multiplication in Fq6 and 13Mq +271Aq

for a multiplication in Fq7 .

This paper is organized as follows: in Sect. 2 we describe Montgomery's
method and estimate the number of additions in Fq that this method performs.
In Sect. 3 we describe an e�cient multiplication based on the interpolation for
the �eld Fp5 . Section 4 describes our implementation and gives experimental re-
sults. In Sect. 5 we show that our idea can be used to optimize the arithmetic of
degree 6 and 7 extension �elds. Finally, Sect. 6 shows that our method applies for
implementations in pairing-based and torus-based cryptography, for high levels
of security. In Appendix 8 we display the complete formula for inversion in Fq5 .
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2 Montgomery's approach

Let Fq be a �nite �eld of characteristic greater than 5. Usually, an extension of
degree k of Fq is de�ned by Fqk = Fq[X]/ (P (X)Fq[X]) where P (X) ∈ Fq[X]
is an irreducible polynomial of degree k. Consequently, elements of Fqk are rep-
resented by polynomials in X, of degree at most k − 1 and with coe�cients in
Fq. Montgomery [14] proposed a Karatsuba-like formula for 5-term polynomi-
als. We recall here his method. Let A = a0 + a1X + a2X

2 + a3X
3 + a4X

4 and
B = b0 + b1X + b2X

2 + b3X
3 + b4X

4 in Fq5 with coe�cients over Fq.

Montgomery constructs the polynomial C(X) = A(X) · B(X) using the
following formula

C = (a0 + a1X + a2X
2 + a3X

3 + a4X
4)(b0 + b1X + b2X

2 + b3X
3 + b4X

4)

= (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 + b3 + b4)(X5 −X4 + X3)
+(a0 − a2 − a3 − a4)(b0 − b2 − b3 − b4)(X6 − 2X5 + 2X4 −X3)
+(a0 + a1 + a2 − a4)(b0 + b1 + b2 − b4)(−X5 + 2X4 − 2X3 + X2)
+(a0 + a1 − a3 − a4)(b0 + b1 − b3 − b4)(X5 − 2X4 + X3)
+(a0 − a2 − a3)(b0 − b2 − b3)(−X6 + 2X5 −X4)
+(a1 + a2 − a4)(b1 + b2 − b4)(−X4 + 2X3 −X2)
+(a3 + a4)(b3 + b4)(X7 −X6 + X4 −X3)
+(a0 + a1)(b0 + b1)(−X5 + X4 −X2 + X)
+(a0 − a4)(b0 − b4)(−X6 + 3X5 − 4X4 + 3X3 −X2)
+a4b4(X8 −X7 + X6 − 2X5 + 3X4 − 3X3 + X2)
+a3b3(−X7 + 2X6 − 2X5 + X4)
+a1b1(X4 − 2X3 + 2X2 −X)
+a0b0(X6 − 3X5 + 3X4 − 2X3 + X2 −X + 1)

The cost of these computations is 13Mq +22Aq. Note that in order to recover
the �nal expression of the polynomial of degree 8, we have to re-organize the
13 lines to �nd its coe�cients. We denote the products on each of the 13 lines
by ui, 0 ≤ i ≤ 12 (i.e. u12 = (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 + b3 + b4),
u11 = (a0 − a2 − a3 − a4)(b0 − b2 − b3 − b4) etc.) By re-arranging the formula in
function of the degree of X, we obtain the following expression for C

C = u3X
8

+ (−u2 − u3 + u6)X7

+ (u0 + 2u2 + u3 − u4 − u6 − u8 + u11)X6

+ (−3u0 − 2u2 − 2u3 + 3u4 − u5 + 2u8 + u9 − u10 − 2u11 + u12)X5

+ (3u0 + u1 + u2 + 3u3 − 4u4 + u5 + u6 − u7 − u8 − 2u9 + 2u10 + 2u11 − u12)X4

+ (−2u0 − 2u1 − 3u3 + 3u4 − u6 + 2u7 + u9 − 2u10 − u11 + u12)X3

+ (u0 + 2u1 + u3 − u4 − u5 − u7 + u10)X2

+ (−u0 − u1 + u5)X
+ u0
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Considering this expression, we can easily count hidden additions in Mont-
gomery's formula. We have taken into account that some operations are repet-
itive and simpli�ed the expression of C very carefully by hand. We obtain the
following formula

C = u3X
8

+ (−u2 + u6 − u3)X7

+ ((u0 + u3 − u4)− (u6 − u2) + (u2 − u8 + u11))X6

+ (u3 − u5 + u9 − u10 + u12 − 2(u2 − u8 + u11)− 3(u0 + u3 − u4))X5

+(u1 +u2−u4 +u5 +u6−u7−u8−u12−2(u9−u10−u11)+3(u0 + u3 − u4))X4

+ (u0 − u6 + u9 − u11 + u12 − 2(u1 − u7 + u10)− 3(u0 + u3 − u4))X3

+ ((u0 + u3 − u4) + u1 − u5 + (u1 − u7 + u10))X2

+ (−u0 − u1 + u5)X
+ u0

We consider that a multiplication by 3 costs one addition. This is due to
the fact that 3U = 2U + U and that the product by 2 is only a shift in the
binary decomposition (see Sect. 4.2). Our operation count shows that we need
to perform 42 extra additions in order to get C. To sum up, Montgomery's
method costs 13Mq +62Aq. Finally, in order to compute C mod P (X), we need
some extra operations. Since the reduction technique is similar to the one for
the multiplication method we propose, we detail it in Sect. 3.

3 Our approach

In extensions of degree 2 and 3 Karatsuba and Toom Cook multiplications are
the most e�cient known. For composite degree extensions (i.e. 2i3j , for i, j > 0)
one can use tower �eld extensions [11] and apply Karatsuba and Toom Cook
methods [18]. If the degree of the extension is not composite, one may use the
FFT method [18].

In this paper, we are interested in e�ciently computing multiplications in
extension �elds of degree 5. Note that the use of FFT is not interesting in this
case. Indeed, during a FFT multiplication, we have to multiply by roots of unity.
In the general case, q is a large random prime number and the roots of unity over
Fq do not necessarily have a sparse representation, even after recoding. Hence
multiplications by these roots are expensive.

Finally, we may use Lagrange or Newton's interpolation method to implement
the multiplication in Fq5 . Generally, interpolation methods have the drawback
to increase the number of additions during a multiplication. Moreover, with
interpolation methods we need to perform several divisions. Bajard et al. [3]
study these methods and replace divisions by multiplications by large numbers.
In this paper, we study Newton's interpolation and by carefully choosing our
interpolation points, we perform divisions by small constants. While
multiplication by large constants uses a general multiplier, we explain that
divisions by small constants can be handled as 2 additions.

Note that Karatsuba and Toom Cook's formulæ can be found using Newton's
interpolation by applying Newton's forward di�erence formula. We use the same
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approach for a degree �ve extension, and we show that the number of extra
additions is not large.

3.1 Newton's interpolation

We denote by A(X) = a0 +a1X + . . .+ak−1X
k−1 and B(X) = b0 + b1X + . . .+

bk−1X
k−1 the expressions of A and B in Fqk . The interpolation method for the

multiplication follows this steps

• Find 2k − 1 di�erent values in Fq {α0, α1, . . . , α2k−2}.
• Evaluate the polynomials A(X) and B(X) at these 2k − 1 values:

A(α0), . . . , A(α2k−2), B(α0), . . . , B(α2k−2).
• Compute C(X) = A(X)×B(X) at these 2k−1 values C(αi) = A(αi)B(αi).
• Interpolate the polynomial C(X) of degree 2k− 2 (with Newton's method).

Newton's interpolation constructs the polynomial C(X) in the following way

c′0 = C(α0)

c′1 = (C(α1)− c′0)
1

(α1 − α0)

c′2 =
(

(C(α2)− c′0)
1

(α2 − α0)
− c′1

)
1

(α2 − α1)
...

The reconstruction of C(X) is done by

C(X) = c′0 + c′1(X − α0) + c′2(X − α0)(X − α1) + · · ·
+c′2k−2(X − α0)(X − α1) . . . (X − α2k−2).

This can be computed using Horner's scheme

C(X) = c′0 + (X − α0) [c′1 + (X − α1) (c′2 + (X − α2) 〈. . .〉)]

The global complexity of Newton's interpolation is the sum of the following
operations:

1. the evaluations at αi of A(X) and B(X)
2. the 2k − 1 multiplications in Fq ( A(αi)×B(αi) )
3. the computation of the c′i
4. Horner's scheme to �nd the expression of C(X) = A(X) × B(X) of degree

2k − 1.

3.2 Simplifying operations in Newton's interpolation

Since we want to multiply two polynomials of degree 4, we choose 9 values for
the interpolation

α0 = 0, α1 = 1, α2 = −1, α3 = 2, α4 = −2, α5 = 4, α6 = −4, α7 = 3, α8 =∞.

These values were chosen in order to minimize both the number of additions
during the evaluation step and the costs of divisions by constants.
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Complexity of the evaluations in αi of A and B. For the �rst step, we have
to evaluate A(X) and B(X) in the αi. With the chosen values, evaluations of
A(X) and B(X) are done using only additions and shifts in Fq. Indeed, a product
by a power of 2 is composed of shifts in binary base. In order to evaluate A(X) at
2j , we compute the products ai × (2j)i which are shifts, and then the additions∑ k−1

i=0 ai(2j)i using a FFT scheme. For example, we describe the FFT scheme
for the evaluation of A(2) and A(−2). First, we compute evaluations for even
indices and odd indices, separately. Let Ae = a0 + a2 × 22 + (a4 × 22)× 22 and
Ao = a1 × 2 + (a3 × 22) × 2. The evaluations are then A(2) = Ae + Ao and
A(−2) = Ae −Ao.

As explained in [3], by writing down 3 = 2+1 and 32 = 23 +1, the evaluation
at 3 of A(X) and B(X) is composed only of shifts and additions. In practice, it
is more e�cient to design a direct procedure to multiply by 3 which is equivalent
to one addition. This will be detailed in Sect. 4.

Adding the di�erent costs, the evaluations of A(X) and B(X) have a total
complexity of 48Aq. Once we have performed the evaluations, we are able to
compute the 9 multiplications A(αi)×B(αi), which are obtained with 9Mq.
The complexity of steps 1 and 2 is then 9Mq + 48Aq.

Complexity of the computations of c′
j. The complete formulæ for comput-

ing the c′j are

c0 = u0

c1 = u1 − c0

c2 = (u2 − c0 + c1)/2
c3 = ((u3 − c0)/2− c1 − c2)/3
c4 = (((u4 − c0)/2 + c1)/3− c2 + c3)/4
c5 = (((((u5 − c0)/4− c1)/3− c2)/5− c3)/2− c4)/6
c6 = ((((((u6 − c0)/4 + c1)/5− c2)/3 + c3)/6− c4)/2 + c5)/8
c7 = (((((−u7 + c0)/3 + c1)/2 + c2)/4 + c3 + c4)/5 + c5 − c6)/7

In order to compute the coe�cients c′j during Newton's interpolation, one
has to compute divisions by di�erences of αi. In a binary basis, divisions by a
power of 2 are rather simple, since they are equivalent to shifts to the right, plus
sometimes an addition (see below). We approximate a division by a power of 2
by 1Aq. Among all the di�erences of the αi we choose, eleven are not a power
of 2. They are given in Table 1. In Sect. 4.2, our analysis of divisions by 3, 5,
7 shows that the complexity of these divisions is equivalent to 2Aq. In order to
compute the c′j , we need 28Aq, 11 divisions by 2, 4 or 8, and 11 divisions by 3,
5 or 7. Consequently, the complexity of computing the c′j is 61Aq.
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Table 1. The problematic di�erences

α3 − α2 = 3 α4 − α1 = −3 α5 − α1 = 3 α5 − α2 = 5
α5 − α4 = 6 α6 − α1 = −5 α6 − α2 = −3 α6 − α3 = −6
α7 − α0 = 3 α7 − α4 = 5 α7 − α6 = 7

Cost of the polynomial interpolation. We use Horner's scheme to �nd the
expression of the product polynomial C = A × B. More precisely, we have to
compute

C(X) = ((((c′8(X − α7) + c′7)(X − α6) + c′6)(X − α5) + c′5) . . .

+c′1)(X − α0) + c′0.

We begin to compute from the inside to the outside. First, we compute the
parenthesis (c′8(X −α7)+ c′7), next ((c′8(X −α7)+ c′7)(X −α6)+ c′6), and so on.

Horner's scheme for the chosen values of αis is composed only of shifts and
additions. The total complexity of the polynomial reconstruction is 28Aq.

Complexity of the polynomial reduction. We may use the same technique
for polynomial reduction in both Montgomery's method and our interpolation
method. Indeed, we may represent the �nite �eld Fq5 using an irreducible reduc-
tion polynomial of the form X5 − α.

We consider q such that q ≡ 1 mod 5. Then the following result [12, Theorem
3.75] guarantees that such polynomials exist over Fq.

Theorem 1. [12, Theorem 3.75] Let Fq5 be a �nite �eld, and let α be an element
of Fq. Then the binomial X5 − α is irreducible in Fq[X] if and only if 5 divides
the order e of α ∈ Fq, but not (q − 1)/e.

Moreover, in practice we may take α a small integer (such as 2 or 3). The
reduction step needs 4 operations which are multiplications by α, but in practice
they are computed as shifts and additions.

Table 2. Details of the operation count

Operation Complexity
evaluation 9Mq + 48Aq

computation of c′j 61Aq

interpolation 28Aq

Total 9Mq + 137Aq
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3.3 Results and comparison

Table 3 gives the complexity of a multiplication with Montgomery's formulæ
and with our interpolation formulæ.

Table 3. Cost of multiplication in Fq5

Montgomery This work
13Mq + 62Aq 9Mq + 137Aq

We save 4 multiplications in Fq using interpolation whereas we add 75 ad-
ditions considering Montgomery's formula. The method we propose is more ef-
�cient if a multiplication in Fq has a cost greater than 18 additions in Fq. The
benchmarks of the library we used show that for q prime, the ratio Mq/Aq

depends on the size of q. Consequently, our method is more e�cient than Mont-
gomery's formula if log q > 512. Our benchmarks are given in Sect. 4.

4 Technical details and implementation

If q is a prime power, then a ∈ Fq can be represented as a polynomial of degree
k with coe�cients a0, a1, . . . , ak−1 ∈ Fp such that pk = q. Then additions and
divisions by small constants are performed on every coe�cient. Hence in the
remainder of this section, we assume that q is prime.

4.1 Cost of additions and shifts in C language

Our implementation is written in the C language. Over Fq with a and b of w
32-bit words, at each word addition, a carry must be taken into account. Indeed
in C, an assembly instruction such as Add With Carry is not available. Algorithm
1 explains the processor behavior when performing an addition.

When computing a shift to the left written as a� s in C, no carry appears.
Hence this procedure is cheaper than an addition in Fq. At each 32-bit word
state `, the instruction r` ← (a` � s)Xor(a`−1 � (32− s)) is enough. It needs 1
reading because a`−1 was already loaded in a register at the preceding state, 3
instructions and 1 writing, plus 2 counter imcrementations for the word a` and
r` memory address. The total count is then about 8w instructions. To conclude,
with a C implementation, the ratio Shift/Add = 8/12 ≈ 0.66 is obtained. To
improve the performance, a function which computes a + (b � s) is provided.
See details in Algorithm 2.

For the procedure in Algorithm 2 the ratio (Add with Shift)/Add is about
15/12 ≈ 1.25.

Finally, a direct multiplication by 3 is also used. As 3a = a + 2a, this is
performed as an Add with Shift, but neither the memory access for b` nor the
counter incrementation for its address is needed. Hence the ratio Mult By 3 /
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Algorithm 1 Addition in a prime �eld Fq

Input : a = aw−1aw−2 . . . a0 ∈ Fq and b = bw−1bw−2 . . . b0 ∈ Fq of w 32-bit words
Output : r = a + b = rwrw−1rw−2 . . . r0 not reduced mod q

1: r0 ← a0 + b0

2: set carry
3: for `← 1, . . . , w − 1 do

4: tmp← a` + b` . 2 readings, 1 instruction
5: r` ← tmp + carry . 1 instruction, 1 writing
6: carry update . 3 instructions
7: . 3 counter imcrementations for memory address of a`, b`, r`

8: end for . 1 instruction
9: aw ← carry . over�ow bit
10: return r . ≈ 12w instructions

Algorithm 2 Shift to the left with addition in a prime �eld Fq

Input : a = aw−1aw−2 . . . a0 ∈ Fq and b = bw−1bw−2 . . . b0 ∈ Fq of w 32-bit words,
0 < s < 32
Output : r = a + b2s = a + (b� s) = rwrw−1rw−2 . . . r0 not reduced mod q

1: r0 ← a0 + (b0 � s)
2: set carry
3: for `← 1, . . . , w − 1 do

4: tmp← a` + (b` � s)Xor(b`−1 � (32− s)) . 2 readings, 4 instructions
5: r` ← tmp + carry . 1 instruction, 1 writing
6: carry update . 3 instructions
7: . 3 counter incrementations
8: end for . 1 instruction
9: aw ← carry + (bw−1 � (32− s)) . over�ow bit
10: return r . ≈ 15w instructions

Add is 13/12 ≈ 1.08. Practical results are given in Table 4. The benchmarks are
close to the theoretical results. The compiler and processor type do not in�uence
too much the timing results.

4.2 Division by small constants

Division by 2, 4 and 8 in a prime �eld Fq. Let a ∈ Fq. If the last signi�cant
bit of a is 0, a is even and computing a/2 is just a shift to the right. Otherwise, a
is odd but as q is a large prime, q is odd; hence a+ q is even and a/2 = (a+ q)/2
with a shift. There remains a slight detail : a + q may induce a bit over�ow.
Indeed, the modular integers are normally smaller than q. If q is of 32w bits,
a+q may be of 32w+1 bits. To avoid that, we shift a and q before adding them.
To �nish we add the carry loss in the shift. Writing a = 2a′ + 1, q = 2q′ + 1, a′

is a shifted of one bit to the right, q′ is the same for q. The result is obtained as
a/2 = (a + q)/2 = a′ + q′ + 1.

Following the same idea, division by 4 or 8 is a shift with sometimes an
addition. We write a = 4a′ + ra, ra ∈ {0, 1, 2, 3} and q = 4q′ + rq, rq ∈ {1, 3}. If
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Table 4. Theoretical and practical ratio Operation/Addition without modular reduc-
tion

Operation Ratio Operation/Add
Theoretical Our implementation in a prime �eld Fq

log q 160 192 256 384 512 768 1024 1536

Shift to the left 0.66 0.50 0.50 0.50 0.48 0.46 0.42 0.47 0.42
Shift and Add 1.25 1.11 1.13 1.18 1.32 1.23 1.26 1.34 1.33

Multiplication by 3 1.08 0.88 0.89 1.02 0.97 1.00 1.00 1.08 1.09

ra = 0, then the shift of two bits is enough; otherwise the value of a/4 is given
in Table 5.

Table 5. Division by 4

ra = 1 ra = 2 ra = 3

rq = 1 a′ + 3q′ + 1 a′ + 2q′ + 1 a′ + q′ + 1

rq = 3 a′ + q′ + 1 a′ + 2q′ + 2 a′ + 3q′ + 3

Note that a′, q′ are just shifts of two bits of a and q, respectively. Moreover,
q′, 2q′ and 3q′ can be precomputed. For division by 8, we follow the same method,
considering that a = 8a′+ra, ra ∈ {0, 1, . . . , 7} and q = 8q′+rq, rq ∈ {1, 3, 5, 7}.
Benchmarks are given in Table 7.

Divisions by 3, 5 and 7 in a prime �eld Fq. For these cases, shifts are not
possible. We present a detailed division by 3, and give the main idea for 5 and
7.

We write a basic division of a by 3, considering that a is composed of 32-bit
words. For each word, the possible remainders are 0, 1 or 2 (10 in binary base).
This leads to a 33 or 34 bit word to the next state if the remainder is not zero.
Fortunately, we know that 232 = 3·0x55555555+1 and 2·232 = 3·0xaaaaaaaa+2.
This leads to Algorithm 3.

Now a = 3a′ + ra. If ra = 0 then a/3 = a′. If not, write q = 3q′ + rq (which
can be precomputed). The result of the division is computed as explained in
Table 6.

Table 6. Division by 3

ra = 1 ra = 2

rq = 1 a′ + 2q′ + 1 a′ + q′ + 1

rq = 2 a′ + q′ + 1 a′ + 2q′ + 2
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Algorithm 3 Division by 3 in a prime �eld Fq

Input : a = aw−1aw−2 . . . a0 ∈ Fq of w 32-bit words
Output : a′ = a/3 = a′w−1a

′
w−2 . . . a′0 and r such that a = 3a′ + r

1: a′w−1 ← aw−1 div 3; carry← aw−1 mod 3
2: for `← w − 2, . . . , 0 do
3: if carry = 0 then . 1
4: a′` ← a` div 3; carry ← a` mod 3 . 1

3
3

5: else . 1
6: if carry = 1 then . 2

3
1

7: a′` ← 0x55555555 + (a` div 3) . 1
3
4

8: carry ← carry + (a` mod 3) . 1
3
2

9: else . 2
3
1

10: a′` ← 0xaaaaaaaa + (a` div 3) . 1
3
4

11: carry ← carry + (a` mod 3) . 1
3
2

12: end if

13: if carry > 3 then . 2
3
1

14: carry ← carry −3; a′` ← a′` + 1 . 2
3
4

15: end if

16: end if

17: end for . 2 counter imcrementations + 1
18: return (a′, carry) . ≈ 15w instructions

Cost of the divisions by small constants Division by 3 is is carefully detailed
in Algorithm 3. Our counting shows that in Algorithm 3 we perform around 15w
processor instructions. Since in 2

3 of cases we have to add p′ (as explained in
Table 6), we have on average the ratio

Divq/Aq ' 2.

where Divq denotes the cost of division by 3, 5 or 7. However, this number is
just an approximation since the exact costs depends on

• the type of the compiler,
• the compiler directives,
• the number of cycles required for each processor instruction,
• the pipeline depth into the processor,
• the cache memory, etc.

Moreover, there are some conditional jumps in Algorithm 3. In an implemen-
tation, they may be replaced by access to a table indexed by the remainder's
value. Table 7 gives a practical estimation of the ratio division/addition.

The idea for division by 5 or 7 is the same, except that computing a′` needs
di�erent values (see Table 8).

4.3 Implementation results

We implemented Montgomery's formula and our multiplication in C in order to
compare them. The sub�eld Fq is simply built with q ≡ 1 mod 5 a large random
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Table 7. Theoretical and practical ratio Division by a small constant/Add

Operation Ratio Operation/Add
Theoretical Our implementation in a prime �eld Fq

log q 160 192 256 384 512 768 1024

Division by 2 1 1.00 0.82 0.85 0.84 1.01 0.62 0.76
Division by 3 2 1.57 1.10 1.37 1.42 1.44 1.60 1.59
Division by 4 1 1.00 1.00 0.79 0.92 0.88 1.03 1.07
Division by 5 2 1.69 1.41 1.47 1.58 1.74 1.62 2.01
Division by 6 2 2.76 2.15 2.00 2.14 2.34 2.14 2.36
Division by 7 2 2.15 1.52 1.89 1.62 1.76 1.88 1.96
Division by 8 1 1.36 1.05 1.04 1.01 1.04 0.89 1.21

Table 8. Constants for division by 5 and 7

division by 5 division by 7
232 = 5 · 0x33333333 + 1 232 = 7 · 0x24924924 + 4

2 · 232 = 5 · 0x66666666 + 2 2 · 232 = 7 · 0x49249249 + 1
3 · 232 = 5 · 0x99999999 + 3 3 · 232 = 7 · 0x6db6db6d + 5
4 · 232 = 5 · 0xcccccccc + 4 4 · 232 = 7 · 0x92492492 + 2

5 · 232 = 7 · 0xb6db6db6 + 6
6 · 232 = 7 · 0xdb6db6db + 3

prime number of cryptographic size, from 160 to 1536 bits. Our benchmarks on
Montgomery's algorithm and our method use the same prime numbers q. The
modular library implementing the arithmetic of Fq is LibCryptoLCH [5] and
uses the Montgomery representation to perform a modular multiplication (see
chapter 14 of [13]). This library is also written in C. Parameters such as maximum
moduli size and size of words are set at compilation. We used a gcc compiler
with -O2 optimization directive. The code was running on a Pentium 64 bits
3GHz under Linux, Ubuntu 10.10. The reduction step (mod X5 − α) is done at
each multiplication. Degree 5 extensions Fq[X]/(X5−α) with very small α such
as α = 2 were found.

Depending on the size of q, the cost of a Mq in terms of Aq increases as shown
in Table 9.

Table 9. Ratio Mq/Aq for di�erent sizes of q

log q 160 256 384 512 768 1024 1536
32 bits 5.2 7.1 12.1 16.1 26.6 36.3 50.0
64 bits 3.9 5.7 6.9 9.3 16.6 19.4 32.1

On this 64 bit processor, our formula is better than Montgomery's one for
log q greater than 512, as shown in Figure 1. Implementation of additions in the
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base �eld library is not optimized, so the ratio Mq/Aq takes quite small values
for small sizes of q. The timing ratio between Montgomery's method and our
algorithm is shown in Table 10.

160 256 384 512 768 1,024 1,536
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Fig. 1. Implementation results

Table 10. Timing ratio: Montgomery's formula results/ our's

log q 160 256 384 512 768 1024 1536

32-bit words, theory 0.70 0.76 0.89 0.96 1.08 1.15 1.21

32-bit words, practice 0.64 0.75 0.88 0.93 1.05 1.13 1.21

64 bit words, theory 0.65 0.72 0.76 0.82 1.00 1.01 1.12

64 bit words, practice 0.49 0.31 0.73 0.77 0.90 1.00 1.09

5 Results and comparison for quintic and sextic

polynomials

We use the same approach by interpolation to compute multiplication in exten-
sion �elds of degree 6 and 7. Our results for an extension of degree 6 are the
following
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• the complexity of the evaluation step is 11Mq + 80Aq,
• the complexity of the computation of the c′i is 36Aq + 22Divq, where Divq

denotes the cost of division by 3, 5 or 7,
• the complexity of the Horner's scheme is 39Aq.

As explained in Sect. 3.2, we count a division by 3, 5, 7 and 11 as 2Aq. We
perform 21 divisions by 2, 13 by 3, 6 by 5 and 3 by 7. Thus the total complexity
of our multiplication is 11Mq + 199Aq. We compare our results to Devegili et
al. [6] most e�cient result, and to Montgomery's one. The comparison is given
in Table 11, where MZ denotes the cost of multiplication by a small constant.
Our method needs a smaller number of additions than Devegili et al.'s one.

Our results for an extension of degree 7 are the following

• the complexity of the evaluation step is 13Mq + 89Aq,
• the complexity of the computation of the c′i is 55Aq + 36Divq,
• the complexity of the Horner's scheme is 65Aq.

Estimating the cost of a division by 3, 5, 7 and 11 by 2Aq, the total complexity
of our multiplication is 13Mq + 281Aq. We perform here 31 divisions by 2 or
power of 2, 21 divisions by 3, 9 by 5, 5 by 7 and one by 11. The comparison is
given in Table 11. Our method is more e�cient than Mongomery's one if the
ratio Mq/Aq is greater than 8.5.

Table 11. Complexity of di�erent method of 6-term and 7-term multiplications

Method Devegili et al. [6] Montgomery this work
6-term 11Mq + 93MZ + 236Aq 17Mq + 161Aq 11Mq + 199Aq

7-term − 22Mq + 205Aq 13Mq + 281Aq

6 Cryptographic use

We claim that our method is useful for cryptographic use in pairing-based
cryptography and torus-based cryptography. We give in Tables 12 and 13
recommended security levels and the corresponding sizes of the �eld Fq for these
applications.

Note that in order to achieve the 192 and 256 bit security levels, the size of
the extension �eld Fqk has to be within the range 8000-10000 and 14000-18000,
respectively. The parameters given in Table 12 correspond to known families of
pairing-friendly elliptic curves and the choices were made taking into account
recommendations in [8]. Since our method is faster than Montgomery's formula
if log q > 512, our algorithm is interesting for implementations on these curves.

For torus-based cryptography, our method may be interesting for example
when implementing T30(Fq) for applications suggested in [17]. The choice of
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Table 12. Pairing-based cryptography

Embedding degree ρ-value Security level Size of q Extension �eld
10 1.5 192 800 Fq10 (8000 bits)
15 1.5 192 576 Fq15 (8640 bits)
15 1.5 256 768 Fq15 (11520 bits)
20 1.375 256 704 Fq20 (14080 bits)
30 1.5 256 768 Fq30 (23040 bits)

Table 13. Torus-based cryptography

Security level Torus Size of Fq Size of extension �eld
128 T30(Fq) 102 Fq30 (3072 bits)
256 T30(Fq) 512 Fq30 (15360 bits)

parameters in Table 13 is done according to recommendations [1,17]. We suppose
that the following tower of extensions is chosen when implementing Fq30

Fq2 ⊂ Fq6 ⊂ Fq30 .

Then the cost of a multiplication in Fq6 is 15Mq + 72Aq using Karatsuba and
Toom Cook algorithms, while the cost of an addition is 6Aq. Our method is
e�cient if Mq6/Aq6 > 18. This ratio depends on the value of Mq/Aq, which
obviously depends on the type of the processor chosen. For example, using data
in Table 9, we obtain Mq6/Aq6 ' 53.66 for an implementation at 256 bit security
level using a 32 bit architecture.

Finally, note that the arithmetic of T30(Fq) ⊂ Fq30 may be used to compress
pairing values for curves with embedding degree 30. The size of q for such curves
is given in Table 12.

7 Conclusion

We proposed an e�cient arithmetic for the �eld Fq5 , using a multiplication by
interpolation. Our idea to use Newton's method of interpolation requires some
divisions by small constants which are not a power of two but we have shown
that these divisions have a slight cost. Our method can be applied to 6 and
7 degree extensions. In each case, the number of multiplications over the base
�eld is smaller than the one in other known methods. The number of additions
is larger but for cryptographic sizes of q, as shown in our implementation, our
method is faster.
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8 Appendix: Details for inversion

We have also counted the number of Mq for and inversion in Fq5 . We consider
that 5 | q − 1 and Fp5 is built as Fq[X]/(X5 − α). Following the idea of T. Itoh
and S. Tsujii [10] we perform an inversion in Fq5 as

a−1 =
aq aq2

aq3
aq4

a aq aq2aq3aq4
=

ā

NormFq5/Fq
(a)

In order to compute aqi

, we need the values of Xqi

, 1 6 i 6 4. We have Xqi

=

Xqi−1X = X5 qi−1
5 X = X5 q−1

5 (1+q+...+qi−1)X = α
q−1
5 (1+q+...+qi−1)X. Let µ =

α(q−1)/5. Note that µ5 = 1 and that µ 6= 1. Hence µ is a root of the polynomial
1 + T + T 2 + T 3 + T 4. Since µ ∈ Fq, we have µqi

= µ and µ1+q+...+qi−1
= µi. So

Xqi

= µiX. Finally, for 1 6 j 6 4, we have (Xqi

)j = µij mod 5Xj . By writing
a = a0 + a1X + a2X

2 + a3X
3 + a4X

4, we obtain

aqi

= a0+a1µX +a2µ
2i mod 5X2+a3µ

3i mod 5X3+a4µ
4i mod 5X4, 1 6 i 6 4

Then we compute the numerator of the expression a−1 above.

aq aq2
aq3

aq4
mod 1 + µ + µ2 + µ3 + µ4 =

a4
4X

16

− a3a
3
4X

15

+ (−a2a
3
4 + a2

3a
2
4)X

14

+ (−a1a
3
4 + 2a2a3a

2
4 − a3

3a4)X13

+ (−a0a
3
4 + 2a1a3a

2
4 + a2

2a
2
4 − 3a2a

2
3a4 + a4

3)X
12

+ (−3a0a3a
2
4 − 3a1a2a

2
4 + 2a1a

2
3a4 + 2a2

2a3a4 − a2a
3
3)X

11

+ (2a0a2a
2
4 + 2a0a

2
3a4 + a2

1a
2
4 − a1a2a3a4 − a1a

3
3 − a3

2a4 + a2
2a

2
3)X

10

+ (2a0a1a
2
4 − a0a2a3a4 − a0a

3
3 − 3a2

1a3a4 + 2a1a
2
2a4 + 2a1a2a

2
3 − a3

2a3)X9

+ (a2
0a

2
4 − a0a1a3a4 − 3a0a

2
2a4 + 2a0a2a

2
3 + 2a2

1a2a4 + a2
1a

2
3 − 3a1a

2
2a3 + a4

2)X
8

+ (2a2
0a3a4 − a0a1a2a4 − 3a0a1a

2
3 + 2a0a

2
2a3 − a3

1a4 + 2a2
1a2a3 − a1a

3
2)X

7

+ (2a2
0a2a4 + a2

0a
2
3 + 2a0a

2
1a4 − a0a1a2a3 − a0a

3
2 − a3

1a3 + a2
1a

2
2)X

6

+ (−3a2
0a1a4 − 3a2

0a2a3 + 2a0a
2
1a3 + 2a0a1a

2
2 − a3

1a2)X5

+ (−a3
0a4 + 2a2

0a1a3 + a2
0a

2
2 − 3a0a

2
1a2 + a4

1)X
4

+ (−a3
0a3 + 2a2

0a1a2 − a0a
3
1)X

3

+ (−a3
0a2 + a2

0a
2
1)X

2

− a3
0a1X

+ a4
0
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We simplify this formula as follows

ā = (a2
0(2a1a3 − a0a4 + a2

2) + a2
1(a

2
1 − 3a0a2 − 3a3a4α) + a2

2(2a1a4 − a2a3)α
+a2

3(2a1a2 − a0a3)α + a2
4(2a0a1 + α(a2

3 − a2a4))α− a0a2a3a4α)X4

+ (a2
0(2a1a2 − a0a3) + a2

1(−a0a1 + 2a2a4α) + a2
2(a

2
2 − 3a0a4 − 3a1a3)α

+a2
3(a

2
1 + 2a0a2 − a3a4α)α + a2

4(a
2
0 + (2a2a3 − a1a4)α)α− a0a1a3a4α)X3

+ (a2
0(a

2
1 − a0a2 + 2a3a4α) + a2

1(2a2a3 − a1a4)α + a2
2(2a0a3 − a1a2)α

+a2
3(−3a0a1 + (a2

3 − 3a2a4α)α) + a2
4(a

2
2 − a0a4 + 2a1a3)α2 − a0a1a2a4α)X2

+ (a2
0(−a0a1 + (2a2a4 + a2

3)α) + a2
1(2a0a4 − a1a3 + a2

2)α + a2
2(−a0a2 + 2a3a4α)α

+a2
3(2a1a4 − a2a3)α2 + a2

4(−3a0a3 − 3a1a2 + a2
4α)α2 − a0a1a2a3α)X

+ (a2
0(a

2
0 + (−3a1a4 − 3a2a3)α) + a2

1(2a0a3 − a1a2)α + a2
2(2a0a1 − a2a4α)α

+a2
3(2a0a4 − a1a3 + a2

2)α
2 + a2

4(2a0a2 + a2
1 − a3a4α)α2 − a1a2a3a4α

2)

We precompute a2
0, a

2
1, a

2
2, a

2
3, a

2
4 and a0a1, a0a2, a0a3, a0a4, a1a2, a1a3, a1a4,

a2a3, a2a4, a3a4. This leads to 5Sq+10Mq. With this method, computing ā needs
6Mq for each coe�cient, hence 30Mq altogether. To compute the norm as a·ā, we
need an extra cost of 5Mq. Indeed, by writing ā = ā0+ā1X+ā2X

2+ā3X
3+ā4X

4,
we have a · ā = a0ā0 + α(a1ā4 + a2ā3 + a3ā2 + a4ā1). The total count is Iq5 =
45Mq + 5Sq + Iq. In [2], Avanzi and Cesena report a cost of 50Mq + Iq.
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