A framework for proof certificates in finite state exploration

A framework for proof certificates
in finite state exploration
PxTP 2015

Quentin Heath Dale Miller

Inria Saclay—ile-de-France

LIX, Ecole polytechnique

August 7, 2015

1/34

A framework for proof certificates in finite state exploration

L Introduction

Proof Certificates

Computational logic systems should output formal proofs for
independent checking.

Proof structures vary greatly. These choices are not just a matter
of taste. There are important trade-offs between

o simplicity and complexity of checkers
o implicit and explicit proofs
e proof size and checking time

We do not focus on proof search: one machine (client) generates a
proof, and another machine (kernel) checks it.

2/34

A framework for proof certificates in finite state exploration

L Introduction

ProofCert

A multi-year project where we are developing the Foundational
Proof Certificate (FPC) framework.

We aim to formally define the semantics of a wide range of proof
evidences.

¢ such formal semantics can be executed to yield checkers
o specific checkers can be build by anyone from these
definitions
Analogous frameworks exist:

e context-free grammars (CFG) define programming language
structures

e structural operational semantics (SOS) define programming
language execution

3/34

A framework for proof certificates in finite state exploration

L Introduction

ProofCert, stage 1

We have been successful at developing the FPC framework for
first-order classical and intuitionistic logics.

Classical logic resolution, expansion trees, decision procedures
such as CNF, truth tables

Intuitionistic logic dependently typed A-terms, G3ip
others Also: rewriting, Frege-style proofs

Focused proof systems for classical and intuitionistic logics provide
the theoretical justification for the design of FPCs.

The AProlog programming language (implemented via the Teyjus
compiler) serves as a natural prototyping system for executing
formal semantic definitions.

4/34

A framework for proof certificates in finite state exploration

L Introduction

ProofCert, stage 2

Continue the work for proof evidence that may contain induction
and co-induction.

We will then be able to treat model checking. In particular, we
discuss here:

e reachability (existence of a path)

e non-reachability

e simulation, bisimulation, winning strategy
e non-simulation, non-bisimulation

We need a focused proof system for a logic with induction and
co-induction.

5/34

A framework for proof certificates in finite state exploration
L Introduction

Outline

© The uF logic
Formulae
Focused system
Restricted formulae
Augmented system

@ Examples
Clerks & Experts
Certificates

® Implementation

6/34

A framework for proof certificates in finite state exploration
|—The uF logic

Outline

@ The uF logic
Formulae
Focused system
Restricted formulae
Augmented system

@ Examples

@® Implementation

7/34

A framework for proof certificates in finite state exploration
LThe 1F logic

L Formulae

Fixed points in linear logic

Surprisingly, neither
e intuitionistic nor classical logics nor
o full linear logic (with Girard’s ! and ?7)
are the right starting point for us here.

We rely on uMALL[Baelde, PhD, ToCL 2012] instead: this is MALL
(multiplicative additive linear logic) plus

o the least (1) and greatest (v) fixed points operators
o first-order quantifiers v, 4
e term equality

All three of these are treated as logical connectives.

8/34

A framework for proof certificates in finite state exploration
L The uF logic

L Formulae

UMALL formulae

To be more “user friendly”, we

e drop the linear logic connectives for more conventional looking
symbols

¢ use two sided sequents

There are two sets of connectives (following focusing polarity).

Negative connectives: f~, D, t7, A7, V¥, # and v,
Positive connectives: tT, AT, f+, v, 3, = and p.

The negation of B is written as B > f~.

9/34

A framework for proof certificates in finite state exploration
|—The uF logic

L Formulae

Example: graph

(2
(& O

step a b. step b c. step c b.

path X Y :- step X Y.
path X Z :- exists Y (step X Y, path Y 7).

10/34

A framework for proof certificates in finite state exploration
LThe uF logic

L Formulae

Example: graph

(2
(& O

The step relation becomes a binary predicate - — - defined by

u(AAXAy.((x = a) A" (y =b)) v ((x =b) A" (y = ¢))
V((x =c) A" (y = b)))

10/34

A framework for proof certificates in finite state exploration
LThe uF logic

L Formulae

Example: graph

(2
(& O

Similarly, the path relation becomes the binary predicate

,u(/lP/lx/lz.x — zV(Jy.x — y A" Pyz))

10/34

A framework for proof certificates in finite state exploration
|—The uF logic

L Formulae

Example: graph

(2
(& O

e we need only positive connectives to translate Horn clauses!

10/34

A framework for proof certificates in finite state exploration
|—The uF logic

L Formulae

Example: labeled transition systems

) ©

@@@ @@
ONCNOCRONCNOC

11/34

A framework for proof certificates in finite state exploration
LThe uF logic

L Formulae

Example: labeled transition systems

) ©

@@@ @@
ONCNOCRONCNOC

For step, an LTS needs the ternary predicate - — - defined by

,u(/lA/lp/la/lq. V((p =u) AT (a=v) A" (g= w;))]

11/34

A framework for proof certificates in finite state exploration
LThe 1F logic

L Formulae

Example: labeled transition systems

o ®
ONONNOEENONC
S o dnE Be

Finally, Simulation and bisimulation can be defined by

v(/lS/lp/lq. Vavp'.p - p'>3q.q — ¢ AT Sp’ q’) (sim)
v(/lB/lp/lq. (Vavp'.p A poAq.9-5 g AT Bp q) (bisim)

isim
A (Vavgq.q->q >3p’.p - p A" B p))

11/34

A framework for proof certificates in finite state exploration
LThe uF logic

L Formulae

Example: labeled transition systems

) ©

@@@ @@
ONCNOCRONCNOC

o these are not purely positive, but they are bipoles
e bisim contains both A~ and AT

11/34

A framework for proof certificates in finite state exploration
LThe 1F logic

L Focused system

A two-sided version of uMALLF

Let N and P denote, respectively, lists of negative and positive
formulae.

Let ' and A denote multisets of formulae.
Introduction rules are applied to formulae in the zones between

occurrences of 11/ | and .

NONTrFANP similarto the one-sided sequent - N*, P (1 T+, A
UAF left-focused, similarto +| A+
FA right-focused, similarto +| A

12/34

A framework for proof certificates in finite state exploration
LThe uF logic

L Focused system

Introduction of negative connectives

NONTOrF AON NON v 1O +
Nis=tTrFA N FsS£Lt 16 = mgu(s, t)
NAONTEFATN NTETD
NTtT,TEAY NT
NﬂA1/\+A2,|_I-Aﬂ NN rFA DA
Nis=tT+Aq ¥ NT Es#L) ¥ fs and t not unifiable

NN TEAD NTHET
NNTALTHFANT NNALTHAN NI FAT NN FATD
NﬂA1VA2,rI-Aﬂ N1 I-A1/_A2ﬂ
NONCy,THAT NTECyN
NNTIx.Cx,TrATN N EYX.Cx

13/34

A framework for proof certificates in finite state exploration
LThe uF logic

L Focused system

Introduction of positive connectives & structural rules

Jt#tr Ft=1] U+ Fit |
A U A+ FA L FA |
JAI DA I—A1/\+A2U.
LA+ FA L
VAN A+ FAT VA |
JCtr FCtJ]
UV¥x.Cx+ Fdx.Cx |
NOTFAT INF . TP
W Store; m DeCIdeL W ReleaseL
TrHMTP FP . TENT
TEPT Storeg Tr NP Decideg TN Releaser

14/34

A framework for proof certificates in finite state exploration
LThe 1F logic

L Focused system

Fixed-point rules: induction, coinduction, unfolding

TBSy+Syft NNSLIFAT
N uBETFA
NT ESET 01Sy-BSyn
N1 FvBE

N BuB)t,T+A 1 N1 v BOB)t

NTuBtLT-Aq N1 FvBEQ
I B(vB)t+ F B(uB)t ||
UvBtr FuBt |

The resulting proof system has no initial and no cut-rules.

Cut and initial are needed for richer aspects of model checking, but
not immediately in this talk.

15/34

A framework for proof certificates in finite state exploration
LThe uF logic

L Restricted formulae

Branching negative connectives

NONTOF NG NON F 1
Nis=tT+A NN Fs£Lt) T 16 = mgu(s, t)
NONTHFATN NTFET
NNt THATD NI
N ALALTHAT N A FA T
NﬂA1/\+A2,rl-Aﬂ Nﬂ I—A1DA2ﬂ

* ¥

Nis=tlT+A N rs#t fs and t not unifiable

N TEAD N rHE
NNTALTEFANT NNALTHAN NT AT NT AT
NNTA VAL, TFA NN FAN AT
NONCy,THAT NN +CyTN
NNIx.Cx,T+A NN EYX.Cx

16/34

A framework for proof certificates in finite state exploration
L The uF logic

L Restricted formulae

Branching negative connectives

NONTOFAODY NOT + 1
[

Nis=tTrAqN N FEs#L 4 10 = mgu(s, t)
NNITHEAT N
NNt THATN NI FQ
NNTALAL T AT NOTAFAT
NNA AT A THAY NN FA DA

Nfis=tITrAq . N rs#t) ¥ +s and t not unifiable

NN TEAN NTrE
NTALTEAT NTATEAT NTFAT N AT
NNTA VA, TFATN N FANATN
NOCy AT NTFCy
NNTIX.Cx,T+AT NN EYX.Cx1

16/34

A framework for proof certificates in finite state exploration
LThe uF logic

L Restricted formulae

Branching structural rules

Jt#tr Ft=1t] s FiT
I—A1.U U.Azl- |—A1U I—Azﬂ,
UAI DA+ I—A1/\+A2U
LA+ FA
VAN A+ FAT VA |
JCtr FCtJ|
IVx.Cx+ FAx.Cx |
NATFAq UNF . 1Pk
W Store; m Decide, W Release,
TrMP Pl , TENT
TEPT Storeg Tr NP Decider SN Releaser

17/34

A framework for proof certificates in finite state exploration
|—The uF logic

L Restricted formulae

Branching structural rules

=+ FET
AV F A
FAG AT A

FA;

|—A1\/A2
FCt

t#t+ Ft=t
FA1 Ag#
A1DA2|—
A,‘I—
A1 /\7A2|-
Ctr
Vx.CxF
NOITHATN UNF
TN.FrAq SO Ny v
'_
jStoreR

Decider

+dx.C x

Pr
Decide, I Pr Release;

'_
TN Releasegr

17/34

A framework for proof certificates in finite state exploration
L The uF logic

L Restricted formulae

Switchable formulae

Multiple formulae can only exist inside {]-sequents.

A restriction on formulae is needed to ensure that there is exactly
one formula in a sequent when there is a change of phase.

A uMALL formula is switchable if
o whenever a subformula C AT D occurs negatively (under an
odd number of implications), either C or D is purely positive
e whenever a subformula C > D occurs positively (under an

even number of implications), either C is purely positive or D
is purely negative

18/34

A framework for proof certificates in finite state exploration
|—The uF logic

L Restricted formulae

Example switchable formulae

e purely positive formulae
e purely negative formulae

19/34

A framework for proof certificates in finite state exploration
LThe uF logic
L Augmented system

Example proof evidence

The following are typical kinds of proof evidence in model checking.

reachability can be witnessed by a path through a graph

non-reachability can be witnessed by a reachable set for one node
that does not contain the other

(bi)similarity in a given LTS can be witnessed by a set of pairs
called, resp, simulation and bisimulation
non-bisimilarity in a given LTS can be witnessed by a

Hennessy-Milner logic (HML) formula that is
satisfied by one but not by the other

Our challenge: How can we formally define such proof evidence in
terms of uMALL proof theory?

20/34

A framework for proof certificates in finite state exploration
LThe uF logic
L Augmented system

Augmenting focused sequents

We augment all sequents in the focused proof system with
certificates, by giving them an extra argument = (encoding a
certificate):

NONTHFANP
JAF
FAJ

21/34

A framework for proof certificates in finite state exploration
LThe uF logic
L Augmented system

Augmenting focused sequents

We augment all sequents in the focused proof system with
certificates, by giving them an extra argument = (encoding a
certificate):

ZNNTHFATP
= A+
= A

21/34

A framework for proof certificates in finite state exploration
L The uF logic
L Augmented system

Augmenting focused inference rules
Also, every inference rule gets an additional atomic premise.

In the | phase, a clerk performs some simple computations on the
input certificate (=p) to produce continuation certificates (=1, =»):

1 NTALTFAD =Zo:NTALTHFAT \/C(Eo,E1,Eg)
S0 NTAVALTFATD

In the |J-sequent, an expert digs out information from the input
certificate not only to compute continuation certificates (=1) but
also additional guiding information (the term t):

E1I F CtU 39(50,51,t)
Zo: FIAx.Cx |

22/34

A framework for proof certificates in finite state exploration
LThe uF logic
LAugmented system

Augmented fixed point rules

Ziy:01BSyrSy Nt Z2NNSLTHFAN ind(Zp,=1,=2,S)
o N(uBt,TFATN

E1 N ﬂ B(,UB)T, M- A ﬂ ,u-unfoIdL(Eo,E1)
SN (TuBtL,TFATN

=i+ B(uB)T | p-unfoldg(So, Z4)
Zo: FuBTl

23/34

A framework for proof certificates in finite state exploration

L Examples

Outline

@ The uF logic

@® Examples
Clerks & Experts
Certificates

® Implementation

24/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Common proof certificates: sync:cert->cert

Certificate constructor for a synchronous phase (¥ = is implied).
The right rules are:

=3(sync(=2)). Ve(sync(=),sync(=),1).
AT e(sync(Z), sync(Z), sync(Z)). Ve(sync(=),sync(=),2).
u-unfoldg(sync(=), sync(Z)). YT.3e(sync(=),sync(=), T).

releaseg(sync(Z), Z).

25/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Common proof certificates: sync:cert->cert

Certificate constructor for a synchronous phase (V = is implied).
The right rules are:

=3(sync(3)). Ve(sync(=),sync(=),1).
AT e(sync(Z), sync(Z), sync(Z)). Ve(sync(=), sync(=),2).
u-unfoldg(sync(=), sync(Z)). VYT.3e(sync(=),sync(=), T).

releaseg(sync(=), =).

e unbounded synchronous search

25/34

A framework for proof certificates in finite state exploration
L Examples

LClerks & Experts

Common proof certificates: sync:cert->cert

Certificate constructor for a synchronous phase (¥ = is implied).
The right rules are:

=3(sync(=2)). Ve(sync(=),sync(=),1).
AT e(sync(Z), sync(Z), sync(Z)). Ve(sync(=),sync(=),2).
u-unfoldg(sync(=), sync(Z)). YT.3e(sync(=),sync(=), T).

releaser(sync(=), =).

e unbounded synchronous search
e no clerks, but a continuation certificate

25/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Common proof certificates: sync:cert->cert

Certificate constructor for a synchronous phase (¥ = is implied).
The right rules are:

=3(sync(Z)). Ve(sync(=),sync(=),1).
AT e(sync(Z), sync(Z), sync(Z)). Ve(sync(=),sync(=),2).
p-unfoldg(sync(=), sync(=)). VT.3e(sync(=),sync(=), T).

releaseg(sync(Z), Z).

e unbounded synchronous search
e no clerks, but a continuation certificate
e exhaustive non-deterministic search for v and 3

25/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Common proof certificates: async: cert->cert

Certificate constructor for an asynchronous phase (dual of sync).
The left rules are:

=3 (async(=),async(=)). V¢(async(=), async(=), async(=)).
AT c(async(Z), async(Z)).
3c.(async(=), Ax. async(=)). store, (async(=), async(=)).

u-unfold; (async(=),async(=)). decide, (async(=),=).

26/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Common proof certificates: async:cert->cert

Certificate constructor for an asynchronous phase (dual of sync).
The left rules are:

=2 (async(=),async(=)). V¢(async(=),async(=),async(Z)).
AT s(async(Z), async(Z)).
3c.(async(=), Ax. async(=)). store, (async(=), async(=)).

u-unfold, (async(=),async(=)). decide,(async(=),=).

e unbounded asynchronous search

26/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Common proof certificates: async: cert->cert

Certificate constructor for an asynchronous phase (dual of sync).
The left rules are:

=3 (async(=),async(=)). V¢(async(=), async(=), async(=)).
AT c(async(Z), async(Z)).
3c.(async(=), Ax. async(=)). store, (async(=), async(=)).

u-unfold; (async(=),async(=)). decide, (async(=),=).

e unbounded asynchronous search

e no experts, apart from the decide rules, but a continuation
certificate

26/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Some other certificates

stop:cert authorizes no search (no clerk or expert is defined for
this constant)

27/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Some other certificates

stop:cert authorizes no search (no clerk or expert is defined for
this constant)

bipole,:cert is defined as a sequence of n composition of
async(sync(-)) before a final stop

27/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for
this constant)

bipole,: cert is defined as a sequence of n composition of
async(sync(-)) before a final stop

decproc:cert is short-hand for bipole.,, the unbounded version
of bipole,

27/34

A framework for proof certificates in finite state exploration
L Examples
LClerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for
this constant)

bipole,: cert is defined as a sequence of n composition of
async(sync(-)) before a final stop

decproc:cert is short-hand for bipole.,, the unbounded version
of bipole,

inv,co-inv: (i->i->bool)->cert->cert take an explicit invariant
S and attempt to complete the invariant subproof as
a single bipole:
¥S.ind(inv(S, =), (1X. bipole), =, S)
¥S. co-ind(co-inv(S, =), =, (1x. bipole), S)

27/34

A framework for proof certificates in finite state exploration
L Examples
L Certificates

Lists as reachability certificates

Certificate for + path(x, y): list of nodes between x and y:
Zac : Fpath(a,c) for =,.€{[b].[b;c;b],...}
YL.decideg(L,L). VL. u-unfoldg(L, L).

VXVYL.Ve(X i L,X 2 L,2). VYL.Ve(nil,sync(stop),1).
VXVYL.Jo(X :: L, L, X). VL. Ato(L, sync(stop),L).

28/34

A framework for proof certificates in finite state exploration
L Examples
L Certificates

Lists as reachability certificates
path = u (AP/lx/lz. Xx—zV(dy.x — y A" Pyz))

VL.decideg(L,L). VL. u-unfoldg(L, L).
VXVL.Ve(X i L,X 2 L,2). VYL.Ve(nil,sync(stop),1).
VXVYL.Jo(X :: L, L, X). VL. At (L, sync(stop),L).

28/34

A framework for proof certificates in finite state exploration
L Examples
L Certificates

Lists as reachability certificates
path = u (AP/lx/lz. Xx—zV(dy.x — y A" Pyz))

VL.decideg(L,L). VL. pu-unfoldg(L, L).
VXVL.Ve(X L, X 2 L,2). VYL.Ve(nil,sync(stop),1).
VXVYL.Jo(X :: L, L, X). VL. At (L, sync(stop),L).

28/34

A framework for proof certificates in finite state exploration
L Examples
L Certificates

Lists as reachability certificates
e (@ [b] :+ path(a,c)

path = u (/lP/lx/lz. X —zV(Jy.x — y A" Pyz))

VL.decideg(L,L). VL. pu-unfoldg(L, L).
VXYL.Ve(X i L, X 2 L,2). VL.Ve(nil,sync(stop), 1).
VXYL Jo(X :: L, L, X). VL. Ato(L, sync(stop),L).

28/34

A framework for proof certificates in finite state exploration
L Examples
L Certificates

Lists as reachability certificates
e (@ [] :+ path(b,c)

path = u (AP/lx/lz. X —zV(Ay.x — y A" Pyz))

VL.decideg(L,L). VL. pu-unfoldg(L, L).
VXVL.Ve(X i L,X 2 L,2). VL.Ve(nil,sync(stop),1).
VXVYL.Jo(X :: L, L, X). VL. At (L, sync(stop),L).

28/34

A framework for proof certificates in finite state exploration
L Examples
L Certificates

Lists as reachability certificates
path = u (le/lx/lz. X — zV(Ay.x — y A" Pyz))

VL.decideg(L,L). VL. pu-unfoldg(L, L).
VXVL.Ve(X L, X 2 L,2). VYL.Ve(nil,sync(stop),1).
VXVYL.Jo(X :: L, L, X). VL. Ate(L, sync(stop),L).

28/34

A framework for proof certificates in finite state exploration
L Examples
L Certificates

HML assertions as non-bisimulation certificates

©

a

O @ @

‘| b 2: @b C'I iC B = (a)Ai | ~((a)A)
Certificate for bisim(x, y) +: Hennessy-Milner Language formula A
suchthat x = A but y }= A:

=6.10 : bisim(6,10) v for =10 € {(a)~(b)true,...}
as 10 ==but6 |~ =.

29/34

A framework for proof certificates in finite state exploration

L Examples
L Certificates

HML assertions as non-bisimulation certificates

(continued)

VA.store (A, A).

VB. v-unfold (B, B).
VYavYA.Ve((a)A, A, a).
VTVA.Vo(A, A, T).

VA.release (A, A).

VA.35(A, Ax. A).
VA. u-unfold, (A, A).
VA.=S5(A,A).

V(B)ij.decide, (/\ Bi. B).

YavYA. N o((a)A,(a)A, left).
YavA. N o(—(a)A,(a)A,right).
VYA.De(A, sync(stop), A).

VA. AT (A, A).
YA.Vo(A,A,A).

30/34

A framework for proof certificates in finite state exploration
L Examples
L Certificates

HML assertions as non-bisimulation certificates
(continued)

VA.store, (A, A). ¥(B))¥j. decider (/\ B, By).

VB. v-unfold (B, B). YavYA. N o((a)A,(a)A, left).
VavA.Ve((a)A, A, a). VavYA. N o(~(a)A, (a)A, right).
VTYA.Ve(AA,T). VYA.De(A, sync(stop), A).

VA.release. (A, A).

VA. 3 (A, Ax. A). VA.ATC(A, A).
VA. u-unfold; (A, A). VA.V.(A,AA).
VA.=5(A,A).

30/34

A framework for proof certificates in finite state exploration
L Examples
L Certificates

HML assertions as non-bisimulation certificates
(continued)

VA.store, (A, A). ¥(B))¥j. decider (/\ B, By).

VB. v-unfold (B, B). YavYA. N o((a)A,(a)A, left).
VYavYA.Ve((a)A, A, a). YavYA. A o(—(a)A,(a)A,right).
VTYA.Ve(AA,T). VYA.De(A, sync(stop), A).

VA.release. (A, A).

VA. 3 (A, Ax. A). VA.ATC(A, A).
VA. u-unfold; (A, A). VA.V.(A,AA).
VA.=5(A,A).

30/34

A framework for proof certificates in finite state exploration
L Examples

L Certificates

Invariants as simulation certificates

The set {(21,23), (22, 24)} is a simulation and, therefore, the
process (21) is simulated by the process (23).
From this set we build

S=axdy.(x=21 Aty =23) v (x =22 AT y = 24)

which is such that

co-inv (S, bipole) : + sim(21,23)

31/34

A framework for proof certificates in finite state exploration

L Implementation

Outline

@ The uF logic
@® Examples

® Implementation

32/34

A framework for proof certificates in finite state exploration

L Implementation

A reference proof checker

We have built a reference proof checker within the Bedwyr
computational logic system:
http://slimmer.gforge.inria. fr/bedwyr/pcmc/

e implemented by Tiu, Baelde, Gacek, & Heath

e AProlog is not strong enough for checking these certificates

33/34

http://slimmer.gforge.inria.fr/bedwyr/pcmc/

A framework for proof certificates in finite state exploration

L Implementation

Future Plans

How not to put invariants into proof certificates?
e obvious induction invariant
¢ bisimulation up-to, etc.

Combine proof checking for both stage 1 and stage 2.

Embrace much more of model checking.
e predicate abstractions
e tables and lemmas
e partial order reductions

Build proof certificates for the Abella prover, thereby merging
model checking and inductive theorem proving into one platform.

34/34

	The muF logic
	Formulae
	Focused system
	Restricted formulae
	Augmented system

	Examples
	Clerks & Experts
	Certificates

	Implementation

