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Introduction

Proof Certificates

Computational logic systems should output formal proofs for
independent checking.

Proof structures vary greatly. These choices are not just a matter
of taste. There are important trade-offs between

• simplicity and complexity of checkers

• implicit and explicit proofs

• proof size and checking time

We do not focus on proof search: one machine (client) generates a
proof, and another machine (kernel) checks it.
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Introduction

ProofCert
A multi-year project where we are developing the Foundational
Proof Certificate (FPC) framework.

We aim to formally define the semantics of a wide range of proof
evidences.

• such formal semantics can be executed to yield checkers

• specific checkers can be build by anyone from these
definitions

Analogous frameworks exist:

• context-free grammars (CFG) define programming language
structures

• structural operational semantics (SOS) define programming
language execution
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Introduction

ProofCert, stage 1

We have been successful at developing the FPC framework for
first-order classical and intuitionistic logics.

Classical logic resolution, expansion trees, decision procedures
such as CNF, truth tables

Intuitionistic logic dependently typed λ-terms, G3ip

others Also: rewriting, Frege-style proofs

Focused proof systems for classical and intuitionistic logics provide
the theoretical justification for the design of FPCs.

The λProlog programming language (implemented via the Teyjus
compiler) serves as a natural prototyping system for executing
formal semantic definitions.
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Introduction

ProofCert, stage 2

Continue the work for proof evidence that may contain induction
and co-induction.

We will then be able to treat model checking. In particular, we
discuss here:

• reachability (existence of a path)

• non-reachability

• simulation, bisimulation, winning strategy

• non-simulation, non-bisimulation

We need a focused proof system for a logic with induction and
co-induction.
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The µF logic

Formulae

Fixed points in linear logic

Surprisingly, neither

• intuitionistic nor classical logics nor

• full linear logic (with Girard’s ! and ?)

are the right starting point for us here.

We rely on µMALL[Baelde, PhD, ToCL 2012] instead: this is MALL
(multiplicative additive linear logic) plus

• the least (µ) and greatest (ν) fixed points operators

• first-order quantifiers ∀, ∃

• term equality

All three of these are treated as logical connectives.
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The µF logic

Formulae

µMALL formulae

To be more “user friendly”, we

• drop the linear logic connectives for more conventional looking
symbols

• use two sided sequents

There are two sets of connectives (following focusing polarity).

Negative connectives: f−, ⊃, t−, ∧−, ∀, , and ν,
Positive connectives: t+, ∧+, f+, ∨, ∃, = and µ.

The negation of B is written as B ⊃ f−.
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The µF logic

Formulae

Example: graph

a

b

c

d

step a b. step b c. step c b.

path X Y :- step X Y.
path X Z :- exists Y (step X Y, path Y Z).
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The µF logic

Formulae

Example: graph

a

b

c

d

The step relation becomes a binary predicate · −→ · defined by

µ(λAλxλy. ((x = a) ∧+ (y = b)) ∨ ((x = b) ∧+ (y = c))

∨((x = c) ∧+ (y = b)))
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The µF logic

Formulae

Example: graph

a

b

c

d

Similarly, the path relation becomes the binary predicate

µ
(
λPλxλz. x −→ z ∨ (∃y. x −→ y ∧+ P y z)

)
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The µF logic

Formulae

Example: graph

a

b

c

d

• we need only positive connectives to translate Horn clauses!
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The µF logic

Formulae

Example: labeled transition systems

1

2 3

4 5

a a

b c

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c
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The µF logic

Formulae

Example: labeled transition systems

1

2 3

4 5

a a

b c

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c

For step, an LTS needs the ternary predicate ·
·
−→ · defined by

µ

λAλpλaλq.
∨

i

((p = ui) ∧
+ (a = vi) ∧

+ (q = wi))
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The µF logic

Formulae

Example: labeled transition systems

1

2 3

4 5

a a

b c

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c

Finally, Simulation and bisimulation can be defined by

ν
(
λSλpλq.∀a∀p′. p

a
−→ p′ ⊃ ∃q′. q

a
−→ q′ ∧+ S p′ q′

)
(sim)

ν
(
λBλpλq. (∀a∀p′. p

a
−→ p′ ⊃ ∃q′. q

a
−→ q′ ∧+ B p′ q′)

∧−(∀a∀q′. q
a
−→ q′ ⊃ ∃p′. p

a
−→ p′ ∧+ B q′ p′)

) (bisim)
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The µF logic

Formulae

Example: labeled transition systems

1

2 3

4 5

a a

b c

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c

• these are not purely positive, but they are bipoles

• bisim contains both ∧− and ∧+
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The µF logic

Focused system

A two-sided version of µMALLF

Let N and P denote, respectively, lists of negative and positive
formulae.

Let Γ and ∆ denote multisets of formulae.

Introduction rules are applied to formulae in the zones between
occurrences of ⇑ / ⇓ and `.

N ⇑ Γ ` ∆ ⇑ P similar to the one-sided sequent ` N⊥,P ⇑ Γ⊥,∆

⇓ A ` left-focused, similar to `⇓ A⊥

` A ⇓ right-focused, similar to `⇓ A
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The µF logic

Focused system

Introduction of negative connectives

Nθ ⇑ Γθ ` ∆θ ⇑

N ⇑ s = t , Γ ` ∆ ⇑
†

Nθ ⇑ ` ⇑

N ⇑ ` s , t ⇑
†
†θ = mgu(s, t)

N ⇑ Γ ` ∆ ⇑

N ⇑ t+, Γ ` ∆ ⇑

N ⇑ ` ⇑

N ⇑ ` f− ⇑

N ⇑ A1,A2, Γ ` ∆ ⇑

N ⇑ A1 ∧
+ A2, Γ ` ∆ ⇑

N ⇑ A1 ` A2 ⇑

N ⇑ ` A1 ⊃ A2 ⇑

N ⇑ s = t , Γ ` ∆ ⇑
‡

N ⇑ ` s , t ⇑
‡
‡s and t not unifiable

N ⇑ f+, Γ ` ∆ ⇑ N ⇑ ` t− ⇑

N ⇑ A1, Γ ` ∆ ⇑ N ⇑ A2, Γ ` ∆ ⇑

N ⇑ A1 ∨ A2, Γ ` ∆ ⇑

N ⇑ ` A1 ⇑ N ⇑ ` A2 ⇑

N ⇑ ` A1 ∧
− A2 ⇑

N ⇑ C y, Γ ` ∆ ⇑

N ⇑ ∃x.C x, Γ ` ∆ ⇑

N ⇑ ` C y ⇑
N ⇑ ` ∀x.C x ⇑
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The µF logic

Focused system

Introduction of positive connectives & structural rules

⇓ t , t ` ` t = t ⇓ ⇓ f− ` ` t+ ⇓

` A1 ⇓ ⇓ A2 `

⇓ A1 ⊃ A2 `

` A1 ⇓ ` A2 ⇓

` A1 ∧
+ A2 ⇓

⇓ Ai `

⇓ A1 ∧
− A2 `

` Ai ⇓

` A1 ∨ A2 ⇓

⇓ C t `
⇓ ∀x.C x `

` C t ⇓
` ∃x.C x ⇓

N ⇑ Γ ` ∆ ⇑

⇑ N, Γ ` ∆ ⇑
StoreL

⇓ N `
N ⇑ ` ⇑

DecideL
⇑ P ` ⇑
⇓ P `

ReleaseL

⇑ ` ⇑ P
⇑ ` P ⇑

StoreR
` P ⇓
⇑ ` ⇑ P

DecideR
⇑ ` N ⇑
` N ⇓

ReleaseR
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The µF logic

Focused system

Fixed-point rules: induction, coinduction, unfolding

⇑ B S ȳ ` S ȳ ⇑ N ⇑ S t̄ , Γ ` ∆ ⇑

N ⇑ µB t̄ , Γ ` ∆ ⇑

N ⇑ ` S t̄ ⇑ ⇑ S ȳ ` B S ȳ ⇑
N ⇑ ` νB t̄ ⇑

N ⇑ B(µB )̄t , Γ ` ∆ ⇑

N ⇑ µB t̄ , Γ ` ∆ ⇑

N ⇑ ` B(νB )̄t ⇑

N ⇑ ` νB t̄ ⇑

⇓ B(νB )̄t `

⇓ νB t̄ `

` B(µB )̄t ⇓

` µB t̄ ⇓

The resulting proof system has no initial and no cut-rules.

Cut and initial are needed for richer aspects of model checking, but
not immediately in this talk.
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The µF logic

Restricted formulae

Branching negative connectives
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The µF logic

Restricted formulae

Branching structural rules
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Restricted formulae

Branching structural rules

⇓ t , t ` ` t = t ⇓ ⇓ f− ` ` t+ ⇓

` A1 ⇓ ⇓ A2 `

⇓ A1 ⊃ A2 `

` A1 ⇓ ` A2 ⇓

` A1 ∧
+ A2 ⇓

⇓ Ai `

⇓ A1 ∧
− A2 `

` Ai ⇓

` A1 ∨ A2 ⇓

⇓ C t `
⇓ ∀x.C x `

` C t ⇓
` ∃x.C x ⇓

N ⇑ Γ ` ∆ ⇑

⇑ N, Γ ` ∆ ⇑
StoreL

⇓ N `
N ⇑ ` ⇑

DecideL
⇑ P ` ⇑
⇓ P `

ReleaseL

⇑ ` ⇑ P
⇑ ` P ⇑

StoreR
` P ⇓
⇑ ` ⇑ P

DecideR
⇑ ` N ⇑
` N ⇓

ReleaseR



18/34

A framework for proof certificates in finite state exploration

The µF logic

Restricted formulae

Switchable formulae

Multiple formulae can only exist inside ⇑-sequents.

A restriction on formulae is needed to ensure that there is exactly
one formula in a sequent when there is a change of phase.

A µMALL formula is switchable if

• whenever a subformula C ∧+ D occurs negatively (under an
odd number of implications), either C or D is purely positive

• whenever a subformula C ⊃ D occurs positively (under an
even number of implications), either C is purely positive or D
is purely negative
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The µF logic

Restricted formulae

Example switchable formulae

• purely positive formulae

• purely negative formulae
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The µF logic

Augmented system

Example proof evidence

The following are typical kinds of proof evidence in model checking.

reachability can be witnessed by a path through a graph

non-reachability can be witnessed by a reachable set for one node
that does not contain the other

(bi)similarity in a given LTS can be witnessed by a set of pairs
called, resp, simulation and bisimulation

non-bisimilarity in a given LTS can be witnessed by a
Hennessy-Milner logic (HML) formula that is
satisfied by one but not by the other

Our challenge: How can we formally define such proof evidence in
terms of µMALL proof theory?
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The µF logic

Augmented system

Augmenting focused sequents

We augment all sequents in the focused proof system with
certificates, by giving them an extra argument Ξ (encoding a
certificate):

Ξ:

N ⇑ Γ ` ∆ ⇑ P

Ξ:

⇓ A `

Ξ:

` A ⇓
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The µF logic

Augmented system

Augmenting focused sequents

We augment all sequents in the focused proof system with
certificates, by giving them an extra argument Ξ (encoding a
certificate):

Ξ:N ⇑ Γ ` ∆ ⇑ P

Ξ: ⇓ A `

Ξ: ` A ⇓
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The µF logic

Augmented system

Augmenting focused inference rules

Also, every inference rule gets an additional atomic premise.

In the ⇑ phase, a clerk performs some simple computations on the
input certificate (Ξ0) to produce continuation certificates (Ξ1,Ξ2):

Ξ1 :N ⇑ A1, Γ ` ∆ ⇑ Ξ2 :N ⇑ A2, Γ ` ∆ ⇑ ∨c(Ξ0,Ξ1,Ξ2)

Ξ0 :N ⇑ A1 ∨ A2, Γ ` ∆ ⇑

In the ⇓-sequent, an expert digs out information from the input
certificate not only to compute continuation certificates (Ξ1) but
also additional guiding information (the term t):

Ξ1 : ` C t ⇓ ∃e(Ξ0,Ξ1, t)
Ξ0 : ` ∃x.C x ⇓
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The µF logic

Augmented system

Augmented fixed point rules

Ξ1 ȳ : ⇑ B S ȳ ` S ȳ ⇑ Ξ2 :N ⇑ S t̄ , Γ ` ∆ ⇑ ind(Ξ0,Ξ1,Ξ2,S)

Ξ0 :N ⇑ µB t̄ , Γ ` ∆ ⇑

Ξ1 :N ⇑ B(µB )̄t , Γ ` ∆ ⇑ µ-unfoldL (Ξ0,Ξ1)

Ξ0 :N ⇑ µB t̄ , Γ ` ∆ ⇑

Ξ1 : ` B(µB )̄t ⇓ µ-unfoldR(Ξ0,Ξ1)

Ξ0 : ` µB t̄ ⇓
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Examples

Clerks & Experts

Common proof certificates: sync:cert->cert

Certificate constructor for a synchronous phase (∀Ξ is implied).
The right rules are:

=s
e(sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 1).

∧+e(sync(Ξ), sync(Ξ), sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 2).

µ-unfoldR(sync(Ξ), sync(Ξ)). ∀T .∃e(sync(Ξ), sync(Ξ),T).

releaseR(sync(Ξ),Ξ).

• unbounded synchronous search

• no clerks, but a continuation certificate

• exhaustive non-deterministic search for ∨ and ∃
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Examples

Clerks & Experts

Common proof certificates: async:cert->cert

Certificate constructor for an asynchronous phase (dual of sync).
The left rules are:

=s
c(async(Ξ), async(Ξ)). ∨c(async(Ξ), async(Ξ), async(Ξ)).

∧+c(async(Ξ), async(Ξ)).

∃c(async(Ξ), λx. async(Ξ)). storeL (async(Ξ), async(Ξ)).

µ-unfoldL (async(Ξ), async(Ξ)). decideL (async(Ξ),Ξ).

• unbounded asynchronous search

• no experts, apart from the decide rules, but a continuation
certificate
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Examples

Clerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for

this constant)

bipolen:cert is defined as a sequence of n composition of
async(sync(·)) before a final stop

decproc:cert is short-hand for bipole∞, the unbounded version
of bipolen

inv,co-inv:(i->i->bool)->cert->cert take an explicit invariant
S and attempt to complete the invariant subproof as
a single bipole:

∀S. ind(inv(S,Ξ), (λx̄.bipole),Ξ,S)

∀S. co-ind(co-inv(S,Ξ),Ξ, (λx̄.bipole),S)



27/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for

this constant)

bipolen:cert is defined as a sequence of n composition of
async(sync(·)) before a final stop

decproc:cert is short-hand for bipole∞, the unbounded version
of bipolen

inv,co-inv:(i->i->bool)->cert->cert take an explicit invariant
S and attempt to complete the invariant subproof as
a single bipole:

∀S. ind(inv(S,Ξ), (λx̄.bipole),Ξ,S)

∀S. co-ind(co-inv(S,Ξ),Ξ, (λx̄.bipole),S)



27/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for

this constant)

bipolen:cert is defined as a sequence of n composition of
async(sync(·)) before a final stop

decproc:cert is short-hand for bipole∞, the unbounded version
of bipolen

inv,co-inv:(i->i->bool)->cert->cert take an explicit invariant
S and attempt to complete the invariant subproof as
a single bipole:

∀S. ind(inv(S,Ξ), (λx̄.bipole),Ξ,S)

∀S. co-ind(co-inv(S,Ξ),Ξ, (λx̄.bipole),S)



27/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for

this constant)

bipolen:cert is defined as a sequence of n composition of
async(sync(·)) before a final stop

decproc:cert is short-hand for bipole∞, the unbounded version
of bipolen

inv,co-inv:(i->i->bool)->cert->cert take an explicit invariant
S and attempt to complete the invariant subproof as
a single bipole:

∀S. ind(inv(S,Ξ), (λx̄.bipole),Ξ,S)

∀S. co-ind(co-inv(S,Ξ),Ξ, (λx̄.bipole),S)
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Examples

Certificates

Lists as reachability certificates

a

b

c

d

Certificate for ` path(x, y): list of nodes between x and y:

Ξa,c : ` path(a, c) for Ξa,c ∈ {[b], [b; c; b], . . .}

∀L . decideR(L , L). ∀L . µ-unfoldR(L , L).

∀X∀L .∨e(X :: L ,X :: L , 2). ∀L .∨e(nil, sync(stop), 1).

∀X∀L .∃e(X :: L , L ,X). ∀L .∧+e(L , sync(stop), L).
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b

c
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Examples

Certificates

HML assertions as non-bisimulation certificates

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c

A :=
∧
i∈I

Bi

B := 〈ai〉Ai | ¬(〈ai〉Ai)

Certificate for bisim(x, y) `: Hennessy-Milner Language formula A
such that x |= A but y 6|= A :

Ξ6,10 : bisim(6, 10) ` for Ξ6,10 ∈ {〈a〉¬〈b〉true, . . .}

as 10 |= Ξ but 6 6|= Ξ.
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Examples

Certificates

HML assertions as non-bisimulation certificates
(continued)

∀A . storeL (A ,A). ∀(Bi)i∀j. decideL (
∧

iBi ,Bj).

∀B . ν-unfoldL (B ,B). ∀a∀A .∧−e( 〈a〉A , 〈a〉A , left).

∀a∀A .∀e(〈a〉A ,A , a). ∀a∀A .∧−e(¬〈a〉A , 〈a〉A , right).

∀T∀A .∀e(A ,A ,T). ∀A .⊃e(A , sync(stop),A).

∀A . releaseL (A ,A).

∀A .∃c(A , λx.A). ∀A .∧+c(A ,A).

∀A . µ-unfoldL (A ,A). ∀A .∨c(A ,A ,A).

∀A .=s
c(A ,A).
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HML assertions as non-bisimulation certificates
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Examples

Certificates

Invariants as simulation certificates
21

22

ab

23

24

25ab
c

The set {(21, 23), (22, 24)} is a simulation and, therefore, the
process (21) is simulated by the process (23).
From this set we build

S = λxλy. (x = 21 ∧+ y = 23) ∨ (x = 22 ∧+ y = 24)

which is such that

co-inv (S,bipole) : ` sim(21, 23)
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Implementation

A reference proof checker

We have built a reference proof checker within the Bedwyr
computational logic system:
http://slimmer.gforge.inria.fr/bedwyr/pcmc/

• implemented by Tiu, Baelde, Gacek, & Heath

• λProlog is not strong enough for checking these certificates

http://slimmer.gforge.inria.fr/bedwyr/pcmc/
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Implementation

Future Plans

How not to put invariants into proof certificates?

• obvious induction invariant

• bisimulation up-to, etc.

Combine proof checking for both stage 1 and stage 2.

Embrace much more of model checking.

• predicate abstractions

• tables and lemmas

• partial order reductions

Build proof certificates for the Abella prover, thereby merging
model checking and inductive theorem proving into one platform.
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