
1/34

A framework for proof certificates in finite state exploration

A framework for proof certificates
in finite state exploration

PxTP 2015

Quentin Heath Dale Miller

Inria Saclay–Île-de-France

LIX, École polytechnique

August 7, 2015

2/34

A framework for proof certificates in finite state exploration

Introduction

Proof Certificates

Computational logic systems should output formal proofs for
independent checking.

Proof structures vary greatly. These choices are not just a matter
of taste. There are important trade-offs between

• simplicity and complexity of checkers

• implicit and explicit proofs

• proof size and checking time

We do not focus on proof search: one machine (client) generates a
proof, and another machine (kernel) checks it.

3/34

A framework for proof certificates in finite state exploration

Introduction

ProofCert
A multi-year project where we are developing the Foundational
Proof Certificate (FPC) framework.

We aim to formally define the semantics of a wide range of proof
evidences.

• such formal semantics can be executed to yield checkers

• specific checkers can be build by anyone from these
definitions

Analogous frameworks exist:

• context-free grammars (CFG) define programming language
structures

• structural operational semantics (SOS) define programming
language execution

4/34

A framework for proof certificates in finite state exploration

Introduction

ProofCert, stage 1

We have been successful at developing the FPC framework for
first-order classical and intuitionistic logics.

Classical logic resolution, expansion trees, decision procedures
such as CNF, truth tables

Intuitionistic logic dependently typed λ-terms, G3ip

others Also: rewriting, Frege-style proofs

Focused proof systems for classical and intuitionistic logics provide
the theoretical justification for the design of FPCs.

The λProlog programming language (implemented via the Teyjus
compiler) serves as a natural prototyping system for executing
formal semantic definitions.

5/34

A framework for proof certificates in finite state exploration

Introduction

ProofCert, stage 2

Continue the work for proof evidence that may contain induction
and co-induction.

We will then be able to treat model checking. In particular, we
discuss here:

• reachability (existence of a path)

• non-reachability

• simulation, bisimulation, winning strategy

• non-simulation, non-bisimulation

We need a focused proof system for a logic with induction and
co-induction.

6/34

A framework for proof certificates in finite state exploration

Introduction

Outline

1 The µF logic
Formulae
Focused system
Restricted formulae
Augmented system

2 Examples
Clerks & Experts
Certificates

3 Implementation

7/34

A framework for proof certificates in finite state exploration

The µF logic

Outline

1 The µF logic
Formulae
Focused system
Restricted formulae
Augmented system

2 Examples

3 Implementation

8/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

Fixed points in linear logic

Surprisingly, neither

• intuitionistic nor classical logics nor

• full linear logic (with Girard’s ! and ?)

are the right starting point for us here.

We rely on µMALL[Baelde, PhD, ToCL 2012] instead: this is MALL
(multiplicative additive linear logic) plus

• the least (µ) and greatest (ν) fixed points operators

• first-order quantifiers ∀, ∃

• term equality

All three of these are treated as logical connectives.

9/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

µMALL formulae

To be more “user friendly”, we

• drop the linear logic connectives for more conventional looking
symbols

• use two sided sequents

There are two sets of connectives (following focusing polarity).

Negative connectives: f−, ⊃, t−, ∧−, ∀, , and ν,
Positive connectives: t+, ∧+, f+, ∨, ∃, = and µ.

The negation of B is written as B ⊃ f−.

10/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

Example: graph

a

b

c

d

step a b. step b c. step c b.

path X Y :- step X Y.
path X Z :- exists Y (step X Y, path Y Z).

10/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

Example: graph

a

b

c

d

The step relation becomes a binary predicate · −→ · defined by

µ(λAλxλy. ((x = a) ∧+ (y = b)) ∨ ((x = b) ∧+ (y = c))

∨((x = c) ∧+ (y = b)))

10/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

Example: graph

a

b

c

d

Similarly, the path relation becomes the binary predicate

µ
(
λPλxλz. x −→ z ∨ (∃y. x −→ y ∧+ P y z)

)

10/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

Example: graph

a

b

c

d

• we need only positive connectives to translate Horn clauses!

11/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

Example: labeled transition systems

1

2 3

4 5

a a

b c

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c

11/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

Example: labeled transition systems

1

2 3

4 5

a a

b c

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c

For step, an LTS needs the ternary predicate ·
·
−→ · defined by

µ

λAλpλaλq.
∨

i

((p = ui) ∧
+ (a = vi) ∧

+ (q = wi))



11/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

Example: labeled transition systems

1

2 3

4 5

a a

b c

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c

Finally, Simulation and bisimulation can be defined by

ν
(
λSλpλq.∀a∀p′. p

a
−→ p′ ⊃ ∃q′. q

a
−→ q′ ∧+ S p′ q′

)
(sim)

ν
(
λBλpλq. (∀a∀p′. p

a
−→ p′ ⊃ ∃q′. q

a
−→ q′ ∧+ B p′ q′)

∧−(∀a∀q′. q
a
−→ q′ ⊃ ∃p′. p

a
−→ p′ ∧+ B q′ p′)

) (bisim)

11/34

A framework for proof certificates in finite state exploration

The µF logic

Formulae

Example: labeled transition systems

1

2 3

4 5

a a

b c

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c

• these are not purely positive, but they are bipoles

• bisim contains both ∧− and ∧+

12/34

A framework for proof certificates in finite state exploration

The µF logic

Focused system

A two-sided version of µMALLF

Let N and P denote, respectively, lists of negative and positive
formulae.

Let Γ and ∆ denote multisets of formulae.

Introduction rules are applied to formulae in the zones between
occurrences of ⇑ / ⇓ and `.

N ⇑ Γ ` ∆ ⇑ P similar to the one-sided sequent ` N⊥,P ⇑ Γ⊥,∆

⇓ A ` left-focused, similar to `⇓ A⊥

` A ⇓ right-focused, similar to `⇓ A

13/34

A framework for proof certificates in finite state exploration

The µF logic

Focused system

Introduction of negative connectives

Nθ ⇑ Γθ ` ∆θ ⇑

N ⇑ s = t , Γ ` ∆ ⇑
†

Nθ ⇑ ` ⇑

N ⇑ ` s , t ⇑
†
†θ = mgu(s, t)

N ⇑ Γ ` ∆ ⇑

N ⇑ t+, Γ ` ∆ ⇑

N ⇑ ` ⇑

N ⇑ ` f− ⇑

N ⇑ A1,A2, Γ ` ∆ ⇑

N ⇑ A1 ∧
+ A2, Γ ` ∆ ⇑

N ⇑ A1 ` A2 ⇑

N ⇑ ` A1 ⊃ A2 ⇑

N ⇑ s = t , Γ ` ∆ ⇑
‡

N ⇑ ` s , t ⇑
‡
‡s and t not unifiable

N ⇑ f+, Γ ` ∆ ⇑ N ⇑ ` t− ⇑

N ⇑ A1, Γ ` ∆ ⇑ N ⇑ A2, Γ ` ∆ ⇑

N ⇑ A1 ∨ A2, Γ ` ∆ ⇑

N ⇑ ` A1 ⇑ N ⇑ ` A2 ⇑

N ⇑ ` A1 ∧
− A2 ⇑

N ⇑ C y, Γ ` ∆ ⇑

N ⇑ ∃x.C x, Γ ` ∆ ⇑

N ⇑ ` C y ⇑
N ⇑ ` ∀x.C x ⇑

14/34

A framework for proof certificates in finite state exploration

The µF logic

Focused system

Introduction of positive connectives & structural rules

⇓ t , t ` ` t = t ⇓ ⇓ f− ` ` t+ ⇓

` A1 ⇓ ⇓ A2 `

⇓ A1 ⊃ A2 `

` A1 ⇓ ` A2 ⇓

` A1 ∧
+ A2 ⇓

⇓ Ai `

⇓ A1 ∧
− A2 `

` Ai ⇓

` A1 ∨ A2 ⇓

⇓ C t `
⇓ ∀x.C x `

` C t ⇓
` ∃x.C x ⇓

N ⇑ Γ ` ∆ ⇑

⇑ N, Γ ` ∆ ⇑
StoreL

⇓ N `
N ⇑ ` ⇑

DecideL
⇑ P ` ⇑
⇓ P `

ReleaseL

⇑ ` ⇑ P
⇑ ` P ⇑

StoreR
` P ⇓
⇑ ` ⇑ P

DecideR
⇑ ` N ⇑
` N ⇓

ReleaseR

15/34

A framework for proof certificates in finite state exploration

The µF logic

Focused system

Fixed-point rules: induction, coinduction, unfolding

⇑ B S ȳ ` S ȳ ⇑ N ⇑ S t̄ , Γ ` ∆ ⇑

N ⇑ µB t̄ , Γ ` ∆ ⇑

N ⇑ ` S t̄ ⇑ ⇑ S ȳ ` B S ȳ ⇑
N ⇑ ` νB t̄ ⇑

N ⇑ B(µB)̄t , Γ ` ∆ ⇑

N ⇑ µB t̄ , Γ ` ∆ ⇑

N ⇑ ` B(νB)̄t ⇑

N ⇑ ` νB t̄ ⇑

⇓ B(νB)̄t `

⇓ νB t̄ `

` B(µB)̄t ⇓

` µB t̄ ⇓

The resulting proof system has no initial and no cut-rules.

Cut and initial are needed for richer aspects of model checking, but
not immediately in this talk.

16/34

A framework for proof certificates in finite state exploration

The µF logic

Restricted formulae

Branching negative connectives

Nθ ⇑ Γθ ` ∆θ ⇑

N ⇑ s = t , Γ ` ∆ ⇑
†

Nθ ⇑ ` ⇑

N ⇑ ` s , t ⇑
†
†θ = mgu(s, t)

N ⇑ Γ ` ∆ ⇑

N ⇑ t+, Γ ` ∆ ⇑

N ⇑ ` ⇑

N ⇑ ` f− ⇑

N ⇑ A1,A2, Γ ` ∆ ⇑

N ⇑ A1 ∧
+ A2, Γ ` ∆ ⇑

N ⇑ A1 ` A2 ⇑

N ⇑ ` A1 ⊃ A2 ⇑

N ⇑ s = t , Γ ` ∆ ⇑
‡

N ⇑ ` s , t ⇑
‡
‡s and t not unifiable

N ⇑ f+, Γ ` ∆ ⇑ N ⇑ ` t− ⇑

N ⇑ A1, Γ ` ∆ ⇑ N ⇑ A2, Γ ` ∆ ⇑

N ⇑ A1 ∨ A2, Γ ` ∆ ⇑

N ⇑ ` A1 ⇑ N ⇑ ` A2 ⇑

N ⇑ ` A1 ∧
− A2 ⇑

N ⇑ C y, Γ ` ∆ ⇑

N ⇑ ∃x.C x, Γ ` ∆ ⇑

N ⇑ ` C y ⇑
N ⇑ ` ∀x.C x ⇑

16/34

A framework for proof certificates in finite state exploration

The µF logic

Restricted formulae

Branching negative connectives

Nθ ⇑ Γθ ` ∆θ ⇑

N ⇑ s = t , Γ ` ∆ ⇑
†

Nθ ⇑ ` ⇑

N ⇑ ` s , t ⇑
†
†θ = mgu(s, t)

N ⇑ Γ ` ∆ ⇑

N ⇑ t+, Γ ` ∆ ⇑

N ⇑ ` ⇑

N ⇑ ` f− ⇑

N ⇑ A1,A2, Γ ` ∆ ⇑

N ⇑ A1 ∧
+ A2, Γ ` ∆ ⇑

N ⇑ A1 ` A2 ⇑

N ⇑ ` A1 ⊃ A2 ⇑

N ⇑ s = t , Γ ` ∆ ⇑
‡

N ⇑ ` s , t ⇑
‡
‡s and t not unifiable

N ⇑ f+, Γ ` ∆ ⇑ N ⇑ ` t− ⇑

N ⇑ A1, Γ ` ∆ ⇑ N ⇑ A2, Γ ` ∆ ⇑

N ⇑ A1 ∨ A2, Γ ` ∆ ⇑

N ⇑ ` A1 ⇑ N ⇑ ` A2 ⇑

N ⇑ ` A1 ∧
− A2 ⇑

N ⇑ C y, Γ ` ∆ ⇑

N ⇑ ∃x.C x, Γ ` ∆ ⇑

N ⇑ ` C y ⇑
N ⇑ ` ∀x.C x ⇑

17/34

A framework for proof certificates in finite state exploration

The µF logic

Restricted formulae

Branching structural rules

⇓ t , t ` ` t = t ⇓ ⇓ f− ` ` t+ ⇓

` A1 ⇓ ⇓ A2 `

⇓ A1 ⊃ A2 `

` A1 ⇓ ` A2 ⇓

` A1 ∧
+ A2 ⇓

⇓ Ai `

⇓ A1 ∧
− A2 `

` Ai ⇓

` A1 ∨ A2 ⇓

⇓ C t `
⇓ ∀x.C x `

` C t ⇓
` ∃x.C x ⇓

N ⇑ Γ ` ∆ ⇑

⇑ N, Γ ` ∆ ⇑
StoreL

⇓ N `
N ⇑ ` ⇑

DecideL
⇑ P ` ⇑
⇓ P `

ReleaseL

⇑ ` ⇑ P
⇑ ` P ⇑

StoreR
` P ⇓
⇑ ` ⇑ P

DecideR
⇑ ` N ⇑
` N ⇓

ReleaseR

17/34

A framework for proof certificates in finite state exploration

The µF logic

Restricted formulae

Branching structural rules

⇓ t , t ` ` t = t ⇓ ⇓ f− ` ` t+ ⇓

` A1 ⇓ ⇓ A2 `

⇓ A1 ⊃ A2 `

` A1 ⇓ ` A2 ⇓

` A1 ∧
+ A2 ⇓

⇓ Ai `

⇓ A1 ∧
− A2 `

` Ai ⇓

` A1 ∨ A2 ⇓

⇓ C t `
⇓ ∀x.C x `

` C t ⇓
` ∃x.C x ⇓

N ⇑ Γ ` ∆ ⇑

⇑ N, Γ ` ∆ ⇑
StoreL

⇓ N `
N ⇑ ` ⇑

DecideL
⇑ P ` ⇑
⇓ P `

ReleaseL

⇑ ` ⇑ P
⇑ ` P ⇑

StoreR
` P ⇓
⇑ ` ⇑ P

DecideR
⇑ ` N ⇑
` N ⇓

ReleaseR

18/34

A framework for proof certificates in finite state exploration

The µF logic

Restricted formulae

Switchable formulae

Multiple formulae can only exist inside ⇑-sequents.

A restriction on formulae is needed to ensure that there is exactly
one formula in a sequent when there is a change of phase.

A µMALL formula is switchable if

• whenever a subformula C ∧+ D occurs negatively (under an
odd number of implications), either C or D is purely positive

• whenever a subformula C ⊃ D occurs positively (under an
even number of implications), either C is purely positive or D
is purely negative

19/34

A framework for proof certificates in finite state exploration

The µF logic

Restricted formulae

Example switchable formulae

• purely positive formulae

• purely negative formulae

20/34

A framework for proof certificates in finite state exploration

The µF logic

Augmented system

Example proof evidence

The following are typical kinds of proof evidence in model checking.

reachability can be witnessed by a path through a graph

non-reachability can be witnessed by a reachable set for one node
that does not contain the other

(bi)similarity in a given LTS can be witnessed by a set of pairs
called, resp, simulation and bisimulation

non-bisimilarity in a given LTS can be witnessed by a
Hennessy-Milner logic (HML) formula that is
satisfied by one but not by the other

Our challenge: How can we formally define such proof evidence in
terms of µMALL proof theory?

21/34

A framework for proof certificates in finite state exploration

The µF logic

Augmented system

Augmenting focused sequents

We augment all sequents in the focused proof system with
certificates, by giving them an extra argument Ξ (encoding a
certificate):

Ξ:

N ⇑ Γ ` ∆ ⇑ P

Ξ:

⇓ A `

Ξ:

` A ⇓

21/34

A framework for proof certificates in finite state exploration

The µF logic

Augmented system

Augmenting focused sequents

We augment all sequents in the focused proof system with
certificates, by giving them an extra argument Ξ (encoding a
certificate):

Ξ:N ⇑ Γ ` ∆ ⇑ P

Ξ: ⇓ A `

Ξ: ` A ⇓

22/34

A framework for proof certificates in finite state exploration

The µF logic

Augmented system

Augmenting focused inference rules

Also, every inference rule gets an additional atomic premise.

In the ⇑ phase, a clerk performs some simple computations on the
input certificate (Ξ0) to produce continuation certificates (Ξ1,Ξ2):

Ξ1 :N ⇑ A1, Γ ` ∆ ⇑ Ξ2 :N ⇑ A2, Γ ` ∆ ⇑ ∨c(Ξ0,Ξ1,Ξ2)

Ξ0 :N ⇑ A1 ∨ A2, Γ ` ∆ ⇑

In the ⇓-sequent, an expert digs out information from the input
certificate not only to compute continuation certificates (Ξ1) but
also additional guiding information (the term t):

Ξ1 : ` C t ⇓ ∃e(Ξ0,Ξ1, t)
Ξ0 : ` ∃x.C x ⇓

23/34

A framework for proof certificates in finite state exploration

The µF logic

Augmented system

Augmented fixed point rules

Ξ1 ȳ : ⇑ B S ȳ ` S ȳ ⇑ Ξ2 :N ⇑ S t̄ , Γ ` ∆ ⇑ ind(Ξ0,Ξ1,Ξ2,S)

Ξ0 :N ⇑ µB t̄ , Γ ` ∆ ⇑

Ξ1 :N ⇑ B(µB)̄t , Γ ` ∆ ⇑ µ-unfoldL (Ξ0,Ξ1)

Ξ0 :N ⇑ µB t̄ , Γ ` ∆ ⇑

Ξ1 : ` B(µB)̄t ⇓ µ-unfoldR(Ξ0,Ξ1)

Ξ0 : ` µB t̄ ⇓

24/34

A framework for proof certificates in finite state exploration

Examples

Outline

1 The µF logic

2 Examples
Clerks & Experts
Certificates

3 Implementation

25/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Common proof certificates: sync:cert->cert

Certificate constructor for a synchronous phase (∀Ξ is implied).
The right rules are:

=s
e(sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 1).

∧+e(sync(Ξ), sync(Ξ), sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 2).

µ-unfoldR(sync(Ξ), sync(Ξ)). ∀T .∃e(sync(Ξ), sync(Ξ),T).

releaseR(sync(Ξ),Ξ).

• unbounded synchronous search

• no clerks, but a continuation certificate

• exhaustive non-deterministic search for ∨ and ∃

25/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Common proof certificates: sync:cert->cert

Certificate constructor for a synchronous phase (∀Ξ is implied).
The right rules are:

=s
e(sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 1).

∧+e(sync(Ξ), sync(Ξ), sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 2).

µ-unfoldR(sync(Ξ), sync(Ξ)). ∀T .∃e(sync(Ξ), sync(Ξ),T).

releaseR(sync(Ξ),Ξ).

• unbounded synchronous search

• no clerks, but a continuation certificate

• exhaustive non-deterministic search for ∨ and ∃

25/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Common proof certificates: sync:cert->cert

Certificate constructor for a synchronous phase (∀Ξ is implied).
The right rules are:

=s
e(sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 1).

∧+e(sync(Ξ), sync(Ξ), sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 2).

µ-unfoldR(sync(Ξ), sync(Ξ)). ∀T .∃e(sync(Ξ), sync(Ξ),T).

releaseR(sync(Ξ),Ξ).

• unbounded synchronous search

• no clerks, but a continuation certificate

• exhaustive non-deterministic search for ∨ and ∃

25/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Common proof certificates: sync:cert->cert

Certificate constructor for a synchronous phase (∀Ξ is implied).
The right rules are:

=s
e(sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 1).

∧+e(sync(Ξ), sync(Ξ), sync(Ξ)). ∨e(sync(Ξ), sync(Ξ), 2).

µ-unfoldR(sync(Ξ), sync(Ξ)). ∀T .∃e(sync(Ξ), sync(Ξ),T).

releaseR(sync(Ξ),Ξ).

• unbounded synchronous search

• no clerks, but a continuation certificate

• exhaustive non-deterministic search for ∨ and ∃

26/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Common proof certificates: async:cert->cert

Certificate constructor for an asynchronous phase (dual of sync).
The left rules are:

=s
c(async(Ξ), async(Ξ)). ∨c(async(Ξ), async(Ξ), async(Ξ)).

∧+c(async(Ξ), async(Ξ)).

∃c(async(Ξ), λx. async(Ξ)). storeL (async(Ξ), async(Ξ)).

µ-unfoldL (async(Ξ), async(Ξ)). decideL (async(Ξ),Ξ).

• unbounded asynchronous search

• no experts, apart from the decide rules, but a continuation
certificate

26/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Common proof certificates: async:cert->cert

Certificate constructor for an asynchronous phase (dual of sync).
The left rules are:

=s
c(async(Ξ), async(Ξ)). ∨c(async(Ξ), async(Ξ), async(Ξ)).

∧+c(async(Ξ), async(Ξ)).

∃c(async(Ξ), λx. async(Ξ)). storeL (async(Ξ), async(Ξ)).

µ-unfoldL (async(Ξ), async(Ξ)). decideL (async(Ξ),Ξ).

• unbounded asynchronous search

• no experts, apart from the decide rules, but a continuation
certificate

26/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Common proof certificates: async:cert->cert

Certificate constructor for an asynchronous phase (dual of sync).
The left rules are:

=s
c(async(Ξ), async(Ξ)). ∨c(async(Ξ), async(Ξ), async(Ξ)).

∧+c(async(Ξ), async(Ξ)).

∃c(async(Ξ), λx. async(Ξ)). storeL (async(Ξ), async(Ξ)).

µ-unfoldL (async(Ξ), async(Ξ)). decideL (async(Ξ),Ξ).

• unbounded asynchronous search

• no experts, apart from the decide rules, but a continuation
certificate

27/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for

this constant)

bipolen:cert is defined as a sequence of n composition of
async(sync(·)) before a final stop

decproc:cert is short-hand for bipole∞, the unbounded version
of bipolen

inv,co-inv:(i->i->bool)->cert->cert take an explicit invariant
S and attempt to complete the invariant subproof as
a single bipole:

∀S. ind(inv(S,Ξ), (λx̄.bipole),Ξ,S)

∀S. co-ind(co-inv(S,Ξ),Ξ, (λx̄.bipole),S)

27/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for

this constant)

bipolen:cert is defined as a sequence of n composition of
async(sync(·)) before a final stop

decproc:cert is short-hand for bipole∞, the unbounded version
of bipolen

inv,co-inv:(i->i->bool)->cert->cert take an explicit invariant
S and attempt to complete the invariant subproof as
a single bipole:

∀S. ind(inv(S,Ξ), (λx̄.bipole),Ξ,S)

∀S. co-ind(co-inv(S,Ξ),Ξ, (λx̄.bipole),S)

27/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for

this constant)

bipolen:cert is defined as a sequence of n composition of
async(sync(·)) before a final stop

decproc:cert is short-hand for bipole∞, the unbounded version
of bipolen

inv,co-inv:(i->i->bool)->cert->cert take an explicit invariant
S and attempt to complete the invariant subproof as
a single bipole:

∀S. ind(inv(S,Ξ), (λx̄.bipole),Ξ,S)

∀S. co-ind(co-inv(S,Ξ),Ξ, (λx̄.bipole),S)

27/34

A framework for proof certificates in finite state exploration

Examples

Clerks & Experts

Some other certificates
stop:cert authorizes no search (no clerk or expert is defined for

this constant)

bipolen:cert is defined as a sequence of n composition of
async(sync(·)) before a final stop

decproc:cert is short-hand for bipole∞, the unbounded version
of bipolen

inv,co-inv:(i->i->bool)->cert->cert take an explicit invariant
S and attempt to complete the invariant subproof as
a single bipole:

∀S. ind(inv(S,Ξ), (λx̄.bipole),Ξ,S)

∀S. co-ind(co-inv(S,Ξ),Ξ, (λx̄.bipole),S)

28/34

A framework for proof certificates in finite state exploration

Examples

Certificates

Lists as reachability certificates

a

b

c

d

Certificate for ` path(x, y): list of nodes between x and y:

Ξa,c : ` path(a, c) for Ξa,c ∈ {[b], [b; c; b], . . .}

∀L . decideR(L , L). ∀L . µ-unfoldR(L , L).

∀X∀L .∨e(X :: L ,X :: L , 2). ∀L .∨e(nil, sync(stop), 1).

∀X∀L .∃e(X :: L , L ,X). ∀L .∧+e(L , sync(stop), L).

28/34

A framework for proof certificates in finite state exploration

Examples

Certificates

Lists as reachability certificates

a

b

c

d

path = µ
(
λPλxλz. x −→ z ∨ (∃y. x −→ y ∧+ P y z)

)
∀L . decideR(L , L). ∀L . µ-unfoldR(L , L).

∀X∀L .∨e(X :: L ,X :: L , 2). ∀L .∨e(nil, sync(stop), 1).

∀X∀L .∃e(X :: L , L ,X). ∀L .∧+e(L , sync(stop), L).

28/34

A framework for proof certificates in finite state exploration

Examples

Certificates

Lists as reachability certificates

a

b

c

d

path = µ
(
λPλxλz. x −→ z ∨ (∃y. x −→ y ∧+ P y z)

)
∀L . decideR(L , L). ∀L . µ-unfoldR(L , L).

∀X∀L .∨e(X :: L ,X :: L , 2). ∀L .∨e(nil, sync(stop), 1).

∀X∀L .∃e(X :: L , L ,X). ∀L .∧+e(L , sync(stop), L).

28/34

A framework for proof certificates in finite state exploration

Examples

Certificates

Lists as reachability certificates

a

b

c

d [b] : ` path(a, c)

path = µ
(
λPλxλz. x −→ z ∨ (∃y. x −→ y ∧+ P y z)

)
∀L . decideR(L , L). ∀L . µ-unfoldR(L , L).

∀X∀L .∨e(X :: L ,X :: L , 2). ∀L .∨e(nil, sync(stop), 1).

∀X∀L .∃e(X :: L , L ,X). ∀L .∧+e(L , sync(stop), L).

28/34

A framework for proof certificates in finite state exploration

Examples

Certificates

Lists as reachability certificates

a

b

c

d [] : ` path(b , c)

path = µ
(
λPλxλz. x −→ z ∨ (∃y. x −→ y ∧+ P y z)

)
∀L . decideR(L , L). ∀L . µ-unfoldR(L , L).

∀X∀L .∨e(X :: L ,X :: L , 2). ∀L .∨e(nil, sync(stop), 1).

∀X∀L .∃e(X :: L , L ,X). ∀L .∧+e(L , sync(stop), L).

28/34

A framework for proof certificates in finite state exploration

Examples

Certificates

Lists as reachability certificates

a

b

c

d

path = µ
(
λPλxλz. x −→ z ∨ (∃y. x −→ y ∧+ P y z)

)
∀L . decideR(L , L). ∀L . µ-unfoldR(L , L).

∀X∀L .∨e(X :: L ,X :: L , 2). ∀L .∨e(nil, sync(stop), 1).

∀X∀L .∃e(X :: L , L ,X). ∀L .∧+e(L , sync(stop), L).

29/34

A framework for proof certificates in finite state exploration

Examples

Certificates

HML assertions as non-bisimulation certificates

6

7

8 9

a

b c

10

11 12

13 14 15

a a

b c c

A :=
∧
i∈I

Bi

B := 〈ai〉Ai | ¬(〈ai〉Ai)

Certificate for bisim(x, y) `: Hennessy-Milner Language formula A
such that x |= A but y 6|= A :

Ξ6,10 : bisim(6, 10) ` for Ξ6,10 ∈ {〈a〉¬〈b〉true, . . .}

as 10 |= Ξ but 6 6|= Ξ.

30/34

A framework for proof certificates in finite state exploration

Examples

Certificates

HML assertions as non-bisimulation certificates
(continued)

∀A . storeL (A ,A). ∀(Bi)i∀j. decideL (
∧

iBi ,Bj).

∀B . ν-unfoldL (B ,B). ∀a∀A .∧−e(〈a〉A , 〈a〉A , left).

∀a∀A .∀e(〈a〉A ,A , a). ∀a∀A .∧−e(¬〈a〉A , 〈a〉A , right).

∀T∀A .∀e(A ,A ,T). ∀A .⊃e(A , sync(stop),A).

∀A . releaseL (A ,A).

∀A .∃c(A , λx.A). ∀A .∧+c(A ,A).

∀A . µ-unfoldL (A ,A). ∀A .∨c(A ,A ,A).

∀A .=s
c(A ,A).

30/34

A framework for proof certificates in finite state exploration

Examples

Certificates

HML assertions as non-bisimulation certificates
(continued)

∀A . storeL (A ,A). ∀(Bi)i∀j. decideL (
∧

iBi ,Bj).

∀B . ν-unfoldL (B ,B). ∀a∀A .∧−e(〈a〉A , 〈a〉A , left).

∀a∀A .∀e(〈a〉A ,A , a). ∀a∀A .∧−e(¬〈a〉A , 〈a〉A , right).

∀T∀A .∀e(A ,A ,T). ∀A .⊃e(A , sync(stop),A).

∀A . releaseL (A ,A).

∀A .∃c(A , λx.A). ∀A .∧+c(A ,A).

∀A . µ-unfoldL (A ,A). ∀A .∨c(A ,A ,A).

∀A .=s
c(A ,A).

30/34

A framework for proof certificates in finite state exploration

Examples

Certificates

HML assertions as non-bisimulation certificates
(continued)

∀A . storeL (A ,A). ∀(Bi)i∀j. decideL (
∧

iBi ,Bj).

∀B . ν-unfoldL (B ,B). ∀a∀A .∧−e(〈a〉A , 〈a〉A , left).

∀a∀A .∀e(〈a〉A ,A , a). ∀a∀A .∧−e(¬〈a〉A , 〈a〉A , right).

∀T∀A .∀e(A ,A ,T). ∀A .⊃e(A , sync(stop),A).

∀A . releaseL (A ,A).

∀A .∃c(A , λx.A). ∀A .∧+c(A ,A).

∀A . µ-unfoldL (A ,A). ∀A .∨c(A ,A ,A).

∀A .=s
c(A ,A).

31/34

A framework for proof certificates in finite state exploration

Examples

Certificates

Invariants as simulation certificates
21

22

ab

23

24

25ab
c

The set {(21, 23), (22, 24)} is a simulation and, therefore, the
process (21) is simulated by the process (23).
From this set we build

S = λxλy. (x = 21 ∧+ y = 23) ∨ (x = 22 ∧+ y = 24)

which is such that

co-inv (S,bipole) : ` sim(21, 23)

32/34

A framework for proof certificates in finite state exploration

Implementation

Outline

1 The µF logic

2 Examples

3 Implementation

33/34

A framework for proof certificates in finite state exploration

Implementation

A reference proof checker

We have built a reference proof checker within the Bedwyr
computational logic system:
http://slimmer.gforge.inria.fr/bedwyr/pcmc/

• implemented by Tiu, Baelde, Gacek, & Heath

• λProlog is not strong enough for checking these certificates

http://slimmer.gforge.inria.fr/bedwyr/pcmc/

34/34

A framework for proof certificates in finite state exploration

Implementation

Future Plans

How not to put invariants into proof certificates?

• obvious induction invariant

• bisimulation up-to, etc.

Combine proof checking for both stage 1 and stage 2.

Embrace much more of model checking.

• predicate abstractions

• tables and lemmas

• partial order reductions

Build proof certificates for the Abella prover, thereby merging
model checking and inductive theorem proving into one platform.

	The muF logic
	Formulae
	Focused system
	Restricted formulae
	Augmented system

	Examples
	Clerks & Experts
	Certificates

	Implementation

