
Induction and cycles

Quentin Heath
Parsifal, LIX, École polytechnique

April 11, 2014

Contents
1 Landscape 1

1.1 Logic . 1
1.2 Defined predicates . 2
1.3 Literals . 3
1.4 Notations . 3
1.5 A simple example . 3

2 Cyclic proofs 3

3 Cyclic components tree 7

4 Synthetic rules 9
4.1 Unfolding . 10
4.2 Looping . 10
4.3 General case . 11

5 Comparisons 12
5.1 Tabling calculus . 12
5.2 Brotherston’s cyclic proofs . 14

Introduction
The first part lays down the matter, i.e. the logic and predicates. The second part defines
cyclic proofs and gives a theorem about them, while the third and fourth parts give the
details of the proof of this theorem. The fifth part compares the presently defined cyclic
proofs with similar concepts seen in other work.

1 Landscape

1.1 Logic
We study here an unspecified logic where formulae are built with atomic formulae
and a number of connectives. Connectives may be presented at will in n-ary form, or
by a binary version and a neutral element. Negation is not considered here a logical

1

connective; instead, we use · ⊃⊥ and don’t make non-constructive assumptions on the
duality of connectives.

We mainly use a standard two-sided presentation of sequent calculus, where hy-
potheses and conclusions of a sequent are multisets; but when considering a sequent
with a side containing a single formula, we use a non-standard notation with square
brackets and a sign: [Γ; A]ε where Γ is a multiset, A a formula and ε ∈ {+,−}. There,
[Γ ; A]+ means Γ ` A and [Γ ; A]− means A ` Γ. We extend this notation to the case
where the single formula and the formulae from the multiset have the type t -> prop
instead of prop, and we write [Γ ; A]ε for [Γx ; Ax]ε where x is a fresh eigenvariable
with type t. The motivation for this notation is that [Γ ; A]ε expresses a simple fact
about the truth (ε = +) or falsity (ε = −) of a formula given some context, notion
which is central to the simple setting of this paper.

In addition to the usual atoms (variables, neutral elements, applications in normal
form), we first consider the equality connective .

=, and its dual ,. Most of the time,
they are notations which shorten formulae and reasoning for free; they are used all over
but few mention of them are made.

We also consider as an atom-like formula the application of a defined predicate to
an argument (predicates are presented in uncurried form, and defined hereafter). This
is not an atom per-se, as we add inference rules for predicates, but these rules are not
purely logical nor structural. This, and the need to apply an axiom rule to that kind of
formula, justify the use of the name defined atom.

1.2 Defined predicates
The approach to a predicate is rather that of fixpoints than that of definitions. Although
we use the definition-style notation

px 4
= p a ∧ qx qx 4

= px ∧ q b

to write examples, it is not well-suited for a specification, as some care is needed in the
choice of what we call flavour of the definition, i.e. whether it is µ (inductive defini-
tion) or ν (co-inductive definition). Having mutually recursive predicates with mixed
flavours has non-trivial semantics and is beyond the scope of this paper. Assuming
some mutually recursive predicates p and q have the same flavour δ ∈ {µ, ν}, we can
represent them by a single recursive predicate r:

r (p,x) δ
= r (p, a) ∧ r (q,x) r (q,x) δ

= r (p,x) ∧ r (q, b)

or even by what we call now a definition, i.e. the pair (δ, B) of the flavour and the
higher order body of the definition:

r (y,x) δ
= B r (y,x)

In all of the following, δ represents an unary connective and δB denotes the corre-
sponding defined predicate (defined as either µr.B r or νr.B r wrt. the usual meaning
of µ and ν). The only equality we use between defined predicates is syntactic equality
of both the flavour and the definition body. δB t is called a defined atom, and B (δB) t
is the formula obtained by unfolding δB once in this defined atom. It should be noted
that we do not assume t to be ground at that point.

The only stratification constraint is now for the body of a definition to be mono-
tonous. We expect to be able to derive this fact, which means that occurrences of

2

the higher-order argument must appear positively in the body. Instead of requiring an
explicit total order on the definitions, as we would have with a list of predicate decla-
rations, we use a partial well-founded stratification order v such that δiBi v δ jB j if the
formula B j involves the predicate δiBi.

1.3 Literals
Although the ·ε notation doesn’t stand for a negation connective and defined atoms are
not actual atoms, we call a = [Γ ; δB t]ε a literal judgement, or simply literal, and
ã = [Γ ; B (δB) t]ε denotes the corresponding unfolded judgement.

1.4 Notations
The following notations are used throughout this work:

notation meaning assumptions
.
=,, object-level (in)equality unification rules
[Γ ; A]ε Γx ` Ax or Ax ` Γx x free
a = [Γ ; δB t]ε literal (δ, ε) ∈ {µ, ν} × {−,+}
ã = [Γ ; B (δB) t]ε unfolded literal
δiBi v δ jB j stratification ordering
ct = (Vu,Vl, u, l) cyclic tree (Vu ∪Vl, u) rooted tree
clt = (ct, (L,H), L) cyclic labelled tree
(clt,Π) cyclic proof
((C,⇒), (L,H), L) cyclic components tree (C,⇒) built from ct
[Γ, S c ; δcBc]εc proof control point S c invariant for δcBc

1.5 A simple example

Listing 1: Simple predicate (mutually recursive version)

Define
coinductive a : prop, coinductive b : prop,
coinductive c : prop, coinductive d : prop,
coinductive e : prop, coinductive f : prop,
coinductive g : prop

by a := b /\ e

; b := c /\ d
; c := b % b loops (together with c)
; d
; e := f /\ g
; f := g
; g := f % f loops (together with g)
.

Listing 1 shows a Bedwyr program which solving will involve co-induction. It will
be used throughout this paper to illustrate definitions and theorems.

2 Cyclic proofs
The underlying structure of a cyclic proof is given by a cyclic labelled tree, i.e. a tree
enhanced with back-arcs and labelled with literals. This tree is defined in two steps,

3

the first of which regard only the nodes, which have no semantics and only show the
structure of the proof.

Definition 1 (cyclic tree). Consider the following objects:

• a finite set of nodes V partitioned into Vu (unfolding nodes) and Vl (looping
nodes)

• an unfolding function u : Vu → 2V, such that (V, u) has a rooted tree structure
where all nodes ofVl are leaves

• a looping function l : Vl →Vu, giving for every looping node a non-degenerate
back-arc: ∀v ∈ Vl, l(v) ≺ v, where the strict partial order ≺ is the transitive
closure of u

Then (Vu,Vl, u, l) is called a cyclic tree structure (Figure 1).

0

1

2 3

4

5 6

7

8 9

10 11

12 13

Vu = {0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11}
Vl = {5, 12, 13}

u = {→}

l = {d}

Figure 1: Cyclic tree

This definition imposes that looping nodes are leaves. The next step links this
structure to the proof itself.

Definition 2 (cyclic labelled tree). Consider the following objects:

• a cyclic tree ct = (Vu,Vl, u, l)

• a finite set of literals L, and a hypotheses function H : L → 2L which is strati-
fied, i.e. such that, if H([Γ ; δB t]ε) = {[Γ ; δiBi ti]εi | i}:

– δiBi v δB

– δBi = δB ⇒ εi = ε1

1This constraint means that the proof of a fact about a predicate can’t depend on the refutation of another
fact about the same predicate, et vice versa. This is expected if the predicate is defined by a monotonous
function. As a consequence, all literals of a dependency cycle have the same sign ε (and, obviously, the same
flavour δ and definition body B).

4

• a surjective labelling function L : V → L such that:

– the sons of an unfolding node are labelled with the hypotheses of its label:
∀v ∈ Vu, {L(w) |w ∈ u(v)} = H(L(v))

– a back-arc points back to an ancestor with the same label: ∀v ∈ Vl, L(l(v)) =

L(v)

– the label [Γ ; δB t]ε of a looping node is copacetic: (δ, ε) ∈ {(µ,−), (ν,+)}

Then (ct, (L,H), L) is called a cyclic labelled tree structure (Figure 2).

a

b

c d

b

c d

e

f g

g f

f g

L = {a, b, c, d, e, f , g}
H = {(a 7→ {b, e}), (b 7→ {c, d}), (c 7→ {b}),

(d 7→ ∅), (e 7→ { f , g}), (f 7→ {g}), (g 7→ { f })}
L = {0 7→ a, 1 7→ b, 7 7→ e, . . .}

We write a instead of the label [; a]+ for clarity.

Figure 2: Cyclic labelled tree

This definition doesn’t ensure existence, and thus implies constraints on the cyclic
tree. It also allows for a suboptimal labelling (or rather a suboptimal cyclic tree) in
the sense that parts of the proof may be duplicated. This can be avoided to some point
without loss of expressivity by some minimality criteria, the first of which is called
cut-free minimality.

Definition 3 (cut-free-minimal cyclic labelled tree). Consider the following objects:

• a cyclic tree ct = (Vu,Vl, u, l)

• a cyclic labelled tree clt = (ct, (L,H), L) such that:

– an unfolding node has exactly one son for each of its label’s hypotheses: for
any v ∈ Vu, the restricted of the labelling function L|u(v) : u(v) → H(L(v))
is a bijection

– a looping node has exactly one ancestor with the same label, and an un-
folding node has none: ∀u, v ∈ Vu, u ≺ v⇒ L(u) , L(v)

Then clt is cut-free-minimal (Figure 3).

5

a

b

c d

b

e

f g

g f

f g

Figure 3: Cut-free minimal cyclic labelled tree

The purpose of this kind of minimality is only to reduce computation length; in all
of the following, it will not be assumed2.

Definition 4 (cyclic proofs). Consider the following objects:

• a cyclic tree ct = (Vu,Vl, u, l)

• a cyclic labelled tree clt = (ct, (L,H), L)

• a set of open derivations Π = {Πa, a ∈ L} such that:

– Πa is a proof of the unfolded literal ã with the b ∈ H(a) as assumptions

– Πa contains no fixpoint rules (neither unfolding nor (co-)induction)

Then (clt,Π) is a cyclic proof of the literal which labels the root of clt (Figure 4).

Theorem 1. If there is a cyclic proof of a, there is a traditional proof of a in a system
with induction rules.

Proof. The proof relies on the aggregation of the present nodes into components, each
of which is associated with a set (i.e. conjunction) of labels. By building a derivation
(synthetic rule, section 4) for each component and organizing them into a tree (cyclic
components tree, section 3), we get a proof of the root set of labels, which subsumes
the label of the original root. �

2Another kind of minimality (which, combined with this one, gives something we call full minimality)
comes from the use of arcs that point to nodes that occur sooner in the depth-first traversal, but are not
ancestors. Although the representation and, in our case, the implementation, are similar, this has more to do
with regular cuts than with (co-)induction, and is not treated here.

6

a

b

c d

b

c d

e

f g

g f

f g

b e
ã Πa

c d
b̃

Πb
b
c̃ Πc d̃

Πd
f g

ẽ Πe

g

f̃
Π f

f
g̃

Πg

Figure 4: Cyclic proof (of a)

3 Cyclic components tree
We introduce a new intermediate tree designed to discriminate between the unfolding
and the looping looping parts of (Vu ∪ Vl, u). The new nodes are cyclic components
of the old previous tree, i.e. sets of nodes which contain cyclic behaviours.

Definition 5 (cyclic components tree). Consider the following objects:

• a cyclic tree ct = (Vu,Vl, u, l)

• a cyclic labelled tree clt = (ct, (L,H), L)

• a binary relation � on V = Vu ∪ Vl defined as u ∪ l = {(v,w) |w ∈ u(v)} ∪
{(v, l(v))}

• a partition C : V → 2V of (V,�) in connected components, which is

– finer than stratification: if C(v1) = C(v2) and L(vi) = [Γ ; δiBi ti]εi , then
(δ1B1, ε1) = (δ2B2, ε2)3

– coarser than the partition into strongly connected components of (V,�) 4

• a binary relation ⇒ defined on C = {C(v) | v ∈ V}, adapted from � such that
(C,⇒) is a tree of subsets ofV

Then ((C,⇒), (L,H), L) is a cyclic components tree associated with clt (Figure 5).

The existence of such a tree follows that of the partition C, which itself comes from
the fact that strongly connected components are themselves finer than stratification,
which in turn follows from the constraints on the hypotheses function H.

3As a consequence, if v ∈ c, we can write L(v) = [Γ ; δcBc tv]εc instead of L(v) = [Γ ; δvBv tv]εv .
4At most, the partition is that of the strongly connected components, and the invariants are minimal in

size and maximal in number; at least, it is the strata partition, and there is a single maximal invariant for each
predicate. The purpose of this flexibility is to allow for an external source to provide a partition by whatever
means it chooses (heuristic, actual computation of the strongly connected components, or no computation at
all).

7

{0}

{1}

{2,4,5} {3}

{6}

{7}

{8,10,12} {9,11,13}

a

b

b,c d

d

e

f,g f,g

C = {{0}, {1}, {2, 4, 5}, {3}, {6},
{7}, {8, 10, 12}, {9, 11, 13}}

⇒ = {→}

Figure 5: Cyclic components tree, with the corresponding tree of sets of labels

Each component c is associated with the set of labels {L(v) | v ∈ c}, with L(v) =

[Γ ; δcBc tv]εc ; the goal is to prove all these labels at once. As only the argument tv dis-
criminates them, we can represent c by [Γ, S c x ; δcBc x]εc , i.e. [Γ, S c ; δcBc]εc , where
S c is a characteristic predicate of the set of arguments {tv | v ∈ c}:

S c =

{
λx.
∧

v∈c(x , tv) εc = −

λx.
∨

v∈c(x .
= tv) εc = +

In section 4, S c is used as invariant for a (co-)induction rule applied on [Γ, S c ; δcBc]εc .
It is then easy to derive the following rules (the ellipsis indicate that v takes all the

values from c):

[Γ, S c ; S c]εc
C1

[Γ ; P tv]εc · · ·

[Γ, S c ; P]εc
C2

[Γ, S c ; P]εc

[Γ ; P tv]εc
C3

The sequent [Γ, S c ; P]εc translates as “the predicate P has the expected behaviour
of the predicate δcBc on the component c”. Therefore the [Γ, S c ; δcBc]εc sequents can
be seen as major control points of the proof, and label the components. Assume that,
for each component c, we have a synthetic rule π(c) which is a proof of [Γ, S c ; δcBc]εc

using the assumptions [Γ, S d ; δdBd]εd for each d such as c⇒ d:

[Γ, S d ; δdBd]εd · · ·

[Γ, S c ; δcBc]εc
π(c)

Then by combining these synthetic rules we obtain a closed derivation, which synthetic
structure is that of the tree (C,⇒) (Figure 6), and which is a proof of [Γ, S r ; δrBr]εr ,
where r is the root of (C,⇒). From this we derive [Γ ; δrBr tv]εr , i.e. L(v), for any

8

element v of r, including the root of V itself. Therefore the existence of the π(c)
proves Theorem 1.

{d}
π({6})

{b, c}
π({2, 4, 5})

{d}
π({3})

{b}
π({1})

{ f , g}
π({8, 10, 12})

{ f , g}
π({9, 11, 13})

{e}
π({7})

{a}
π({0})

We write {L(v) | v ∈ c} instead of [Γ, S c ; δcBc]εc for clarity.

Figure 6: Synthetic proof (of [Γ, S {0} ; δ{0}B{0}]ε{0} , i.e. [; a]+)

4 Synthetic rules
In order to complete the proof, we now have to use the provided derivations

b · · ·

ã Πa, b ∈ H(a)

to build the synthetic rules π(c):

[Γ, S d ; δdBd]εd · · ·

[Γ, S c ; δcBc]εc
π(c), c⇒ d

If a = [Γ ; δcBc tv]εc (c = C(v) being the component containing v), then Πa is
a proof of ã = [Γ ; Bc (δcBc) tv]εc with the set of hypotheses {[Γ ; δC(w)BC(w) tw]εC(w) },
where w takes some values in the set of sons of the node v in the cyclic labelled tree,
i.e. w ∈ u(v). This means that either C(v) = C(w), or C(v)⇒ C(w). We have three kind
of hypotheses:

C(w) = c: the hypothesis is part of the same component c (e.g. both labels are part of
the same loop)

C(w) = d , c but δcBc = δdBd: the hypothesis is part of another component d (such
as c⇒ d) which relates to the same predicate, and εc = εd

C(w) = e , c and δcBc , δeBe: the hypothesis is part of another component e (such as
c⇒ e) which relates to another predicate

In either case, the hypothesis [Γ ; δC(w)BC(w) tw]εC(w) follows from [Γ, S C(w) ; δC(w)BC(w)]εC(w) .
From this we can build the derivation

[Γ, S c ; δcBc]εc [Γ, S d ; δdBd]εd · · · [Γ, S e ; δeBe]εe · · ·

[Γ ; Bc (δcBc) tv]εc
Πv(δcBc)

where d takes all the values such that c⇒ d and δcBc = δdBd, and e takes all the values
such that c⇒ e and δcBc A δeBe.

Moreover, Πv(δcBc), as Πa, doesn’t contain unfolding or (co-)induction rules, so
none of its rules actually depend on δcBc, and we really have the derivation

[Γ, S c ; P]εc [Γ, S d ; P]εd · · · [Γ, S e ; δeBe]εe · · ·

[Γ ; Bc P tv]εc
Πv(P)

9

for any predicate P.
We will now proceed with two sets of simplified rules that can be substituted for

the general π(c) in some cases, before merging them to show the general case itself.

4.1 Unfolding
The simplest case is pure unfolding with no (co-)induction rule; this happens when
there is no dependency within the component, i.e. there are no two elements v,w ∈ c
such that w ∈ u(v). It implies that the assumptions of Πv(P) are really only the
[Γ, S d ; P]εd and the [Γ, S e ; δeBe]εe (and in the case of the strongly connected com-
ponents partition, it also implies that the component c is a singleton).

This case can involve a least fixpoint on the right ((δ, ε) = (µ,+)) or a greatest
fixpoint on the left ((δ, ε) = (ν,−)).

An invariant would be of no use here; Πv already contains most of the necessary
rules, and we only need to add the initial unfolding. We call εδ′(B) the unfolding on
the ε side of the fixpoint δB, and π(c) is:

[Γ, S d ; δdBd]εd · · · [Γ, S e ; δeBe]εe · · ·

[Γ ; Bc (δcBc) tv]εc
Πv(δcBc)

· · ·

[Γ, S c ; Bc (δcBc)]εc
C2

[Γ, S c ; δcBc]εc
εcδ
′
c(Bc)

where the ellipses indicate that:

• d takes all the values such that c⇒ d and δcBc = δdBd

• e takes all the values such that c⇒ e and δcBc A δeBe

• v takes all the values from c

Figure 7 show an example of use of this rule on the cyclic components tree from Fig-
ure 5.

[Γ, S {1} ; δ{1}B{1}]+ [Γ, S {7} ; δ{7}B{7}]+

[Γ ; Bc (δcBc) t0]+ Π0(δcBc)

[Γ, S c ; Bc (δcBc)]+ C2

[Γ, S c ; δcBc]+ +ν′(Bc)

b e
b ∧ e Π0(δcBc)

(b ∧ e)
C2

(a)
εcδ
′
c(Bc)

Figure 7: Unfolding for c = {0} (synthetic rule and informal interpretation)

4.2 Looping
The second simplest case is pure looping; this happens when there is no dependency on
other components, i.e. there is no element v ∈ c such that u(v) < c. It implies that the
only assumption of Πv(P) is [Γ, S c ; P]εc (and that the component c is a leaf of (C,⇒),
i.e. there is no d such that c⇒ d).

We assume that there are some actual dependencies within the component, other-
wise this is covered by the unfolding-only synthetic rule; therefore (δ, ε) ∈ {(µ,−), (ν,+)}.

Πv now needs ot be paired with a proper induction (resp. co-induction) rule to
handle the loops, and since no arc goes out of the component, S c itself can be used

10

as invariant. We call δ(B, X) the induction or co-induction on the fixpoint δB with the
invariant X, and π(c) is:

[Γ, S c ; S c]εc
C1

[Γ, S c ; S c]εc
C1

[Γ ; Bc S c tv]εc
Πv(S c)

· · ·

[Γ, S c ; Bc S c]εc
C2

[Γ, S c ; δcBc]εc
δc(Bc, S c)

where the ellipsis indicates that v takes all the values from c. Figure 8 show an example
of use of this rule on the cyclic components tree from Figure 5.

[Γ, S c ; S c]+ C1

[Γ, S c ; S c]+ C1

[Γ ; Bc S c t8]+ Π8(S c)
[Γ, S c ; S c]+ C1

[Γ ; Bc S c t10]+ Π10(S c)
[Γ, S c ; S c]+ C1

[Γ ; Bc S c t12]+ Π12(S c)

[Γ, S c ; Bc S c]+ C2

[Γ, S c ; δcBc]+ ν(Bc, S c)

f , g ` f , g
C1

f , g ` g
C1

f , g ` g Π8(S c)
f , g ` f

C1

f , g ` f Π10(S c)
f , g ` g

C1

f , g ` g Π12(S c)

(g) ∧ (f) ∧ (g)
C2

(f) ∧ (g) ∧ (f)
ν(Bc, S c)

Figure 8: Looping for c = {8, 10, 12} (synthetic rule and informal interpretation)

4.3 General case
In the general case, looping and unfolding happen simultaneously. We still need a
(co-)induction rule, and its invariant still needs to be S c in order for Πv to be used
for all v ∈ c and no other v. Unfortunately, this invariant doesn’t satisfy the [Γ, S d ; ·]εd

assumptions (the [Γ, S e ; ·]εe are not problematic as the invariant doesn’t occur in them),
therefore we have to use the (co-)induction on another predicate than δcBc.

We still have the restriction that (δ, ε) ∈ {(µ,−), (ν,+)}; we only write about the
(ν,+) case as the other one is dual.

To build the auxiliary predicate δcAc, we “inflate” the definition body Bc so that the
derivation Πv ends with a predicate that satisfies both [Γ, S c ; ·]εc and the [Γ, S d ; ·]εd .
This suggests an aggregation of previous components:

Ac P = Bc (P ∨ Uc) Uc =
∨

c⇒d, δcBc=δd Bd

S d

so that, as εd = εc = +, the following hold:

Ac S c = Bc (S c ∨ Uc)
[Γ, S d ; S d]εd

[Γ, S d ; Uc]εd
∨R

The way it is built, the new predicate δcAc is expected to be equal to δcBc under the

11

assumptions [Γ, S d ; δdBd]εd . We adapt the previous π(c) derivations to it:

[Γ, S c ; S c]εc
C1

[Γ, S c ; S c]εc
C1

[Γ, S c ; S c ∨ Uc]εc
∨R

[Γ, S d ; S d]εd
C1

[Γ, S d ; S c ∨ Uc]εd
∨R

· · · [Γ, S e ; δeBe]εe · · ·

[Γ ; Ac S c tv]εc
Πv(S c ∨ Uc)

· · ·

[Γ, S c ; Ac S c]εc
C2

[Γ, S c ; δcAc]εc
δc(Ac, S c)

where only the [Γ, S e ; δeBe]εe assumptions occur, and where the ellipses indicate that:

• d takes all the values such that c⇒ d and δcBc = δdBd

• e takes all the values such that c⇒ e and δcBc A δeBe

• v takes all the values from c

To complete π(c), we also need the derivation

[Γ, S c ; δcAc]εc

[Γ, S d ; δdBd]εd · · ·
....

[Γ, S c ; δcBc]εc

which we expect to contain the remaining assumptions [Γ, S d ; δdBd]εd , but not to de-
pend on anything but the definition of δcAc with respect to δcBc. This is just bookkeep-
ing (but not necessarily short, as it involves the proof of monotonicity of Bc):

[Γ, S c ; δcAc]εc

[Γ, δcAc ; δcAc]εc I

[Γ, S d ; δdBd]εd · · ·

[Γ,Uc ; δcBc]εc
∨L

[Γ, δcBc ; δcBc]εc I

[Γ, δcBc ; δcBc ∨ Uc]εc
∨R

[Γ, Bc δcBc ; Ac δcBc]εc
Bc↗

[Γ, δcBc ; Ac δcBc]εc
−εcδ

′
c(Bc)

[Γ,Uc ; δcAc]εc
δc(Ac, δcBc)

[Γ, δcAc ∨ Uc ; δcAc]εc
∨L

[Γ, Ac δcAc ; Bc δcAc]εc
Bc↗

[Γ, δcAc ; Bc δcAc]εc
−εcδ

′
c(Ac)

[Γ, S c ; δcBc]εc
δc(Bc, δcAc)

where the ellipses indicate that d takes all the values such that c⇒ d and δcBc = δdBd.
For the dual (µ,−) case, we only have to replace disjunctions by conjunctions in

this derivation and in the definition of Uc and Ac.
This completes the construction of the synthetic rules in the general case, and thus

the translation from a cyclic proof with no (co-)induction to a traditional proof with
(co-)induction, therefore proving Theorem 1.

5 Comparisons

5.1 Tabling calculus
Work on cyclic proofs as they appear in Bedwyr was already presented in [Hea14],
which introduces both tabling calculus and a tentative invariant justifying it.

12

In tabling calculus, the structure of the proof isn’t explicitly laid down as a tree
(V, u). Instead, three kinds of literals occurrences are distinguished, corresponding to
labels of different kinds of nodes in the new approach: root occurrences (unfolding
nodes), looping occurrences (looping nodes), and secondary occurrences (unused in
the present work). The proofs contain local information about these occurrences, split
in three kinds of contexts, and therefore don’t need an additional run through a tree to
recover it. These contexts correspond to the three parts of the derivation with respect
to the position of the current sequent, giving the system a zipper-like behaviour:

input table: tabling rules occurring before in a postfix traversal

local table: (co-)induction rules occurring as ancestors

output table: tabling rules occurring as descendants

Although it was not formally proved, we believe that there is a direct correspondence
between this presentation and a full-minimal cyclic proof (Figure 9).

a

b

c d

b

e

f g

g

f

{} ` b|b; {}
l

{} ` c|b; {c|b}
ν,w

{c|b} ` >|b; {}
>

{c|b} ` d|b; {d}
w, ν

{} ` (c ∧ d)|b; {c|b, d}
∧R

{} ` b; {b, c, d}
ν

{b, c, d} ` f| f ; {}
l

{b, c, d} ` g| f ; {g| f }
ν,w

{b, c, d} ` f ; { f , g}
ν

{b, c, d, f , g} ` g; {}
p

{b, c, d} ` f ∧ g; { f , g}
∧R

{b, c, d} ` e; {e, f , g}
ν,w

{} ` b ∧ e; {b, c, d, e, f , g}
∧R

{} ` a; {a, b, c, d, e, f , g}
ν,w

Figure 9: Full minimal cyclic labelled tree and the corresponding tabling calculus
derivation (root occurrences, looping occurrences, secondary occurrences)

The invariant is built so as to mimic the computation of Bedwyr; it can’t handle
loops from multiple atoms, and its size depends on the size of the loops. On the other
hand, the present work only uses structural information resulting from the computation
to build the invariant, and thus succeeds in a broader range of situations, while its size
only depends on the number of different atoms.

Although the memoization aspect of tabling is fully considered in tabling calculus,
and in a simple manner, it is not included in the general definition of cyclic proofs
anymore, as it can be seen as orthogonal to the invariant construction. Work to bring

13

it back as part of the concept of full-minimality is ongoing as it can allow a significant
decrease in proof size.

5.2 Brotherston’s cyclic proofs
Another formalization of induction via cyclic arcs added to regular proofs was pre-
sented in [Bro05].

References
[Bro05] James Brotherston. “Cyclic Proofs for First-Order Logic with Inductive Def-

initions”. In: Proceedings of TABLEAUX-14. Vol. 3702. LNAI. Springer-
Verlag, 2005, pp. 78–92.

[Hea14] Quentin Heath. Partially justifying an implementation of tabling in an ex-
tension of the propositional Horn fragment of Bedwyr v1.4. Feb. 2014. url:
http://slimmer.gforge.inria.fr/bedwyr/doc/bedwyr14tabling.
pdf (visited on 03/16/2014).

14

http://slimmer.gforge.inria.fr/bedwyr/doc/bedwyr14tabling.pdf
http://slimmer.gforge.inria.fr/bedwyr/doc/bedwyr14tabling.pdf

	Landscape
	Logic
	Defined predicates
	Literals
	Notations
	A simple example

	Cyclic proofs
	Cyclic components tree
	Synthetic rules
	Unfolding
	Looping
	General case

	Comparisons
	Tabling calculus
	Brotherston's cyclic proofs

