First step toward an implementation of the Tower Number Field Sieve: Murphy-alpha function for polynomial selection

Aurore Guillevic

Inria Nancy, Caramba team

$$
21 / 06 / 2019
$$

Séminaire C2, Paris
Joint work with Shashank Singh, IISER Bhopal, India

Plan

Introduction: Discrete logarithm and NFS

Key sizes for DL-based crypto

Pairings

Key-sizes for pairing-based crypto

Future work

Asymmetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (use in Diffie-Hellman, etc)
Given a finite cyclic group ($\mathbf{G}, \cdot \cdot$), a generator g and $h \in \mathbf{G}$, compute x s.t. $h=g^{x}$.
\rightarrow can we invert the exponentiation function $(g, x) \mapsto g^{x}$?
Common choice of \mathbf{G} :

- prime finite field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ (1976)
- characteristic 2 field $\mathbb{F}_{2^{n}}(\approx 1979)$
- elliptic curve $E\left(\mathbb{F}_{p}\right)(1985)$

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{x}$?

- $g \in \mathbf{G}$ generator, \exists always a preimage $x \in\{1, \ldots, \# \mathbf{G}\}$
- naive search, try them all: \#G tests
- $O(\sqrt{\# G})$ algorithms
- Shanks baby-step-giant-step (BSGS): $O(\sqrt{\# \mathbf{G}})$, deterministic
- random walk in G, cycle path finding algorithm in a connected graph (Floyd) \rightarrow Pollard: $O(\sqrt{\# \mathbf{G}})$, probabilistic (the cycle path encodes the answer)
- parallel search (parallel Pollard, Kangarous)
- independent search in each distinct subgroup + CRT (Pohlig-Hellman)

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{x}$?

- $g \in \mathbf{G}$ generator, \exists always a preimage $x \in\{1, \ldots, \# \mathbf{G}\}$
- naive search, try them all: \#G tests
- $O(\sqrt{\# G})$ algorithms
- Shanks baby-step-giant-step (BSGS): $O(\sqrt{\# \mathbf{G}})$, deterministic
- random walk in G, cycle path finding algorithm in a connected graph (Floyd) \rightarrow Pollard: $O(\sqrt{\# \mathbf{G}})$, probabilistic (the cycle path encodes the answer)
- parallel search (parallel Pollard, Kangarous)
- independent search in each distinct subgroup + CRT (Pohlig-Hellman)
\rightarrow Choose G of large prime order (no subgroup)
\rightarrow complexity of inverting exponentiation in $O(\sqrt{\# G})$
\rightarrow security level 128 bits means $\sqrt{\# G} \geq 2^{128} \rightarrow \# G \geq 2^{256}$ analogy with symmetric crypto, keylength 128 bits (16 bytes)

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{x}$?
G cyclic group of prime order, complexity $O(\sqrt{\# G})$.

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{x}$?
G cyclic group of prime order, complexity $O(\sqrt{\# G})$.
better way?

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^{x}$?
G cyclic group of prime order, complexity $O(\sqrt{\# G})$.
\quad better way?
\rightarrow Use additional structure of \mathbf{G} if any.

Discrete log problem when $\mathbf{G}=(\mathbb{Z} / p \mathbb{Z})^{*}$

Index calculus algorithm [Western-Miller 68, Adleman 79], prequel of the Number Field Sieve algorithm (NFS)

- p prime, $(p-1) / 2$ prime, $\mathbf{G}=(\mathbb{Z} / p \mathbb{Z})^{*}$, gen. g, target h
- get many multiplicative relations in \mathbf{G}

$$
g^{t}=g_{1}^{e_{1}} g_{2}^{e_{2}} \cdots g_{i}^{e_{i}}(\bmod p), g, g_{1}, g_{2}, \ldots, g_{i} \in \mathbf{G}
$$

- find a relation $h=g_{1}^{e_{1}^{\prime}} g_{2}^{e_{2}^{\prime}} \cdots g_{i}^{e_{i}^{\prime}}(\bmod p)$
- take logarithm: linear relations

$$
\begin{aligned}
t & =e_{1} \log _{g} g_{1}+e_{2} \log _{g} g_{2}+\ldots+e_{i} \log _{g} g_{i}(\bmod p-1) \\
& \vdots \\
\log _{g} h & =e_{1}^{\prime} \log _{g} g_{1}+e_{2}^{\prime} \log _{g} g_{2}+\ldots+e_{i}^{\prime} \log _{g} g_{i}(\bmod p-1)
\end{aligned}
$$

- solve a linear system
- get $x=\log _{g} h$

Index calculus in $(\mathbb{Z} / p \mathbb{Z})^{*}$: example

$p=1109, r=(p-1) / 4=277$ prime
Smoothness bound $B=13$
$\mathcal{F}_{13}=\{2,3,5,7,11,13\}$ small primes up to $B, i=\# \mathcal{F}$
B-smooth integer: $n=\prod_{p_{i} \leq B} p_{i}^{e_{i}}, p_{i}$ prime
is g^{s} smooth? $1 \leq s \leq 72$ is enough

$$
\begin{aligned}
& g^{1}=\quad 2=2 \\
& g^{13}=429=3 \cdot 11 \cdot 13 \\
& g^{16}=105=3 \cdot 5 \cdot 7 \\
& g^{21}=33=3 \cdot 11 \\
& g^{44}=1029=3 \cdot 7^{3} \\
& g^{72}=325=5^{2} \cdot 13
\end{aligned}
$$

$\rightarrow\left[\begin{array}{cccccc}2 & 3 & 5 & 7 & 11 & 13 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1\end{array}\right] \cdot \boldsymbol{x}=\left[\begin{array}{c}1 \\ 13 \\ 16 \\ 21 \\ 44 \\ 72\end{array}\right]$
$\boldsymbol{x}=[1,219,40,34,79,269] \bmod 277$
$\rightarrow \log _{g} 7=34 \bmod 277$, that is, $\left(g^{34}\right)^{4}=7^{4}$
$g^{34}=7 u$ and $u^{4}=1$

Index calculus in $(\mathbb{Z} / p \mathbb{Z})^{*}$: example
$\boldsymbol{x}=[1,219,40,34,79,269] \bmod 277$
subgroup of order 4: $g_{4}=g^{(p-1) / 4}$
$\left\{1, g_{4}, g_{4}^{2}, g_{4}^{3}\right\}=\{1,354,1108,755\}$
Pohlig-Hellman:

$$
\begin{array}{cr}
3 / g^{219}= & =1 \Rightarrow \log _{g} 3= \\
5 / g^{40}=1108=-1 \Rightarrow \log _{g} 5=40+(p-1) / 2=594 \\
7 / g^{34}=354=g_{4} \Rightarrow \log _{g} 7=34+(p-1) / 4=311 \\
11 / g^{79}=755=g_{4}^{3} \Rightarrow \log _{g} 11=79+3(p-1) / 4=910 \\
13 / g^{269}=755=g_{4}^{3} \Rightarrow \log _{g} 13=269+3(p-1) / 4=1100 \\
\boldsymbol{v}=[1,219,594,311,910,1100] \bmod p-1
\end{array}
$$

Target $h=777$
$g^{10} \cdot 777=495=3^{2} \cdot 5 \cdot 11 \bmod p$ $\log _{2} 777=-10+2 \log _{g} 3+\log _{g} 5+\log _{g} 11=824 \bmod p-1$ $g^{824}=777$

Index calculus in $(\mathbb{Z} / p \mathbb{Z})^{*}$: example

Trick

Multiplicative relations over the integers
$g_{1}, g_{2}, \ldots, g_{i} \longleftrightarrow$ small prime integers
Smooth integers $n=\prod_{p_{i} \leq B} p_{i}^{e_{i}}$ are quite common \rightarrow it works
Complexity $e^{\sqrt{(2+o(1))(\log p)(\log \log p)}}$ (Pomerance 87)

Index calculus in $(\mathbb{Z} / p \mathbb{Z})^{*}$: example

Trick

Multiplicative relations over the integers
$g_{1}, g_{2}, \ldots, g_{i} \longleftrightarrow$ small prime integers
Smooth integers $n=\prod_{p_{i} \leq B} p_{i}^{e_{i}}$ are quite common \rightarrow it works
Complexity $e^{\sqrt{(2+o(1))(\log p)(\log \log p)}}$ (Pomerance 87)
Improvements in the 80's, 90 's:

- Sieve (faster relation collection)
- Smaller integers to factor
- Multiplicative relations in number fields
- Better sparse linear algebra
- Independent targets h

Number Field: Toy example with $\mathbb{Z}[i]$

1985: EIGamal, DL in $\operatorname{GF}\left(p^{2}\right)$ with two quadratic number fields 1986: Coppersmith-Odlyzko-Schroeppel, DL in GF(p) reduce further the size of the integers to factor
If $p=1 \bmod 4, \exists U, V$ s.t. $p=U^{2}+V^{2}$
and $|U|,|V|<\sqrt{p}$
$U / V \equiv m \bmod p$ and $m^{2}+1=0 \bmod p$
Define a map from $\mathbb{Z}[i]$ to $\mathbb{Z} / p \mathbb{Z}$
$\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z} / p \mathbb{Z}$
$i \mapsto m \bmod p$ where $m=U / V, m^{2}+1=0 \bmod p$
ring homomorphism $\phi(a+b i)=a+b m$

$$
\phi(\underbrace{a+b i}_{\substack{\text { factor in } \\ \mathbb{Z}[i]}})=a+b m=(a+b \underbrace{U / V}_{=m})=(\underbrace{a V+b U}_{\text {factor in } \mathbb{Z}}) V^{-1} \bmod p
$$

Example in $\mathbb{Z}[i]$

$p=1109=1 \bmod 4, r=(p-1) / 4=277$ prime
$p=22^{2}+25^{2}$
$\max (|a|,|b|)=A=20, B=13$ smoothness bound
Rational side
$\mathcal{F}_{\text {rat }}=\{2,3,5,7,11,13\}$ primes up to B
Algebraic side: think about the complex number in \mathbb{C}
$-i(1+i)^{2}=2,(2+i)(2-i)=5,(2+3 i)(2-3 i)=13$
All primes $p=1 \bmod 4, p>2$

- can be written as a sum of two squares $p=a^{2}+b^{2}$
- factor into two conjugate Gaussian integers $(a+i b)(a-i b)$

Units: $i^{2}=-1$
$\mathcal{F}_{\mathrm{alg}}=\{1+i, 2+i, 2-i, 2+3 i, 2-3 i\}$
"primes" of norm up to B
$\mathcal{U}_{\mathrm{alg}}=\{-1, i,-i\}$ Units

Example in $\mathbb{Z}[i]$

$$
p=1109
$$

$(a, b)=(-4,7)$,
$\operatorname{Norm}(-4+7 i)=(-4)^{2}+7^{2}=65=5 \cdot 13$
$\ln \mathbb{Z}[i]$,

- $5=(2+i)(2-i)$
- $13=(2+3 i)(2-3 i)$

Then,
$\rightarrow(2 \pm i)(2 \pm 3 i)$ has norm 65
$\rightarrow \pm i(2 \pm i)(2 \pm 3 i)=(-4+7 i)$
We obtain $i(2-i)(2+3 i)=-4+7 i$

Example in $\mathbb{Z}[i]$

$a+b i$	$a V+b U=$ factor in \mathbb{Z}	$a^{2}+b^{2}$	factor in $\mathbb{Z}[i]$
$-17+19 i$	$-7=-7$	$650=2 \cdot 5^{2} \cdot 13$	$i(1+i)(2+i)^{2}(2-3 i)$
$-11+2 i$	$-231=-3 \cdot 7 \cdot 11$	$125=5^{3}$	$i(2+i)^{3}$
$-6+17 i$	$224=2^{5} \cdot 7$	$325=5^{2} \cdot 13$	$(2+i)^{2}(2+3 i)$
$-4+7 i$	$54=2 \cdot 3^{3}$	$65=5 \cdot 13$	$i(2-i)(2+3 i)$
$-3+4 i$	$13=13$	$25=5^{2}$	$-(2-i)^{2}$
$-2+i$	$-28=-2^{2} \cdot 7$	$5=5$	$-(2-i)$
$-2+3 i$	$16=2^{4}$	$13=13$	$-(2-3 i)$
$-2+11 i$	$192=2^{6} \cdot 3$	$125=5^{3}$	$-(2-i)^{3}$
$-1+i$	$-3=-3$	$2=2$	$i(1+i)$
i	$22=2 \cdot 11$	$1=1$	i
$1+3 i$	$91=7 \cdot 13$	$10=2 \cdot 5$	$(1+i)(2+i)$
$1+5 i$	$135=3^{3} \cdot 5$	$26=2 \cdot 13$	$i(1+i)(2-3 i)$
$2+i$	$72=2^{3} \cdot 3^{2}$	$5=5$	(2+i)
$5+i$	$147=3 \cdot 7^{2}$	$26=2 \cdot 13$	$-i(1+i)(2+3 i)$

Example in $\mathbb{Z}[i]$: Matrix

Build the matrix of relations:

- one row per (a, b) pair s.t. both norms are smooth
- one column per prime of $\mathcal{F}_{\text {rat }}$
- one column for $1 / V$
- one column per prime ideal of $\mathcal{F}_{\text {alg }}$
- one column per unit $(-1, i)$
- store the exponents

Example in $\mathbb{Z}[i]$

$$
\begin{aligned}
& {\left[\begin{array}{llllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 3 & 0 & 0 & 0 \\
5 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 1 & 0
\end{array}\right]} \\
& M=\left|\begin{array}{llllllllllllll}
5 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 1 & 0 \\
1 & 3 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 2 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right| \\
& \begin{array}{llllllllllllll}
6 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 3 & 0 & 0
\end{array} \\
& \begin{array}{llllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{llllllllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{llllllllllllll}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array} \\
& \begin{array}{llllllllllllll}
0 & 3 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array} \\
& \left.\begin{array}{llllllllllllll}
3 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Example in $\mathbb{Z}[i]$

$$
\begin{aligned}
& M=\left[\begin{array}{llllllllllllll}
\\
& & & & & & & & 1 & 2 & & & & \\
& & & & & 1 & 1 & 1 & 1 & 2 & & & 1 \\
5 & & & 1 & 1 & & 1 & 1 & 1 & & 3 & & & \\
1 & 3 & & & & 1 & & & & 2 & & 1 & \\
& & & & & 1 & 1 & & 1 & 1 & & & & 1
\end{array}\right)
\end{aligned}
$$

Example in $\mathbb{Z}[i]$

Example in $\mathbb{Z}[i]$

Right kernel $M \cdot \boldsymbol{x}=0 \bmod (p-1) / 4=277$:
$\boldsymbol{x}=(\underbrace{1,219,40,34,79,269}_{\text {rational side }}, \underbrace{197}_{1 / V}, \underbrace{0,0}_{\text {units }}, \underbrace{139,84,233,68,201}_{\text {algebraic side }})$
Logarithms (in some basis)
Rational side: logarithms of $\{2,3,5,7,11,13\}$
$\rightarrow \log x_{i} / \log 2$
$\boldsymbol{x}=[1,219,40,34,79,269] \bmod 277$
\rightarrow order 4 subgroup
$\boldsymbol{v}=[1,219,594,311,910,1100] \bmod p-1$
Target 314, generator $g=2$
$314=-20 / 7 \bmod p=-2^{2} \cdot 5 / 7$
$\log _{g} 314=\log _{g}-1+2 \log _{g} 2+\log _{g} 5-\log _{g} 7$ $=(p-1) / 2+2+594-311=839 \bmod p-1$
$2^{839}=314 \bmod p$

Number Field Sieve today

Graph N. Heninger

- NFS: Gordon 93, improvements Schirokauer 93
- polynomial selection Joux-Lercier 03
- Franke-Kleinjung 08 sieve, ECM factorization H. Lenstra 87
- block Lanczos, Wiedemann 86 sparse linear algebra
- Joux-Lercier 03 descent, early-abort strategy Pomerance 82

Latest DL record computation: 768 -bit \mathbb{F}_{p}

Kleinjung, Diem, A. Lenstra, Priplata, Stahlke, Eurocrypt'2017. $p=\left\lfloor 2^{766} \times \pi\right\rfloor+62762$ prime, 768 bits, 232 decimal digits, $p=$

1219344858334286932696341909195796109526657386154251328029 2736561757668709803065055845773891258608267152015472257940 7293588325886803643328721799472154219914818284150580043314 8410869683590659346847659519108393837414567892730579162319
$(p-1) / 2$ prime
$f(x)=140 x^{4}+34 x^{3}+86 x^{2}+5 x-55$
$g(x)=370863403886416141150505523919527677231932618184100095924 x^{3}$
$-1937981312833038778565617469829395544065255938015920309679 x^{2}$
$-217583293626947899787577441128333027617541095004734736415 x$
$+277260730400349522890422618473498148528706115003337935150$
Enumerate $\left(\sim 10^{12}\right)$ all $f(x)$ s.t. $\left|f_{i}\right| \leqslant 165$
By construction, $\left|g_{i}\right| \approx p^{1 / 4}$

Latest DL record computation: 768 -bit \mathbb{F}_{p}

$\operatorname{gcd}(f, g)=1$ in $\mathbb{Q}[x]$
\exists root m s.t. $f(m)=g(m)=0(\bmod p), m=$
4290295629231970357488936064013995423387122927373167219112 8794979019508571426956110520280493413148710512618823586632 1484497413188392653246206774027756646444183240629650904112 110269916261074281303302883725258878464313312196475775222

Multiplicative relations: for all $\left|a_{i}\right| \leq A \approx 2^{32}, \operatorname{gcd}\left(a_{0}, a_{1}\right)=1$

- factors $\operatorname{Norm}_{f}=\operatorname{Resultant}\left(f, a_{0}+a_{1} x\right) \approx 130$ bits, 39 dd
- factors $\operatorname{Norm}_{g}=\operatorname{Resultant}\left(g, a_{0}+a_{1} x\right) \approx 290$ bits, 87 dd Linear algebra: square sparse matrix of $23.5 \cdot 10^{6}$ rows Total time: 5300 core-years on Intel Xeon E5-2660 2.2GHz

Plan

Introduction: Discrete logarithm and NFS

Key sizes for DL-based crypto

Pairings

Key-sizes for pairing-based crypto

Future work

Complexity and key-sizes for cryptography

[Lenstra-Verheul'01] gives RSA key-sizes
Security estimates use

- asymptotic complexity of the best known algorithm (here NFS)
- latest record computation (now 768-bit)
- extrapolation

Complexity

Subexponential asymptotic complexity:

$$
L_{p^{n}}(\alpha, c)=e^{(c+o(1))\left(\log p^{n}\right)^{\alpha}\left(\log \log p^{n}\right)^{1-\alpha}}
$$

- $\alpha=1$: exponential
- $\alpha=0$: polynomial
- $0<\alpha<1$: sub-exponential (including NFS)

1. polynomial selection (precomp., 5% to 10% of total time)
2. relation collection $L_{p^{n}}(1 / 3, c)$
3. linear algebra $L_{p^{n}}(1 / 3, c)$
4. individual discrete log computation $L_{p^{n}}\left(1 / 3, c^{\prime}<c\right)$

Key length

- keylength.com
- France: ANSSI RGS B

RSA modulus and prime fields for DL: 3072 to 3200 bits sub-exponential complexity to invert DL in \mathbb{F}_{p}

Elliptic curves: over prime field of 256 bits (much smaller) exponential cpx. to invert DL in $E\left(\mathbb{F}_{p}\right)$

Key length

- keylength.com
- France: ANSSI RGS B

RSA modulus and prime fields for DL: 3072 to 3200 bits sub-exponential complexity to invert DL in \mathbb{F}_{p}

Elliptic curves: over prime field of 256 bits (much smaller) exponential cpx. to invert DL in $E\left(\mathbb{F}_{p}\right)$

Why finite fields in 2019?
because old crypto in \mathbb{F}_{p} is still in use $c p x=L_{p}(1 / 3,1.923)$ since 1993: very-well known because of pairings: $\mathbb{F}_{p^{n}}$ since 2000

Plan

> Introduction: Discrete logarithm and NFS

> Key sizes for DL-based crypto

Pairings

Key-sizes for pairing-based crypto

Future work

Cryptographic pairing: black-box properties

$\left(\mathbf{G}_{1},+\right),\left(\mathbf{G}_{2},+\right),\left(\mathbf{G}_{T}, \cdot\right)$ three cyclic groups of large prime order r Bilinear Pairing: map e: $\mathbf{G}_{1} \times \mathbf{G}_{2} \rightarrow \mathbf{G}_{T}$

1. bilinear: $e\left(P_{1}+P_{2}, Q\right)=e\left(P_{1}, Q\right) \cdot e\left(P_{2}, Q\right)$,

$$
e\left(P, Q_{1}+Q_{2}\right)=e\left(P, Q_{1}\right) \cdot e\left(P, Q_{2}\right)
$$

2. non-degenerate: $e\left(g_{1}, g_{2}\right) \neq 1$ for $\left\langle g_{1}\right\rangle=\mathbf{G}_{1},\left\langle g_{2}\right\rangle=\mathbf{G}_{2}$
3. efficiently computable.

Mostly used in practice:

$$
e([a] P,[b] Q)=e([b] P,[a] Q)=e(P, Q)^{a b}
$$

\leadsto Many applications in asymmetric cryptography.

Examples of application

- 1984: idea of identity-based encryption (IBE) by Shamir
- 1999: first practical identity-based cryptosystem of Sakai-Ohgishi-Kasahara
- 2000: constructive pairings, Joux's tri-partite key-exchange
- 2001: IBE of Boneh-Franklin, short signatures Boneh-Lynn-Shacham
- Broadcast encryption, re-keying
- agregate signatures
- zero-knowledge (ZK) proofs
- non-interactive ZK proofs (NIZK)
- ZK-SNARK (Z-cash)

Bilinear Pairings

Rely on

- Discrete Log Problem (DLP): given $g, h \in \mathbf{G}$, compute x s.t. $g^{x}=h$
- Diffie-Hellman Problem (DHP): given $g, g^{a}, g^{b} \in \mathbf{G}$, compute $g^{a b}$
- bilinear DLP and DHP
- pairing inversion problem

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p^{n}}\right)[r] \times E\left(\mathbb{F}_{p^{n}}\right)[r] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p^{n}}\right)[r] \times E\left(\mathbb{F}_{p^{n}}\right)[r] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p^{n}}\right)[r] \times E\left(\mathbb{F}_{p^{n}}\right)[r] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

- inversion of e : hard problem (exponential)

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p^{n}}\right)[r] \times E\left(\mathbb{F}_{p^{n}}\right)[r] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{r})$)

Pairing-based cryptography

Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p^{n}}\right)[r] \times E\left(\mathbb{F}_{p^{n}}\right)[r] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{r})$)
- discrete logarithm computation in $\mathbb{F}_{p^{n}}^{*}$: easier, subexponential \rightarrow take a large enough field

Pairing-friendly curves are special

$r \mid p^{n}-1, \mathbf{G}_{T} \subset \mathbb{F}_{p^{n},} n$ is minimal : embedding degree
Tate Pairing: $e: \mathbf{G}_{1} \times \mathbf{G}_{2} \rightarrow \mathbf{G}_{T}$
When n is small, the curve is pairing-friendly.
This is very rare: usually $\log n \sim \log r$ ([Balasubramanian Koblitz]).

$\mathbf{G}_{T} \subset p^{n}$	p^{2}, p^{6}	p^{3}, p^{4}, p^{6}	p^{12}	p^{16}	p^{18}	p^{24}
Curve	super- singular	MNT	BN	KSS16	KSS18	BLS24

MNT, $n=6$:
$p(x)=4 x^{2}+1, \# E\left(\mathbb{F}_{p}\right)=r(x)=x^{2} \mp 2 x+1$
BN, $n=12$:
$p(x)=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1$
$r(x)=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1$

Plan

Introduction: Discrete logarithm and NFS

Key sizes for DL-based crypto

Pairings

Key-sizes for pairing-based crypto

Future work

Discrete Log in $\mathbb{F}_{p^{n}}$

$\mathbb{F}_{p^{n}}$ much less investigated than \mathbb{F}_{p} or integer factorization. Much better results in pairing-related fields

Discrete Log in $\mathbb{F}_{p^{n}}$

$\mathbb{F}_{p^{n}}$ much less investigated than \mathbb{F}_{p} or integer factorization. Much better results in pairing-related fields

- Special NFS in $\mathbb{F}_{p^{n}}$: Joux-Pierrot 2013
- Tower NFS (TNFS): Barbulescu Gaudry Kleinjung 2015
- Extended Tower NFS: Kim-Barbulescu, Kim-Jeong, Sarkar-Singh 2016
- Tower of number fields

Use more structure: subfields

Special Tower NFS

$\mathbb{F}_{p^{6}}$, subfield $\mathbb{F}_{p^{2}}$ defined by $y^{2}+1$ Idea: $a+b x$ in NFS $\rightarrow\left(a_{0}+a_{1} i\right)+\left(b_{0}+b_{1} i\right) x$ in TNFS Integers to factor are much smaller

- factors integer $\operatorname{Norm}_{f}=\operatorname{Res}\left(\operatorname{Res}\left(\mathbf{a}+\mathbf{b} x, f_{y}(x)\right), y^{2}+1\right)$
- factors integer $\operatorname{Norm}_{g}=\operatorname{Res}\left(\operatorname{Res}\left(\mathbf{a}+\mathbf{b} x, g_{y}(x)\right), y^{2}+1\right)$

Res $=$ resultant of polynomials

Special Tower NFS

$\mathbb{F}_{p^{6}}$, subfield $\mathbb{F}_{p^{2}}$ defined by $y^{2}+1$
Idea: $a+b x$ in NFS $\rightarrow\left(a_{0}+a_{1} i\right)+\left(b_{0}+b_{1} i\right) x$ in TNFS
Integers to factor are much smaller

- factors integer $\operatorname{Norm}_{f}=\operatorname{Res}\left(\operatorname{Res}\left(\mathbf{a}+\mathbf{b} x, f_{y}(x)\right), y^{2}+1\right)$
- factors integer $\operatorname{Norm}_{g}=\operatorname{Res}\left(\operatorname{Res}\left(\mathbf{a}+\mathbf{b} x, g_{y}(x)\right), y^{2}+1\right)$

Res $=$ resultant of polynomials
Index calculus in the 80's: implemented before complexity known
TNFS: complexity known, no implementation

Complexities

large characteristic $p=L_{p^{n}}(\alpha), \alpha>2 / 3$:
$(64 / 9)^{1 / 3} \simeq 1.923 \quad$ NFS
special p :
$(32 / 9)^{1 / 3} \simeq 1.526$ SNFS
medium characteristic $p=L_{p^{n}}(\alpha), 1 / 3<\alpha<2 / 3$:
$(96 / 9)^{1 / 3} \simeq 2.201 \quad$ prime n NFS-HD (Conjugation)
$(48 / 9)^{1 / 3} \simeq 1.747$ composite n,
best case of TNFS: when parameters fit perfectly
special p :
$(64 / 9)^{1 / 3} \simeq 1.923$ NFS-HD+Joux-Pierrot'13
$(32 / 9)^{1 / 3} \simeq 1.526$ composite n, best case of STNFS

Estimating key sizes for $D L$ in $\mathbb{F}_{p^{n}}$

- Latest variants of TNFS (Kim-Barbulescu, Kim-Jeong) seem most promising for $\mathbb{F}_{p^{n}}$ where n is composite
- We need record computations if we want to extrapolate from asymptotic complexities
- The asymptotic complexities do not correspond to a fixed n, but to a ratio between n and p

Simulation of STNFS: why?

- upper bound on the norms
- (heuristic) upper bound on the running-time of STNFS
- bound is not tight: running-time could be much faster
- security is over-estimated

Simulation of STNFS: why?

- upper bound on the norms
- (heuristic) upper bound on the running-time of STNFS
- bound is not tight: running-time could be much faster
- security is over-estimated

Possible solution:

- remove combinatorial factor from the bound
- smaller norms, faster STNFS, lower security
- much larger key-sizes
- bad for practical applications: larger keys are required

Example BN curves, targeted 128 -bit security level:
p was 256 bits before STNFS
Now p from 384 to 512 bits
But we don't want to use too large p for nothing.

Largest record computations in $\mathbb{F}_{p^{n}}$ with NFS ${ }^{1}$

Finite field	Size of p^{n}	Cost: CPU days	Authors	sieving dim
$\mathbb{F}_{p^{12}}$	203	11	$[$ HAKT13]	7
$\mathbb{F}_{p^{6}}$	422	9,520	$[$ GGMT17]	3
$\mathbb{F}_{p^{5}}$	324	386	$[$ GGM17]	3
$\mathbb{F}_{p^{4}}$	392	510	$[$ BGGM15b]	2
$\mathbb{F}_{p^{3}}$	593	8,400	$[$ GGM16]	2
$\mathbb{F}_{p^{2}}$	595	175	$[$ BGGM15a]	2
\mathbb{F}_{p}	768	$1,935,825$	$[$ KDLPS17]	2

None used TNFS, only NFS and NFS-HD were implemented.

[^0]
Ranking polynomials: Murphy's α and E

B. A. Murphy, 1999

- $\alpha(f)$: bias in smoothness between norms and integers $\alpha(f), \alpha(g)<0$ wanted
- $E\left(f, g, B_{f}, B_{g}\right.$, area): estimation of the yield of polynomials How many relations would (f, g) produce?
- Rank many $\left(f_{i}, g_{i}\right)$, choose the best pair

Generalization to the TNFS setting:

- $\alpha(h, f), \alpha(h, g)$

SageMath \& Magma code, generalization from cado-nfs α (Bai, Hanrot, Thomé, Zimmermann)

- Monte-Carlo simulation for Murphy's E

Simulation without sieving

space: $\mathcal{S}=\left\{\sum a_{0} y^{i}+\left(\sum a_{1 i} y^{i}\right) x,\left|a_{j i}\right|<A\right\}$
Variants:

- compute $\alpha(h, f), \alpha(h, g)$ (w.r.t. subfield) bias in smoothness
- select polys f, g with negative bias $\alpha(f), \alpha(g)$ if possible
- Monte-Carlo simulation with 10^{6} points in \mathcal{S} taken at random. For each point:

1. compute its algebraic norm N_{f}, N_{g} in each number field
2. smoothness probability with Dickman- ρ

- Average smoothness probability over the subset of points \rightarrow estimation of the total number of possible relations in \mathcal{S} \rightarrow Murphy's E for TNFS

Simulation without sieving

space: $\mathcal{S}=\left\{\sum a_{0} y^{i}+\left(\sum a_{1 i} y^{i}\right) x,\left|a_{j i}\right|<A\right\}$
Variants:

- compute $\alpha(h, f), \alpha(h, g)$ (w.r.t. subfield) bias in smoothness
- select polys f, g with negative bias $\alpha(f), \alpha(g)$ if possible
- Monte-Carlo simulation with 10^{6} points in \mathcal{S} taken at random. For each point:

1. compute its algebraic norm N_{f}, N_{g} in each number field
2. smoothness probability with Dickman- ρ

- Average smoothness probability over the subset of points \rightarrow estimation of the total number of possible relations in \mathcal{S} \rightarrow Murphy's E for TNFS
- dichotomy to approach the best balanced parameters: smoothness bound B, coefficient bound A.
\rightarrow refinement of Barbulescu-Duquesne technique

Example : Barreto-Naehrig curve, p 254 bits

$$
\begin{aligned}
& p=36 s^{4}+36 s^{3}+24 s^{2}+6 s+1 \text { where } s=-\left(2^{62}+2^{55}+1\right) \\
& f=36 x^{8}+36 y x^{6}+24 y^{2} x^{4}+6 y^{3} x^{2}+y^{4} \\
& g=x^{2}+s y=x^{2}+4647714815446351873 y \\
& B=2000 \\
& h
\end{aligned} \quad 1 / \zeta_{k_{h}}(2) \quad \alpha(h, f, B) \quad \alpha(h, g, B) \quad \alpha_{f}+\alpha_{g} .
$$

- Simul. in $\mathbb{F}_{p^{12}}$, BN, STNFS deg $h=6$ - Simul. in $\mathbb{F}_{p^{12}}$, BLS12, STNFS deg $h=12,6$ $-L_{p^{n}}^{0}(1 / 3,1.923) / 2^{8.2}$ (DL theoretical re-scaled DL-768 $\left.\leftrightarrow 2^{68.32}\right)$

Numerical example: BLS12-446 bits

$$
\begin{aligned}
& p(x)=(x-1)^{2}\left(x^{4}-x^{2}+1\right) / 3+x \\
& r(x)=x^{4}-x^{2}+1 \\
& s=-\left(2^{74}+2^{73}+2^{63}+2^{57}+2^{50}+2^{17}+1\right)
\end{aligned}
$$

seed with enumerate_sparse_T.sage [G. Masson Thomé]
https://gitlab.inria.fr/smasson/cocks-pinch-variant
$p=p(s)$ of 446 bits, twist-secure subgroup-secure curve
$p^{k} 5352$ bits

$$
\begin{aligned}
& h=Y^{6}-Y^{4}+Y^{3}-Y+1 \\
& f_{y}=X^{12}-2 y X^{10}+2 y^{3} X^{6}+y^{5} X^{2}+y^{4}-y^{3}+y-1 \\
& g_{y}=X^{2}-u y=X^{2}+28343567510342708887553 y \\
& A=968, B=2^{68.2}
\end{aligned}
$$

Estimated cost: $\approx 2^{132}$

Key size for pairings

$\mathbb{F}_{p^{n}}$, curve	cost DL 2 ${ }^{128}$		cost DL 2 ${ }^{192}$	
	$\log _{2} p$	$\log _{2} p^{n}$	$\log _{2} p$	$\log _{2} p^{n}$
\mathbb{F}_{p}	$3072-3200$		$7400-8000$	
$\mathbb{F}_{p^{6}}, \mathrm{MNT}$	$640-672$	$3840-4032$	≈ 1536	≈ 9216
$\mathbb{F}_{p^{12}}, \mathrm{BN}$	$416-448$	$4992-5376$	≈ 1024	≈ 12288
$\mathbb{F}_{p^{12}}, \mathrm{BLS}$	$416-448$	$4992-5376$	≈ 1120	≈ 13440
$\mathbb{F}_{p^{16}}, \mathrm{KSS}$	330	5280	≈ 768	≈ 12288
$\mathbb{F}_{p^{18}}, \mathrm{KSS}$	348	6264	≈ 640	≈ 11520

Plan

> Introduction: Discrete logarithm and NFS

> Key sizes for DL-based crypto

> Pairings

> Key-sizes for pairing-based crypto

Future work

Future work

- automatic tool (currently developed in Python/SageMath)
- Compare Special-TNFS, TNFS and SNFS
- $a_{0}+a_{1} x \rightarrow$ consider $a_{0}+a_{1} x+a_{2} x^{2}, a_{i}=a_{i 0}+a_{i 1} y+\ldots$
- Estimate the proportion of duplicate relations due to units ($2 \%, 20 \%, 60 \%$?)
- How to sieve very efficiently in even dimension 4 to 24 to avoid costly factorization in the relation collection?
- Record computation in $\mathbb{F}_{p^{6}}$

Bibliography I

S. Bai.

Polynomial Selection for the Number Field Sieve.
Phd thesis, Australian National University, Australia, September 2011.
http://maths.anu.edu.au/~brent/pd/Bai-thesis.pdf.
S. Bai, R. P. Brent, and E. Thomé.

Root optimization of polynomials in the number field sieve.
Math. Comp., 84(295):2447-2457, 2015.
https://hal.inria.fr/hal-00919367,
https://doi.org/10.1090/S0025-5718-2015-02926-3.
R. Barbulescu and S. Duquesne.

Updating key size estimations for pairings.
Journal of Cryptology, Jan 2018.
https://hal.archives-ouvertes.fr/hal-01534101v2.
R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain.

DL record computation in $\operatorname{GF}\left(p^{4}\right)$ of 392 bits (120dd).
Announcement at the CATREL workshop, October 2nd 2015.
http://www.lix.polytechnique.fr/ guillevic/docs/guillevic-catrel15-talk.pdf.

Bibliography II

俥
R．Barbulescu，P．Gaudry，A．Guillevic，and F．Morain．
Improving NFS for the discrete logarithm problem in non－prime finite fields．
In E．Oswald and M．Fischlin，editors，EUROCRYPT 2015，Part I，volume 9056
of LNCS，pages 129－155．Springer，Heidelberg，Apr． 2015.
R．Barbulescu，P．Gaudry，and T．Kleinjung．
The tower number field sieve．
In T．Iwata and J．H．Cheon，editors，ASIACRYPT 2015，Part II，volume 9453 of LNCS，pages 31－55．Springer，Heidelberg，Nov．／Dec． 2015.

R．Barbulescu and A．Lachand．
Some mathematical remarks on the polynomial selection in NFS．
Math．Comp．，86（303）：397－418， 2017.
https：／／hal．inria．fr／hal－00954365，
https：／／doi．org／10．1090／mcom／3112．

G．Fotiadis and C．Martindale．
Optimal TNFS－secure pairings on elliptic curves with composite embedding degree．
Cryptology ePrint Archive，Report 2019／555， 2019.
https：／／eprint．iacr．org／2019／555．

Bibliography III

国
P．Gaudry，A．Guillevic，and F．Morain．
Discrete logarithm record in $\mathrm{GF}\left(p^{3}\right)$ of 592 bits（180 decimal digits）．
Number Theory list，item 004930，August 152016.
https：／／listserv．nodak．edu／cgi－bin／wa．exe？A2＝NMBRTHRY；ae418648．1608．
目
D．M．Gordon．
Discrete logarithms in GF (p) using the number field sieve．
SIAM Journal on Discrete Mathematics，6（1）：124－138， 1993.
https：／／www．ccrwest．org／gordon／log．pdf．
差
L．Grémy，A．Guillevic，and F．Morain．
Discrete logarithm record computation in $\mathrm{GF}\left(p^{5}\right)$ of 100 decimal digits using NFS with 3－dimensional sieving．
Number Theory list，item 004981，August 1st 2017.
https：／／listserv．nodak．edu／cgi－bin／wa．exe？A2＝NMBRTHRY；68019370．1708．
R
L．Grémy，A．Guillevic，F．Morain，and E．Thomé．
Computing discrete logarithms in $\mathbb{F}_{p^{6}}$ ．
In C．Adams and J．Camenisch，editors，SAC 2017，volume 10719 of LNCS， pages 85－105．Springer，Heidelberg，Aug． 2017.

Bibliography IV

A. Guillevic, S. Masson, and E. Thomé.

Cocks-pinch curves of embedding degrees five to eight and optimal ate pairing computation.
Cryptology ePrint Archive, Report 2019/431, 2019.
https://eprint.iacr.org/2019/431.

A. Guillevic, F. Morain, and E. Thomé.

Solving discrete logarithms on a 170-bit MNT curve by pairing reduction.
In R. Avanzi and H. M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages 559-578. Springer, Heidelberg, Aug. 2016.
囯
K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi.

An experiment of number field sieve for discrete logarithm problem over $\mathrm{GF}\left(p^{12}\right)$.
In M. Fischlin and S. Katzenbeisser, editors, Number Theory and Cryptography, volume 8260 of LNCS, pages 108-120. Springer, 2013.
家
K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi.

A construction of 3-dimensional lattice sieve for number field sieve over $\mathbb{F}_{p^{n}}$. Cryptology ePrint Archive, Report 2015/1179, 2015.
http://eprint.iacr.org/2015/1179.

Bibliography V

显
A. Joux, R. Lercier, N. Smart, and F. Vercauteren.

The number field sieve in the medium prime case.
In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 326-344. Springer, Heidelberg, Aug. 2006.
A. Joux and C. Pierrot.

The special number field sieve in $\mathbb{F}_{p^{n}}$ - application to pairing-friendly constructions.
In Z. Cao and F. Zhang, editors, PAIRING 2013, volume 8365 of LNCS, pages 45-61. Springer, Heidelberg, Nov. 2014.
盖
T. Kim and R. Barbulescu.

Extended tower number field sieve: A new complexity for the medium prime case.
In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 543-571. Springer, Heidelberg, Aug. 2016.

T. Kleinjung, C. Diem, A. K. Lenstra, C. Priplata, and C. Stahlke.

Computation of a 768-bit prime field discrete logarithm.
In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 185-201. Springer, Heidelberg, Apr. / May 2017.
O
A. K. Lenstra and E. R. Verheul.

Selecting cryptographic key sizes.
Journal of Cryptology, 14(4):255-293, Sept. 2001.

Bibliography VI

A. Menezes, P. Sarkar, and S. Singh.

Challenges with assessing the impact of NFS advances on the security of pairing-based cryptography.
In R. C. Phan and M. Yung, editors, Mycrypt Conference, Revised Selected
Papers, volume 10311 of LNCS, pages 83-108, Kuala Lumpur, Malaysia,
December 1-2 2016. Springer.
http://eprint.iacr.org/2016/1102.
亘
B. A. Murphy.

Polynomial selection for the number field sieve integer factorisation algorithm.
Phd thesis, Australian National University, Australia, 1999.
http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf.
P. Sarkar and S. Singh.

A general polynomial selection method and new asymptotic complexities for the tower number field sieve algorithm.
In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 37-62. Springer, Heidelberg, Dec. 2016.
P. Sarkar and S. Singh.

New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields.
In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 429-458. Springer, Heidelberg, May 2016.

Bibliography VII

O. Schirokauer.

Discrete logarithms and local units.
Philos. Trans. Roy. Soc. London Ser. A, 345(1676):409-423, 1993.
http://rsta.royalsocietypublishing.org/content/345/1676/409, http://doi.org/10.1098/rsta.1993.0139.

[^0]: ${ }^{1}$ Data extracted from DiscreteLogDB by L.Grémy

