Pairing-Friendly Curves and Tower Number Field Sieve Algorithm

Aurore Guillevic

Inria Nancy, France

10/07/2019 SIAM-AG Bern, Switzerland Joint work with Shashank Singh, IISER Bhopal, India

Asymmetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (use in Diffie-Hellman, etc) Given a finite cyclic group (\mathbf{G}, \cdot), a generator g and $h \in \mathbf{G}$, compute x s.t. $h = g^{x}$.

ightarrow can we invert the exponentiation function $(g,x)\mapsto g^x?$

Common choice of G:

- prime finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ (1976)
- characteristic 2 field \mathbb{F}_{2^n} (\approx 1979)
- elliptic curve $E(\mathbb{F}_p)$ (1985)

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^x$?

- ▶ $g \in G$ generator, \exists always a preimage $x \in \{1, \dots, \#G\}$
- naive search, try them all: #G tests
- $O(\sqrt{\#G})$ generic algorithms
- independent search in each distinct subgroup + CRT (Pohlig-Hellman)

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^x$?

- ▶ $g \in G$ generator, \exists always a preimage $x \in \{1, \dots, \#G\}$
- naive search, try them all: #G tests
- $O(\sqrt{\#G})$ generic algorithms
- independent search in each distinct subgroup + CRT (Pohlig-Hellman)
- \rightarrow choose G of large prime order (no subgroup)
- $\rightarrow\,$ complexity of inverting exponentiation in ${\it O}(\sqrt{\# {\it G}})$
- → security level 128 bits means $\sqrt{\#G} \ge 2^{128}$ take $\#G = 2^{256}$ analogy with symmetric crypto, keylength 128 bits (16 bytes)

Discrete log problem

How fast can we invert the exponentiation function $(g, x) \mapsto g^x$?

- ▶ $g \in G$ generator, \exists always a preimage $x \in \{1, \dots, \#G\}$
- naive search, try them all: #G tests
- $O(\sqrt{\#G})$ generic algorithms
- independent search in each distinct subgroup + CRT (Pohlig-Hellman)
- \rightarrow choose G of large prime order (no subgroup)
- $\rightarrow\,$ complexity of inverting exponentiation in ${\it O}(\sqrt{\# {\it G}})$
- → security level 128 bits means $\sqrt{\#G} \ge 2^{128}$ take $\#G = 2^{256}$ analogy with symmetric crypto, keylength 128 bits (16 bytes)

Use additional structure of G if any.

Number Field: Toy example with $\mathbb{Z}[i]$

If
$$p = 1 \mod 4$$
, $\exists U, V \text{ s.t. } p = U^2 + V^2$
and $|U|, |V| < \sqrt{p}$
 $U/V \equiv m \mod p$ and $m^2 + 1 = 0 \mod p$
Define a map from $\mathbb{Z}[i]$ to $\mathbb{Z}/p\mathbb{Z}$
 $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}/p\mathbb{Z}$
 $i \mapsto m \mod p$ where $m = U/V, m^2 + 1 = 0 \mod p$
ring homomorphism $\phi(a + bi) = a + bm$

$$\phi(\underbrace{a+bi}_{\text{factor in}}) = a + bm = (a+b, \underbrace{U/V}_{=m}) = (\underbrace{aV+bU}_{\text{factor in } \mathbb{Z}})V^{-1} \mod p$$

 $p = 1109 = 1 \mod 4$, r = (p - 1)/4 = 277 prime $p = 22^2 + 25^2$ $\max(|a|, |b|) = A = 20$, B = 13 smoothness bound

 $p = 1109 = 1 \mod 4$, r = (p - 1)/4 = 277 prime $p = 22^2 + 25^2$ $\max(|a|, |b|) = A = 20$, B = 13 smoothness bound Rational side

Rational side $\mathcal{F}_{rat} = \{2, 3, 5, 7, 11, 13\}$ primes up to B g(x) = Vx - U

 $p = 1109 = 1 \mod 4$, r = (p - 1)/4 = 277 prime $p = 22^2 + 25^2$ $\max(|a|, |b|) = A = 20$, B = 13 smoothness bound

Rational side $\mathcal{F}_{rat} = \{2, 3, 5, 7, 11, 13\}$ primes up to B g(x) = Vx - U

Algebraic side: think about the complex number in \mathbb{C} $-i(1+i)^2 = 2$, (2+i)(2-i) = 5, (2+3i)(2-3i) = 13 $\mathcal{F}_{alg} = \{1+i, 2+i, 2-i, 2+3i, 2-3i\}$ "primes" of norm up to B $f(x) = x^2 + 1$

 $p = 1109 = 1 \mod 4$, r = (p - 1)/4 = 277 prime $p = 22^2 + 25^2$ $\max(|a|, |b|) = A = 20$, B = 13 smoothness bound Detrived side

Rational side $\mathcal{F}_{rat} = \{2, 3, 5, 7, 11, 13\}$ primes up to B g(x) = Vx - U

Algebraic side: think about the complex number in \mathbb{C} $-i(1+i)^2 = 2$, (2+i)(2-i) = 5, (2+3i)(2-3i) = 13 $\mathcal{F}_{alg} = \{1+i, 2+i, 2-i, 2+3i, 2-3i\}$ "primes" of norm up to B $f(x) = x^2 + 1$

$\begin{array}{l} \mathsf{Units} \\ \mathcal{U}_{\mathsf{alg}} = \{-1, i, -i\} \end{array}$

a + bi	$aV + bU = \text{factor in } \mathbb{Z}$	$a^2 + b^2$	factor in $\mathbb{Z}[i]$
-17 + 19	i —7 = —7	$650 = 2 \cdot 5^2 \cdot 13$	$i(1+i)(2+i)^2(2-3i)$
-11 + 2i	$-231 = -3 \cdot 7 \cdot 11$	$125 = 5^3$	$i(2+i)^{3}$
-6+17 <i>i</i>	$224 = 2^5 \cdot 7$	$325 = 5^2 \cdot 13$	$(2+i)^2(2+3i)$
-4 + 7 <i>i</i>	$54 = 2 \cdot 3^3$	$65 = 5 \cdot 13$	i(2-i)(2+3i)
-3 + 4i	13 = 13	$25 = 5^2$	$-(2-i)^2$
-2 + <i>i</i>	$-28 = -2^2 \cdot 7$	5 = 5	-(2-i)
-2 + 3i	$16 = 2^4$	13 = 13	-(2-3i)
-2 + 11i	$192 = 2^{6} \cdot 3$	$125 = 5^3$	$-(2-i)^3$
-1+i	-3 = -3	2 = 2	i(1 + i)
i	$22 = 2 \cdot 11$	1 = 1	i
1 + 3i	$91 = 7 \cdot 13$	$10 = 2 \cdot 5$	(1+i)(2+i)
1 + 5i	$135 = 3^3 \cdot 5$	$26 = 2 \cdot 13$	i(1+i)(2-3i)
2 + <i>i</i>	$72 = 2^3 \cdot 3^2$	5 = 5	(2 + i)
5 + <i>i</i>	$147 = 3 \cdot 7^2$	$26 = 2 \cdot 13$	-i(1+i)(2+3i)

Right kernel $M \cdot \mathbf{x} = 0 \mod (p-1)/4 = 277$: $\mathbf{x} = (\underbrace{1,219,40,34,79,269}_{rational side},\underbrace{197}_{1/V},\underbrace{0,0}_{units},\underbrace{139,84,233,68,201}_{algebraic side})$ Logarithms (in some basis) Rational side: logarithms of $\{2,3,5,7,11,13\}$ in basis 2 $\mathbf{x} = [1,219,40,34,79,269] \mod 277$ \rightarrow order 4 subgroup $\mathbf{v} = [1,219,594,311,910,1100] \mod p-1$

Right kernel $M \cdot \mathbf{x} = 0 \mod (p-1)/4 = 277$: $\textbf{\textit{x}} = (\underbrace{1,219,40,34,79,269}_{\text{rational side}},\underbrace{197}_{1/V},\underbrace{0,0}_{\text{units}},\underbrace{139,84,233,68,201}_{\text{algebraic side}})$ Logarithms (in some basis) Rational side: logarithms of $\{2, 3, 5, 7, 11, 13\}$ in basis 2 $x = [1, 219, 40, 34, 79, 269] \mod 277$ \rightarrow order 4 subgroup $\mathbf{v} = [1, 219, 594, 311, 910, 1100] \mod p - 1$ Target 314, generator g = 2 $314 = -20/7 \mod p = -2^2 \cdot 5/7$ $\log_{\sigma} 314 = \log_{\sigma} -1 + 2\log_{\sigma} 2 + \log_{\sigma} 5 - \log_{\sigma} 7$ $= (p-1)/2 + 2 + 594 - 311 = 839 \mod p - 1$ $2^{839} = 314 \mod p$

Number Field Sieve

Since 1993 (Gordon, Schirokauer):

$$L_p(1/3,c) = e^{(c+o(1))(\log p)^{1/3}(\log\log p)^{2/3}}$$

- polynomial selection
- relation collection L_p(1/3, 1.923) sieve to enumerate efficiently (a, b) pairs
- Sparse linear algebra L_p(1/3, 1.923) compute right kernel mod prime ℓ, block-Wiedemann alg.
- individual discrete logarithm

Latest record computation: 768-bit prime p, $\ell = (p - 1)/2$ prime Kleinjung, Diem, A. Lenstra, Priplata, Stahlke, Eurocrypt'2017 Total time: 5300 core-years on Intel Xeon E5-2660 2.2GHz

Cryptographic pairing: black-box properties

 $(\mathbf{G}_1, +), (\mathbf{G}_2, +), (\mathbf{G}_T, \cdot)$ three cyclic groups of large prime order rBilinear Pairing: map $e : \mathbf{G}_1 \times \mathbf{G}_2 \to \mathbf{G}_T$

1. bilinear:
$$e(P_1 + P_2, Q) = e(P_1, Q) \cdot e(P_2, Q)$$
,
 $e(P, Q_1 + Q_2) = e(P, Q_1) \cdot e(P, Q_2)$

- 2. non-degenerate: $e(g_1,g_2)
 eq 1$ for $\langle g_1
 angle = {f G}_1$, $\langle g_2
 angle = {f G}_2$
- 3. efficiently computable.

Mostly used in practice:

$$e([a]P, [b]Q) = e([b]P, [a]Q) = e(P, Q)^{ab}$$

→ Many applications in asymmetric cryptography (identity-based encryption, short signatues, NIZK, ZK-SNARK...)

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^n}) / rE(\mathbb{F}_{p^n}) \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^n})/rE(\mathbb{F}_{p^n}) \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^n})/rE(\mathbb{F}_{p^n}) \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

inversion of e : hard problem (exponential)

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p})[r] \times E(\mathbb{F}_{p^{n}})/rE(\mathbb{F}_{p^{n}}) \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$
Attacks

- ▶ inversion of *e* : hard problem (exponential)
- discrete logarithm computation in $E(\mathbb{F}_p)$: hard problem (exponential, in $O(\sqrt{r})$)

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^n}) / rE(\mathbb{F}_{p^n}) \longrightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- ► discrete logarithm computation in E(F_p) : hard problem (exponential, in O(√r))

Pairing-friendly curves are special

 $r \mid p^n - 1$, $\mathbf{G}_T \subset \mathbb{F}_{p^n}$, n is minimal : **embedding degree** Tate Pairing: $e : \mathbf{G}_1 \times \mathbf{G}_2 \to \mathbf{G}_T$ When n is small, the curve is *pairing-friendly*. This is very rare: usually $\log n \sim \log r$ ([Balasubramanian Koblitz]).

Barreto-Naehrig (BN),
$$n = 12$$
:
 $p(x) = 36x^4 + 36x^3 + 24x^2 + 6x + 1$
 $r(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$
 $D = -3, j = 0, \mathbf{G}_T \subset \mathbb{F}_{p^{12}}$

p is special

Discrete Log in \mathbb{F}_{p^n}

 \mathbb{F}_{p^n} much less investigated than \mathbb{F}_p or integer factorization. Much better results in pairing-related fields

Discrete Log in \mathbb{F}_{p^n}

 \mathbb{F}_{p^n} much less investigated than \mathbb{F}_p or integer factorization. Much better results in pairing-related fields

- ▶ Special NFS in \mathbb{F}_{p^n} : Joux–Pierrot 2013
- ► Tower NFS (TNFS): Barbulescu Gaudry Kleinjung 2015
- Extended Tower NFS: Kim–Barbulescu, Kim–Jeong, Sarkar–Singh 2016
- Tower of number fields

Use more structure: subfields

Special Tower NFS

 $\mathbb{F}_{p^{2k}}$, subfield \mathbb{F}_{p^2} defined by $y^2 + 1$ Idea: a + bx in NFS $\rightarrow (a_0 + a_1i) + (b_0 + b_1i)x$ in TNFS Integers to factor are **much smaller**

- factors integer Norm_f = Res(Res($\mathbf{a} + \mathbf{b}x, f_y(x)$), $y^2 + 1$)
- factors integer Norm_g = Res(Res($\mathbf{a} + \mathbf{b}x, g_y(x)$), $y^2 + 1$)

Res = resultant of polynomials

Special Tower NFS

 $\mathbb{F}_{p^{2k}}$, subfield \mathbb{F}_{p^2} defined by $y^2 + 1$ Idea: a + bx in NFS $\rightarrow (a_0 + a_1i) + (b_0 + b_1i)x$ in TNFS Integers to factor are **much smaller**

- factors integer Norm_f = Res(Res($\mathbf{a} + \mathbf{b}x, f_y(x)$), $y^2 + 1$)
- factors integer Norm_g = Res(Res($\mathbf{a} + \mathbf{b}x, g_y(x)$), $y^2 + 1$)

Res = resultant of polynomials

p = p(s) is special

Special Tower NFS

 $\mathbb{F}_{p^{2k}}$, subfield \mathbb{F}_{p^2} defined by $y^2 + 1$ Idea: a + bx in NFS $\rightarrow (a_0 + a_1i) + (b_0 + b_1i)x$ in TNFS Integers to factor are **much smaller**

- factors integer Norm_f = Res(Res($\mathbf{a} + \mathbf{b}x, f_y(x)$), $y^2 + 1$)
- ▶ factors integer Norm_g = Res(Res($\mathbf{a} + \mathbf{b}x, g_y(x)$), $y^2 + 1$)
- $\mathsf{Res} = \mathsf{resultant} \text{ of polynomials}$
- p = p(s) is special

Index calculus in the 80's: implemented *before* complexity known TNFS: complexity known, no implementation

Complexities

large characteristic $p = L_{p^n}(\alpha), \ \alpha > 2/3$: $(64/9)^{1/3} \simeq 1.923$ NFS special p: $(32/9)^{1/3} \simeq 1.526$ SNFS medium characteristic $p = L_{p^n}(\alpha), 1/3 < \alpha < 2/3$: $(96/9)^{1/3} \simeq 2.201$ prime *n* NFS-HD (Conjugation) $(48/9)^{1/3} \simeq 1.747$ composite *n*, best case of TNFS: when parameters fit perfectly special p: $(64/9)^{1/3} \simeq 1.923$ NFS-HD+Joux-Pierrot'13 $(32/9)^{1/3} \simeq 1.526$ composite *n*, best case of STNFS

Ranking polynomials: Murphy's α and E

B. A. Murphy, 1999

Input: irreducible polynomials f, g, p | Res(f, g)

- α(f): bias in smoothness between norms and integers
 α(f), α(g) < 0 wanted
- E(f, g, B_f, B_g, area): estimation of the yield of polynomials B_f, B_g smoothness bounds of f, g sides How many relations would (f, g) produce?
- Rank many (f_i, g_i) , choose the best pair

Ranking polynomials: Murphy's α and E

B. A. Murphy, 1999

Input: irreducible polynomials f, g, p | Res(f, g)

- α(f): bias in smoothness between norms and integers
 α(f), α(g) < 0 wanted
- E(f, g, B_f, B_g, area): estimation of the yield of polynomials B_f, B_g smoothness bounds of f, g sides How many relations would (f, g) produce?
- Rank many (f_i, g_i) , choose the best pair

Generalization to the TNFS setting:

- α(h, f), α(h, g)
 SageMath & Magma code, generalization from cado-nfs α (Bai, Gaudry, Hanrot, Thomé, Zimmermann)
- Monte-Carlo simulation for Murphy's E

Simulation without sieving

Polynomial selection: for many pairs (f, g)

- compute $\alpha(h, f), \alpha(h, g)$ (w.r.t. subfield) bias in smoothness
- ▶ select polys f, g with negative bias $\alpha(f), \alpha(g)$ if possible
- ▶ **Monte-Carlo** simulation with 10⁶ random samples from $S = \{(a_0+a_1y+\ldots+a_dy^d)+(b_0+b_1y+\ldots+b_dy^d)x, |a_i|, |b_j| < A\}$ For each sample:
 - 1. compute its algebraic norm N_f, N_g in each number field
 - 2. smoothness probability (N_f, α_f), (N_g, α_g) with Dickman- ρ
- Average smoothness probability of samples
 - \rightarrow estimation of the total number of possible relations in ${\cal S}$
 - \rightarrow Murphy's *E* for TNFS

Simulation without sieving

Polynomial selection: for many pairs (f, g)

- ► compute $\alpha(h, f), \alpha(h, g)$ (w.r.t. subfield) bias in smoothness
- ▶ select polys f, g with negative bias $\alpha(f), \alpha(g)$ if possible
- ▶ **Monte-Carlo** simulation with 10⁶ random samples from $S = \{(a_0+a_1y+\ldots+a_dy^d)+(b_0+b_1y+\ldots+b_dy^d)x, |a_i|, |b_j| < A\}$ For each sample:
 - 1. compute its algebraic norm N_f, N_g in each number field
 - 2. smoothness probability (N_f, α_f), (N_g, α_g) with Dickman- ρ
- Average smoothness probability of samples
 - \rightarrow estimation of the total number of possible relations in ${\cal S}$
 - \rightarrow Murphy's *E* for TNFS

dichotomy to approach the best balanced parameters smoothness bound B, coefficient bound A. \rightarrow refinement of Barbulescu–Duquesne technique [BD18]

Murphy's α function

$\alpha(f)$ for NFS estimates the bias in smoothness

Algebraic norms in $K_f = \mathbb{Q}[x]/(f(x))$ of $\log_2 N_f$ bits have same smoothness proba as integers of $\log_2 N_f + \alpha(f)/\log(2)$ bits $\rightarrow \alpha(f) < 0$ wanted $\alpha(f)$ computes the exact number of roots of $f(x) \mod \ell^k$ for all primes $\ell < 2000$ (say) Easy prime $\ell \nmid \operatorname{disc}(f)$, tricky prime $\ell \mid \operatorname{disc}(f)$

Implementation for TNFS

```
Reverse-engineering of
cado-nfs/polyselect/{auxiliary.c,alpha.sage}
Magma and SageMath
https://gitlab.inria.fr/tnfs-alpha/alpha
Same algorithm, prime \ell \rightarrow prime ideal [
```

Example : Barreto-Naehrig curve, p 254 bits

$p = 36s^4 + 36s^3 + 24s^2 + 6s + 1$ where $s = -(2^{62} + 2^{55} + 1)$								
$f = 36x^8 + 36yx^6 + 24y^2x^4 + 6y^3x^2 + y^4$								
$g = x^2 + sy = x^2 + 4647714815446351873y$								
B = 2000		-						
h	$1/\zeta_{K_h}(2)$	$\alpha(h, f, B)$	$\alpha(h, g, B)$	$\alpha_f + \alpha_g$				
$y^6 + y^5 - y^2 - y - 1$	0.953	2.042	2.479	4.521				
$y^6 - y^4 + y^3 + y^2 - 1$	0.917	1.288	1.740	3.028				
$y^6 + y^3 + y^2 - y - 1$	0.917	2.419	2.876	5.295				
$y^6 + y^5 - y^3 + y - 1$	0.909	0.278	2.357	2.636				
$y^6 + y^5 + y^4 + y^3 + y^2 + y - 1$	0.883	2.341	2.033	4.374				
$y^6 + y^4 + y^3 + y - 1$	0.867	0.899	2.526	3.425				
$y^6 + y^4 + y^2 + y + 1$	0.836	1.955	1.141	3.095				
$y^6 + y^5 + y^2 - y + 1$	0.763	0.891	1.264	2.155				
$y^6 + y^5 - y^4 + y^3 + y^2 + y - 1$	0.756	0.956	1.177	2.133				
$y^{6} + y^{5} + y - 1$	0.736	1.925	2.108	4.032				
$y^6 + y^5 + y^3 - y^2 + y - 1$	0.732	1.729	2.099	3.828				
$y^{6} + y^{3} + y - 1$	0.728	-0.250	1.191	0.941				
$y^6 + y^3 - y + 1$	0.720	1.605	1.348	2.952				
$y^6 + y^3 + y^2 + 1$	0.718	1.151	1.294	2.445				
$y^6 - y^4 + y^3 - y^2 - y - 1$	0.710	0.406	2.278	2.684				
$y^6 + y^5 - y^3 + y^2 - y + 1$	0.697	1.572	0.818	2.390				
$y^6 + y^4 + y + 1$	0.679	1.319	1.683	3.002				

21/25

Numerical example: BLS12-446 bits

$$p(x) = (x - 1)^{2}(x^{4} - x^{2} + 1)/3 + x$$

$$r(x) = x^{4} - x^{2} + 1$$

$$s = -(2^{74} + 2^{73} + 2^{63} + 2^{57} + 2^{50} + 2^{17} + 1)$$

seed with enumerate_sparse_T.sage [G. Masson Thomé]
https://gitlab.inria.fr/smasson/cocks-pinch-variant

$$p = p(s) \text{ of } 446 \text{ bits, twist-secure subgroup-secure curve}$$

$$p^{k} 5352 \text{ bits}$$

$$\begin{split} h &= Y^6 - Y^4 + Y^3 - Y + 1 \\ f_y &= X^{12} - 2yX^{10} + 2y^3X^6 + y^5X^2 + y^4 - y^3 + y - 1 \\ g_y &= X^2 - uy = X^2 + 28343567510342708887553y \\ A &= 968, \ B &= 2^{68.2} \\ \text{Estimated cost:} &\approx 2^{132} \end{split}$$

Key size for pairings

	cost DL 2 ¹²⁸		cost DL 2 ¹⁹²		
\mathbb{F}_{p^n} , curve	log ₂ p	$\log_2 p^n$	log ₂ p	log ₂ p ⁿ	
\mathbb{F}_{p}	3072-3200		7400-8000		
\mathbb{F}_{p^6} , MNT	640–672	3840-4032	pprox 1536	pprox 9216	
	416–448	4992–5376	pprox 1024	pprox 12288	
$\mathbb{F}_{p^{12}}$, BLS	416–448	4992–5376	pprox 1120	pprox 13440	
$\mathbb{F}_{p^{16}}$, KSS	330	5280	pprox 768	pprox 12288	
$\mathbb{F}_{p^{18}}$, KSS	348	6264	pprox 640	pprox 11520	
$\mathbb{F}_{p^{24}}$, BLS			pprox 512	pprox 12288	

- ▶ BN-382 and BLS12-381 $\approx 2^{123}$
- ▶ BN-446 and BLS12-446 $\approx 2^{132}$
- \blacktriangleright BN-462 and BLS12-461 $\approx 2^{135}$

Other curves:

- Fotiadis-Martindale [FM19] k = 12 with $r = r_{BN}$ like BLS12
- modified Cocks-Pinch with k = 8 and $\rho = 2.125$ [GMT19]

Future work

- automatic tool (currently developed in Python/SageMath)
- Compare Special-TNFS, TNFS and SNFS
- $a_0 + a_1 x \rightarrow \text{consider } a_0 + a_1 x + a_2 x^2, \ a_i = a_{i0} + a_{i1} y + \dots$
- Estimate the proportion of duplicate relations due to units (2%, 20%, 60%?)
- How to sieve very efficiently in even dimension 4 to 24 to avoid costly factorization in the relation collection?
- Record computation in \mathbb{F}_{p^6}

Code available at https://gitlab.inria.fr/tnfs-alpha/alpha

Preprint available very soon

Thank you for your attention.

Bibliography I

S. Bai.

Polynomial Selection for the Number Field Sieve. Phd thesis, Australian National University, Australia, September 2011. http://maths.anu.edu.au/~brent/pd/Bai-thesis.pdf.

S. Bai, R. P. Brent, and E. Thomé. Root optimization of polynomials in the number field sieve. Math. Comp., 84(295):2447-2457, 2015. https://hal.inria.fr/hal-00919367, https://doi.org/10.1090/S0025-5718-2015-02926-3.

R. Barbulescu and S. Duquesne. Updating key size estimations for pairings. Journal of Cryptology, Jan 2018. https://hal.archives-ouvertes.fr/hal-01534101v2.

R. Barbulescu, P. Gaudry, and T. Kleinjung.

The tower number field sieve.

In T. Iwata and J. H. Cheon, editors, *ASIACRYPT 2015, Part II*, volume 9453 of *LNCS*, pages 31–55. Springer, Heidelberg, Nov. / Dec. 2015.

Bibliography II

R. Barbulescu and A. Lachand.
Some mathematical remarks on the polynomial selection in NFS.
Math. Comp., 86(303):397-418, 2017.
https://hal.inria.fr/hal-00954365,
https://doi.org/10.1090/mcom/3112.

S. Chatterjee, A. Menezes, and F. Rodríguez-Henríquez. On instantiating pairing-based protocols with elliptic curves of embedding degree one.

IEEE Trans. Computers, 66(6):1061-1070, 2017.

G. Fotiadis and C. Martindale.

Optimal TNFS-secure pairings on elliptic curves with composite embedding degree.

Cryptology ePrint Archive, Report 2019/555, 2019. https://eprint.iacr.org/2019/555.

D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves. Journal of Cryptology, 23(2):224–280, Apr. 2010.

Bibliography III

A. Guillevic, S. Masson, and E. Thomé.

Cocks-pinch curves of embedding degrees five to eight and optimal ate pairing computation.

Cryptology ePrint Archive, Report 2019/431, 2019. https://eprint.iacr.org/2019/431.

K. Hayasaka, K. Aoki, T. Kobayashi, and T. Takagi. A construction of 3-dimensional lattice sieve for number field sieve over \mathbb{F}_{p^n} . Cryptology ePrint Archive, Report 2015/1179, 2015. http://eprint.iacr.org/2015/1179.

A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The number field sieve in the medium prime case. In C. Dwork, editor, *CRYPTO 2006*, volume 4117 of *LNCS*, pages 326–344. Springer, Heidelberg, Aug. 2006.

A. Joux and C. Pierrot.

The special number field sieve in \mathbb{F}_{p^n} - application to pairing-friendly constructions.

In Z. Cao and F. Zhang, editors, *PAIRING 2013*, volume 8365 of *LNCS*, pages 45–61. Springer, Heidelberg, Nov. 2014.

Bibliography IV

T. Kim and R. Barbulescu.

Extended tower number field sieve: A new complexity for the medium prime case.

In M. Robshaw and J. Katz, editors, *CRYPTO 2016, Part I*, volume 9814 of *LNCS*, pages 543–571. Springer, Heidelberg, Aug. 2016.

T. Kleinjung, C. Diem, A. K. Lenstra, C. Priplata, and C. Stahlke. Computation of a 768-bit prime field discrete logarithm. In J. Coron and J. B. Nielsen, editors, *EUROCRYPT 2017, Part I*, volume 10210 of *LNCS*, pages 185–201. Springer, Heidelberg, Apr. / May 2017.

A. K. Lenstra and E. R. Verheul.

Selecting cryptographic key sizes.

Journal of Cryptology, 14(4):255–293, Sept. 2001.

K. S. McCurley.

The discrete logarithm problem.

In C. Pomerance, editor, Cryptology and Computational Number Theory, volume 42 of Proceedings of Symposia in Applied Mathematics, pages 49-74. AMS, 1990. https://bookstore.ams.org/psapm-42/, http://www.mccurley.org/papers/dlog.pdf.

Bibliography V

A. Menezes, P. Sarkar, and S. Singh.

Challenges with assessing the impact of NFS advances on the security of pairing-based cryptography.

In R. C. Phan and M. Yung, editors, Mycrypt Conference, Revised Selected Papers, volume 10311 of LNCS, pages 83-108, Kuala Lumpur, Malaysia, December 1-2 2016. Springer. http://eprint.iacr.org/2016/1102.

B. A. Murphy.

Polynomial selection for the number field sieve integer factorisation algorithm. Phd thesis, Australian National University, Australia, 1999. http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf.

P. Sarkar and S. Singh.

A general polynomial selection method and new asymptotic complexities for the tower number field sieve algorithm.

In J. H. Cheon and T. Takagi, editors, *ASIACRYPT 2016, Part I*, volume 10031 of *LNCS*, pages 37–62. Springer, Heidelberg, Dec. 2016.

P. Sarkar and S. Singh.

New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields.

In M. Fischlin and J.-S. Coron, editors, *EUROCRYPT 2016, Part I*, volume 9665 of *LNCS*, pages 429–458. Springer, Heidelberg, May 2016.