Consequences for pairing-based cryptography of the recent improvements on discrete logarithm computation in \mathbb{F}_{p^n}

Aurore Guillevic

University of Calgary, PIMS-CNRS

Mathematical Structures for Cryptography Workshop Leiden, Netherlands, August 23, 2016

Mathematical structures: pairing-friendly elliptic curves

Number Field Sieve

Key-size update for pairing-based cryptography

Mathematical structures: pairing-friendly elliptic curves

Number Field Sieve

Key-size update for pairing-based cryptography

Cryptographic pairing: black-box properties

 $(\mathbf{G}_1, +), (\mathbf{G}_2, +), (\mathbf{G}_T, \cdot)$ three cyclic groups of large prime order ℓ Pairing: map $e : \mathbf{G}_1 \times \mathbf{G}_2 \to \mathbf{G}_T$

- 1. bilinear: $e(P_1 + P_2, Q) = e(P_1, Q) \cdot e(P_2, Q)$, $e(P, Q_1 + Q_2) = e(P, Q_1) \cdot e(P, Q_2)$
- 2. non-degenerate: $e(G_1,G_2) \neq 1$ for $\langle G_1 \rangle = {f G}_1$, $\langle G_2 \rangle = {f G}_2$
- 3. efficiently computable.

Mostly used in practice:

$$e([a]P, [b]Q) = e([b]P, [a]Q) = e(P, Q)^{ab}$$
.

 \rightsquigarrow Many applications in asymmetric cryptography.

Example of application: identity-based encryption

- ▶ 1984: idea of identity-based encryption formalized by Shamir
- 1999: first practical identity-based cryptosystem of Sakai-Ohgishi-Kasahara
- > 2000: constructive pairings, Joux's tri-partite key-exchange
- > 2001: IBE of Boneh-Franklin

Rely on

- ► Discrete Log Problem (DLP): given $g, y \in \mathbf{G}$, compute x s.t. $g^x = y$ Diffie-Hellman Problem (DHP)
- ▶ bilinear DLP and DHP Given $\mathbf{G}_1, \mathbf{G}_2, \mathbf{G}_T, g_1, g_2, g_T$ and $y \in G_T$, compute $P \in \mathbf{G}_1$ s.t. $e(P, g_2) = y$, or $Q \in \mathbf{G}_2$ s.t. $e(g_1, Q) = y$ if $g_T^x = y$ then $e(g_1^x, g_2) = e(g_1, g_2^x) = g_T^x = y$
- pairing inversion problem

5 / 28

Pairing setting: elliptic curves

$$E/\mathbb{F}_p$$
: $y^2 = x^3 + ax + b$, $a, b \in \mathbb{F}_p$, $p \ge 5$

- proposed in 1985 by Koblitz, Miller
- $E(\mathbb{F}_p)$ has an efficient group law (chord an tangent rule) \rightarrow **G**
- $\#E(\mathbb{F}_p) = p + 1 t$, trace t: $|t| \le 2\sqrt{p}$
- efficient group order computation (point counting)
- ► large subgroup of prime order l s.t. l | p + 1 t and l coprime to p
- $E[\ell] \simeq \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell\mathbb{Z}$ (for crypto)
- only generic attacks against DLP on well-chosen genus 1 and genus 2 curves
- optimal parameter sizes

6 / 28

Tate Pairing and modified Tate pairing

 $\begin{array}{l} \ell \mid p^n - 1, \ E[\ell] \subset E(\mathbb{F}_{p^n}) \\ \text{Tate Pairing: } e: \ E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})/\ell E(\mathbb{F}_{p^n}) \to \mathbb{F}_{p^n}^*/(\mathbb{F}_{p^n}^*)^\ell \\ \text{For cryptography,} \end{array}$

• $\mathbf{G}_1 = E(\mathbb{F}_p)[\ell] = \{P \in E(\mathbb{F}_p), [\ell]P = \mathcal{O}\}$

▶ embedding degree n > 1 w.r.t. ℓ : smallest¹ integer ns.t. $\ell \mid p^n - 1 \Leftrightarrow E[\ell] \subset E(\mathbb{F}_{p^n})$

•
$$\mathbf{G}_2 \subset E(\mathbb{F}_{p^n})[\ell]$$

 $\blacktriangleright~\textbf{G}_1\cap\textbf{G}_2=\mathcal{O}$ by construction for practical applications

•
$$\mathbf{G}_{\mathcal{T}} = \boldsymbol{\mu}_{\ell} = \{ u \in \mathbb{F}_{p^n}^*, \ u^{\ell} = 1 \} \subset \mathbb{F}_{p^n}^*$$

When *n* is small i.e. $1 \le n \le 24$, the curve is *pairing-friendly*. This is very rare: For a given curve, $\log n \sim \log \ell$ ([*Balasubramanian Koblitz*]).

 $^{^{1}}n = 1$ is possible too

Modified Tate pairing

Avoid equivalence classes:

need one representative of the equivalence class instead. Ensure the pairing is non-degenerate: $\mathbf{G}_1 \cap \mathbf{G}_2 = \mathcal{O}$

$$E[\ell] = \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}\ell\mathbb{Z} = \mathbf{G}_1 \oplus \mathbf{G}_2$$

Let $P \in \mathbf{G}_1 = E(\mathbb{F}_p)[\ell], Q \in \mathbf{G}_2 \subset E(\mathbb{F}_{p^n})[\ell]$. Let $f_{\ell,P}$ the function s. t. $\text{Div}(f_{\ell,P}) = \ell(P) - \ell(\mathcal{O})$. Modified Tate pairing (in cryptography):

$$\begin{array}{cccc} E(\mathbb{F}_p)[\ell] & E(\mathbb{F}_{p^n})[r] \\ & \parallel & & \cup \\ e_{\mathsf{Tate}}: & \mathbf{G}_1 & \times & \mathbf{G}_2 & \to & \boldsymbol{\mu}_\ell \subset \mathbb{F}_{p^n}^* \\ & & (P,Q) & \mapsto & (f_{\ell,P}(Q))^{\frac{p^n-1}{\ell}} \end{array}$$

Modified Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_p)[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

9 / 28

Modified Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{\rho})[\ell] \times E(\mathbb{F}_{\rho^n})[\ell] \longrightarrow \mathbb{F}_{\rho^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

9 / 28

Modified Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_p)[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

inversion of e : hard problem (exponential)

Modified Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_p)[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- ► discrete logarithm computation in E(F_p) : hard problem (exponential, in O(√ℓ))

Modified Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_p)[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- ► discrete logarithm computation in E(F_p) : hard problem (exponential, in O(√ℓ))

Pairing key-sizes in the 2000's

Assumed: DLP in prime fields \mathbb{F}_{p_0} as hard as in medium and large characteristic fields \mathbb{F}_{p^n}

 \rightarrow take the same size as for prime fields.

Security	\log_2	finite	п	\log_2	deg P	ho	curve
level	ℓ	field		р	p = P(u)		
	256	3072		3072			prime field
128	256	3072	2	1536	no poly	any→6	supersingular
	256	3072	12	256	4	1	Barreto-Naehrig
	640	7680	12	640	4	$1 \rightarrow 5/3$	BN
	427	7680	12	640	6	3/2	BLS12
192	384	9216	18	512	8	4/3	KSS18
	384	7680	16	480	10	5/4	KSS16
	384	11520	24	480	10	5/4	BLS24

Very popular pairing-friendly curves: Barreto-Naehrig (BN)

$$E_{BN}: y^2 = x^3 + b, \ p \equiv 1 \mod 3, \ D = -3 \ (\text{ordinary})$$

$$\begin{array}{rcl} p &=& 36x^4 + 36x^3 + 24x^2 + 6x + 1 \\ t &=& 6x^2 + 1 \\ \ell &=& p + 1 - t = 36x^4 + 36x^3 + 18x^2 + 6x + 1 \\ t^2 - 4p &=& -3(6x^2 + 4x + 1)^2 \rightarrow \text{ no CM method needed} \\ \text{Comes from the Aurifeuillean factorization of } \Phi_{12}: \\ \Phi_{12}(6x^2) &= \ell(x)\ell(-x) \end{array}$$

Match(ed) the 128-bit security level perfectly:

Security level	$\log_2 \ell$	finite field	n	$\log_2 p$	$deg P, \ p = P(u)$	ρ
128	256	3072	12	256	4	1

It was assumed:

DL computation in \mathbb{F}_{p^n} of $n \log_2 p$ bits is as hard as in a prime field \mathbb{F}_{p_0} of $\log_2 p_0 = n \log_2 p$ bits, i.e. of same total size.

This is not true anymore:

now NFS variants can exploit the additional structure

- composite n, subfields (Extended TNFS, Kim then improvements by many others)
- ► special p, e.g. p = 36x⁴ + 36x³ + 24x² + 6x + 1 for BN curves ([Joux-Pierrot 13] improvement, now can be efficiently combined with Extended TNFS).

Mathematical structures: pairing-friendly elliptic curves

Number Field Sieve

Key-size update for pairing-based cryptography

Number Field Sieve

Recall Pierrick Gaudry's talk (Monday, 22nd August) Asymptotic complexity:

$$L_{p^n}[\alpha,c] = e^{(c+o(1))(\log p^n)^{\alpha}(\log \log p^n)^{1-\alpha}}$$

- ▶ α = 1: exponential
- $\alpha = 0$: polynomial
- ▶ $0 < \alpha < 1$: sub-exponential (including NFS)
- 1. polynomial selection (less than 10% of total time)
- 2. relation collection $L_{p^n}[1/3, c]$
- 3. linear algebra $L_{p^n}[1/3, c]$
- 4. individual discrete log computation $L_{p^n}[1/3, c' < c]$

The NFS diagram for DLP in $\mathbb{F}_{p^n}^*$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_p[z]$, f and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_p[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^n} = \mathbb{F}_p[z]/(\varphi(z))$ Diagram:

The NFS diagram for DLP in $\mathbb{F}_{p^n}^*$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_p[z]$, f and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_p[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^n} = \mathbb{F}_p[z]/(\varphi(z))$ Diagram: Large p:

The NFS diagram for DLP in $\mathbb{F}_{p^n}^*$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_{p}[z]$, f and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_{p}[z]$ of degree *n*, s.t. one can define the extension $\mathbb{F}_{p^n} = \mathbb{F}_p[z]/(\varphi(z))$ Diagram: Medium p: [Joux Lercier Smart Vercauteren 06] $a_0 - a_1 x + a_2 x^2 \in \mathbb{Z}[x]$ $x \mapsto \alpha_f$ $x \mapsto \alpha_g$ $a_0 - a_1 lpha_g + a_2 lpha_g^2$ $a_0 - a_1 \alpha_f + a_2 \alpha_f^2$ $\mathbb{Z}[x]/(f(x))$ $\mathbb{Z}[x]/(g(x))$ smooth? smooth? $\alpha_g \mapsto z$ $\mathbb{F}_{p^n} = \mathbb{F}_p[z]/(\varphi(z))$

Norms

The asymptotic complexity is determined by the *size of norms* of the elements $\sum_{0 \le i < t} a_i \alpha^i$ in the relation collection step. We want both sides *smooth* to get a relation.

```
"An ideal is B-smooth" approximated by "its norm is B-smooth".
```

Smoothness bound: $B = L_{p^n}[1/3, \beta]$ Size of norms: $L_{p^n}[2/3, c_N]$ Complexity: minimize c_N in the formulas. To reduce NFS complexity, reduce size of norms *asymptotically*. \rightarrow very hard problem.

Example: \mathbb{F}_{p^2} of 180dd (595 bits)

generic prime $p = \lfloor 10^{89}\pi \rfloor + 14905741$ of 90dd (298 bits) 295-bit prime-order subgroup ℓ s.t. $8\ell = p + 1$ Generalized Joux-Lercier method: $f = x^3 + x^2 - 9x - 12$ $g = 37414058632470877850964244771495186708647285789679381836660x^2$

-223565691465687205405605601832222460351960017078798491723762*x* +162639480667446113434818922067415048097038329578315695083173 Norms: 339 bits

Conjugation method:

 $f = x^4 + 1$

 $g = 448225077249286433565160965828828303618362474 x^2$

- 296061099084763680469275137306557962657824623 x

+ 448225077249286433565160965828828303618362474 .

Norms: 317 bits

Example: \mathbb{F}_{p^2} , $Q = p^2$

University of Calgary, PIMS-CNRS

A. Guillevic

Example: \mathbb{F}_{p^3} of 180dd (593 bits)

generic prime $p = \lfloor 10^{59}\pi \rfloor + 3569289$ of 60dd (198 bits) 118dd prime-order subgroup ℓ s.t. $39\ell = p^2 + p + 1$ [Joux-Lercier-Smart-Vercauteren 06] method: $f = x^3 + 560499121639792869931133108301x^2 - 560499121639792869931133108304x + 1$ $g = 560499121639792869931123378470x^3 - 1547077776638498332011063987313x^2$ -134419588280880277782306148097x + 560499121639792869931123378470Norms: 326 bits

Conjugation method [Barbulescu-Gaudry-G.-Morain 15]:

$$f = 20x^6 - x^5 - 290x^4 - 375x^3 + 15x^2 + 121x + 20$$

 $g = 136638347141315234758260376470x^3 - 29757113352694220846501278313x^2$
 $-439672154776639925121282407723x - 136638347141315234758260376470$
 $\varphi = \gcd(f_0, f_1) \mod p = x^3 - yx^2 - (y + 3)x - 1$,
where y is a root modulo p of
 $A(y) = 20y^2 - y - 169$
Norms: 319 bits

19 / 28

Example: \mathbb{F}_{p^3} , $Q = p^3$

University of Calgary, PIMS-CNRS

A. Guillevic

Mathematical structures: pairing-friendly elliptic curves

Number Field Sieve

Key-size update for pairing-based cryptography

Pairing crypto key-size update: practical approach

Relation collection: $a_0 + a_1\alpha + \ldots + a_{t-1}\alpha^{t-1}$ Consider elements of degree t and coeffs $\leq E^{2/t}$ $E = L_{p^n}[1/3, \beta]$ $\log_2 E = 1.1(\log p^n)^{1/3}(\log \log p^n)^{2/3}$ for cado-nfs this is a rough estimate that is not calibrated for very large sizes of p^n

Given a prime finite field size $\log_2 p_0$, and *n*, what size of p^n should we take to obtain the same DL computation running-time in \mathbb{F}_{p_0} and \mathbb{F}_{p^n} ?

- 1. compute an estimate of E_0 for \mathbb{F}_{p_0}
- 2. find $\log_2 p$ such that the size of the norms w.r.t. E_0 with the best known polynomial selection method for \mathbb{F}_{p^n} is at least the same as the norms obtained with Joux-Lercier in \mathbb{F}_{p_0}

(Rough) Estimates (do not take it too seriously)

Example: \mathbb{F}_{p^2}									
$\log_2 p_0$	$\log_2 E_0$	$\deg g (JL)$	Norms \mathbb{F}_{p_0}	r	t	$\log_2 p^n$	$\frac{\log_2 p^n}{\log_2 p_0}$		
1024	34.40	3	502.5	1	2	1164	14%		
2048	46.34	4	833.6	1	2	2203	8%		
3072	55.01	4	1116.4	2	2	3353	9%		
4096	62.05	5	1373.4	2	2	4472	9%		
r = 1: Conjugation method									

r = 2: Sarkar-Singh method

Example: \mathbb{F}_{p^3}									
	$\log_2 p_0$	$\log_2 E_0$	$\deg g \ (JL)$	Norms \mathbb{F}_{p_0}	r	t	$\log_2 p^n$	$\frac{\log_2 p^n}{\log_2 p_0}$	
	1024	34.40	3	502.5	1	2	1116	9%	
	2048	46.34	4	833.6	1	2	2458	20%	
	3072	55.01	4	1116.4	1	2	3687	20%	
	4096	62.05	5	1373.4	1	2	4848	18%	

E. In

Example: \mathbb{F}_{p^5}										
$\log_2 p_0$	$\log_2 E_0$	$\deg g (JL)$	Norms \mathbb{F}_{p_0}	r	t	$\log_2 p^n$	$\frac{\log_2 p^n}{\log_2 p_0}$			
1024	34.40	3	502.5			< 1024	_			
2048	46.34	4	833.6			< 2048	-			
3072	55.01	4	1116.4			< 3072	-			
4096	62.05	5	1373.4	1	2	4321	5%			

Kim's Extended TNFS: key ingredient

- Kim, Kim–Barbulescu, Jeong–Kim, Sarkar–Singh
- Tower of number fields
- deg(h) will play the role of t, where $a_0 + a_1\alpha + \ldots + a_{t-1}\alpha^{t-1}$

►
$$a_0 + a_1 \alpha + \ldots + a_{t-1} \alpha^{t-1}$$
 becomes
 $(a_{00} + a_{01} \tau + \ldots + a_{0,t-1} \tau^{t-1}) + (a_{10} + a_{11} \tau + \ldots + a_{1,t-1} \tau^{t-1}) \alpha$

Polynomial selection: mix everything!

- Extended Tower NFS
- n = 12: deg $h \in \{2, 3, 4, 6\}$
- Conjugation, Sarkar-Singh, JLSV1...
- Special prime $p = 36x^4 + 36x^3 + 24x^2 + 6x + 1$

Work in progress ...

Asymptotic complexities of NFS variants in \mathbb{F}_{p^n}

Large characteristic (not really used in pairing-based crypto)

► *n* is prime

- ▶ p is not special: $L_{p''}[1/3, (64/9)^{1/3} = 1.923]$ (GJL)
- ▶ *p* is special: $L_{p^n}[1/3, (32/9)^{1/3} = 1.526]$ (Joux-Pierrot, SNFS)
- n is composite: Extended TNFS, not asymptotically better (yet)

Medium characteristic

- ▶ *n* is prime
 - ▶ p is not special: $L_{p^n}[1/3, (96/9)^{1/3} = 2.201]$ (Conjugation)
 - ▶ *p* is special: $L_{p^n}[1/3, (64/9)^{1/3} = 1.923]$ (Joux-Pierrot)
- n is composite: Extended TNFS, much better, combined with Conjugation+Sarkar Singh
 - ▶ p is not special: $L_{p^n}[1/3, (48/9)^{1/3} = 1.74]$, size: $\log_2 Q \times 4/3$
 - ▶ p is special: $L_{p^n}[1/3, (32/9)^{1/3} = 1.526]$ size: $\log_2 Q \times 2$

NFS side:

- understand better how to mix everything (especially Extended TNFS + Sarkar-Singh)
- ▶ efficient *practical* polynomial selection when gcd(deg h, n/ deg h) > 1 for ETNFS

Pairing-friendly curve side:

- identify/find safe pairing-friendly curves
- efficient pairings on these curves