Consequences for pairing-based cryptography of the recent improvements on discrete logarithm computation in $\mathbb{F}_{p^{n}}$

Aurore Guillevic

University of Calgary, PIMS-CNRS
Mathematical Structures for Cryptography Workshop
Leiden, Netherlands, August 23, 2016

Outline

Mathematical structures: pairing-friendly elliptic curves

Number Field Sieve

Key-size update for pairing-based cryptography

Outline

Mathematical structures: pairing-friendly elliptic curves

Number Field Sieve

Key-size update for pairing-based cryptography

Cryptographic pairing: black-box properties

$\left(\mathbf{G}_{1},+\right),\left(\mathbf{G}_{2},+\right),\left(\mathbf{G}_{T}, \cdot\right)$ three cyclic groups of large prime order ℓ Pairing: map $e: \mathbf{G}_{1} \times \mathbf{G}_{2} \rightarrow \mathbf{G}_{T}$

1. bilinear: $e\left(P_{1}+P_{2}, Q\right)=e\left(P_{1}, Q\right) \cdot e\left(P_{2}, Q\right)$,

$$
e\left(P, Q_{1}+Q_{2}\right)=e\left(P, Q_{1}\right) \cdot e\left(P, Q_{2}\right)
$$

2. non-degenerate: $e\left(G_{1}, G_{2}\right) \neq 1$ for $\left\langle G_{1}\right\rangle=\mathbf{G}_{1},\left\langle G_{2}\right\rangle=\mathbf{G}_{2}$
3. efficiently computable.

Mostly used in practice:

$$
e([a] P,[b] Q)=e([b] P,[a] Q)=e(P, Q)^{a b}
$$

\rightsquigarrow Many applications in asymmetric cryptography.

Example of application: identity-based encryption

- 1984: idea of identity-based encryption formalized by Shamir
- 1999: first practical identity-based cryptosystem of Sakai-Ohgishi-Kasahara
- 2000: constructive pairings, Joux's tri-partite key-exchange
- 2001: IBE of Boneh-Franklin

Rely on

- Discrete Log Problem (DLP): given $g, y \in \mathbf{G}$, compute x s.t. $g^{x}=y$ Diffie-Hellman Problem (DHP)
- bilinear DLP and DHP

Given $\mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{T}, g_{1}, g_{2}, g_{T}$ and $y \in G_{T}$, compute $P \in \mathbf{G}_{1}$
s.t. $e\left(P, g_{2}\right)=y$, or $Q \in \mathbf{G}_{2}$ s.t. $e\left(g_{1}, Q\right)=y$
if $g_{T}^{\times}=y$ then $e\left(g_{1}^{x}, g_{2}\right)=e\left(g_{1}, g_{2}^{x}\right)=g_{T}^{\times}=y$

- pairing inversion problem

Pairing setting: elliptic curves

$$
E / \mathbb{F}_{p}: y^{2}=x^{3}+a x+b, a, b \in \mathbb{F}_{p}, p \geq 5
$$

- proposed in 1985 by Koblitz, Miller
- $E\left(\mathbb{F}_{p}\right)$ has an efficient group law (chord an tangent rule) $\rightarrow \mathbf{G}$
- $\# E\left(\mathbb{F}_{p}\right)=p+1-t$, trace $t:|t| \leq 2 \sqrt{p}$
- efficient group order computation (point counting)
- large subgroup of prime order ℓ s.t. $\ell \mid p+1-t$ and ℓ coprime to p
- $E[\ell] \simeq \mathbb{Z} / \ell \mathbb{Z} \oplus \mathbb{Z} / \ell \mathbb{Z}$ (for crypto)
- only generic attacks against DLP on well-chosen genus 1 and genus 2 curves
- optimal parameter sizes

Tate Pairing and modified Tate pairing

$\ell \mid p^{n}-1, E[\ell] \subset E\left(\mathbb{F}_{p^{n}}\right)$
Tate Pairing: $e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right) / \ell E\left(\mathbb{F}_{p^{n}}\right) \rightarrow \mathbb{F}_{p^{n}}^{*} /\left(\mathbb{F}_{p^{n}}^{*}\right)^{\ell}$
For cryptography,

- $\mathbf{G}_{1}=E\left(\mathbb{F}_{p}\right)[\ell]=\left\{P \in E\left(\mathbb{F}_{p}\right),[\ell] P=\mathcal{O}\right\}$
- embedding degree $n>1$ w.r.t. ℓ : smallest ${ }^{1}$ integer n s.t. $\ell \mid p^{n}-1 \Leftrightarrow E[\ell] \subset E\left(\mathbb{F}_{p^{n}}\right)$
- $\mathbf{G}_{2} \subset E\left(\mathbb{F}_{p^{n}}\right)[\ell]$
- $\mathbf{G}_{1} \cap \mathbf{G}_{2}=\mathcal{O}$ by construction for practical applications
- $\mathbf{G}_{T}=\boldsymbol{\mu}_{\ell}=\left\{u \in \mathbb{F}_{p^{n}}^{*}, u^{\ell}=1\right\} \subset \mathbb{F}_{p^{n}}^{*}$

When n is small i.e. $1 \leqslant n \leqslant 24$, the curve is pairing-friendly.
This is very rare: For a given curve, $\log n \sim \log \ell$ ([Balasubramanian Koblitz]).
${ }^{1} n=1$ is possible too

Modified Tate pairing

Avoid equivalence classes:
need one representative of the equivalence class instead.
Ensure the pairing is non-degenerate: $\mathbf{G}_{1} \cap \mathbf{G}_{2}=\mathcal{O}$

$$
E[\ell]=\mathbb{Z} / \ell \mathbb{Z} \oplus \mathbb{Z} \ell \mathbb{Z}=\mathbf{G}_{1} \oplus \mathbf{G}_{2}
$$

Let $P \in \mathbf{G}_{1}=E\left(\mathbb{F}_{p}\right)[\ell], Q \in \mathbf{G}_{2} \subset E\left(\mathbb{F}_{p^{n}}\right)[\ell]$.
Let $f_{\ell, P}$ the function s. t. $\operatorname{Div}\left(f_{\ell, P}\right)=\ell(P)-\ell(\mathcal{O})$.
Modified Tate pairing (in cryptography):

$$
\begin{array}{cc}
E\left(\mathbb{F}_{p}\right)[\ell] & E\left(\mathbb{F}_{p^{n}}\right)[r] \\
\| & \cup
\end{array}
$$

$$
\begin{array}{lcccc}
e_{\text {Tate }}: & \mathbf{G}_{1} \quad \times \quad \mathbf{G}_{2} & \rightarrow \boldsymbol{\mu}_{\ell} \subset \mathbb{F}_{p^{n}}^{*} \\
& & & & \mapsto \\
& (P, Q) & & \left(f_{\ell, P}(Q)\right)^{\frac{p^{n}-1}{\ell}}
\end{array}
$$

Cryptographic pairing

Modified Weil or Tate pairing on an elliptic curve Discrete logarithm problem with one more dimension.

$$
e: E\left(\mathbb{F}_{p}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Cryptographic pairing

Modified Weil or Tate pairing on an elliptic curve Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

Cryptographic pairing

Modified Weil or Tate pairing on an elliptic curve Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

- inversion of e : hard problem (exponential)

Cryptographic pairing

Modified Weil or Tate pairing on an elliptic curve Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{\ell})$)

Cryptographic pairing

Modified Weil or Tate pairing on an elliptic curve Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{\ell})$)
- discrete logarithm computation in $\mathbb{F}_{p^{n}}^{*}$: easier, subexponential \rightarrow take a large enough field

Pairing key-sizes in the 2000's

Assumed: DLP in prime fields $\mathbb{F}_{p_{0}}$ as hard as in medium and large characteristic fields $\mathbb{F}_{p^{n}}$
\rightarrow take the same size as for prime fields.

Security level	$\log _{2}$	finite field	n	$\log _{2}$	$\operatorname{deg} P$	ρ	curve
	256	3072		3072			
128	256	3072	2	1536	no poly	any $\rightarrow 6$	prime field
	256	3072	12	256	4	1	supersingular

Very popular pairing-friendly curves: Barreto-Naehrig (BN)

$$
E_{B N}: y^{2}=x^{3}+b, p \equiv 1 \bmod 3, D=-3 \text { (ordinary) }
$$

$$
\begin{aligned}
p & =36 x^{4}+36 x^{3}+24 x^{2}+6 x+1 \\
t & =6 x^{2}+1 \\
\ell & =p+1-t=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1
\end{aligned}
$$

$$
t^{2}-4 p=-3\left(6 x^{2}+4 x+1\right)^{2} \rightarrow \text { no CM method needed }
$$

Comes from the Aurifeuillean factorization of Φ_{12} :
$\Phi_{12}\left(6 x^{2}\right)=\ell(x) \ell(-x)$
Match(ed) the 128 -bit security level perfectly:

Security level	$\log _{2} \ell$	finite field	n	$\log _{2} p$	$\operatorname{deg} P, p=P(u)$	ρ
128	256	3072	12	256	4	1

What changed?

It was assumed:
DL computation in $\mathbb{F}_{p^{n}}$ of $n \log _{2} p$ bits is as hard as in a prime field $\mathbb{F}_{p_{0}}$ of $\log _{2} p_{0}=n \log _{2} p$ bits, i.e. of same total size.

This is not true anymore:
now NFS variants can exploit the additional structure

- composite n, subfields (Extended TNFS, Kim then improvements by many others)
- special p, e.g. $p=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1$ for BN curves ([Joux-Pierrot 13] improvement, now can be efficiently combined with Extended TNFS).

Outline

Mathematical structures: pairing-friendly elliptic curves

Number Field Sieve

Key-size update for pairing-based cryptography

Number Field Sieve

Recall Pierrick Gaudry's talk (Monday, 22nd August) Asymptotic complexity:

$$
L_{p^{n}}[\alpha, c]=e^{(c+o(1))\left(\log p^{n}\right)^{\alpha}\left(\log \log p^{n}\right)^{1-\alpha}}
$$

- $\alpha=1$: exponential
- $\alpha=0$: polynomial
- $0<\alpha<1$: sub-exponential (including NFS)

1. polynomial selection (less than 10% of total time)
2. relation collection $L_{p^{n}}[1 / 3, c]$
3. linear algebra $L_{p^{n}}[1 / 3, c]$
4. individual discrete \log computation $L_{p^{n}}\left[1 / 3, c^{\prime}<c\right]$

The NFS diagram for DLP in $\mathbb{F}_{p^{n}}^{*}$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_{p}[z], f$ and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_{p}[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[z] /(\varphi(z))$
Diagram:

The NFS diagram for DLP in $\mathbb{F}_{p^{n}}^{*}$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_{p}[z], f$ and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_{p}[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[z] /(\varphi(z))$
Diagram: Large p :

The NFS diagram for DLP in $\mathbb{F}_{p^{n}}^{*}$

Let f, g be two polynomials defining two number fields and such that in $\mathbb{F}_{p}[z], f$ and g have a common irreducible factor $\varphi(z) \in \mathbb{F}_{p}[z]$ of degree n, s.t. one can define the extension $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}[z] /(\varphi(z))$
Diagram: Medium p: [Joux Lercier Smart Vercauteren 06]

Norms

The asymptotic complexity is determined by the size of norms of the elements $\sum_{0 \leq i<t} a_{i} \alpha^{i}$ in the relation collection step.
We want both sides smooth to get a relation.
"An ideal is B-smooth" approximated by
"its norm is B-smooth".

Smoothness bound: $B=L_{p^{n}}[1 / 3, \beta]$
Size of norms: $L_{p^{n}}\left[2 / 3, c_{\mathcal{N}}\right]$
Complexity: minimize $c_{\mathcal{N}}$ in the formulas.
To reduce NFS complexity, reduce size of norms asymptotically. \rightarrow very hard problem.

Example: $\mathbb{F}_{p^{2}}$ of 180 dd (595 bits)

generic prime $p=\left\lfloor 10^{89} \pi\right\rfloor+14905741$ of 90 dd (298 bits)
295-bit prime-order subgroup ℓ s.t. $8 \ell=p+1$
Generalized Joux-Lercier method:
$f=x^{3}+x^{2}-9 x-12$
$g=37414058632470877850964244771495186708647285789679381836660 x^{2}$
-223565691465687205405605601832222460351960017078798491723762X
+162639480667446113434818922067415048097038329578315695083173
Norms: 339 bits
Conjugation method:

$$
\begin{aligned}
f= & x^{4}+1 \\
g= & 448225077249286433565160965828828303618362474 x^{2} \\
& -296061099084763680469275137306557962657824623 \quad x \\
& +448225077249286433565160965828828303618362474 .
\end{aligned}
$$

Norms: 317 bits

Example: $\mathbb{F}_{p^{2}}, Q=p^{2}$

Example: $\mathbb{F}_{p^{3}}$ of 180 dd (593 bits)

generic prime $p=\left\lfloor 10^{59} \pi\right\rfloor+3569289$ of 60 dd (198 bits)
118 dd prime-order subgroup ℓ s.t. $39 \ell=p^{2}+p+1$
[Joux-Lercier-Smart-Vercauteren 06] method:
$f=x^{3}+560499121639792869931133108301 x^{2}-560499121639792869931133108304 x+1$ $g=560499121639792869931123378470 x^{3}-1547077776638498332011063987313 x^{2}$
$-134419588280880277782306148097 X+560499121639792869931123378470$
Norms: 326 bits
Conjugation method [Barbulescu-Gaudry-G.-Morain 15]:
$f=20 x^{6}-x^{5}-290 x^{4}-375 x^{3}+15 x^{2}+121 x+20$
$g=136638347141315234758260376470 x^{3}-29757113352694220846501278313 x^{2}$
-439672154776639925121282407723x - 136638347141315234758260376470
$\varphi=\operatorname{gcd}\left(f_{0}, f_{1}\right) \bmod p=x^{3}-y x^{2}-(y+3) x-1$, where y is a root modulo p of
$A(y)=20 y^{2}-y-169$
Norms: 319 bits

Example: $\mathbb{F}_{p^{3}}, Q=p^{3}$

Outline

Mathematical structures: pairing-friendly elliptic curves

Number Field Sieve

Key-size update for pairing-based cryptography

Pairing crypto key-size update: practical approach

Relation collection: $a_{0}+a_{1} \alpha+\ldots+a_{t-1} \alpha^{t-1}$
Consider elements of degree t and coeffs $\leq E^{2 / t}$
$E=L_{p^{n}}[1 / 3, \beta]$
$\log _{2} E=1.1\left(\log p^{n}\right)^{1 / 3}\left(\log \log p^{n}\right)^{2 / 3}$ for cado-nfs
this is a rough estimate that is not calibrated for very large sizes of p^{n}

Given a prime finite field size $\log _{2} p_{0}$, and n, what size of p^{n} should we take to obtain the same DL computation running-time in $\mathbb{F}_{p_{0}}$ and $\mathbb{F}_{p^{n}}$?

1. compute an estimate of E_{0} for $\mathbb{F}_{p_{0}}$
2. find $\log _{2} p$ such that the size of the norms w.r.t. E_{0} with the best known polynomial selection method for $\mathbb{F}_{p^{n}}$ is at least the same as the norms obtained with Joux-Lercier in $\mathbb{F}_{p_{0}}$

(Rough) Estimates (do not take it too seriously)

Example: $\mathbb{F}_{p^{2}}$

$\log _{2} p_{0}$	$\log _{2} E_{0}$	$\operatorname{deg} g(\mathrm{JL})$	Norms $\mathbb{F}_{p_{0}}$	r	t	$\log _{2} p^{n}$	$\frac{\log _{2} p^{n}}{\log _{2} p_{0}}$
1024	34.40	3	502.5	1	2	1164	14%
2048	46.34	4	833.6	1	2	2203	8%
3072	55.01	4	1116.4	2	2	3353	9%
4096	62.05	5	1373.4	2	2	4472	9%

$r=1$: Conjugation method
$r=2$: Sarkar-Singh method
Example: $\mathbb{F}_{p^{3}}$

$\log _{2} p_{0}$	$\log _{2} E_{0}$	$\operatorname{deg} g(\mathrm{JL})$	Norms $\mathbb{F}_{p_{0}}$	r	t	$\log _{2} p^{n}$	$\frac{\log _{2} p^{n}}{\log _{2} p_{0}}$
1024	34.40	3	502.5	1	2	1116	9%
2048	46.34	4	833.6	1	2	2458	20%
3072	55.01	4	1116.4	1	2	3687	20%
4096	62.05	5	1373.4	1	2	4848	18%

No worries - $\mathbb{F}_{p^{n}}: n \geq 5$

Example: $\mathbb{F}_{p^{5}}$

$\log _{2} p_{0}$	$\log _{2} E_{0}$	$\operatorname{deg} g(\mathrm{JL})$	Norms $\mathbb{F}_{p_{0}}$	r	t	$\log _{2} p^{n}$	$\frac{\log _{2} p^{n}}{\log _{2} p_{0}}$
1024	34.40	3	502.5		<1024	-	
2048	46.34	4	833.6		<2048	-	
3072	55.01	4	1116.4			<3072	-
4096	62.05	5	1373.4	1	2	4321	5%

Kim's Extended TNFS: key ingredient

- Kim, Kim-Barbulescu, Jeong-Kim, Sarkar-Singh
- Tower of number fields
- $\operatorname{deg}(h)$ will play the role of t, where $a_{0}+a_{1} \alpha+\ldots+a_{t-1} \alpha^{t-1}$
- $a_{0}+a_{1} \alpha+\ldots+a_{t-1} \alpha^{t-1}$ becomes $\left(a_{00}+a_{01} \tau+\ldots+a_{0, t-1} \tau^{t-1}\right)+\left(a_{10}+a_{11} \tau+\ldots+a_{1, t-1} \tau^{t-1}\right) \alpha$

$\mathbb{F}_{p^{12}}$ key-size update

Polynomial selection: mix everything!

- Extended Tower NFS
- $n=12: \operatorname{deg} h \in\{2,3,4,6\}$
- Conjugation, Sarkar-Singh, JLSV1...
- Special prime $p=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1$

Work in progress...

Asymptotic complexities of NFS variants in $\mathbb{F}_{p^{n}}$

Large characteristic (not really used in pairing-based crypto)

- n is prime
- p is not special: $L_{p^{n}}\left[1 / 3,(64 / 9)^{1 / 3}=1.923\right]$ (GJL)
- p is special: $L_{p^{n}}\left[1 / 3,(32 / 9)^{1 / 3}=1.526\right]$ (Joux-Pierrot, SNFS)
- n is composite: Extended TNFS, not asymptotically better (yet)
Medium characteristic
- n is prime
- p is not special: $L_{p^{n}}\left[1 / 3,(96 / 9)^{1 / 3}=2.201\right]$ (Conjugation)
- p is special: $L_{p^{n}}\left[1 / 3,(64 / 9)^{1 / 3}=1.923\right]$ (Joux-Pierrot)
- n is composite: Extended TNFS, much better, combined with Conjugation + Sarkar Singh
- p is not special: $L_{p^{n}}\left[1 / 3,(48 / 9)^{1 / 3}=1.74\right]$, size: $\log _{2} Q \times 4 / 3$
- p is special: $L_{p^{n}}\left[1 / 3,(32 / 9)^{1 / 3}=1.526\right]$ size: $\log _{2} Q \times 2$

Future work

NFS side:

- understand better how to mix everything (especially Extended TNFS + Sarkar-Singh)
- efficient practical polynomial selection when $\operatorname{gcd}(\operatorname{deg} h, n / \operatorname{deg} h)>1$ for ETNFS

Pairing-friendly curve side:

- identify/find safe pairing-friendly curves
- efficient pairings on these curves

