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Cryptographic pairing: black-box properties

(G1,+), (G2,+), (GT , ·) three cyclic groups of large prime order `
Pairing: map e : G1 × G2 → GT

1. bilinear: e(P1 + P2, Q) = e(P1,Q) · e(P2,Q),
e(P,Q1 + Q2) = e(P,Q1) · e(P,Q2)

2. non-degenerate: e(G1,G2) 6= 1 for 〈G1〉 = G1, 〈G2〉 = G2

3. efficiently computable.

Mostly used in practice:

e([a]P, [b]Q) = e([b]P, [a]Q) = e(P,Q)ab .

 Many applications in asymmetric cryptography.
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Example of application: identity-based encryption

I 1984: idea of identity-based encryption formalized by Shamir

I 1999: first practical identity-based cryptosystem of
Sakai-Ohgishi-Kasahara

I 2000: constructive pairings, Joux’s tri-partite key-exchange

I 2001: IBE of Boneh-Franklin

Rely on

I Discrete Log Problem (DLP): given g , y ∈ G, compute x s.t.
g x = y Diffie-Hellman Problem (DHP)

I bilinear DLP and DHP
Given G1,G2,GT , g1, g2, gT and y ∈ GT , compute P ∈ G1

s.t. e(P, g2) = y , or Q ∈ G2 s.t. e(g1,Q) = y
if g x

T = y then e(g x
1 , g2) = e(g1, g

x
2 ) = g x

T = y

I pairing inversion problem
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Pairing setting: elliptic curves

E/Fp : y2 = x3 + ax + b, a, b ∈ Fp, p ≥ 5

I proposed in 1985 by Koblitz, Miller

I E (Fp) has an efficient group law (chord an tangent rule)→ G

I #E (Fp) = p + 1− t, trace t: |t| ≤ 2
√
p

I efficient group order computation (point counting)

I large subgroup of prime order ` s.t. ` | p + 1− t and `
coprime to p

I E [`] ' Z/`Z⊕ Z/`Z (for crypto)

I only generic attacks against DLP on well-chosen genus 1 and
genus 2 curves

I optimal parameter sizes
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Tate Pairing and modified Tate pairing

` | pn − 1, E [`] ⊂ E (Fpn)
Tate Pairing: e : E (Fpn)[`]× E (Fpn)/`E (Fpn)→ F∗pn/(F∗pn)`

For cryptography,

I G1 = E (Fp)[`] = {P ∈ E (Fp), [`]P = O}
I embedding degree n > 1 w.r.t. `: smallest1 integer n

s.t. ` | pn − 1⇔ E [`] ⊂ E (Fpn)

I G2 ⊂ E (Fpn)[`]

I G1 ∩ G2 = O by construction for practical applications

I GT = µ` = {u ∈ F∗pn , u` = 1} ⊂ F∗pn
When n is small i.e. 1 6 n 6 24, the curve is pairing-friendly.
This is very rare: For a given curve, log n ∼ log `
([Balasubramanian Koblitz]).

1n = 1 is possible too
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Modified Tate pairing

Avoid equivalence classes:
need one representative of the equivalence class instead.
Ensure the pairing is non-degenerate: G1 ∩ G2 = O

E [`] = Z/`Z⊕ Z`Z = G1 ⊕ G2

Let P ∈ G1 = E (Fp)[`],Q ∈ G2 ⊂ E (Fpn)[`].
Let f`,P the function s. t. Div(f`,P) = `(P)− `(O).
Modified Tate pairing (in cryptography):

E (Fp)[`] E (Fpn)[r ]

= ∪
eTate : G1 × G2 → µ` ⊂ F∗pn

(P,Q) 7→ (f`,P(Q))
pn−1
`
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Cryptographic pairing

Modified Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

e : E (Fp)[`]× E (Fpn)[`] F∗pn , e([a]P, [b]Q) = e(P,Q)ab

Attacks

I inversion of e : hard problem (exponential)

I discrete logarithm computation in E (Fp) : hard problem
(exponential, in O(

√
`))

I discrete logarithm computation in F∗pn : easier,
subexponential → take a large enough field
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Pairing key-sizes in the 2000’s

Assumed: DLP in prime fields Fp0 as hard as in medium and large
characteristic fields Fpn

→ take the same size as for prime fields.

Security log2 finite n log2 degP ρ curve
level ` field p p = P(u)

256 3072 3072 prime field
128 256 3072 2 1536 no poly any→6 supersingular

256 3072 12 256 4 1 Barreto-Naehrig

640 7680 12 640 4 1→5/3 BN
427 7680 12 640 6 3/2 BLS12

192 384 9216 18 512 8 4/3 KSS18
384 7680 16 480 10 5/4 KSS16
384 11520 24 480 10 5/4 BLS24
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Very popular pairing-friendly curves: Barreto-Naehrig (BN)

EBN : y2 = x3 + b, p ≡ 1 mod 3, D = −3 (ordinary)

p = 36x4 + 36x3 + 24x2 + 6x + 1
t = 6x2 + 1
` = p + 1− t = 36x4 + 36x3 + 18x2 + 6x + 1

t2 − 4p = −3(6x2 + 4x + 1)2 → no CM method needed
Comes from the Aurifeuillean factorization of Φ12 :
Φ12(6x2) = `(x)`(−x)

Match(ed) the 128-bit security level perfectly:
Security level log2 ` finite field n log2 p degP, p = P(u) ρ

128 256 3072 12 256 4 1
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What changed?

It was assumed:
DL computation in Fpn of n log2 p bits is as hard as in a prime field
Fp0 of log2 p0 = n log2 p bits, i.e. of same total size.

This is not true anymore:

now NFS variants can exploit the additional structure

I composite n, subfields (Extended TNFS, Kim then
improvements by many others)

I special p, e.g. p = 36x4 + 36x3 + 24x2 + 6x + 1 for BN
curves ([Joux-Pierrot 13] improvement, now can be efficiently
combined with Extended TNFS).
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Number Field Sieve

Recall Pierrick Gaudry’s talk (Monday, 22nd August) Asymptotic
complexity:

Lpn [α, c] = e(c+o(1))(log pn)α(log log pn)1−α

I α = 1: exponential

I α = 0: polynomial

I 0 < α < 1: sub-exponential (including NFS)

1. polynomial selection (less than 10% of total time)

2. relation collection Lpn [1/3, c]

3. linear algebra Lpn [1/3, c]

4. individual discrete log computation Lpn [1/3, c ′ < c]
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The NFS diagram for DLP in F∗pn

Let f , g be two polynomials defining two number fields
and such that in Fp[z ], f and g have a common irreducible factor
ϕ(z) ∈ Fp[z ] of degree n, s.t. one can define the extension
Fpn = Fp[z ]/(ϕ(z))
Diagram:

Z[x ]

Z[x ]/(f (x)) Z[x ]/(g(x))

x 7→ αf x 7→ αg

Fpn = Fp[z ]/(ϕ(z))

αf 7→ z αg 7→ z

a0 − a1x ∈

a0 − a1αf

smooth?
a0 − a1αg

smooth?

a0 − a1x + a2x
2 ∈

a0 − a1αf + a2α
2
f

smooth?
a0 − a1αg + a2α

2
g

smooth?
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Norms

The asymptotic complexity is determined by the size of norms of
the elements

∑
0≤i<t aiα

i in the relation collection step.
We want both sides smooth to get a relation.

“An ideal is B-smooth” approximated by
“its norm is B-smooth”.

Smoothness bound: B = Lpn [1/3, β]
Size of norms: Lpn [2/3, cN ]
Complexity: minimize cN in the formulas.
To reduce NFS complexity, reduce size of norms asymptotically.
→ very hard problem.
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Example: Fp2 of 180dd (595 bits)

generic prime p = b1089πc+ 14905741 of 90dd (298 bits)
295-bit prime-order subgroup ` s.t. 8` = p + 1
Generalized Joux-Lercier method:
f = x3 + x2 − 9x − 12
g = 37414058632470877850964244771495186708647285789679381836660x2

−223565691465687205405605601832222460351960017078798491723762x
+162639480667446113434818922067415048097038329578315695083173

Norms: 339 bits

Conjugation method:
f = x4 + 1
g = 448225077249286433565160965828828303618362474 x2

− 296061099084763680469275137306557962657824623 x
+ 448225077249286433565160965828828303618362474 .

Norms: 317 bits
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Example: Fp2, Q = p2

728 1768 3544 6272 10192 15536

0 2048 4096 6144 8192 10240 12288 14336 16384
0

500

1000

1500

2000

2500

3000

3500

d = 3

d = 4

d = 5

d = 6

d = 7

d = 8

Q (bits)

Q (bits)

lo
g

2
(p

ro
d

u
ct

o
f

n
or

m
s)

prime field bound & GJL

Conj, (4, 2), r = 1, t = 2, log2 Q ≤ 2416

Sarkar-Singh, (6, 4), r = 2, t = 2, log2 Q ≤ 7864

Sarkar-Singh, (8, 6), r = 3, t = 2, log2 Q ≥ 7864

BGGM15 595-bit Fp2 record
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Example: Fp3 of 180dd (593 bits)

generic prime p = b1059πc+ 3569289 of 60dd (198 bits)
118dd prime-order subgroup ` s.t. 39` = p2 + p + 1
[Joux-Lercier-Smart-Vercauteren 06] method:

f = x3 + 560499121639792869931133108301x2 − 560499121639792869931133108304x + 1
g = 560499121639792869931123378470x3 − 1547077776638498332011063987313x2

−134419588280880277782306148097x + 560499121639792869931123378470

Norms: 326 bits

Conjugation method [Barbulescu-Gaudry-G.-Morain 15] :
f = 20x6 − x5 − 290x4 − 375x3 + 15x2 + 121x + 20
g = 136638347141315234758260376470x3 − 29757113352694220846501278313x2

−439672154776639925121282407723x − 136638347141315234758260376470

ϕ= gcd(f0, f1) mod p = x3 − yx2 − (y + 3)x − 1,
where y is a root modulo p of

A(y) = 20y2 − y − 169
Norms: 319 bits
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Example: Fp3, Q = p3

728 1768 3544 6272 10192 15536

0 2048 4096 6144 8192 9592 12288 14336 16384
0
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3500

d = 3

d = 4

d = 5

d = 6

d = 7

d = 8

Q (bits)

Q (bits)

lo
g

2
(p

ro
d
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ct

o
f

n
or

m
s)

prime field bound & GJL

Conj, (6, 3), r = 1, t = 2, log2 Q < 9592

Sarkar-Singh, (9, 6), r = 2, t = 2, log2 Q > 9592

GGM16 593-bit Fp3 record
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Pairing crypto key-size update: practical approach

Relation collection: a0 + a1α + . . .+ at−1α
t−1

Consider elements of degree t and coeffs ≤ E 2/t

E = Lpn [1/3, β]
log2 E = 1.1(log pn)1/3(log log pn)2/3 for cado-nfs
this is a rough estimate that is not calibrated for very large sizes of
pn

Given a prime finite field size log2 p0, and n, what size of pn should
we take to obtain the same DL computation running-time in Fp0

and Fpn?

1. compute an estimate of E0 for Fp0

2. find log2 p such that the size of the norms w.r.t. E0 with the
best known polynomial selection method for Fpn is at least the
same as the norms obtained with Joux–Lercier in Fp0
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(Rough) Estimates (do not take it too seriously)

Example: Fp2

log2 p0 log2 E0 deg g (JL) Norms Fp0 r t log2 p
n log2 p

n

log2 p0

1024 34.40 3 502.5 1 2 1164 14%
2048 46.34 4 833.6 1 2 2203 8%
3072 55.01 4 1116.4 2 2 3353 9%
4096 62.05 5 1373.4 2 2 4472 9%

r = 1: Conjugation method
r = 2: Sarkar-Singh method

Example: Fp3

log2 p0 log2 E0 deg g (JL) Norms Fp0 r t log2 p
n log2 p

n

log2 p0

1024 34.40 3 502.5 1 2 1116 9%
2048 46.34 4 833.6 1 2 2458 20%
3072 55.01 4 1116.4 1 2 3687 20%
4096 62.05 5 1373.4 1 2 4848 18%
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No worries - Fpn: n ≥ 5

Example: Fp5

log2 p0 log2 E0 deg g (JL) Norms Fp0 r t log2 p
n log2 p

n

log2 p0

1024 34.40 3 502.5 < 1024 –
2048 46.34 4 833.6 < 2048 –
3072 55.01 4 1116.4 < 3072 –
4096 62.05 5 1373.4 1 2 4321 5%
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Kim’s Extended TNFS: key ingredient

I Kim, Kim–Barbulescu, Jeong–Kim, Sarkar–Singh

I Tower of number fields

I deg(h) will play the role of t, where a0 + a1α+ . . .+ at−1α
t−1

I a0 + a1α + . . .+ at−1α
t−1 becomes

(a00 +a01τ+. . .+a0,t−1τ
t−1)+(a10 +a11τ+. . .+a1,t−1τ

t−1)α

Q

Kh = Q[τ ]/(h(τ))

Kh[x ]/(f (x)) Kh[x ]/(g(x))

University of Calgary, PIMS–CNRS A. Guillevic August 23, 2016 25 / 28



Fp12 key-size update

Polynomial selection: mix everything!

I Extended Tower NFS

I n = 12: deg h ∈ {2, 3, 4, 6}
I Conjugation, Sarkar-Singh, JLSV1...

I Special prime p = 36x4 + 36x3 + 24x2 + 6x + 1

Work in progress...
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Asymptotic complexities of NFS variants in Fpn

Large characteristic (not really used in pairing-based crypto)
I n is prime

I p is not special: Lpn [1/3, (64/9)1/3 = 1.923] (GJL)
I p is special: Lpn [1/3, (32/9)1/3 = 1.526] (Joux–Pierrot, SNFS)

I n is composite: Extended TNFS, not asymptotically better
(yet)

Medium characteristic
I n is prime

I p is not special: Lpn [1/3, (96/9)1/3 = 2.201] (Conjugation)
I p is special: Lpn [1/3, (64/9)1/3 = 1.923] (Joux–Pierrot)

I n is composite: Extended TNFS, much better, combined with
Conjugation+Sarkar Singh

I p is not special: Lpn [1/3, (48/9)1/3 = 1.74], size: log2 Q ×4/3
I p is special: Lpn [1/3, (32/9)1/3 = 1.526] size: log2 Q ×2
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Future work

NFS side:

I understand better how to mix everything (especially Extended
TNFS + Sarkar-Singh)

I efficient practical polynomial selection when
gcd(deg h, n/ deg h) > 1 for ETNFS

Pairing-friendly curve side:

I identify/find safe pairing-friendly curves

I efficient pairings on these curves
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