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Motivation: Pairing-based cryptography

The Number Field Sieve algorithm

GF(p3): breaking a 508-bit MNT curve
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Asymetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie-Hellman, etc)

Given a finite cyclic group (G, ), a generator g and y € G,
compute x s.t. y = g*~.

Common choice of G:
prime finite field IF,, (since 1976), characteristic 2 finite field Fn,
elliptic curve E(Fp) (since 1985)
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Elliptic curves in cryptography

E:y?>=x3+ax+b, a,belF,

v

proposed in 1985 by Koblitz, Miller
E(Fp) has an efficient group law (chord an tangent rule) — G
#E(Fp) = p+1—t, trace t: [t| <2,/p

v

v

Need a prime-order (or with tiny cofactor) elliptic curve:

h-¢=#E(F,), (isprime, htiny, eg. h=1,2

» compute t

v

slow to compute in 1985: can use supersingular curves whose
trace is known.
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Supersingular elliptic curves

Example over F,, p > 5
E:y2:X3+x/Fp, p=3mod4

st. t=0, #E(F,) =p+ 1.
take ps.it. p+1=4-/ where £ is prime.
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1993: Menezes-Okamoto-Vanstone and Frey-Riick attacks
There exists a pairing e that embeds the group E(F,) into I
where DLP is much easier.

Do not use supersingular curves.
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There exists a pairing e that embeds the group E(F,) into I
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But computing a pairing is very slow:

[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a
163-bit supersingular curve, where Gt C > of 326 bits.
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Pairing-based cryptography

1999: Frey—Muller—Riick: actually, Miller Algorithm can be
much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently
(1s on a supersingular 528-bit curve, Gt C [F2 of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

e : E(Fpn)[f] x E(Fpn)[f] o, e([a]P, [b]Q) = e(P, Q)%
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Pairing-based cryptography

1999: Frey—Muller—Riick: actually, Miller Algorithm can be
much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently
(1s on a supersingular 528-bit curve, Gt C [F2 of 1055 bits).
Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

e : E(Fpn)[f] x E(Fpn)[f] o, e([a]P, [b]Q) = e(P, Q)%

Attacks ‘ I

> inversion of e : hard problem (exponential)

» discrete logarithm computation in E(Fp) : hard problem
(exponential, in O(\/?))

> discrete logarithm computation in [, : easier,
subexponential — take a large enough field
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Common target groups [

» > where E/IF; is a supersingular curve

» Fp3,Fpe, Fpe where E is an ordinary MNT curve
[Miyaji Nakabayashi Takano 01]

» [ 12 where E is a BN curve [Barreto-Naehrig 05]

DLP hardness for a 3072-bit finite field:
» hard in [, where p is a 3072-bit prime

> easy in Fan where n = 3072
[Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]

» what about 3 where p is a 1024-bit prime?
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NFS algorithm to compute discrete logarithms

Input : finite field F,n, generator g, target y
Output : discrete logarithm x of y in basis g, g* =y

polynomial relation linear
selection colection algebra

l B — - l
' Ty log db <50 x|
: ] O] :

|
|
precomputation /‘

[graph: N. Heninger]
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Relation collection and Linear algebra

1. Polynomial selection
2. Relation collection (cado-nfs: Gaudry, Grémy)

3. Linear algebra (cado-nfs: Thomé, Bouvier)
log DB

pi <

» We know the log of small elements in Z[x]/(f(x)) and

Z[x]/(g(x))
» small elements are of the form a; — bjx = p; € Z[x]/(f(x)),
s.t. |Norm(p;)| = pi < B

4. Individual discrete logarithm
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NFS algorithm for DL in GF(p")

How to generate relations ?

Use two distinct rings Re = Z[x]/(f(x)), R = Z[x]/(g(x)) and
two maps pr, pg that map x € Ry, resp. x € Ry to the same
element z € GF(p"):

pfiX € R — z,
Pg X E Ry =2z

ZIx]

N

Re = Z[x]/(f(x)) Rg = Z[x]/(g(x))

Rroxr—z )/gBX'—)Z

GF(p") = GF(p)[z]/(#(2))
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Weak MNT curve, 170-bit prime p, 508-bit IF s

[Miyaji Nakabayashi Takano 01]

E/F,: y?>=x3+ ax+ b, where

a = 0x22ffbb20cc052993fa27dc507800b624c650e4f3d2
b = 0x1c7be6fa8da953b5624efc72406af7fa77499803d08
P = 0x26dccacc5041939206cf2b7dec50950e3c9fa4827af
{ = 0xa60fd646ad409b3312c3b23bab4e082ad7b354d

such that
Xp = —0x732c8cf5f983038060466
t = 6x—1
p = 12x3-1
#E([F,) = p+1-t=72.313-¢
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Polynomial selection: norm estimates

350

300

log, (product of norms),
Bistritz—Lifshitz bound

U. of Calgary, LIX, Inria
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- - GJL, (deg f,degg) = (4,3)

------ JLSV1, (deg f,degg) = (3,3)
- - -JLSVy, (deg f,degg) = (4,3)
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Polynomial selection: norm estimates

Joux—Pierrot and Conjugation 319 bits | Galois aut. order 3
Generalized Joux—Lercier 310 bits | —
JouxLercierSmartVercauteren JLSV1 | 326 bits | Galois aut. order 3

Galois automorphism of order 3 — will obtain 3 times more
relations for free

» JLSV1: \/p ~ 2% possible polynomials f

» Conjugation: allow non-monic polynomials — = 220

possible
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Polynomial Selection

Parameterized family:

o(x,y) = x3 —yx®> — (y + 3)x — L s.t. Q[x]/(p(x)) has

a degree 3 Galois automorphism x — —1 —1/x

f(x) = Resultant, (¢(x, y), A(y)) where A(y) = ay?> — by + ¢
Precomputation (independant of p):

Enumerate many A s.t. A(A) >0, ||f|leo <2° and

f has good smoothness properties (c, Murphy's E value)

— enumerated 320749 ~ 218 polys A(y), kept 4143 ones s.t.
a(f) < —1.5.

For each good f:

1. compute a root yp mod p of P(y)
2. compute two rational reconstructions
Yo = u1/vi = ua/va mod p sit. |uil, |vi| = \/p
3. gi — vix3 —uix® — (ui + 3v;)x — v; so that g; = v; mod p.
4. take the best linear combination g < A1g1 + A2g2, where
|)\,’| < 2.
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Polynomial Selection

P = 908761003790427908077548955758380356675829026531247
of 170 bits
A = 28y? + 16y — 109
f =28x% 4+ 16x> — 261x* — 322x3 + 79x2 + 152x + 28
| f]loo = 8.33 bits
a(f)y=-2.9

g = 24757815186639197370442122X° + 40806897040253680471775183X°
—33466548519663911630551183X — 24757815186639197370442122
llg|lcc = 85.01 bits

a(g) =—4.1
Murphy's E value:
E(f,g) =1.31-1012
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Relation Collection: sieving

Smoothness bound B = 50000000(= 22%-%) on both sides
Special-g in [B,2?%"]

660 core-days (4-core Intel Xeon E5520 @ 2.27GHz).
57 - 10° relations — filtered —
1982791 x 1982784 matrix with weight w(M) = 396558692.

The whole matrix would have 7 more columns for taking the 7
Schirokaurer Maps into account.

U. of Calgary, LIX, Inria Guillevic Morain Thomé CNTA, June 24, 2016 16 / 20



Linear Algebra (cado-nfs)

8 sequences in Block-Wiedemann algorithm.

8 Krylov sequences 250 core-days, four 16-code nodes / sequence
finding linear matrix generator 3.1 core-days / 64 cores

building solution 170 core-days

we were able to reconstruct virtual logarithms for 15196345 out of
the 15206761 elements of the bases (99.9%).

423 core-days on a cluster Intel Xeon E5-2650, 2.4GHz
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Individual discrete logarithm

Take Py = [xp, yp] € E(Fp),
xp = |m10°%0] = 314150265358979323846264338327950288419716039937510

yp =14/ Xg + axp + b = 460095575547938627692618282835762310592027720907930

and set Targete = P = [72 - 313]P,.
e is the reduced Tate pairing ey(P, Q)(P3—1)/€

E)|=Z/VZ ®Z/VZ ~ (G1) ® (Ga) where
Gy a generator of E(IF,)[/]
G2 a generator of E(F3)[¢] N ker(m, — [p])

Target in F3: T = e(P, Gy), Basis: g = e(G1, G2)
Change F s = Fp[X]/(X3 4+ X + 1) to Fp[Z]/((2))
T: 0x11a2f1f13fa9b08703a033ee3c4321539156f865ee9-+0x1098c3b57280ef 2cf85091d08197de0a9ba935F79c6 Z
—+0x221205020€7729cb46166a9edfd5acb3bf 59dd0a7d4 Z2
GT: 0xd772111b150ec08f0ad89d9871b037c630155608c—+0xf956cab6840c7e909abc29584f 1ace48cchd39d698 Z
~+0x205eb5b1e09f 76 bf Oef 85efeaa3 fdch3827d43441b3 z?
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Individual discrete logarithm

Initial splitting: 32-core hours
preimage of g%21%* in K¢ has 59-bit-smooth norm
preimage of g3°313T in K¢ has 54-bit-smooth norm

Descent procedure: 13.4 hours.

Virtual log of g:

vlog(g) = 0x8c58b66f0d8b2e99a1c053052649ec0c76501c3
virtual log of the target:

vlog(T) = 0x48a6bcf57caccad97658c98a0c196¢25116a0aa
Then log,(T) = vlog(T)/vlog(g) mod .

log(T) = log(P) = 0x711d13ed75¢05cc2ab2c9ec2c910a98288ec038 mod £ .
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Future work

» 600-bit DL record in [F 3, F e, F s, F iz (with Gaudry, Grémy,
Morain, Thomé)

> need new techniques for I, Fpe, Fi2 ([Kim] and
[Barbulescu—Gaudry—Kleinjung])

» implementation in cado-nfs

Consequences:
Increase the size of the target groups IFj,» in pairing-based

cryptography

https://hal.inria.fr/hal-01320496
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