Discrete logarithm record in a 508 -bit finite field GF $\left(p^{3}\right)$ with the Number Field Sieve algorithm

Aurore Guillevic and François Morain and Emmanuel Thomé

University of Calgary, PIMS-CNRS, LIX-École Polytechnique, Inria, Loria

CNTA, June 24, 2016

Outline

Motivation: Pairing-based cryptography

The Number Field Sieve algorithm

GF $\left(p^{3}\right)$: breaking a 508-bit MNT curve

Asymetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie-Hellman, etc)
Given a finite cyclic group ($\mathbf{G}, \cdot \cdot$), a generator g and $y \in \mathbf{G}$, compute x s.t. $y=g^{x}$.
Common choice of \mathbf{G} : prime finite field \mathbb{F}_{p} (since 1976), characteristic 2 finite field $\mathbb{F}_{2^{n}}$, elliptic curve $E\left(\mathbb{F}_{p}\right)$ (since 1985)

Elliptic curves in cryptography

$$
E: y^{2}=x^{3}+a x+b, a, b \in \mathbb{F}_{p}
$$

- proposed in 1985 by Koblitz, Miller
- $E\left(\mathbb{F}_{p}\right)$ has an efficient group law (chord an tangent rule) $\rightarrow \mathbf{G}$
- $\# E\left(\mathbb{F}_{p}\right)=p+1-t$, trace $t:|t| \leqslant 2 \sqrt{p}$

Need a prime-order (or with tiny cofactor) elliptic curve:

$$
h \cdot \ell=\# E\left(\mathbb{F}_{p}\right), \quad \ell \text { is prime, } \quad h \text { tiny, e.g. } h=1,2
$$

- compute t
- slow to compute in 1985: can use supersingular curves whose trace is known.

Supersingular elliptic curves

Example over $\mathbb{F}_{p}, p \geq 5$

$$
E: y^{2}=x^{3}+x / \mathbb{F}_{p}, \quad p=3 \bmod 4
$$

s.t. $t=0, \# E\left(\mathbb{F}_{p}\right)=p+1$.
take p s.t. $p+1=4 \cdot \ell$ where ℓ is prime.

Supersingular elliptic curves

Example over $\mathbb{F}_{p}, p \geq 5$

$$
E: y^{2}=x^{3}+x / \mathbb{F}_{p}, \quad p=3 \bmod 4
$$

s.t. $t=0, \# E\left(\mathbb{F}_{p}\right)=p+1$.
take p s.t. $p+1=4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing e that embeds the group $E\left(\mathbb{F}_{p}\right)$ into $\mathbb{F}_{p^{2}}$ where DLP is much easier.
Do not use supersingular curves.

Supersingular elliptic curves

Example over $\mathbb{F}_{p}, p \geq 5$

$$
E: y^{2}=x^{3}+x / \mathbb{F}_{p}, \quad p=3 \bmod 4
$$

s.t. $t=0, \# E\left(\mathbb{F}_{p}\right)=p+1$.
take p s.t. $p+1=4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing e that embeds the group $E\left(\mathbb{F}_{p}\right)$ into $\mathbb{F}_{p^{2}}$ where DLP is much easier.
Do not use supersingular curves.
But computing a pairing is very slow: [Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 326 bits.

Supersingular elliptic curves

Example over $\mathbb{F}_{p}, p \geq 5$

$$
E: y^{2}=x^{3}+x / \mathbb{F}_{p}, \quad p=3 \bmod 4
$$

s.t. $t=0, \# E\left(\mathbb{F}_{p}\right)=p+1$.
take p s.t. $p+1=4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing e that embeds the group $E\left(\mathbb{F}_{p}\right)$ into $\mathbb{F}_{p^{2}}$ where DLP is much easier.
Do not use supersingular curves.
But computing a pairing is very slow: [Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 326 bits.

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be

much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be

much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Attacks

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be

much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

- inversion of e : hard problem (exponential)

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be

much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{\ell})$)

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be much faster.
2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{p^{n}}\right)[\ell] \times E\left(\mathbb{F}_{p^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{p^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{p}\right)$: hard problem (exponential, in $O(\sqrt{\ell})$)
- discrete logarithm computation in $\mathbb{F}_{p^{n}}^{*}$: easier, subexponential \rightarrow take a large enough field

Common target groups $\mathbb{F}_{p^{n}}$

- $\mathbb{F}_{p^{2}}$ where E / \mathbb{F}_{p} is a supersingular curve
- $\mathbb{F}_{p^{3}}, \mathbb{F}_{p^{4}}, \mathbb{F}_{p^{6}}$ where E is an ordinary MNT curve [Miyaji Nakabayashi Takano 01]
- $\mathbb{F}_{p^{12}}$ where E is a BN curve [Barreto-Naehrig 05]

DLP hardness for a 3072-bit finite field:

- hard in \mathbb{F}_{p} where p is a 3072-bit prime
- easy in $\mathbb{F}_{2^{n}}$ where $n=3072$ [Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]
- what about $\mathbb{F}_{p^{3}}$ where p is a 1024 -bit prime?

NFS algorithm to compute discrete logarithms

Input: finite field $\mathbb{F}_{p^{n}}$, generator g, target y
Output : discrete logarithm x of y in basis $g, g^{x}=y$

Relation collection and Linear algebra

1. Polynomial selection
2. Relation collection (cado-nfs: Gaudry, Grémy)
3. Linear algebra (cado-nfs: Thomé, Bouvier)

- We know the log of small elements in $\mathbb{Z}[x] /(f(x))$ and $\mathbb{Z}[x] /(g(x))$
- small elements are of the form $a_{i}-b_{i} x=\mathfrak{p}_{i} \in \mathbb{Z}[x] /(f(x))$, s.t. $\left|\operatorname{Norm}\left(\mathfrak{p}_{i}\right)\right|=p_{i}<B$

4. Individual discrete logarithm

NFS algorithm for DL in $\operatorname{GF}\left(p^{n}\right)$

How to generate relations?
Use two distinct rings $R_{f}=\mathbb{Z}[x] /(f(x)), R_{g}=\mathbb{Z}[x] /(g(x))$ and two maps ρ_{f}, ρ_{g} that map $x \in R_{f}$, resp. $x \in R_{g}$ to the same element $z \in \operatorname{GF}\left(p^{n}\right)$:

Weak MNT curve, 170 -bit prime $p, 508$-bit $\mathbb{F}_{p^{3}}$

[Miyaji Nakabayashi Takano 01]
$E / \mathbb{F}_{p}: y^{2}=x^{3}+a x+b$, where
$a=0 \times 22 f f b b 20 c c 052993 f a 27 \mathrm{dc} 507800 \mathrm{~b} 624 \mathrm{c} 650$ e4ff3d2
$b=0 \times 1 c 7 b e 6 f a 8 d a 953 b 5624 e f c 72406 \mathrm{af7fa77499803d08}$
$p=0 \times 26 d \mathrm{dccacc} 5041939206 \mathrm{cf2b7dec} 50950 \mathrm{e} 3 \mathrm{c} 9 \mathrm{fa} 4827 \mathrm{af}$
$\ell=0 \times a 60 f d 646 a d 409 \mathrm{~b} 3312 \mathrm{c} 3 \mathrm{~b} 23 \mathrm{ba64e082ad7b354d}$
such that
$x_{0}=-0 \times 732 c 8 c f 5 f 983038060466$
$t=6 x_{0}-1$
$p=12 x_{0}^{2}-1$
$\# E\left(\mathbb{F}_{p}\right)=p+1-t=7^{2} \cdot 313 \cdot \ell$

Polynomial selection: norm estimates

Polynomial selection: norm estimates

Joux-Pierrot and Conjugation
Generalized Joux-Lercier JouxLercierSmartVercauteren JLSV1

319 bits Galois aut. order 3
310 bits -
326 bits Galois aut. order 3

Galois automorphism of order $3 \rightarrow$ will obtain 3 times more relations for free

- JLSV1: $\sqrt{p} \approx 2^{85}$ possible polynomials f
- Conjugation: allow non-monic polynomials $\rightarrow \approx 2^{20}$ possible f

Polynomial Selection

Parameterized family:
$\varphi(x, y)=x^{3}-y x^{2}-(y+3) x-1$ s.t. $\mathbb{Q}[x] /(\varphi(x))$ has
a degree 3 Galois automorphism $x \mapsto-1-1 / x$
$f(x)=\operatorname{Resultant}_{y}(\varphi(x, y), A(y))$ where $A(y)=a y^{2}-b y+c$
Precomputation (independant of p):
Enumerate many A s.t. $\Delta(A)>0,\|f\|_{\infty} \leq 2^{9}$ and
f has good smoothness properties (α, Murphy's E value)
\rightarrow enumerated $320749 \approx 2^{18}$ polys $A(y)$, kept 4143 ones s.t.
$\alpha(f)<-1.5$.
For each good f :

1. compute a root $y_{0} \bmod p$ of $P(y)$
2. compute two rational reconstructions

$$
y_{0} \equiv u_{1} / v_{1} \equiv u_{2} / v_{2} \bmod p \text { s.t. }\left|u_{i}\right|,\left|v_{i}\right| \approx \sqrt{p}
$$

3. $g_{i} \leftarrow v_{i} x^{3}-u_{i} x^{2}-\left(u_{i}+3 v_{i}\right) x-v_{i}$ so that $g_{i}=v_{i} \varphi \bmod p$.
4. take the best linear combination $g \leftarrow \lambda_{1} g_{1}+\lambda_{2} g_{2}$, where $\left|\lambda_{i}\right|<2^{5}$.

Polynomial Selection

$$
\begin{aligned}
p= & 908761003790427908077548955758380356675829026531247 \\
& \text { of } 170 \text { bits } \\
A= & 28 y^{2}+16 y-109 \\
f= & 28 x^{6}+16 x^{5}-261 x^{4}-322 x^{3}+79 x^{2}+152 x+28 \\
& \|f\|_{\infty}=8.33 \text { bits } \\
\alpha(f)= & -2.9 \\
g= & 24757815186639197370442122 x^{3}+40806897040253680471775183 x^{2} \\
& -33466548519663911639551183 x-24757815186639197370442122 \\
& \|g\|_{\infty}=85.01 \text { bits } \\
\alpha(g)= & -4.1 \\
& \text { Murphy's E value: } \\
\mathbb{E}(f, g)= & 1.31 \cdot 10^{-12}
\end{aligned}
$$

Relation Collection: sieving

Smoothness bound $B=50000000\left(=2^{25.6}\right)$ on both sides Special- q in $\left[B, 2^{27}\right]$

660 core-days (4-core Intel Xeon E5520 @ 2.27GHz).
$57 \cdot 10^{6}$ relations \rightarrow filtered \rightarrow
1982791×1982784 matrix with weight $w(M)=396558692$.
The whole matrix would have 7 more columns for taking the 7 Schirokaurer Maps into account.

Linear Algebra (cado-nfs)

8 sequences in Block-Wiedemann algorithm.
8 Krylov sequences 250 core-days, four 16 -code nodes / sequence finding linear matrix generator 3.1 core-days / 64 cores building solution 170 core-days
we were able to reconstruct virtual logarithms for 15196345 out of the 15206761 elements of the bases (99.9%).

423 core-days on a cluster Intel Xeon E5-2650, 2.4GHz

Individual discrete logarithm

Take $P_{0}=\left[x_{P}, y_{P}\right] \in E\left(\mathbb{F}_{p}\right)$,
$x_{P}=\left\lfloor\pi 10^{50}\right\rfloor=314159265358979323846264338327950288419716939937510$
$y_{P}=\sqrt{x_{P}^{3}+a x_{P}+b}=460095575547938627692618282835762310592027720907930$ and set $\operatorname{Target}_{E}=P=\left[7^{2} \cdot 313\right] P_{0}$.
e is the reduced Tate pairing $e_{\ell}(P, Q)^{\left(p^{3}-1\right) / \ell}$
$E[\ell] \cong \mathbb{Z} / \ell \mathbb{Z} \oplus \mathbb{Z} / \ell \mathbb{Z} \simeq\left\langle G_{1}\right\rangle \oplus\left\langle G_{2}\right\rangle$ where
G_{1} a generator of $E\left(\mathbb{F}_{p}\right)[\ell]$
G_{2} a generator of $E\left(\mathbb{F}_{p^{3}}\right)[\ell] \cap \operatorname{ker}\left(\pi_{p}-[p]\right)$
Target in $\mathbb{F}_{p^{3}}: T=e\left(P, G_{2}\right)$, Basis: $g=e\left(G_{1}, G_{2}\right)$
Change $\mathbb{F}_{p^{3}}=\mathbb{F}_{p}[X] /\left(X^{3}+X+1\right)$ to $\mathbb{F}_{p}[Z] /(\varphi(Z))$
$T=0 \times 11 a 2 f 1 f 13 f a 9 b 08703 a 033 e e 3 c 4321539156 f 865 e e 9+0 \times 1098 c 3 b 7280 e f 2 c f 8 b 091 d 08197 d e 0 a 9 b a 935 f f 79 c 6 \quad Z$ $+0 \times 221205020 e 7729 c b 46166 a 9 e d f d 5 a c b 3 b f 59 d d 0 a 7 d 4 Z^{2}$
$G_{T}=0 \times d 772111 b 150 e c 08 f 0 a d 89 d 987 f 1 b 037 c 630155608 c+0 x f 956 c a b 6840 c 7 e 909 a b c 29584 f 12 e e 48 c c b d 39 d 698 \quad Z$ $+0 \times 205 e b 5 b 1 e 09 f 76 b f 0 e f 85 e f e a a 3 f d c b 3827 d 43441 b 3 Z^{2}$

Individual discrete logarithm

Initial splitting: 32-core hours
preimage of g^{52154} in K_{f} has 59-bit-smooth norm preimage of $g^{35313} T$ in K_{f} has 54-bit-smooth norm

Descent procedure: 13.4 hours.
Virtual log of g :
$\operatorname{vlog}(g)=0 \times 8 c 58 b 66 f 0 d 8 b 2 e 99 a 1 c 0530 b 2649 e c 0 c 76501 c 3$
virtual \log of the target:
$\operatorname{vlog}(T)=0 \times 48 a 6 b c f 57$ cacca997658c98a0c196c25116a0aa
Then $\log _{g}(T)=v \log (T) / v \log (g) \bmod \ell$.

$$
\log (T)=\log (P)=0 \times 711 d 13 e d 75 e 05 c c 2 a b 2 c 9 e c 2 c 910 a 98288 e c 038 \bmod \ell
$$

Future work

- 600-bit DL record in $\mathbb{F}_{p^{3}}, \mathbb{F}_{p^{4}}, \mathbb{F}_{p^{6}}, \mathbb{F}_{p^{12}}$ (with Gaudry, Grémy, Morain, Thomé)
- need new techniques for $\mathbb{F}_{p^{4}}, \mathbb{F}_{p^{6}}, \mathbb{F}_{p^{12}}([\mathrm{Kim}]$ and [Barbulescu-Gaudry-Kleinjung])
- implementation in cado-nfs

Consequences:

Increase the size of the target groups $\mathbb{F}_{p^{n}}$ in pairing-based cryptography

> https://hal.inria.fr/hal-01320496

