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Asymetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie–Hellman, etc)

Given a finite cyclic group (G, ·), a generator g and y ∈ G,
compute x s.t. y = g x .

Common choice of G:
prime finite field Fp (since 1976), characteristic 2 finite field F2n ,
elliptic curve E (Fp) (since 1985)
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Elliptic curves in cryptography

E : y 2 = x3 + ax + b, a, b ∈ Fp

I proposed in 1985 by Koblitz, Miller

I E (Fp) has an efficient group law (chord an tangent rule)→ G

I #E (Fp) = p + 1− t, trace t: |t| 6 2
√

p

Need a prime-order (or with tiny cofactor) elliptic curve:

h · ` = #E (Fp), ` is prime, h tiny, e.g. h = 1, 2

I compute t

I slow to compute in 1985: can use supersingular curves whose
trace is known.
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Supersingular elliptic curves

Example over Fp, p ≥ 5

E : y 2 = x3 + x / Fp, p = 3 mod 4

s.t. t = 0, #E (Fp) = p + 1.
take p s.t. p + 1 = 4 · ` where ` is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks
There exists a pairing e that embeds the group E (Fp) into Fp2

where DLP is much easier.
Do not use supersingular curves.
But computing a pairing is very slow:
[Harasawa Shikata Suzuki Imai 99] : 161467s (112 days) on a
163-bit supersingular curve, where GT ⊂ Fp2 of 326 bits.
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Supersingular elliptic curves

Example over Fp, p ≥ 5

E : y 2 = x3 + x / Fp, p = 3 mod 4

s.t. t = 0, #E (Fp) = p + 1.
take p s.t. p + 1 = 4 · ` where ` is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks
There exists a pairing e that embeds the group E (Fp) into Fp2

where DLP is much easier.
Do not use supersingular curves.
But computing a pairing is very slow:
[Harasawa Shikata Suzuki Imai 99] : 161467s (112 days) on a
163-bit supersingular curve, where GT ⊂ Fp2 of 326 bits.

U. of Calgary, LIX, Inria Guillevic Morain Thomé CNTA, June 24, 2016 5 / 20
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Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be
much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently
(1s on a supersingular 528-bit curve, GT ⊂ Fp2 of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

e : E (Fpn )[`]× E (Fpn )[`] F∗pn , e([a]P, [b]Q) = e(P,Q)ab

Attacks

I inversion of e : hard problem (exponential)

I discrete logarithm computation in E (Fp) : hard problem
(exponential, in O(

√
`))

I discrete logarithm computation in F∗pn : easier,
subexponential → take a large enough field
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Common target groups Fpn

I Fp2 where E/Fp is a supersingular curve

I Fp3 ,Fp4 ,Fp6 where E is an ordinary MNT curve
[Miyaji Nakabayashi Takano 01]

I Fp12 where E is a BN curve [Barreto-Naehrig 05]

DLP hardness for a 3072-bit finite field:

I hard in Fp where p is a 3072-bit prime

I easy in F2n where n = 3072
[Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]

I what about Fp3 where p is a 1024-bit prime?
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NFS algorithm to compute discrete logarithms

Input : finite field Fpn , generator g , target y
Output : discrete logarithm x of y in basis g , g x = y

Fpn

polynomial
selection

relation
colection

linear
algebra

log db

precomputation

y , g
boot +
descent

x

individual log

[graph: N. Heninger]
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Relation collection and Linear algebra

1. Polynomial selection

2. Relation collection (cado-nfs: Gaudry, Grémy)

3. Linear algebra (cado-nfs: Thomé, Bouvier)

log DB

pi < B

I We know the log of small elements in Z[x ]/(f (x)) and
Z[x ]/(g(x))

I small elements are of the form ai − bi x = pi ∈ Z[x ]/(f (x)),
s.t. |Norm(pi )| = pi < B

4. Individual discrete logarithm
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NFS algorithm for DL in GF(pn)

How to generate relations ?
Use two distinct rings Rf = Z[x ]/(f (x)), Rg = Z[x ]/(g(x)) and
two maps ρf , ρg that map x ∈ Rf , resp. x ∈ Rg to the same
element z ∈ GF(pn): {

ρf : x ∈ Rf 7→ z ,
ρg : x ∈ Rg 7→ z

Z[x ]

Rf = Z[x ]/(f (x)) Rg = Z[x ]/(g(x))

GF(pn) = GF(p)[z ]/(ϕ(z))

Rf 3 x 7→ z Rg 3 x 7→ z
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Weak MNT curve, 170-bit prime p, 508-bit Fp3

[Miyaji Nakabayashi Takano 01]
E/Fp : y 2 = x3 + ax + b, where
a = 0x22ffbb20cc052993fa27dc507800b624c650e4ff3d2

b = 0x1c7be6fa8da953b5624efc72406af7fa77499803d08

p = 0x26dccacc5041939206cf2b7dec50950e3c9fa4827af

` = 0xa60fd646ad409b3312c3b23ba64e082ad7b354d

such that
x0 = −0x732c8cf5f983038060466

t = 6x0 − 1
p = 12x2

0 − 1
#E (Fp) = p + 1− t = 72 · 313 · `
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Polynomial selection: norm estimates
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Polynomial selection: norm estimates

Joux–Pierrot and Conjugation 319 bits Galois aut. order 3
Generalized Joux–Lercier 310 bits –
JouxLercierSmartVercauteren JLSV1 326 bits Galois aut. order 3

Galois automorphism of order 3 → will obtain 3 times more
relations for free

I JLSV1:
√

p ≈ 285 possible polynomials f

I Conjugation: allow non-monic polynomials→ ≈ 220 possible f
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Polynomial Selection

Parameterized family:
ϕ(x , y) = x3 − yx2 − (y + 3)x − 1 s.t. Q[x ]/(ϕ(x)) has
a degree 3 Galois automorphism x 7→ −1− 1/x
f (x) = Resultanty (ϕ(x , y),A(y)) where A(y) = ay 2 − by + c
Precomputation (independant of p):
Enumerate many A s.t. ∆(A) > 0, ‖f ‖∞ ≤ 29 and
f has good smoothness properties (α, Murphy’s E value)
→ enumerated 320749 ≈ 218 polys A(y), kept 4143 ones s.t.
α(f ) < −1.5.

For each good f :

1. compute a root y0 mod p of P(y)
2. compute two rational reconstructions

y0 ≡ u1/v1 ≡ u2/v2 mod p s.t. |ui |, |vi | ≈
√

p
3. gi ← vi x

3 − ui x
2 − (ui + 3vi )x − vi so that gi = viϕ mod p.

4. take the best linear combination g ← λ1g1 + λ2g2, where
|λi | < 25.
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Polynomial Selection

p = 908761003790427908077548955758380356675829026531247

of 170 bits
A = 28y 2 + 16y − 109
f = 28x6 + 16x5 − 261x4 − 322x3 + 79x2 + 152x + 28
‖f ‖∞ = 8.33 bits

α(f ) = −2.9

g = 24757815186639197370442122x3 + 40806897040253680471775183x2

−33466548519663911639551183x − 24757815186639197370442122

‖g‖∞ = 85.01 bits
α(g) = −4.1

Murphy’s E value:
E(f , g) = 1.31 · 10−12
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Relation Collection: sieving

Smoothness bound B = 50000000(= 225.6) on both sides
Special-q in [B, 227]

660 core-days (4-core Intel Xeon E5520 @ 2.27GHz).

57 · 106 relations → filtered →
1982791 × 1982784 matrix with weight w(M) = 396558692.
The whole matrix would have 7 more columns for taking the 7
Schirokaurer Maps into account.
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Linear Algebra (cado-nfs)

8 sequences in Block-Wiedemann algorithm.
8 Krylov sequences 250 core-days, four 16-code nodes / sequence
finding linear matrix generator 3.1 core-days / 64 cores
building solution 170 core-days
we were able to reconstruct virtual logarithms for 15196345 out of
the 15206761 elements of the bases (99.9%).

423 core-days on a cluster Intel Xeon E5-2650, 2.4GHz
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Individual discrete logarithm

Take P0 = [xP , yP ] ∈ E (Fp),
xP = bπ1050c = 314159265358979323846264338327950288419716939937510

yP =
√

x3
P + axP + b = 460095575547938627692618282835762310592027720907930

and set TargetE = P = [72 · 313]P0.

e is the reduced Tate pairing e`(P,Q)(p3−1)/`

E [`] ∼= Z/`Z⊕ Z/`Z ' 〈G1〉 ⊕ 〈G2〉 where
G1 a generator of E (Fp)[`]
G2 a generator of E (Fp3)[`] ∩ ker(πp − [p])

Target in Fp3 : T = e(P,G2), Basis: g = e(G1,G2)
Change Fp3 = Fp[X ]/(X 3 + X + 1) to Fp[Z ]/(ϕ(Z ))

T = 0x11a2f 1f 13fa9b08703a033ee3c4321539156f 865ee9+0x1098c3b7280ef 2cf 8b091d08197de0a9ba935ff 79c6 Z

+0x221205020e7729cb46166a9edfd5acb3bf 59dd0a7d4 Z 2

GT = 0xd772111b150ec08f 0ad89d987f 1b037c630155608c+0xf 956cab6840c7e909abc29584f 1aee48ccbd39d698 Z

+0x205eb5b1e09f 76bf 0ef 85efeaa3fdcb3827d43441b3 Z 2
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Individual discrete logarithm

Initial splitting: 32-core hours
preimage of g 52154 in Kf has 59-bit-smooth norm
preimage of g 35313T in Kf has 54-bit-smooth norm

Descent procedure: 13.4 hours.

Virtual log of g :
vlog(g) = 0x8c58b66f 0d8b2e99a1c0530b2649ec0c76501c3

virtual log of the target:
vlog(T ) = 0x48a6bcf 57cacca997658c98a0c196c25116a0aa

Then logg (T ) = vlog(T )/vlog(g) mod `.

log(T ) = log(P) = 0x711d13ed75e05cc2ab2c9ec2c910a98288ec038 mod ` .
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Future work

I 600-bit DL record in Fp3 ,Fp4 ,Fp6 ,Fp12 (with Gaudry, Grémy,
Morain, Thomé)

I need new techniques for Fp4 ,Fp6 ,Fp12 ([Kim] and
[Barbulescu–Gaudry–Kleinjung])

I implementation in cado-nfs

Consequences:
Increase the size of the target groups Fpn in pairing-based
cryptography

https://hal.inria.fr/hal-01320496
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