Discrete logarithm record in a 508-bit finite field $GF(p^3)$ with the Number Field Sieve algorithm

Aurore Guillevic and François Morain and Emmanuel Thomé

University of Calgary, PIMS-CNRS, LIX-École Polytechnique, Inria, Loria

CNTA, June 24, 2016

Guillevic Morain Thomé

Motivation: Pairing-based cryptography

The Number Field Sieve algorithm

 $GF(p^3)$: breaking a 508-bit MNT curve

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie-Hellman, etc) Given a finite cyclic group (\mathbf{G} , \cdot), a generator g and $y \in \mathbf{G}$, compute x s.t. $y = g^{x}$. Common choice of \mathbf{G} : prime finite field \mathbb{F}_{p} (since 1976), characteristic 2 finite field $\mathbb{F}_{2^{n}}$, elliptic curve $E(\mathbb{F}_{p})$ (since 1985)

Elliptic curves in cryptography

$$E: y^2 = x^3 + ax + b, a, b \in \mathbb{F}_p$$

- proposed in 1985 by Koblitz, Miller
- $E(\mathbb{F}_p)$ has an efficient group law (chord an tangent rule) \rightarrow **G**
- $\#E(\mathbb{F}_p) = p + 1 t$, trace t: $|t| \leq 2\sqrt{p}$

Need a prime-order (or with tiny cofactor) elliptic curve:

$$h \cdot \ell = \# E(\mathbb{F}_p), \ \ell \text{ is prime}, \ h \text{ tiny, e.g. } h = 1, 2$$

- compute t
- slow to compute in 1985: can use supersingular curves whose trace is known.

Example over \mathbb{F}_p , $p \geq 5$

$$E: y^2 = x^3 + x \ / \ \mathbb{F}_p, \ \ p = 3 \ \mathrm{mod} \ 4$$

s.t. t = 0, $\#E(\mathbb{F}_p) = p + 1$. take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

Example over \mathbb{F}_p , $p \geq 5$

$$E: y^2 = x^3 + x \ / \ \mathbb{F}_p, \ p = 3 \mod 4$$

s.t. t = 0, $\#E(\mathbb{F}_p) = p + 1$. take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing e that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_{p^2} where **DLP is much easier**.

Do not use supersingular curves.

Example over \mathbb{F}_p , $p \geq 5$

$$E: y^2 = x^3 + x \ / \ \mathbb{F}_p, \ p = 3 \mod 4$$

s.t. t = 0, $\#E(\mathbb{F}_p) = p + 1$. take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing *e* that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_{p^2} where **DLP is much easier**.

Do not use supersingular curves.

But computing a pairing is very slow:

[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $\mathbf{G}_T \subset \mathbb{F}_{p^2}$ of 326 bits.

Example over \mathbb{F}_p , $p \geq 5$

$$E: y^2 = x^3 + x \ / \ \mathbb{F}_p, \ p = 3 \mod 4$$

s.t. t = 0, $\#E(\mathbb{F}_p) = p + 1$. take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing *e* that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_{p^2} where **DLP is much easier**.

Do not use supersingular curves.

But computing a pairing is very slow:

[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $\mathbf{G}_T \subset \mathbb{F}_{p^2}$ of 326 bits.

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

inversion of e : hard problem (exponential)

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- ► discrete logarithm computation in E(F_p) : hard problem (exponential, in O(√ℓ))

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{p^n})[\ell] \times E(\mathbb{F}_{p^n})[\ell] \longrightarrow \mathbb{F}_{p^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- ► discrete logarithm computation in E(F_p) : hard problem (exponential, in O(√ℓ))
- ▶ discrete logarithm computation in F^{*}_{pⁿ} : easier, subexponential → take a large enough field

ł

Common target groups \mathbb{F}_{p^n}

- \mathbb{F}_{p^2} where E/\mathbb{F}_p is a supersingular curve
- ▶ 𝔽_{p³}, 𝔽_{p⁴}, 𝔽_{p⁶} where 𝔅 is an ordinary MNT curve [Miyaji Nakabayashi Takano 01]
- $\mathbb{F}_{p^{12}}$ where *E* is a BN curve [*Barreto-Naehrig 05*]

DLP hardness for a 3072-bit finite field:

- hard in \mathbb{F}_p where p is a 3072-bit prime
- ► easy in F_{2ⁿ} where n = 3072 [Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]
- what about \mathbb{F}_{p^3} where p is a 1024-bit prime?

NFS algorithm to compute discrete logarithms

Input : finite field \mathbb{F}_{p^n} , generator g, target y**Output** : discrete logarithm x of y in basis g, $g^x = y$

Relation collection and Linear algebra

- 1. Polynomial selection
- 2. Relation collection (cado-nfs: Gaudry, Grémy)
- 3. Linear algebra (cado-nfs: Thomé, Bouvier)

- We know the log of *small* elements in $\mathbb{Z}[x]/(f(x))$ and $\mathbb{Z}[x]/(g(x))$
- small elements are of the form a_i − b_ix = p_i ∈ Z[x]/(f(x)),
 s.t. |Norm(p_i)| = p_i < B
- 4. Individual discrete logarithm

NFS algorithm for DL in $GF(p^n)$

How to generate relations ? Use *two* distinct rings $R_f = \mathbb{Z}[x]/(f(x))$, $R_g = \mathbb{Z}[x]/(g(x))$ and two maps ρ_f , ρ_g that map $x \in R_f$, resp. $x \in R_g$ to *the same* element $z \in GF(p^n)$:

Weak MNT curve, 170-bit prime p, 508-bit \mathbb{F}_{p^3}

[*Miyaji Nakabayashi Takano 01*] $E/\mathbb{F}_p: y^2 = x^3 + ax + b$, where a = 0x22ffbb20cc052993fa27dc507800b624c650e4ff3d2 b = 0x1c7be6fa8da953b5624efc72406af7fa77499803d08 p = 0x26dccacc5041939206cf2b7dec50950e3c9fa4827af $\ell = 0xa60fd646ad409b3312c3b23ba64e082ad7b354d$ such that

$$t = 6x_0 - 1$$

$$p = 12x_0^2 - 1$$

$$\#E(\mathbb{F}_p) = p + 1 - t = 7^2 \cdot 313 \cdot \ell$$

Polynomial selection: norm estimates

Joux–Pierrot and Conjugation	319 bits	Galois aut. order 3
Generalized Joux–Lercier	310 bits	-
JouxLercierSmartVercauteren JLSV1	326 bits	Galois aut. order 3

Galois automorphism of order $\mathbf{3} \rightarrow$ will obtain 3 times more relations for free

- JLSV1: $\sqrt{p} \approx 2^{85}$ possible polynomials f
- Conjugation: allow non-monic polynomials $\rightarrow \approx 2^{20}$ possible f

Polynomial Selection

Parameterized family:

 $\varphi(x,y) = x^3 - yx^2 - (y+3)x - 1 \text{ s.t. } \mathbb{Q}[x]/(\varphi(x)) \text{ has}$ a degree 3 Galois automorphism $x \mapsto -1 - 1/x$ $f(x) = \text{Resultant}_y(\varphi(x,y), A(y)) \text{ where } A(y) = ay^2 - by + c$ **Precomputation** (independant of *p*): Enumerate many *A* s.t. $\Delta(A) > 0$, $||f||_{\infty} \leq 2^9$ and *f* has good smoothness properties (α , Murphy's *E* value) \rightarrow enumerated 320749 $\approx 2^{18}$ polys A(y), kept 4143 ones s.t. $\alpha(f) < -1.5$.

For each good *f*:

- 1. compute a root $y_0 \mod p$ of P(y)
- 2. compute two rational reconstructions

$$y_0 \equiv u_1/v_1 \equiv u_2/v_2 \mod p \text{ s.t. } |u_i|, |v_i| \approx \sqrt{p}$$

3. $g_i \leftarrow v_i x^3 - u_i x^2 - (u_i + 3v_i)x - v_i$ so that $g_i = v_i \varphi \mod p$.

4. take the best linear combination $g \leftarrow \lambda_1 g_1 + \lambda_2 g_2$, where $|\lambda_i| < 2^5$.

U. of Calgary, LIX, Inria

Polynomial Selection

$$p = 908761003790427908077548955758380356675829026531247$$

of 170 bits
$$A = 28y^2 + 16y - 109$$

$$f = 28x^6 + 16x^5 - 261x^4 - 322x^3 + 79x^2 + 152x + 28$$

$$\|f\|_{\infty} = 8.33 \text{ bits}$$

$$\alpha(f) = -2.9$$

$$\begin{split} g &= 24757815186639197370442122x^3 + 40806897040253680471775183x^2 \\ &\quad -33466548519663911639551183x - 24757815186639197370442122 \\ &\quad \|g\|_{\infty} = 85.01 \text{ bits} \\ \alpha(g) &= -4.1 \\ &\quad \text{Murphy's E value:} \\ \mathbb{E}(f,g) &= 1.31 \cdot 10^{-12} \end{split}$$

Smoothness bound $B = 5000000(=2^{25.6})$ on both sides Special-q in $[B, 2^{27}]$

660 core-days (4-core Intel Xeon E5520 @ 2.27GHz).

 $57 \cdot 10^6$ relations \rightarrow filtered \rightarrow 1982791 \times 1982784 matrix with weight w(M) = 396558692. The whole matrix would have 7 more columns for taking the 7 Schirokaurer Maps into account. 8 sequences in Block-Wiedemann algorithm.

8 Krylov sequences 250 core-days, four 16-code nodes / sequence finding linear matrix generator 3.1 core-days / 64 cores building solution 170 core-days we were able to reconstruct virtual logarithms for 15196345 out of the 15206761 elements of the bases (99.9%).

423 core-days on a cluster Intel Xeon E5-2650, 2.4GHz

Individual discrete logarithm

Take $P_0 = [x_P, y_P] \in E(\mathbb{F}_p)$, $x_P = \lfloor \pi 10^{50} \rfloor = 314159265358979323846264338327950288419716939937510$ $y_P = \sqrt{x_P^3 + ax_P + b} = 460095575547938627692618282835762310592027720907930$ and set Target_E = $P = [7^2 \cdot 313]P_0$.

e is the reduced Tate pairing $e_\ell(P,Q)^{(p^3-1)/\ell}$

$$\begin{split} E[\ell] &\cong \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell\mathbb{Z} \simeq \langle G_1 \rangle \oplus \langle G_2 \rangle \text{ where} \\ G_1 \text{ a generator of } E(\mathbb{F}_p)[\ell] \\ G_2 \text{ a generator of } E(\mathbb{F}_{p^3})[\ell] \cap \ker(\pi_p - [p]) \end{split}$$

Target in
$$\mathbb{F}_{p^3}$$
: $T = e(P, G_2)$, Basis: $g = e(G_1, G_2)$
Change $\mathbb{F}_{p^3} = \mathbb{F}_p[X]/(X^3 + X + 1)$ to $\mathbb{F}_p[Z]/(\varphi(Z))$

 $T = _{0 \times 11a2f1f13fa9b08703a033ee3c4321539156f865ee9 + 0 \times 1098c3b7280ef2cf8b091d08197de0a9ba935ff79c6} Z$

 $+0 \times 221205020 e7729 cb46166 a9 edf d5 a cb3 bf 59 dd0 a7 d4$ Z^2

 $G_{T} = {}_{0xd772111b150ec08f0ad89d987f1b037c630155608c + 0xf956cab6840c7e909abc29584f1aee48ccbd39d698} Z$

+0x205eb5b1e09f76bf0ef85efeaa3fdcb3827d43441b3 Z²

U. of Calgary, LIX, Inria

Guillevic Morain Thomé

Individual discrete logarithm

Initial splitting: 32-core hours preimage of g^{52154} in K_f has 59-bit-smooth norm preimage of $g^{35313}T$ in K_f has 54-bit-smooth norm

Descent procedure: 13.4 hours.

Virtual log of g: $v\log(g) = 0 \times 8c58b66f0d8b2e99a1c0530b2649ec0c76501c3$ virtual log of the target: $v\log(T) = 0 \times 48a6bcf57cacca997658c98a0c196c25116a0aa$ Then $\log_g(T) = v\log(T)/v\log(g) \mod \ell$.

 $\log(T) = \log(P) = 0x711d13ed75e05cc2ab2c9ec2c910a98288ec038 \mod \ell$.

Future work

- ▶ 600-bit DL record in F_{p³}, F_{p⁴}, F_{p⁶}, F_{p¹²} (with Gaudry, Grémy, Morain, Thomé)
- ▶ need new techniques for F_{p⁴}, F_{p⁶}, F_{p¹²} ([Kim] and [Barbulescu-Gaudry-Kleinjung])
- implementation in cado-nfs

Consequences:

Increase the size of the target groups \mathbb{F}_{p^n} in pairing-based cryptography

https://hal.inria.fr/hal-01320496