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Asymetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie–Hellman, etc)

Given a finite cyclic group (G, ·), a generator g and y ∈ G,
compute x s.t. y = g x .

Common choice of G:
prime finite field Fp (since 1976), characteristic 2 finite field F2n ,
elliptic curve E (Fp) (since 1985)
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Elliptic curves in cryptography

E : y2 = x3 + ax + b, a, b ∈ Fp

I proposed in 1985 by Koblitz, Miller

I E (Fp) has an efficient group law (chord an tangent rule)→ G

I #E (Fp) = p + 1− t, trace t: |t| 6 2
√

p

Need a prime-order (or with tiny cofactor) elliptic curve:

h · ` = #E (Fp), ` is prime, h tiny, e.g. h = 1, 2

I compute t

I slow to compute in 1985: can use supersingular curves whose
trace is known.

U. of Calgary, PIMS-CNRS A. Guillevic CMS, Edmonton, June 25, 2016 4 / 24



Supersingular elliptic curves

Example over Fp, p ≥ 5

E : y2 = x3 + x / Fp, p = 3 mod 4

s.t. t = 0, #E (Fp) = p + 1.
take p s.t. p + 1 = 4 · ` where ` is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks
There exists a pairing e that embeds the group E (Fp) into Fp2

where DLP is much easier.
Do not use supersingular curves.
But computing a pairing is very slow:
[Harasawa Shikata Suzuki Imai 99] : 161467s (112 days) on a
163-bit supersingular curve, where GT ⊂ Fp2 of 326 bits.
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Pairing-based cryptography

1999: Frey–Muller–Rück: actually, Miller Algorithm can be
much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently
(1s on a supersingular 528-bit curve, GT ⊂ Fp2 of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

e : E (Fqn )[`]× E (Fqn )[`] F∗qn , e([a]P, [b]Q) = e(P,Q)ab

Attacks

I inversion of e : hard problem (exponential)

I discrete logarithm computation in E (Fq) : hard problem
(exponential, in O(

√
`))

I discrete logarithm computation in F∗qn : easier,
subexponential → take a large enough field
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Common target groups Fqn

I F24n , F36n where E/F2n , E/F3n is supersingular

I Fp2 where E/Fp is a supersingular curve

I Fp3 ,Fp4 ,Fp6 where E/Fp is an ordinary MNT curve
[Miyaji Nakabayashi Takano 01]

I Fp12 where E/Fp is a BN curve [Barreto-Naehrig 05]

DLP hardness for a 3072-bit finite field:

I hard in Fp where p is a 3072-bit prime

I easy in F24n , F36n

[Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]

I what about Fpn where 2 ≤ n ≤ 12 and pn is a 3072-bit?
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Number Field Sieve algorithm for DL in GF(pn)

How to generate relations ?
Use two distinct rings Rf = Z[x ]/(f (x)), Rg = Z[x ]/(g(x)) and
two maps ρf , ρg that map x ∈ Rf , resp. x ∈ Rg to the same
element z ∈ Fpn : {

ρf : x ∈ Rf 7→ z ,
ρg : x ∈ Rg 7→ z

Z[x ]

Rf = Z[x ]/(f (x)) Rg = Z[x ]/(g(x))

Fpn = Fp[z ]/(ϕ(z))

Rf 3 a− bx 7→ a− bz Rg 3 a− bx 7→ a− bz
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Number Field Sieve algorithm for DL in GF(pn)

1. Polynomial selection

2. Relation collection

3. Linear algebra

log DB

pi < B

I We know the log of small elements in Z[x ]/(f (x)) and
Z[x ]/(g(x))

I small elements are of the form ai − bi x = pi ∈ Z[x ]/(f (x)),
s.t. |Norm(pi )| = pi < B

4. Individual discrete logarithm
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Initial Splitting in Fp

An integer T is B-smooth if N =
∏

i pei
i and pi ≤ B

Algorithm 1: Generic Initial Splitting

Input: Target T0 ∈ Fp, generator g , subgroup order `, bound B
Output: t ∈ Z/`Z, T ∈ Z a preimage of T = g tT0, such that T

is B-smooth
1 repeat
2 take t at random in {1, . . . , `− 1}
3 T ← g tT0

4 T← u/v ≡ T mod p a rational reconstruction of T mod p

5 until T is B-smooth, i.e. u and v are B-smooth
6 return T = u/v , t // logg T0 = logg ρ(T)− t
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Initial Splitting in Fp, Fpn, F2n, F3n

I Fp: Rational Reconstruction. T ∈ Z/pZ, T is an integer < p.
Rational Reconstruction gives T = u/v mod p with u, v <

√
p

I [Blake Fuji-Hara Mullin Vanstone 84] Waterloo algorithm in

F2n : F2[x ] 3 T ≡ U/V =
u0+...+ubn/2cx

bn/2c

v0+...+vbn/2cx
bn/2c reduce degree

I [Joux Lercier Smart Vercauteren 06] in Fpn :

T ≡ U/V = u0+...+ud xd

v0+...+vd xd , d = deg f ≥ n, |ui |, |vi | ∼ pn/(2 deg f )

reduce coefficient size
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Individual Discrete Log of target T0 ∈ F∗pn

Given g and a DL database s.t. for all pi < B0 ∼ 227, log pi is
known,

1. initial splitting step (a.k.a. smoothing step):
DO
1.1 take t at random in {1, . . . , `− 1} and set T = g tT0

(hence logg (T0) = logg (T )− t)
1.2 factorize = q1 · · · qi︸ ︷︷ ︸

too large: 227<qi≤290

×(elements in DL database),

UNTIL qi ≤ B1 ∼ 290

2. Descent strategy: set S = {qi : B0 < qi ≤ B1}
while S 6= ∅ do

I set Bj < Bi

I find a relation qi =
∏

B0<qj<Bj
qj× (elements in DL database)

I S ← S \ {qi} ∪ {qj}j∈J

end while

3. log combination to find the individual target DL
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508-bit Fp3 Polynomial Selection

p = 908761003790427908077548955758380356675829026531247

of 170 bits
A = 28y2 + 16y − 109
ϕ = x3 − yx2 − (y + 3)x − 1, σ(x) 7→ −x − 1/x
f = Resy (A, ϕ)

= 28x6 + 16x5 − 261x4 − 322x3 + 79x2 + 152x + 28
‖f ‖∞ = 8.33 bits

α(f ) = −2.9

g = 24757815186639197370442122x3 + 40806897040253680471775183x2

−33466548519663911639551183x − 24757815186639197370442122

‖g‖∞ = 85.01 bits
α(g) = −4.1

Murphy’s E value:
E(f , g) = 1.31 · 10−12
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508-bit Fp3 individual discrete logarithm

Target:
T0= 0x11a2f 1f 13fa9b08703a033ee3c4321539156f 865ee9+0x1098c3b7280ef 2cf 8b091d08197de0a9ba935ff 79c6 z

+0x221205020e7729cb46166a9edfd5acb3bf 59dd0a7d4 z2 ∈ Fp[z ]/(ϕ(z))

Preimage: T0 = t0 + t1x + t2x2 ∈ Z[x ]

Normf (T) = Res(f ,T) ≤ A||T||deg f
∞ ||f ||deg T

∞

Normf (T0) = Res(f ,T0) of 1032 bits ≈ p6 = Q2

Normg (T0) = Res(g ,T0) of 670 bits ≈ p4 = Q4/3

Joux–Lercier:
Normf (JLf (T0)) ≈ p3 = Q
Normg (JLg (T0)) ≈ p4 = Q4/3
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Preimage improvement [G. 15]

Lemma
Let T ∈ Fpn .
log(T ) = log(u · T ) mod ` for any u in a proper subfield of Fpn .

I Fp is a proper subfield of Fpn

I target T = t0 + t1x + . . .+ td xd

I we divide the target by its leading term:

log(T ) = log(T/td ) mod `

We can assume that the target is monic.
Similar technique in pairing computation: Miller loop denominator
elimination [Boneh Kim Lynn Scott 02]
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Subfield Simplification + LLL

We want to reduce ||T||∞. Example with Fp3 :

I ϕ = x3 − yx2 − (y + 3)x − 1, y ∈ Z
I T = t0 + t1x + x2

I define L =



p 0 0 0 0 0
0 p 0 0 0 0
t0 t1 1 0 0 0
ϕ0 ϕ1 ϕ2 1 0 0
0 ϕ0 ϕ1 ϕ2 1 0
0 0 ϕ0 ϕ1 ϕ2 1



ρ(p) = 0 ∈ Fpn

T
ρ(ϕ) = 0 ∈ Fpn

I LLL(L) outputs a short vector r , linear combination of L’s
rows. r = λ0p + λ1px + λ2T + λ3ϕ+ λ4xϕ+ λ5x2ϕ.
r = r0 + . . .+ r5x5, ||ri ||∞ ≤ C det(L)1/6 = O(p1/3)

I Normf (r) = O(p2) of ≈ 340 bits instead of O(p3) of 508 bits

I log ρ(r) = log(T ) mod ` because ρ(r) = λ2T with λ2 ∈ Fp
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Initial Splitting step complexity

Given a target T0 ∈ F∗pn , and g a generator of F∗pn

repeat

1. take t at random in {1, . . . , `− 1} and set T = g tT0

2. factorize Norm(T)

until it is B1-smooth: Norm(T) =
∏

qi≤B1
qi
∏

pi≤B0
pi

L-notation: c > 0,

Q = pn, LQ [1/3, c] = e(c+o(1))(log Q)1/3 (log log Q)2/3 .

Norm factorization done with ECM method, in time LB1 [1/2,
√

2]

Lemma (Initial Splitting step running-time)

If Norm(T) ≤ Qe , take B1 = LQ [2/3, (e2/3)1/3], then the
running-time is LQ [1/3, (3e)1/3] (and this is optimal).
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Subfield Simplification + LLL

Normf (T) = Res(f ,T) ≤ A||T||deg f
∞ ||f ||deg T

∞

I Normf (r) ≤ ||r ||6∞||f ||5∞ = O(p2) = O(Q2/3) < O(Q)

MNT example: log Q = 508 bits
Normf (T) Normg (T) LQ [1/3, c] qi ≤ B1 =

Qe bits Qe bits c time LQ [23 , c]

Nothing Q2 1010 Q4/3 667 1.58 253 2109

[JLSV06] Q 508 Q5/3 847 1.44 248 290

Subfield Q2/3 340 Q 508 1.26 242 269

Combined with Pomerance Early Abort Strategy, we obtained a
54-bit smooth initial splitting for g35313T0 and a 59-bit smooth
initial splitting for g52154 in 32 core-hours.
The descent took 13.4 and 10.7 core hours.

U. of Calgary, PIMS-CNRS A. Guillevic CMS, Edmonton, June 25, 2016 18 / 24



With more subfields: e.g. Fp6

JLSV1 polynomial selection: ‖f ‖∞ = ‖g‖∞ =
√

p,
deg f = deg g = 6
Normf (T0) = ‖f ‖deg T

∞ ‖T‖6∞
Let {1,U,U2} be a polynomial basis of Fp3 ⊂ Fp6 , e.g. U = g1+p3

E =

∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗ 1

 = RowEchelonedForm

 T
UT

U2T


I E obtained with Fp-linear combinations of {T ,UT ,U2T}
I for each row ↔ ri ∈ Z[x ],

ri = λ0T + λ1UT + λ2U2T = (λ0 + λ1U + λ2U2)︸ ︷︷ ︸
=ui∈Fp3

T

logg ρ(ri ) = logg (T ) mod `
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Subfield Simplification + LLL in Fp6

We want to reduce ||T||∞.

I T = t0 + t1x + x2

I define L =



p 0 0 0 0 0
0 p 0 0 0 0
0 0 p 0 0 0
∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗ 1



ρ(p) = 0 ∈ Fpn

u0T
u1T
u2T

I LLL(L)→r = λ0p +λ1px +λ2px2 +λ3u0T +λ4u1T +λ5u2T .
r = r0 + . . .+ r5x5, ||ri ||∞ ≤ C det(L)1/6 = O(p1/2)

I Normf (r) = O(p3+ 5
2 ) = O(Q11/12) of ≈ 470 bits instead of

O(p3) of 508 bits

I log ρ(r) = log(T ) mod ` because
ρ(r) = (λ3u0 + λ4u1 + λ5u2)T with λi+3ui ∈ Fp3
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Theorem
Let T ∈ F∗pn an element which is not in a proper subfield of Fpn .
We want to compute its discrete logarithm modulo a (large) prime
`, where ` | Φn(p). Let f , Rf given by a polynomial selection
method. Let d be the largest divisor of n, d < n and d = 1 if n is
prime.
Then there exists a preimage T in Z[x ]/(f (x)) of T ∈ F∗pn , such
that log ρ(T) ≡ log T mod ` and whose norm in Rf is bounded by
O(qe), where q = pn and qe equals

1. q1−d/n for the GJL, Conjugation, Joux-Pierrot, Sarkar-Singh
and TNFS-like methods (and for all the possible methods
where ‖f ‖∞ = o(p));

2. q
3
2
− d

n
− 1

2n for the JLSV1 method;

3. q2− d
n
− 2

D+1 for the JLSV2 method, where D is the degree of g.
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Small characteristic F24m and F36m

Same idea as for Fp6 but without LLL:
The largest subfield of F24m is F22m , let d = 2m: Compute two
F2-linear Gaussian eliminations

A =


T

UT
...

Ud−1T

→

∗ ∗ ∗ 0 . . . 0

0 ∗ ∗ ∗ . . .
...

...
. . .

. . .
. . . 0

0 . . . 0 ∗ ∗ ∗


Each row ri corresponds to ui Ti = ui X

i · T ′i , where T ′i is of degree
n/2 = 2m and logg (X i T ′i ) = logg T mod `

I Need one poly of degree n/2 to be B-smooth instead of two
polys

I cost of Gaussian elimination shared over n/2 tests

I Magma implementation for F36·509 and F212·367 available
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Asymptotic complexity

L-notation: c > 0,

Q = pn, LQ [1/3, c] = e(c+o(1))(log Q)1/3 (log log Q)2/3

Set B = log L2n [2/3, γ]

I Blake–Fuji-Hara–Mullin–Vanstone Waterloo alg.: L2n

[
1
3 ,

1
3γ

]
I Subfield alg.: L2n

[
1
3 ,

d−1
d

1
3γ

]
where d is the largest proper

divisor of n (best case: d = n/2, L2n

[
1
3 ,

1
2

1
3γ

]
)

For F36·509 = F36 [x ]/(I (x)): T0 is a degree 508 polynomial over
F36 .

I We found a 30-smooth polynomial over F36

I much less elements to “descent”

I improve also the width and depth of “descent” tree
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Thank you!

Pre-print available soon.
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