Faster Individual Discrete logarithm in non-prime finite fields $\mathrm{GF}\left(p^{n}\right)$ with the Number and Function Field Sieve Algorithms

Aurore Guillevic

University of Calgary, PIMS-CNRS
CMS, Edmonton, June 25, 2016

Outline

Motivation: Pairing-based cryptography

The Number Field Sieve algorithm

Individual Discrete Log

Asymetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie-Hellman, etc)
Given a finite cyclic group ($\mathbf{G}, \cdot \cdot$), a generator g and $y \in \mathbf{G}$, compute x s.t. $y=g^{x}$.
Common choice of \mathbf{G} : prime finite field \mathbb{F}_{p} (since 1976), characteristic 2 finite field $\mathbb{F}_{2^{n}}$, elliptic curve $E\left(\mathbb{F}_{p}\right)$ (since 1985)

Elliptic curves in cryptography

$$
E: y^{2}=x^{3}+a x+b, a, b \in \mathbb{F}_{p}
$$

- proposed in 1985 by Koblitz, Miller
- $E\left(\mathbb{F}_{p}\right)$ has an efficient group law (chord an tangent rule) $\rightarrow \mathbf{G}$
- $\# E\left(\mathbb{F}_{p}\right)=p+1-t$, trace $t:|t| \leqslant 2 \sqrt{p}$

Need a prime-order (or with tiny cofactor) elliptic curve:

$$
h \cdot \ell=\# E\left(\mathbb{F}_{p}\right), \quad \ell \text { is prime, } \quad h \text { tiny, e.g. } h=1,2
$$

- compute t
- slow to compute in 1985: can use supersingular curves whose trace is known.

Supersingular elliptic curves

Example over $\mathbb{F}_{p}, p \geq 5$

$$
E: y^{2}=x^{3}+x / \mathbb{F}_{p}, \quad p=3 \bmod 4
$$

s.t. $t=0, \# E\left(\mathbb{F}_{p}\right)=p+1$.
take p s.t. $p+1=4 \cdot \ell$ where ℓ is prime.

Supersingular elliptic curves

Example over $\mathbb{F}_{p}, p \geq 5$

$$
E: y^{2}=x^{3}+x / \mathbb{F}_{p}, \quad p=3 \bmod 4
$$

s.t. $t=0, \# E\left(\mathbb{F}_{p}\right)=p+1$.
take p s.t. $p+1=4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing e that embeds the group $E\left(\mathbb{F}_{p}\right)$ into $\mathbb{F}_{p^{2}}$ where DLP is much easier.
Do not use supersingular curves.

Supersingular elliptic curves

Example over $\mathbb{F}_{p}, p \geq 5$

$$
E: y^{2}=x^{3}+x / \mathbb{F}_{p}, \quad p=3 \bmod 4
$$

s.t. $t=0, \# E\left(\mathbb{F}_{p}\right)=p+1$.
take p s.t. $p+1=4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing e that embeds the group $E\left(\mathbb{F}_{p}\right)$ into $\mathbb{F}_{p^{2}}$ where DLP is much easier.
Do not use supersingular curves.
But computing a pairing is very slow: [Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 326 bits.

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be

much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
e: E\left(\mathbb{F}_{q^{n}}\right)[\ell] \times E\left(\mathbb{F}_{q^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{q^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be

much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
e: E\left(\mathbb{F}_{q^{n}}\right)[\ell] \times E\left(\mathbb{F}_{q^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{q^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Attacks

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be

much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

- inversion of e : hard problem (exponential)

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be

much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.
$e: E\left(\mathbb{F}_{q^{n}}\right)[\ell] \times E\left(\mathbb{F}_{q^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{q^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{q}\right)$: hard problem (exponential, in $O(\sqrt{\ell})$)

Pairing-based cryptography

1999: Frey-Muller-Rück: actually, Miller Algorithm can be much faster.
2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{T} \subset \mathbb{F}_{p^{2}}$ of 1055 bits).
Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

$$
e: E\left(\mathbb{F}_{q^{n}}\right)[\ell] \times E\left(\mathbb{F}_{q^{n}}\right)[\ell] \longrightarrow \mathbb{F}_{q^{n}}^{*}, \quad e([a] P,[b] Q)=e(P, Q)^{a b}
$$

Attacks

- inversion of e : hard problem (exponential)
- discrete logarithm computation in $E\left(\mathbb{F}_{q}\right)$: hard problem (exponential, in $O(\sqrt{\ell})$)
- discrete logarithm computation in $\mathbb{F}_{q^{n}}^{*}$: easier, subexponential \rightarrow take a large enough field

Common target groups $\mathbb{F}_{q^{n}}$

- $\mathbb{F}_{2^{4 n}}, \mathbb{F}_{3^{6 n}}$ where $E / \mathbb{F}_{2^{n}}, E / \mathbb{F}_{3^{n}}$ is supersingular
- $\mathbb{F}_{p^{2}}$ where E / \mathbb{F}_{p} is a supersingular curve
- $\mathbb{F}_{p^{3}}, \mathbb{F}_{p^{4}}, \mathbb{F}_{p^{6}}$ where E / \mathbb{F}_{p} is an ordinary MNT curve [Miyaji Nakabayashi Takano 01]
- $\mathbb{F}_{p^{12}}$ where E / \mathbb{F}_{p} is a BN curve [Barreto-Naehrig 05]

DLP hardness for a 3072-bit finite field:

- hard in \mathbb{F}_{p} where p is a 3072-bit prime
- easy in $\mathbb{F}_{2^{4 n}}, \mathbb{F}_{3^{6 n}}$ [Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]
- what about $\mathbb{F}_{p^{n}}$ where $2 \leq n \leq 12$ and p^{n} is a 3072 -bit?

Number Field Sieve algorithm for DL in $\operatorname{GF}\left(p^{n}\right)$

How to generate relations ?
Use two distinct rings $R_{f}=\mathbb{Z}[x] /(f(x)), R_{g}=\mathbb{Z}[x] /(g(x))$ and two maps ρ_{f}, ρ_{g} that map $x \in R_{f}$, resp. $x \in R_{g}$ to the same element $z \in \mathbb{F}_{p^{n}}$:

Number Field Sieve algorithm for DL in $\operatorname{GF}\left(p^{n}\right)$

1. Polynomial selection
2. Relation collection
3. Linear algebra

- We know the log of small elements in $\mathbb{Z}[x] /(f(x))$ and $\mathbb{Z}[x] /(g(x))$
- small elements are of the form $a_{i}-b_{i} x=\mathfrak{p}_{i} \in \mathbb{Z}[x] /(f(x))$, s.t. $\left|\operatorname{Norm}\left(\mathfrak{p}_{i}\right)\right|=p_{i}<B$

4. Individual discrete logarithm

Initial Splitting in \mathbb{F}_{p}

An integer T is B-smooth if $N=\prod_{i} p_{i}^{e_{i}}$ and $p_{i} \leq B$
Algorithm 1: Generic Initial Splitting
Input: Target $T_{0} \in \mathbb{F}_{p}$, generator g, subgroup order ℓ, bound B
Output: $t \in \mathbb{Z} / \ell \mathbb{Z}, \mathbf{T} \in \mathbb{Z}$ a preimage of $T=g^{t} T_{0}$, such that \mathbf{T} is B-smooth
1 repeat
2 take t at random in $\{1, \ldots, \ell-1\}$

$$
\begin{aligned}
& T \leftarrow g^{t} T_{0} \\
& \mathbf{T} \leftarrow u / v \equiv T \bmod p \text { a rational reconstruction of } T \bmod p
\end{aligned}
$$

5 until T is B-smooth, i.e. u and v are B-smooth
6 return $\mathbf{T}=u / v, t$
$/ / \log _{g} T_{0}=\log _{g} \rho(\mathbf{T})-t$

Initial Splitting in $\mathbb{F}_{p}, \mathbb{F}_{p^{n}}, \mathbb{F}_{2^{n}}, \mathbb{F}_{3^{n}}$

- \mathbb{F}_{p} : Rational Reconstruction. $T \in \mathbb{Z} / p \mathbb{Z}, \mathbf{T}$ is an integer $<p$. Rational Reconstruction gives $\mathbf{T}=u / v \bmod p$ with $u, v<\sqrt{p}$
- [Blake Fuji-Hara Mullin Vanstone 84] Waterloo algorithm in $\mathbb{F}_{2^{n}}: \mathbb{F}_{2}[x] \ni \mathbf{T} \equiv U / V=\frac{u_{0}+\ldots+u_{\lfloor n / 2\rfloor}\left\lfloor^{\lfloor n / 2\rfloor}\right.}{v_{0}+\ldots+v_{\lfloor n / 2\rfloor} x^{\lfloor n / 2\rfloor}}$ reduce degree
- [Joux Lercier Smart Vercauteren 06] in $\mathbb{F}_{p^{n}}$: $\mathbf{T} \equiv U / V=\frac{u_{0}+\ldots+u_{d} x^{d}}{v_{0}+\ldots+v_{d} x^{d}}, d=\operatorname{deg} f \geq n,\left|u_{i}\right|,\left|v_{i}\right| \sim p^{n /(2 \operatorname{deg} f)}$ reduce coefficient size

Individual Discrete Log of target $T_{0} \in \mathbb{F}_{p^{n}}^{*}$

Given g and a DL database s.t. for all $p_{i}<B_{0} \sim 2^{27}, \log p_{i}$ is known,

Individual Discrete Log of target $T_{0} \in \mathbb{F}_{p^{n}}^{*}$

Given g and a DL database s.t. for all $p_{i}<B_{0} \sim 2^{27}, \log p_{i}$ is known,

1. initial splitting step (a.k.a. smoothing step):

DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=g^{t} T_{0}$ (hence $\log _{g}\left(T_{0}\right)=\log _{g}(T)-t$)
1.2 factorize

$$
\operatorname{Norm}(\mathbf{T})=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } 2^{27}<q_{i} \leq 2^{90}} \times(\text { elements in DL database }),
$$

UNTIL $q_{i} \leq B_{1} \sim 2^{90}$

Individual Discrete Log of target $T_{0} \in \mathbb{F}_{p^{n}}^{*}$

Given g and a DL database s.t. for all $p_{i}<B_{0} \sim 2^{27}, \log p_{i}$ is known,

1. initial splitting step (a.k.a. smoothing step):

DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=g^{t} T_{0}$ (hence $\left.\log _{g}\left(T_{0}\right)=\log _{g}(T)-t\right)$
1.2 factorize

$$
\operatorname{Norm}(\mathbf{T})=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } 2^{27}<q_{i} \leq 2^{90}} \times(\text { elements in DL database })
$$

UNTIL $q_{i} \leq B_{1} \sim 2^{90}$
2. Descent strategy: set $\mathcal{S}=\left\{q_{i}: B_{0}<q_{i} \leq B_{1}\right\}$ while $\mathcal{S} \neq \emptyset$ do

- set $B_{j}<B_{i}$
- find a relation $q_{i}=\prod_{B_{0}<q_{j}<B_{j}} q_{j} \times$ (elements in DL database)
- $\mathcal{S} \leftarrow \mathcal{S} \backslash\left\{q_{i}\right\} \cup\left\{q_{j}\right\}_{j \in J}$
end while

Individual Discrete Log of target $T_{0} \in \mathbb{F}_{p^{n}}^{*}$

Given g and a DL database s.t. for all $p_{i}<B_{0} \sim 2^{27}, \log p_{i}$ is known,

1. initial splitting step (a.k.a. smoothing step):

DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=g^{t} T_{0}$ (hence $\left.\log _{g}\left(T_{0}\right)=\log _{g}(T)-t\right)$
1.2 factorize

$$
\operatorname{Norm}(\mathbf{T})=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } 2^{27}<q_{i} \leq 2^{90}} \times(\text { elements in DL database })
$$

UNTIL $q_{i} \leq B_{1} \sim 2^{90}$
2. Descent strategy: set $\mathcal{S}=\left\{q_{i}: B_{0}<q_{i} \leq B_{1}\right\}$ while $\mathcal{S} \neq \emptyset$ do

- set $B_{j}<B_{i}$
- find a relation $q_{i}=\prod_{B_{0}<q_{j}<B_{j}} q_{j} \times$ (elements in DL database)
- $\mathcal{S} \leftarrow \mathcal{S} \backslash\left\{q_{i}\right\} \cup\left\{q_{j}\right\}_{j \in J}$
end while

3. \log combination to find the individual target DL

Individual Discrete Log of target $T_{0} \in \mathbb{F}_{p^{n}}^{*}$

Given g and a DL database s.t. for all $p_{i}<B_{0} \sim 2^{27}, \log p_{i}$ is known,

1. initial splitting step (a.k.a. smoothing step):

DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=g^{t} T_{0}$ (hence $\left.\log _{g}\left(T_{0}\right)=\log _{g}(T)-t\right)$
1.2 factorize

UNTIL $q_{i} \leq B_{1} \sim 2^{90}$
2. Descent strategy: set $\mathcal{S}=\left\{q_{i}: B_{0}<q_{i} \leq B_{1}\right\}$ while $\mathcal{S} \neq \emptyset$ do

- set $B_{j}<B_{i}$
- find a relation $q_{i}=\prod_{B_{0}<q_{j}<B_{j}} q_{j} \times$ (elements in DL database)
- $\mathcal{S} \leftarrow \mathcal{S} \backslash\left\{q_{i}\right\} \cup\left\{q_{j}\right\}_{j \in J}$
end while

3. \log combination to find the individual target DL

508-bit $\mathbb{F}_{p^{3}}$ Polynomial Selection

$$
\begin{aligned}
p= & 908761003790427908077548955758380356675829026531247 \\
& \text { of } 170 \text { bits } \\
A= & 28 y^{2}+16 y-109 \\
\varphi= & x^{3}-y x^{2}-(y+3) x-1, \quad \sigma(x) \mapsto-x-1 / x \\
f= & \operatorname{Res}_{y}(A, \varphi) \\
= & 28 x^{6}+16 x^{5}-261 x^{4}-322 x^{3}+79 x^{2}+152 x+28 \\
& \|f\|_{\infty}=8.33 \text { bits } \\
\alpha(f)= & -2.9 \\
g= & 24757815186639197370442122 x^{3}+40806897040253680471775183 x^{2} \\
& -33466548519663911639551183 x-24757815186639197370442122 \\
& \|g\|_{\infty}=85.01 \text { bits } \\
\alpha(g)= & -4.1 \\
& \text { Murphy's } \mathrm{E} \text { value: } \\
\mathbb{E}(f, g)= & 1.31 \cdot 10^{-12}
\end{aligned}
$$

508-bit $\mathbb{F}_{p^{3}}$ individual discrete logarithm

Target:
$T_{0}=0 \times 1112221$ 1f13fa9b08703a033ee3c4321539156f865ee9 $+0 \times 1098$ c3b7280ef2cf8b091d08197deoa9ba935ff79c6 z $+0 \times 221205020$ e7729cb46166a9edff5acb3bf59ddOa7d4 $z^{2} \in \mathbb{F}_{p}[z] /(\varphi(z))$
Preimage: $\mathbf{T}_{0}=t_{0}+t_{1} x+t_{2} x^{2} \in \mathbb{Z}[x]$

$$
\operatorname{Norm}_{f}(\mathbf{T})=\operatorname{Res}(f, \mathbf{T}) \leq A\|\mathbf{T}\|_{\infty}^{\operatorname{deg} f}\|f\|_{\infty}^{\operatorname{deg} \mathbf{T}}
$$

$\operatorname{Norm}_{f}\left(\mathbf{T}_{0}\right)=\operatorname{Res}\left(f, \mathbf{T}_{0}\right)$ of 1032 bits $\approx p^{6}=Q^{2}$
$\operatorname{Norm}_{g}\left(\mathbf{T}_{0}\right)=\operatorname{Res}\left(g, \mathbf{T}_{0}\right)$ of 670 bits $\approx p^{4}=Q^{4 / 3}$ Joux-Lercier:
$\operatorname{Norm}_{f}\left(J L_{f}\left(\mathbf{T}_{0}\right)\right) \approx p^{3}=Q$
$\operatorname{Norm}_{g}\left(J L_{g}\left(\mathbf{T}_{0}\right)\right) \approx p^{4}=Q^{4 / 3}$

Preimage improvement [G. 15]

Lemma
Let $T \in \mathbb{F}_{p^{n}}$.
$\log (T)=\log (u \cdot T) \bmod \ell$ for any u in a proper subfield of $\mathbb{F}_{p^{n}}$.

Preimage improvement [G. 15]

Lemma
Let $T \in \mathbb{F}_{p^{n}}$.
$\log (T)=\log (u \cdot T) \bmod \ell$ for any u in a proper subfield of $\mathbb{F}_{p^{n}}$.

- \mathbb{F}_{p} is a proper subfield of $\mathbb{F}_{p^{n}}$
- target $T=t_{0}+t_{1} x+\ldots+t_{d} x^{d}$
- we divide the target by its leading term:

$$
\log (T)=\log \left(T / t_{d}\right) \bmod \ell
$$

We can assume that the target is monic.

Preimage improvement [G. 15]

Lemma
Let $T \in \mathbb{F}_{p^{n}}$.
$\log (T)=\log (u \cdot T) \bmod \ell$ for any u in a proper subfield of $\mathbb{F}_{p^{n}}$.

- \mathbb{F}_{p} is a proper subfield of $\mathbb{F}_{p^{n}}$
- target $T=t_{0}+t_{1} x+\ldots+t_{d} x^{d}$
- we divide the target by its leading term:

$$
\log (T)=\log \left(T / t_{d}\right) \bmod \ell
$$

We can assume that the target is monic.
Similar technique in pairing computation: Miller loop denominator elimination [Boneh Kim Lynn Scott 02]

Subfield Simplification + LLL

We want to reduce $\|\mathbf{T}\|_{\infty}$. Example with $\mathbb{F}_{p^{3}}$:

- $\varphi=x^{3}-y x^{2}-(y+3) x-1, y \in \mathbb{Z}$
- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{cccccc}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_{0} & t_{1} & 1 & 0 & 0 & 0 \\ \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 & 0 \\ 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 \\ 0 & 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1\end{array}\right]$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows. $r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} T+\lambda_{3} \varphi+\lambda_{4} x \varphi+\lambda_{5} x^{2} \varphi$. $r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 3}\right)$

Subfield Simplification + LLL

We want to reduce $\|\mathbf{T}\|_{\infty}$. Example with $\mathbb{F}_{p^{3}}$:

- $\varphi=x^{3}-y x^{2}-(y+3) x-1, y \in \mathbb{Z}$
- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{cccccc}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_{0} & t_{1} & 1 & 0 & 0 & 0 \\ \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 & 0 \\ 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 \\ 0 & 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1\end{array}\right]$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows. $r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} T+\lambda_{3} \varphi+\lambda_{4} x \varphi+\lambda_{5} x^{2} \varphi$. $r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 3}\right)$
- $\operatorname{Norm}_{f}(r)=O\left(p^{2}\right)$ of ≈ 340 bits instead of $O\left(p^{3}\right)$ of 508 bits

Subfield Simplification + LLL

We want to reduce $\|\mathbf{T}\|_{\infty}$. Example with $\mathbb{F}_{p^{3}}$:

- $\varphi=x^{3}-y x^{2}-(y+3) x-1, y \in \mathbb{Z}$
- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{cccccc}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_{0} & t_{1} & 1 & 0 & 0 & 0 \\ \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 & 0 \\ 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 \\ 0 & 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1\end{array}\right] \quad \begin{aligned} & \rho(p)=0 \in \mathbb{F}_{p^{n}} \\ & T \\ & \rho(\varphi)=0 \in \mathbb{F}_{p^{n}}\end{aligned}$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows. $r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} T+\lambda_{3} \varphi+\lambda_{4} x \varphi+\lambda_{5} x^{2} \varphi$. $r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 3}\right)$
- $\operatorname{Norm}_{f}(r)=O\left(p^{2}\right)$ of ≈ 340 bits instead of $O\left(p^{3}\right)$ of 508 bits
- $\log \rho(r)=\log (T) \bmod \ell$ because $\rho(r)=\lambda_{2} T$ with $\lambda_{2} \in \mathbb{F}_{p}$

Initial Splitting step complexity

Given a target $T_{0} \in \mathbb{F}_{p^{n}}^{*}$, and g a generator of $\mathbb{F}_{p^{n}}^{*}$ repeat

1. take t at random in $\{1, \ldots, \ell-1\}$ and set $T=g^{t} T_{0}$
2. factorize $\operatorname{Norm}(\mathbf{T})$
until it is B_{1}-smooth: $\operatorname{Norm}(\mathbf{T})=\prod_{q_{i} \leq B_{1}} q_{i} \prod_{p_{i} \leq B_{0}} p_{i}$
L-notation: c >0,

$$
Q=p^{n}, \quad L_{Q}[1 / 3, \mathbf{c}]=\mathrm{e}^{(\mathbf{c}+o(1))(\log Q)^{1 / 3}(\log \log Q)^{2 / 3}} .
$$

Norm factorization done with ECM method, in time $L_{B_{1}}[1 / 2, \sqrt{2}]$
Lemma (Initial Splitting step running-time) If $\operatorname{Norm}(\mathbf{T}) \leq Q^{e}$, take $B_{1}=L_{Q}\left[2 / 3,\left(e^{2} / 3\right)^{1 / 3}\right]$, then the running-time is $L_{Q}\left[1 / 3,(3 e)^{1 / 3}\right]$ (and this is optimal).

Subfield Simplification + LLL

$$
\operatorname{Norm}_{f}(\mathbf{T})=\operatorname{Res}(f, \mathbf{T}) \leq A\|\mathbf{T}\|_{\infty}^{\operatorname{deg} f}\|f\|_{\infty}^{\operatorname{deg} \mathbf{T}}
$$

- $\operatorname{Norm}_{f}(r) \leq\|r\|_{\infty}^{6}\|f\|_{\infty}^{5}=O\left(p^{2}\right)=O\left(Q^{2 / 3}\right)<O(Q)$

MNT example: $\log Q=508$ bits

	$\operatorname{Norm}_{f}(\mathbf{T})$		$\operatorname{Norm}_{g}(\mathbf{T})$		$L_{Q}[1 / 3, c]$		$q_{i} \leq B_{1}=$
	Q^{e}	bits	Q^{e}	bits	c	time	$L_{Q}\left[\frac{2}{3}, c\right]$
Nothing	Q^{2}	1010	$Q^{4 / 3}$	667	1.58	2^{53}	2^{109}
[JLSV06]	Q	508	$Q^{5 / 3}$	847	1.44	2^{48}	2^{90}
Subfield	$Q^{2 / 3}$	$\mathbf{3 4 0}$	\mathbf{Q}	508	$\mathbf{1 . 2 6}$	$\mathbf{2}^{42}$	$\mathbf{2}^{69}$

Combined with Pomerance Early Abort Strategy, we obtained a 54-bit smooth initial splitting for $g^{35313} T_{0}$ and a 59-bit smooth initial splitting for g^{52154} in 32 core-hours.
The descent took 13.4 and 10.7 core hours.

With more subfields: e.g. $\mathbb{F}_{p^{6}}$

JLSV1 polynomial selection: $\|f\|_{\infty}=\|g\|_{\infty}=\sqrt{p}$, $\operatorname{deg} f=\operatorname{deg} g=6$
$\operatorname{Norm}_{f}\left(\mathbf{T}_{0}\right)=\|f\|_{\infty}^{\operatorname{deg} \mathbf{T}}\|\mathbf{T}\|_{\infty}^{6}$
Let $\left\{1, U, U^{2}\right\}$ be a polynomial basis of $\mathbb{F}_{p^{3}} \subset \mathbb{F}_{p^{6}}$, e.g. $U=g^{1+p^{3}}$
$E=\left[\begin{array}{llllll}* & * & * & 1 & 0 & 0 \\ * & * & * & * & 1 & 0 \\ * & * & * & * & * & 1\end{array}\right]=$ RowEchelonedForm $\left(\left[\begin{array}{c}T \\ U T \\ U^{2} T\end{array}\right]\right)$

- E obtained with \mathbb{F}_{p}-linear combinations of $\left\{T, U T, U^{2} T\right\}$
- for each row $\leftrightarrow r_{i} \in \mathbb{Z}[x]$,

$$
r_{i}=\lambda_{0} T+\lambda_{1} U T+\lambda_{2} U^{2} T=\underbrace{\left(\lambda_{0}+\lambda_{1} U+\lambda_{2} U^{2}\right)}_{=u_{i} \in \mathbb{F}_{p^{3}}} T
$$

$\log _{g} \rho\left(r_{i}\right)=\log _{g}(T) \bmod \ell$

Subfield Simplification $+\operatorname{LLL}$ in $\mathbb{F}_{p^{6}}$

We want to reduce $\|\mathbf{T}\|_{\infty}$.

- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{cccccc}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 & 0 \\ * & * & * & 1 & 0 & 0 \\ * & * & * & * & 1 & 0 \\ * & * & * & * & * & 1\end{array}\right]$
- $\operatorname{LLL}(L) \rightarrow r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} p x^{2}+\lambda_{3} u_{0} T+\lambda_{4} u_{1} T+\lambda_{5} u_{2} T$. $r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 2}\right)$

Subfield Simplification + LLL in $\mathbb{F}_{p^{6}}$

We want to reduce $\|\mathbf{T}\|_{\infty}$.

- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{llllll}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 & 0 \\ * & * & * & 1 & 0 & 0 \\ * & * & * & * & 1 & 0 \\ * & * & * & * & * & 1\end{array}\right]$
- $\operatorname{LLL}(L) \rightarrow r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} p x^{2}+\lambda_{3} u_{0} T+\lambda_{4} u_{1} T+\lambda_{5} u_{2} T$. $r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 2}\right)$
- $\operatorname{Norm}_{f}(r)=O\left(p^{3+\frac{5}{2}}\right)=O\left(Q^{11 / 12}\right)$ of ≈ 470 bits instead of $O\left(p^{3}\right)$ of 508 bits

Subfield Simplification $+\operatorname{LLL}$ in $\mathbb{F}_{p^{6}}$

We want to reduce $\|\mathbf{T}\|_{\infty}$.

- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{llllll}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 & 0 \\ * & * & * & 1 & 0 & 0 \\ * & * & * & * & 1 & 0 \\ * & * & * & * & * & 1\end{array}\right] \begin{aligned} & \rho(p)=0 \in \mathbb{F}_{p^{n}} \\ & \\ & u_{0} T \\ & u_{1} T \\ & u_{2} T\end{aligned}$
- $\operatorname{LLL}(L) \rightarrow r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} p x^{2}+\lambda_{3} u_{0} T+\lambda_{4} u_{1} T+\lambda_{5} u_{2} T$. $r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 2}\right)$
- $\operatorname{Norm}_{f}(r)=O\left(p^{3+\frac{5}{2}}\right)=O\left(Q^{11 / 12}\right)$ of ≈ 470 bits instead of $O\left(p^{3}\right)$ of 508 bits
- $\log \rho(r)=\log (T) \bmod \ell$ because $\rho(r)=\left(\lambda_{3} u_{0}+\lambda_{4} u_{1}+\lambda_{5} u_{2}\right) T$ with $\lambda_{i+3} u_{i} \in \mathbb{F}_{p^{3}}$

Theorem

Let $T \in \mathbb{F}_{p^{n}}^{*}$ an element which is not in a proper subfield of $\mathbb{F}_{p^{n}}$. We want to compute its discrete logarithm modulo a (large) prime ℓ, where $\ell \mid \Phi_{n}(p)$. Let f, R_{f} given by a polynomial selection method. Let d be the largest divisor of $n, d<n$ and $d=1$ if n is prime.
Then there exists a preimage \mathbf{T} in $\mathbb{Z}[x] /(f(x))$ of $T \in \mathbb{F}_{p^{n}}^{*}$, such that $\log \rho(\mathbf{T}) \equiv \log T \bmod \ell$ and whose norm in R_{f} is bounded by $O\left(q^{e}\right)$, where $q=p^{n}$ and q^{e} equals

1. $q^{1-d / n}$ for the GJL, Conjugation, Joux-Pierrot, Sarkar-Singh and TNFS-like methods (and for all the possible methods where $\left.\|f\|_{\infty}=o(p)\right)$;
2. $q^{\frac{3}{2}-\frac{d}{n}-\frac{1}{2 n}}$ for the JLSV1 method;
3. $q^{2-\frac{d}{n}-\frac{2}{D+1}}$ for the JLSV2 method, where D is the degree of g.

Small characteristic $\mathbb{F}_{2^{4 m}}$ and $\mathbb{F}_{3^{6 m}}$

Same idea as for $\mathbb{F}_{p^{6}}$ but without LLL:
The largest subfield of $\mathbb{F}_{2^{4 m}}$ is $\mathbb{F}_{2^{2 m}}$, let $d=2 m$: Compute two \mathbb{F}_{2}-linear Gaussian eliminations

$$
A=\left[\begin{array}{c}
T \\
U T \\
\vdots \\
U^{d-1} T
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
* & * & * & 0 & \ldots & 0 \\
0 & * & * & * & \ddots & \vdots \\
\vdots & \ddots & \ddots & & \ddots & 0 \\
0 & \ldots & 0 & * & * & *
\end{array}\right]
$$

Each row r_{i} corresponds to $u_{i} T_{i}=u_{i} X^{i} \cdot T_{i}^{\prime}$, where T_{i}^{\prime} is of degree $n / 2=2 m$ and $\log _{g}\left(X^{i} T_{i}^{\prime}\right)=\log _{g} T \bmod \ell$

- Need one poly of degree $n / 2$ to be B-smooth instead of two polys
- cost of Gaussian elimination shared over $n / 2$ tests
- Magma implementation for $\mathbb{F}_{3^{6.509}}$ and $\mathbb{F}_{2^{12.367}}$ available

Asymptotic complexity

L-notation: c >0,

$$
Q=p^{n}, \quad L_{Q}[1 / 3, \mathbf{c}]=\mathrm{e}^{(\mathbf{c}+o(1))(\log Q)^{1 / 3}(\log \log Q)^{2 / 3}}
$$

Set $B=\log L_{2^{n}}[2 / 3, \gamma]$

- Blake-Fuji-Hara-Mullin-Vanstone Waterloo alg.: $L_{2^{n}}\left[\frac{1}{3}, \frac{1}{3 \gamma}\right]$
- Subfield alg.: $L_{2^{n}}\left[\frac{1}{3}, \frac{d-1}{d} \frac{1}{3 \gamma}\right]$ where d is the largest proper divisor of n (best case: $d=n / 2, L_{2^{n}}\left[\frac{1}{3}, \frac{1}{2} \frac{1}{3 \gamma}\right]$)
For $\mathbb{F}_{3^{6.509}}=\mathbb{F}_{3^{6}}[x] /(I(x)): T_{0}$ is a degree 508 polynomial over $\mathbb{F}_{3^{6}}$.
- We found a 30 -smooth polynomial over $\mathbb{F}_{3}{ }^{6}$
- much less elements to "descent"
- improve also the width and depth of "descent" tree

Thank you!
Pre-print available soon.

