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Asymetric cryptography

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie-Hellman, etc)

Given a finite cyclic group (G, ), a generator g and y € G,
compute x s.t. y = g*~.

Common choice of G:
prime finite field IF,, (since 1976), characteristic 2 finite field Fn,
elliptic curve E(Fp) (since 1985)
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Elliptic curves in cryptography

E:y?>=x3+ax+b, a,belF,

v

proposed in 1985 by Koblitz, Miller
E(Fp) has an efficient group law (chord an tangent rule) — G
#E(Fp) = p+1—t, trace t: [t| <2,/p

v

v

Need a prime-order (or with tiny cofactor) elliptic curve:

h-¢=#E(F,), (isprime, htiny, eg. h=1,2

» compute t

v

slow to compute in 1985: can use supersingular curves whose
trace is known.
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Supersingular elliptic curves

Example over F,, p > 5
E:y2:X3+x/Fp, p=3mod4

st. t=0, #E(F,) =p+ 1.
take ps.it. p+1=4-/ where £ is prime.
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Example over F,, p > 5

E:y2:X3+x/Fp, p=3mod4

st. t=0, #E(F,) =p+ 1.
take ps.t. p+1=4-/{ where £ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Riick attacks
There exists a pairing e that embeds the group E(F,) into I
where DLP is much easier.

Do not use supersingular curves.
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Supersingular elliptic curves

Example over F,, p > 5

E:y2:X3+x/Fp, p=3mod4

st. t=0, #E(F,) =p+ 1.
take ps.t. p+1=4-/{ where £ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Riick attacks
There exists a pairing e that embeds the group E(F,) into I
where DLP is much easier.

Do not use supersingular curves.

But computing a pairing is very slow:

[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a
163-bit supersingular curve, where Gt C > of 326 bits.
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Pairing-based cryptography

1999: Frey—Muller—Riick: actually, Miller Algorithm can be
much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently
(1s on a supersingular 528-bit curve, Gt C [F2 of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

e : E(Fgn)[f] x E(Fgn)[f] Fan, e([a]P, [b]Q) = e(P, Q)%
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Pairing-based cryptography

1999: Frey—Muller—Riick: actually, Miller Algorithm can be
much faster.

2000: [Joux ANTS] Computing a pairing can be done efficiently
(1s on a supersingular 528-bit curve, Gt C [F2 of 1055 bits).
Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

e : E(Fgn)[f] x E(Fgn)[f] Fan, e([a]P, [b]Q) = e(P, Q)%

Attacks ‘ I

> inversion of e : hard problem (exponential)

» discrete logarithm computation in E(Fg) : hard problem
(exponential, in O(\/7))

> discrete logarithm computation in 5, : easier,
subexponential — take a large enough field
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Common target groups IF»

» Foun, F3en where E/Fon, E/F3n is supersingular
» F,» where E/F, is a supersingular curve

> Fp3,F e, Fpe where E/F, is an ordinary MNT curve
[Miyaji Nakabayashi Takano 01]

» F,12 where E/IF,, is a BN curve [Barreto-Naehrig 05]

DLP hardness for a 3072-bit finite field:
» hard in [F, where p is a 3072-bit prime

> easy in F24n, F36n
[Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]

» what about Fyn where 2 < n <12 and p” is a 3072-bit?
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Number Field Sieve algorithm for DL in GF(p")

How to generate relations ?

Use two distinct rings Re = Z[x]/(f(x)), Rg = Z[x]/(g(x)) and
two maps pr, pg that map x € Ry, resp. x € Ry to the same
element z € Fpn

pfiX € R — z,
Pg X E Ry =2z

Z[x]

N

Re = Z[x]/(f(x)) Re = Z[x]/(g(x))

Rfaa—bea\ )%gaa—bx»—)a—bz

Fpn = Fp[2]/((2))
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Number Field Sieve algorithm for DL in GF(p")

1. Polynomial selection
2. Relation collection

3. Linear algebra

log DB

pi <

» We know the log of small elements in Z[x]/(f(x)) and

ZIx]/(&(x))
» small elements are of the form a; — bjx = p; € Z[x]/(f(x)).
s.t. |Norm(p;)| = pi < B

4. Individual discrete logarithm
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Initial Splitting in IF,,

An integer T is B-smooth if N = [[; pi’ and p; < B

Algorithm 1: Generic Initial Splitting

Input: Target Tg € [Fp,, generator g, subgroup order ¢, bound B

Output: t € Z/VZ, T € Z a preimage of T = g'Ty, such that T
is B-smooth

1 repeat

2 take t at random in {1,..., ¢ — 1}

3 T + gt To

4 T <~ u/v =T mod p a rational reconstruction of T mod p

5 until T /s B-smooth, i.e. u and v are B-smooth

6 return T =u/v,t // logg To = log, p(T) — t
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Initial Splitting in Fp, Fpn, Fon, F3n

» F,: Rational Reconstruction. T € Z/pZ, T is an integer < p.
Rational Reconstruction gives T = u/v mod p with u,v < |/p
» [Blake Fuji-Hara Mullin Vanstone 84] Waterloo algorithm in

; — _ Uo—l—...—‘rULn/QJXLn/QJ
Far: Folx] 5 T = U/V = il

reduce degree

» [Joux Lercier Smart Vercauteren 06] in Fpn:
T=U/V = tgk.cbugx? g deg f > n, |ujl,|vi| ~ pn/(2deg )

Vot Fvgxd !
reduce coefficient size
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Individual Discrete Log of target To € I},

Given g and a DL database s.t. for all p; < By ~ 2%7, log p; is
known,
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Individual Discrete Log of target T € I,

Given g and a DL database s.t. for all p; < By ~ 227 log p; is
known,

1. initial splitting step (a.k.a. smoothing step):
DO
1.1 take t at random in {1,... £ —1} andset T = g'Ty
(hence log,(To) = log,(T) — t)
1.2 factorize
Norm(T) = qL---q; x (elements in DL database),
——

too large: 227<q;<2%

UNTIL g; < By ~ 2%
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Given g and a DL database s.t. for all p; < By ~ 227 log p; is
known,

1. initial splitting step (a.k.a. smoothing step):
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Norm(T) = qL---q; x (elements in DL database),
——
too large: 227<q;<2%
UNTIL g; < By ~ 2%
2. Descent strategy: set S = {qi: By < q; < B1}
while S # () do
> set B; < B;
» find a relation q; = HBo<qj<B,- gjx (elements in DL database)
> S S\{ait U{g}jes
end while
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508-bit IF s Polynomial Selection

P = 908761003790427908077548955758380356675829026531247
of 170 bits

A =28y? + 16y — 109

e=x3—y2—(y+3)x—1, o(x)— —x—1/x

f =Res, (A, ¢)
= 28x5 + 16x°> — 261x* — 322x3 + 79x2 + 152x + 28
| flloo = 8.33 bits
a(f) =-2.9

g = 24757815186639197370442122X3 + 40806897040253680471775183X2

—33466548519663911639551183X — 24757815186639197370442122
|g|lso = 85.01 bits
alg) =—-4.1
Murphy's E value:
E(f,g) =1.31-107%2
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508-bit I3 individual discrete logarithm

Target:

TOZ 0x11a2f1f13fa9b087032033ee3c4321539156f 865ee9+0x1098c3b7280ef 2cf 8b091d08197de0a9ba935/f 79c6 Z
+0x221205020e7729ch461660edfd5ack3bf59dd0aTd4 22 € [y [2]/(p(2))

Preimage: To = to + t1x + tax? € Z[x]

Norm¢(T) = Res(f, T) < A||TIISE [|F||cceT

Norm¢(To) = Res(f, To) of 1032 bits ~ p® = Q?
Normg(To) = Res(g, To) of 670 bits ~ p* = Q*/3
Joux—Lercier:

Norm¢(JL¢(To)) = p> = Q

Normg(JLg(To)) = p* = Q*/3
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Preimage improvement [G. 15]

Lemma
Let T € Fpn.
log(T) = log(u- T) mod ¢ for any u in a proper subfield of Fpn.
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Preimage improvement [G. 15]

Lemma
Let T € Fpn.
log(T) = log(u- T) mod ¢ for any u in a proper subfield of Fpn.

» I, is a proper subfield of [Fpn
» target T =t + tix+ ...+ tgx?
» we divide the target by its leading term:

log(T) = log(T/ty) mod ¢

We can assume that the target is monic.
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Preimage improvement [G. 15]

Lemma
Let T € Fpn.
log(T) = log(u- T) mod ¢ for any u in a proper subfield of Fpn.

» I, is a proper subfield of [Fpn
» target T =t + tix+ ...+ tgx?
» we divide the target by its leading term:

log(T) = log(T/ty) mod ¢

We can assume that the target is monic.
Similar technique in pairing computation: Miller loop denominator
elimination [Boneh Kim Lynn Scott 02]
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Subfield Simplification + LLL

We want to reduce ||T||o. Example with [Fs:
> o=x"—yl —(y+3)x—1 yEL
» T =1ty+ tix + x°

p 0 0O O 0 O

O p 0 0 0 O

. to ## 1 0 0 O
» define L =

" o o1 w2 1 0 0

0

0 wo w1 @2 1
L0 0 9o 1 w2 1]
» LLL(L) outputs a short vector r, linear combination of L's

rows. r = Aop + A1px + Ao T + X3¢ + Aaxp + Asx2¢.
r=ro4...4+ x5 ||l < Cdet(L)Y/% = O(p'/3)
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We want to reduce ||T||o. Example with [Fs:
> o=x"—yl —(y+3)x—1 yEL
» T =1ty+ tix + x°

p 0 0 0 0 O
0O p 0 0 0 O
. to th 1 0 0 0
» define L =
" o v1 w2 1 0 0
0 w 1 g2 1 0
[0 0 wo 91 @2 1]

» LLL(L) outputs a short vector r, linear combination of L's
rows. r = Agp 4+ A1px + Ao T + A3 + Agx + Asx2o.
r=ro+...4+ x> ||l < Cdet(L)/6 = O(p'/3)

» Norm¢(r) = O(p?) of ~ 340 bits instead of O(p?) of 508 bits
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Subfield Simplification + LLL

We want to reduce ||T||o. Example with [Fs:
> o=x"—yl —(y+3)x—1 yEL
» T =1ty+ tix + x°

p 0 0 0 0 0] p(p)=0€F
0O p 0 0 0 0
. to th 1 0 0 of T
» define L =
wo 1 w2 1 0 0| pl¢)=0€Fy
0 wo w1 2 1 0
L0 0 9o w1 @2 1]

» LLL(L) outputs a short vector r, linear combination of L's
rows. r = Agp 4+ A1px + Ao T + A3 + Agx + Asx2o.
r=ro+...4+ x> ||l < Cdet(L)/6 = O(p'/3)

» Norm¢(r) = O(p?) of ~ 340 bits instead of O(p?) of 508 bits
> log p(r) = log(T) mod ¢ because p(r) = AT with X\ € Fp
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Initial Splitting step complexity

. E3 *
Given a target Tg € [, and g a generator of I,
repeat

1. take t at random in {1,...,/—1} andset T = g'Ty
2. factorize Norm(T)

until it is Bi-smooth: Norm(T) =[], -5 aill, <5, Pi
L-notation: ¢ > 0,
Q=p", Lg[1/3,c] = elcto(t))log Q)'/? (loglog Q)*/3

Norm factorization done with ECM method, in time Lg,[1/2, ﬁ]

Lemma (Initial Splitting step running-time)
If Norm(T) < Q¢, take By = Lg[2/3, (€2/3)/3], then the
running-time is Lg[1/3, (3e)'/3] (and this is optimal).
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Subfield Simplification + LLL

Norm¢(T) = Res(f, T) < A||T|ISE"||f||cceT

> Normy(r) < [|rl|%|If]13% = O(p?) = O(Q*3) < O(Q)
MNT example: log @ = 508 bits
Norm¢(T) | Normg(T) | Lo[l/3,c] | i< Br=
Q° bits | Q¢ bits | ¢ time | Lg[5,(]
Nothing | Q°> 1010 | @¥3 667 | 1.58 23 2109
[JLSV06] | @ 508 | Q>3 847 | 1.44 2% 2%
Subfield | Q%3 340 | Q 508 | 1.26 2% 209

Combined with Pomerance Early Abort Strategy, we obtained a
54-bit smooth initial splitting for g3°313 Ty and a 59-bit smooth
initial splitting for g°215% in 32 core-hours.

The descent took 13.4 and 10.7 core hours.
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With more subfields: e.g. IFps

JLSV1 polynomial selection: [|f{|oc = ||g]lcc = /P

degf =degg =6

Normy(To) = [I£|5 7| IS, 3
Let {1, U, U2} be a polynomial basis of Fps CFp, eg. U=gltr

*x * x 1 0 0 T
E=1|x * * x 1 0| = RowEchelonedForm uT
* % % % % 1 UcT

» E obtained with F,-linear combinations of { T, UT, U?T}

» for each row « r; € Z[x],
ri=XT +MUT +XU0PT =M+ MU+ XU T

~
:u;GFP:«;

log, p(ri) = log,(T) mod £
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Subfield Simplification + LLL in T

We want to reduce ||T||s-
> T:t0+t1X+X2

p 00 00O

0O pO0O0O

) 100 p O OO

> define L = « % 5+ 100
* % x x 1 0

% o * x % 1

> LLL(L) —r = Xop+A1px+dopx® +A3up T +Aqur T+ Asun T
r=ro+...4 x> ||l < Cdet(L)/6 = O(p'/?)
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Subfield Simplification + LLL in T

We want to reduce ||T||s-
> T:t0+t1X+X2

p 00 00O

0O pO0O0O

) 100 p O OO

> define L = « % 5+ 100
* % x x 1 0

% o * x % 1

> LLL(L) —r = Xop+A1px+dopx® +A3up T +Aqur T+ Asun T
r=ro+...4 x> ||l < Cdet(L)/6 = O(p'/?)

» Norm¢(r) = O(p3+%) = O(Q'/12) of ~ 470 bits instead of
O(p?) of 508 bits
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Subfield Simplification + LLL in T

We want to reduce ||T||s-
> T:t0+t1X+X2

define L =

v

v

0

¥ ¥ ¥ OOT
* ¥ ¥ O

* % ¥ T O O

* ¥ = O O O

¥ R O O O O
O O O O O

1

p(p) =0 € Fpr

U()T
U1T
U2T

LLL(L) —r = Xop+Aipx+dopx® +X3ug T+ Aqun T+ Asun T

r=ro+...4 x> ||l < Cdet(L)/6 = O(p'/?)

v

Norm¢(r) =

O(p?) of 508 bits
log p(r) = log(T) mod ¢ because

v

O(p3+g) = O(Q'/12) of ~ 470 bits instead of

p(r) = ()\3u0 + Aguq + )\5U2)T with \jj3u; € FP3
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Theorem

Let T € IF,» an element which is not in a proper subfield of F pn.

We want to compute its discrete logarithm modulo a (large) prime

¢, where | ®,(p). Let f, Rs given by a polynomial selection

method. Let d be the largest divisor of n, d < nandd=1ifnis

prime.

Then there exists a preimage T in Z[x]/(f(x)) of T € Fyn, such

that log p(T) = log T mod ¢ and whose norm in Ry is bounded by

O(q¢), where g = p" and q° equals

1. g'=9/" for the GJL, Conjugation, Joux-Pierrot, Sarkar-Singh

and TNFS-like methods (and for all the possible methods
where |[f[c = o(p));

3_d

2. qififzfln for the JLSV1 method;
3. qz_%_D%l for the JLSV2 method, where D is the degree of g.
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Small characteristic Fpm and Fom

Same idea as for IFpe but without LLL:
The largest subfield of Foun is Foom, let d = 2m: Compute two
IF>-linear Gaussian eliminations

T * % * 0 0

A— ur . 0 =x * %
: Do 0
Uit 0O ... 0 % x =«

Each row r; corresponds to u;j T; = ui X' - T!, where T/ is of degree
n/2 =2m and log, (X'T;) = log, T mod ¢
» Need one poly of degree n/2 to be B-smooth instead of two
polys
» cost of Gaussian elimination shared over n/2 tests

» Magma implementation for Fzs.500 and Fyi12.367 available
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Asymptotic complexity
L-notation: ¢ > 0,
Q= p", LolL/3.¢] = elcrol)ios @) (ogiog @)
Set B = log Ln[2/3,7]

» Blake—Fuji-Hara—Mullin—Vanstone Waterloo alg.: Lan [%, %}

» Subfield alg.: Lon [%, %%} where d is the largest proper

divisor of n (best case: d = n/2, Lpn [%, %%})
For F3es00 = F3s[x]/(/(x)): To is a degree 508 polynomial over
F36.
» We found a 30-smooth polynomial over F36
» much less elements to “descent”

» improve also the width and depth of “descent” tree
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Thank you!

Pre-print available soon.

U. of Calgary, PIMS-CNRS A. Guillevic CMS, Edmonton, June 25, 2016 24 / 24



	Motivation: Pairing-based cryptography
	The Number Field Sieve algorithm
	Individual Discrete Log

