Faster Individual Discrete logarithm in non-prime finite fields $GF(p^n)$ with the Number and Function Field Sieve Algorithms

Aurore Guillevic

University of Calgary, PIMS-CNRS

CMS, Edmonton, June 25, 2016

A. Guillevic

Motivation: Pairing-based cryptography

The Number Field Sieve algorithm

Individual Discrete Log

Factorization (RSA cryptosystem)

Discrete logarithm problem (Diffie-Hellman, etc) Given a finite cyclic group (\mathbf{G} , \cdot), a generator g and $y \in \mathbf{G}$, compute x s.t. $y = g^{x}$. Common choice of \mathbf{G} : prime finite field \mathbb{F}_{p} (since 1976), characteristic 2 finite field $\mathbb{F}_{2^{n}}$, elliptic curve $E(\mathbb{F}_{p})$ (since 1985)

Elliptic curves in cryptography

$$E: y^2 = x^3 + ax + b, a, b \in \mathbb{F}_p$$

- proposed in 1985 by Koblitz, Miller
- $E(\mathbb{F}_p)$ has an efficient group law (chord an tangent rule) \rightarrow **G**
- $\#E(\mathbb{F}_p) = p + 1 t$, trace t: $|t| \leq 2\sqrt{p}$

Need a prime-order (or with tiny cofactor) elliptic curve:

$$h \cdot \ell = \# E(\mathbb{F}_p), \ \ell \text{ is prime}, \ h \text{ tiny, e.g. } h = 1, 2$$

compute t

slow to compute in 1985: can use supersingular curves whose trace is known.

Supersingular elliptic curves

Example over \mathbb{F}_p , $p \geq 5$

$$E: y^2 = x^3 + x \ / \ \mathbb{F}_p, \ \ p = 3 \ \mathrm{mod} \ 4$$

s.t. t = 0, $\#E(\mathbb{F}_p) = p + 1$. take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

Supersingular elliptic curves

Example over \mathbb{F}_p , $p \geq 5$

$$E: y^2 = x^3 + x \ / \ \mathbb{F}_p, \ p = 3 \mod 4$$

s.t. t = 0, $\#E(\mathbb{F}_p) = p + 1$. take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing e that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_{p^2} where **DLP is much easier**.

Do not use supersingular curves.

Supersingular elliptic curves

Example over \mathbb{F}_p , $p \geq 5$

$$E: y^2 = x^3 + x \ / \ \mathbb{F}_p, \ p = 3 \mod 4$$

s.t. t = 0, $\#E(\mathbb{F}_p) = p + 1$. take p s.t. $p + 1 = 4 \cdot \ell$ where ℓ is prime.

1993: Menezes-Okamoto-Vanstone and Frey-Rück attacks There exists a pairing *e* that embeds the group $E(\mathbb{F}_p)$ into \mathbb{F}_{p^2} where **DLP is much easier**.

Do not use supersingular curves.

But computing a pairing is very slow:

[Harasawa Shikata Suzuki Imai 99]: 161467s (112 days) on a 163-bit supersingular curve, where $\mathbf{G}_T \subset \mathbb{F}_{p^2}$ of 326 bits.

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{q^n})[\ell] \times E(\mathbb{F}_{q^n})[\ell] \longrightarrow \mathbb{F}_{q^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{q^n})[\ell] \times E(\mathbb{F}_{q^n})[\ell] \longrightarrow \mathbb{F}_{q^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{q^n})[\ell] \times E(\mathbb{F}_{q^n})[\ell] \longrightarrow \mathbb{F}_{q^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

inversion of e : hard problem (exponential)

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{q^n})[\ell] \times E(\mathbb{F}_{q^n})[\ell] \longrightarrow \mathbb{F}_{q^n}^*, \ e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- ► discrete logarithm computation in E(F_q) : hard problem (exponential, in O(√ℓ))

ł

1999: Frey–Muller–Rück: actually, Miller Algorithm can be **much faster**.

2000: [Joux ANTS] Computing a pairing can be done efficiently (1s on a supersingular 528-bit curve, $\mathbf{G}_{\mathcal{T}} \subset \mathbb{F}_{p^2}$ of 1055 bits).

Weil or Tate pairing on an elliptic curve

Discrete logarithm problem with one more dimension.

$$e : E(\mathbb{F}_{q^n})[\ell] \times E(\mathbb{F}_{q^n})[\ell] \longrightarrow \mathbb{F}_{q^n}^*, \quad e([a]P, [b]Q) = e(P, Q)^{ab}$$

Attacks

- inversion of e : hard problem (exponential)
- ► discrete logarithm computation in E(F_q) : hard problem (exponential, in O(√ℓ))
- ▶ discrete logarithm computation in F^{*}_{qⁿ} : easier, subexponential → take a large enough field

Common target groups \mathbb{F}_{q^n}

- $\mathbb{F}_{2^{4n}}$, $\mathbb{F}_{3^{6n}}$ where E/\mathbb{F}_{2^n} , E/\mathbb{F}_{3^n} is supersingular
- \mathbb{F}_{p^2} where E/\mathbb{F}_p is a supersingular curve
- ▶ 𝑘_{p³}, 𝑘_{p⁴}, 𝑘_{p⁶} where E/𝑘_p is an ordinary MNT curve [Miyaji Nakabayashi Takano 01]
- $\mathbb{F}_{p^{12}}$ where E/\mathbb{F}_p is a BN curve [Barreto-Naehrig 05]

DLP hardness for a 3072-bit finite field:

- hard in \mathbb{F}_p where p is a 3072-bit prime
- easy in F_{2⁴ⁿ}, F_{3⁶ⁿ}
 [Barbulescu, Gaudry, Joux, Thomé 14, Granger et al. 14]
- what about \mathbb{F}_{p^n} where $2 \leq n \leq 12$ and p^n is a 3072-bit?

Number Field Sieve algorithm for DL in $GF(p^n)$

How to generate relations ? Use *two* distinct rings $R_f = \mathbb{Z}[x]/(f(x))$, $R_g = \mathbb{Z}[x]/(g(x))$ and two maps ρ_f , ρ_g that map $x \in R_f$, resp. $x \in R_g$ to *the same* element $z \in \mathbb{F}_{p^n}$:

Number Field Sieve algorithm for DL in $GF(p^n)$

- 1. Polynomial selection
- 2. Relation collection
- 3. Linear algebra

- We know the log of *small* elements in $\mathbb{Z}[x]/(f(x))$ and $\mathbb{Z}[x]/(g(x))$
- small elements are of the form a_i − b_ix = p_i ∈ Z[x]/(f(x)),
 s.t. |Norm(p_i)| = p_i < B
- 4. Individual discrete logarithm

Initial Splitting in \mathbb{F}_p

An integer T is B-smooth if $N = \prod_i p_i^{e_i}$ and $p_i \leq B$

Algorithm 1: Generic Initial Splitting

Input: Target $T_0 \in \mathbb{F}_p$, generator g, subgroup order ℓ , bound B**Output**: $t \in \mathbb{Z}/\ell\mathbb{Z}$, $\mathbf{T} \in \mathbb{Z}$ a preimage of $T = g^t T_0$, such that \mathbf{T} is B-smooth

1 repeat

2 | take t at random in $\{1, ..., \ell - 1\}$ 3 | $T \leftarrow g^t T_0$ 4 | $\mathbf{T} \leftarrow u/v \equiv T \mod p$ a rational reconstruction of T mod p 5 until T is B-smooth, i.e. u and v are B-smooth 6 return $\mathbf{T} = u/v, t$ // $\log_g T_0 = \log_g \rho(\mathbf{T}) - t$

- ▶ \mathbb{F}_p : Rational Reconstruction. $T \in \mathbb{Z}/p\mathbb{Z}$, **T** is an integer < p. Rational Reconstruction gives $\mathbf{T} = u/v \mod p$ with $u, v < \sqrt{p}$
- ► [Blake Fuji-Hara Mullin Vanstone 84] Waterloo algorithm in \mathbb{F}_{2^n} : $\mathbb{F}_2[x] \ni \mathbf{T} \equiv U/V = \frac{u_0 + ... + u_{\lfloor n/2 \rfloor} x^{\lfloor n/2 \rfloor}}{v_0 + ... + v_{\lfloor n/2 \rfloor} x^{\lfloor n/2 \rfloor}}$ reduce degree
- ► [Joux Lercier Smart Vercauteren 06] in \mathbb{F}_{p^n} : $\mathbf{T} \equiv U/V = \frac{u_0 + \dots + u_d x^d}{v_0 + \dots + v_d x^d}$, $d = \deg f \ge n$, $|u_i|, |v_i| \sim p^{n/(2 \deg f)}$ reduce coefficient size

Given g and a DL database s.t. for all $p_i < B_0 \sim 2^{27}$, log p_i is known,

Given g and a DL database s.t. for all $p_i < B_0 \sim 2^{27}$, log p_i is known,

initial splitting step (a.k.a. smoothing step):
 DO

1.1 take t at random in $\{1, \dots, \ell - 1\}$ and set $T = g^t T_0$ (hence $\log_g(T_0) = \log_g(T) - t$)

1.2 factorize

$$\begin{split} \mathsf{Norm}(\mathbf{T}) &= \underbrace{q_1 \cdots q_i}_{\text{too large: } 2^{27} < q_i \leq 2^{90}} \times (\text{elements in DL database}), \\ \mathsf{UNTIL} \ q_i &\leq B_1 \sim 2^{90} \end{split}$$

Given g and a DL database s.t. for all $p_i < B_0 \sim 2^{27}$, log p_i is known,

initial splitting step (a.k.a. smoothing step):
 DO

1.1 take t at random in $\{1, \dots, \ell - 1\}$ and set $T = g^t T_0$ (hence $\log_g(T_0) = \log_g(T) - t$)

1.2 factorize

Norm(**T**) = $\underbrace{q_1 \cdots q_i}_{\text{too large: } 2^{27} < q_i \le 2^{90}} \times (\text{elements in DL database}),$

UNTIL $q_i \leq B_1 \sim 2^{90}$

- 2. Descent strategy: set $S = \{q_i : B_0 < q_i \le B_1\}$ while $S \neq \emptyset$ do
 - set $B_j < B_i$
 - find a relation $q_i = \prod_{B_0 < q_i < B_i} q_j \times$ (elements in DL database)

•
$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{q_i\} \cup \{q_j\}_{j \in J}$$

end while

Given g and a DL database s.t. for all $p_i < B_0 \sim 2^{27}$, log p_i is known,

initial splitting step (a.k.a. smoothing step):
 DO

1.1 take t at random in $\{1, \dots, \ell - 1\}$ and set $T = g^t T_0$ (hence $\log_g(T_0) = \log_g(T) - t$)

1.2 factorize

Norm(**T**) = $\underbrace{q_1 \cdots q_i}_{\text{too large: } 2^{27} < q_i \le 2^{90}} \times (\text{elements in DL database}),$

UNTIL $q_i \leq B_1 \sim 2^{90}$

- 2. Descent strategy: set $S = \{q_i : B_0 < q_i \le B_1\}$ while $S \neq \emptyset$ do
 - set $B_j < B_i$
 - find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times$ (elements in DL database)

•
$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{q_i\} \cup \{q_j\}_{j \in J}$$

end while

3. log combination to find the individual target DL

Given g and a DL database s.t. for all $p_i < B_0 \sim 2^{27}$, log p_i is known,

initial splitting step (a.k.a. smoothing step):
 DO

1.1 take t at random in $\{1, \dots, \ell - 1\}$ and set $T = g^t T_0$ (hence $\log_g(T_0) = \log_g(T) - t$)

1.2 factorize

 $\underbrace{\text{Norm}(\mathbf{T})}_{\text{reduce this}} = \underbrace{q_1 \cdots q_i}_{\text{too large: } 2^{27} < q_i \le 2^{90}} \times (\text{elements in DL database}),$

UNTIL $q_i \leq B_1 \sim 2^{90}$

- 2. Descent strategy: set $S = \{q_i : B_0 < q_i \le B_1\}$ while $S \neq \emptyset$ do
 - set $B_j < B_i$
 - find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times$ (elements in DL database)

•
$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{q_i\} \cup \{q_j\}_{j \in J}$$

end while

3. log combination to find the individual target DL

508-bit \mathbb{F}_{p^3} Polynomial Selection

$$p = 908761003790427908077548955758380356675829026531247$$

of 170 bits
$$A = 28y^2 + 16y - 109$$

$$\varphi = x^3 - yx^2 - (y+3)x - 1, \quad \sigma(x) \mapsto -x - 1/x$$

$$f = \operatorname{Res}_y(A, \varphi)$$

$$= 28x^6 + 16x^5 - 261x^4 - 322x^3 + 79x^2 + 152x + 28$$

$$\|f\|_{\infty} = 8.33 \text{ bits}$$

$$(f) = -2.9$$

$$\begin{split} g &= 24757815186639197370442122x^3 + 40806897040253680471775183x^2 \\ &- 33466548519663911639551183x - 24757815186639197370442122 \\ &\|g\|_{\infty} = 85.01 \text{ bits} \\ \alpha(g) &= -4.1 \\ &\text{Murphy's E value:} \\ \mathbb{E}(f,g) &= 1.31 \cdot 10^{-12} \end{split}$$

 α

508-bit \mathbb{F}_{p^3} individual discrete logarithm

Target:

 $T_{0} = {}_{0x11a2f1f13fa9b08703a033ee3c4321539156f865ee9+0x1098c3b7280ef2cf8b091d08197de0a9ba935ff79c6} z \\ + {}_{0x221205020e7729cb46166a9edfd5acb3bf59dd0a7d4} z^{2} \in \mathbb{F}_{p}[z]/(\varphi(z))$ Preimage: $T_{0} = t_{0} + t_{1}x + t_{2}x^{2} \in \mathbb{Z}[x]$

 $\begin{aligned} \operatorname{Norm}_{f}(\mathsf{T}) &= \operatorname{Res}(f,\mathsf{T}) \leq A ||\mathsf{T}||_{\infty}^{\deg f} ||f||_{\infty}^{\deg \mathsf{T}} \\ \operatorname{Norm}_{f}(\mathsf{T}_{0}) &= \operatorname{Res}(f,\mathsf{T}_{0}) \text{ of } 1032 \text{ bits } \approx p^{6} = Q^{2} \\ \operatorname{Norm}_{g}(\mathsf{T}_{0}) &= \operatorname{Res}(g,\mathsf{T}_{0}) \text{ of } 670 \text{ bits } \approx p^{4} = Q^{4/3} \\ \operatorname{Joux-Lercier:} \\ \operatorname{Norm}_{f}(JL_{f}(\mathsf{T}_{0})) \approx p^{3} = Q \\ \operatorname{Norm}_{g}(JL_{g}(\mathsf{T}_{0})) \approx p^{4} = Q^{4/3} \end{aligned}$

Preimage improvement [G. 15]

Lemma

Let
$$T \in \mathbb{F}_{p^n}$$
.
log $(T) = \log(u \cdot T) \mod \ell$ for any u in a proper subfield of \mathbb{F}_{p^n} .

Preimage improvement [G. 15]

Lemma

Let $T \in \mathbb{F}_{p^n}$. $\log(T) = \log(u \cdot T) \mod \ell$ for any u in a proper subfield of \mathbb{F}_{p^n} .

- \mathbb{F}_p is a proper subfield of \mathbb{F}_{p^n}
- target $T = t_0 + t_1 x + ... + t_d x^d$
- we divide the target by its leading term:

$$\log(T) = \log(T/t_d) \bmod \ell$$

We can assume that the target is monic.

Preimage improvement [G. 15]

Lemma

Let $T \in \mathbb{F}_{p^n}$. $\log(T) = \log(u \cdot T) \mod \ell$ for any u in a proper subfield of \mathbb{F}_{p^n} .

- \mathbb{F}_p is a proper subfield of \mathbb{F}_{p^n}
- target $T = t_0 + t_1 x + ... + t_d x^d$
- we divide the target by its leading term:

$$\log(T) = \log(T/t_d) \bmod \ell$$

We can assume that the target is monic. Similar technique in pairing computation: Miller loop denominator elimination [Boneh Kim Lynn Scott 02]

We want to reduce $||\mathbf{T}||_{\infty}$. Example with \mathbb{F}_{p^3} : $\varphi = x^3 - yx^2 - (y+3)x - 1, y \in \mathbb{Z}$ $\mathbf{T} = t_0 + t_1x + x^2$ $\mathbf{F} = t_0 + t_1x + x^2$ $\mathbf{F} = t_0 + t_1x + x^2$

► LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi$. $r = r_0 + \ldots + r_5 x^5$, $||r_i||_{\infty} \leq C \det(L)^{1/6} = O(p^{1/3})$

We want to reduce $||\mathbf{T}||_{\infty}$. Example with \mathbb{F}_{p^3} : $\varphi = x^3 - yx^2 - (y+3)x - 1, y \in \mathbb{Z}$ $\mathbf{T} = t_0 + t_1x + x^2$ $\mathbf{F} = t_0 + t_1x + x^2$ $\mathbf{F} = t_0 + t_1x + x^2$

► LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi$. $r = r_0 + \ldots + r_5 x^5$, $||r_i||_{\infty} \leq C \det(L)^{1/6} = O(p^{1/3})$

▶ Norm_f(r) = $O(p^2)$ of ≈ 340 bits instead of $O(p^3)$ of 508 bits

We want to reduce $||\mathbf{T}||_{\infty}$. Example with \mathbb{F}_{p^3} : $\varphi = x^3 - yx^2 - (y+3)x - 1, y \in \mathbb{Z}$ $\mathbf{T} = t_0 + t_1x + x^2$ $\mathbf{F} = t_0 + t_1x + x^2$ $\mathbf{F} = t_0 + t_1x + x^2$ $\rho(p) = 0 \in \mathbb{F}_{p^n}$ $f_{0} = 0 = 0$ $f_{0} = 0$ $f_{0} = 0 = 0$ $f_{0} = 0$ $f_{0} = 0$

► LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi$. $r = r_0 + \ldots + r_5 x^5$, $||r_i||_{\infty} \le C \det(L)^{1/6} = O(p^{1/3})$

▶ Norm_f(r) = $O(p^2)$ of ≈ 340 bits instead of $O(p^3)$ of 508 bits

▶ log $\rho(r) = \log(T) \mod \ell$ because $\rho(r) = \lambda_2 T$ with $\lambda_2 \in \mathbb{F}_p$

Initial Splitting step complexity

Given a target $T_0 \in \mathbb{F}_{p^n}^*$, and g a generator of $\mathbb{F}_{p^n}^*$ repeat

- 1. take t at random in $\{1, \ldots, \ell 1\}$ and set $T = g^t T_0$
- 2. factorize Norm(T)

until it is B_1 -smooth: Norm(\mathbf{T}) = $\prod_{q_i \leq B_1} q_i \prod_{p_i \leq B_0} p_i$

L-notation: $\mathbf{c} > 0$,

$$Q = p^n$$
, $L_Q[1/3, \mathbf{c}] = e^{(\mathbf{c} + o(1))(\log Q)^{1/3}} (\log \log Q)^{2/3}}$

Norm factorization done with ECM method, in time $L_{B_1}[1/2, \sqrt{2}]$ Lemma (Initial Splitting step running-time) If Norm(**T**) $\leq Q^e$, take $B_1 = L_Q[2/3, (e^2/3)^{1/3}]$, then the running-time is $L_Q[1/3, (3e)^{1/3}]$ (and this is optimal).

٠

$$\operatorname{Norm}_{f}(\mathbf{T}) = \operatorname{Res}(f, \mathbf{T}) \leq A ||\mathbf{T}||_{\infty}^{\deg f} ||f||_{\infty}^{\deg \mathbf{T}}$$

• $\operatorname{Norm}_{f}(r) \leq ||r||_{\infty}^{6} ||f||_{\infty}^{5} = O(p^{2}) = O(Q^{2/3}) < O(Q)$

MNT examp	le: log	Q =	508	bits
-----------	---------	-----	-----	------

	Norm _{f} (T)		$\operatorname{Norm}_{g}(\mathbf{T})$		$L_Q[1/3, c]$		$q_i \leq B_1 =$
	Q^e	bits	Q^e	bits	С	time	$L_{Q}[\frac{2}{3}, c]$
Nothing	Q^2	1010	$Q^{4/3}$	667	1.58	2 ⁵³	2 ¹⁰⁹
[JLSV06]	Q	508	$Q^{5/3}$	847	1.44	2 ⁴⁸	2 ⁹⁰
Subfield	$Q^{2/3}$	340	Q	508	1.26	2 ⁴²	2 ⁶⁹

Combined with Pomerance Early Abort Strategy, we obtained a 54-bit smooth initial splitting for $g^{35313}T_0$ and a 59-bit smooth initial splitting for g^{52154} in 32 core-hours. The descent took 13.4 and 10.7 core hours.

With more subfields: e.g. \mathbb{F}_{p^6}

JLSV1 polynomial selection:
$$||f||_{\infty} = ||g||_{\infty} = \sqrt{p}$$
,
deg $f = \deg g = 6$
Norm_f(\mathbf{T}_0) = $||f||_{\infty}^{\deg T} ||\mathbf{T}||_{\infty}^6$
Let $\{1, U, U^2\}$ be a polynomial basis of $\mathbb{F}_{p^3} \subset \mathbb{F}_{p^6}$, e.g. $U = g^{1+p^3}$
 $E = \begin{bmatrix} * & * & * & 1 & 0 & 0 \\ * & * & * & * & 1 & 0 \\ * & * & * & * & * & 1 \end{bmatrix} = \text{RowEchelonedForm} \left(\begin{bmatrix} T \\ UT \\ U^2T \end{bmatrix} \right)$

• *E* obtained with \mathbb{F}_p -linear combinations of $\{T, UT, U^2T\}$

► for each row
$$\leftrightarrow r_i \in \mathbb{Z}[x]$$
,
 $r_i = \lambda_0 T + \lambda_1 UT + \lambda_2 U^2 T = \underbrace{(\lambda_0 + \lambda_1 U + \lambda_2 U^2)}_{=u_i \in \mathbb{F}_{p^3}} T$

 $\log_g \rho(r_i) = \log_g(T) \bmod \ell$

Subfield Simplification + LLL in \mathbb{F}_{p^6}

We want to reduce
$$||\mathbf{T}||_{\infty}$$
.
• $\mathbf{T} = t_0 + t_1 x + x^2$
• define $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 & 0 \\ * & * & * & 1 & 0 & 0 \\ * & * & * & * & 1 & 0 \\ * & * & * & * & * & 1 \end{bmatrix}$
• LLL $(L) \rightarrow r = \lambda_0 p + \lambda_1 p x + \lambda_2 p x^2 + \lambda_3 u_0 T + \lambda_4 u_1 T + \lambda_5 u_2 T.$
 $r = r_0 + \ldots + r_5 x^5, ||r_i||_{\infty} \le C \det(L)^{1/6} = O(p^{1/2})$

Subfield Simplification + LLL in \mathbb{F}_{p^6}

We want to reduce
$$||\mathbf{T}||_{\infty}$$
.
• $\mathbf{T} = t_0 + t_1 x + x^2$
• define $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 & 0 \\ * & * & * & 1 & 0 & 0 \\ * & * & * & * & 1 & 0 \\ * & * & * & * & 1 & 1 \end{bmatrix}$
• LLL $(L) \rightarrow r = \lambda_0 p + \lambda_1 p x + \lambda_2 p x^2 + \lambda_3 u_0 T + \lambda_4 u_1 T + \lambda_5 u_2 T$.
 $r = r_0 + \ldots + r_5 x^5$, $||r_i||_{\infty} \le C \det(L)^{1/6} = O(p^{1/2})$
• Norm_f $(r) = O(p^{3+\frac{5}{2}}) = O(Q^{11/12})$ of ≈ 470 bits instead of $O(p^3)$ of 508 bits

Subfield Simplification + LLL in \mathbb{F}_{p^6}

We want to reduce $||\mathbf{T}||_{\infty}$. ► **T** = $t_0 + t_1 x + x^2$ • define $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 & 0 \\ * & * & * & 1 & 0 & 0 \\ * & * & * & * & 1 & 0 \\ * & * & * & * & * & 1 \end{bmatrix} \begin{bmatrix} \rho(p) = 0 \in \mathbb{F}_{p^n} \\ u_0 T \\ u_1 T \\ u_2 T \end{bmatrix}$ ► LLL(L) $\rightarrow r = \lambda_0 p + \lambda_1 p x + \lambda_2 p x^2 + \lambda_3 u_0 T + \lambda_4 u_1 T + \lambda_5 u_2 T$. $r = r_0 + \ldots + r_5 x^5$, $||r_i||_{\infty} \leq C \det(L)^{1/6} = O(p^{1/2})$ • Norm_f(r) = $O(p^{3+\frac{5}{2}}) = O(Q^{11/12})$ of ≈ 470 bits instead of $O(p^3)$ of 508 bits ▶ $\log \rho(r) = \log(T) \mod \ell$ because

Theorem

Let $T \in \mathbb{F}_{p^n}^*$ an element which is not in a proper subfield of \mathbb{F}_{p^n} . We want to compute its discrete logarithm modulo a (large) prime ℓ , where $\ell \mid \Phi_n(p)$. Let f, R_f given by a polynomial selection method. Let d be the largest divisor of n, d < n and d = 1 if n is prime.

Then there exists a preimage **T** in $\mathbb{Z}[x]/(f(x))$ of $T \in \mathbb{F}_{p^n}^*$, such that $\log \rho(\mathbf{T}) \equiv \log T \mod \ell$ and whose norm in R_f is bounded by $O(q^e)$, where $q = p^n$ and q^e equals

1. $q^{1-d/n}$ for the GJL, Conjugation, Joux-Pierrot, Sarkar-Singh and TNFS-like methods (and for all the possible methods where $||f||_{\infty} = o(p)$);

2.
$$q^{\frac{3}{2} - \frac{d}{n} - \frac{1}{2n}}$$
 for the JLSV1 method;

3. $q^{2-\frac{d}{n}-\frac{2}{D+1}}$ for the JLSV2 method, where D is the degree of g.

Small characteristic $\mathbb{F}_{2^{4m}}$ and $\mathbb{F}_{3^{6m}}$

Same idea as for \mathbb{F}_{p^6} but without LLL: The largest subfield of $\mathbb{F}_{2^{4m}}$ is $\mathbb{F}_{2^{2m}}$, let d = 2m: Compute two \mathbb{F}_2 -linear Gaussian eliminations

$$A = \begin{bmatrix} T \\ UT \\ \vdots \\ U^{d-1}T \end{bmatrix} \to \begin{bmatrix} * & * & * & 0 & \dots & 0 \\ 0 & * & * & * & \ddots & \vdots \\ \vdots & \ddots & \ddots & & \ddots & 0 \\ 0 & \dots & 0 & * & * & * \end{bmatrix}$$

Each row r_i corresponds to $u_i T_i = u_i X^i \cdot T'_i$, where T'_i is of degree n/2 = 2m and $\log_g(X^i T'_i) = \log_g T \mod \ell$

- Need one poly of degree n/2 to be B-smooth instead of two polys
- cost of Gaussian elimination shared over n/2 tests
- \blacktriangleright Magma implementation for $\mathbb{F}_{3^{6\cdot 509}}$ and $\mathbb{F}_{2^{12\cdot 367}}$ available

Asymptotic complexity

L-notation: $\mathbf{c} > 0$, $Q = p^n, \ \ L_Q[1/3, {f c}] = {f e}^{({f c} + o(1))(\log Q)^{1/3}} \ (\log \log Q)^{2/3}$ Set $B = \log L_{2^n}[2/3, \gamma]$ ► Blake–Fuji-Hara–Mullin–Vanstone Waterloo alg.: $L_{2^n} \left| \frac{1}{3}, \frac{1}{3^{\gamma}} \right|$ • Subfield alg.: $L_{2^n}\left[\frac{1}{3}, \frac{d-1}{d}, \frac{1}{3\gamma}\right]$ where d is the largest proper divisor of *n* (best case: d = n/2, $L_{2^n} \left[\frac{1}{3}, \frac{1}{2} \frac{1}{3\gamma} \right]$) For $\mathbb{F}_{3^{6} \cdot 50^{9}} = \mathbb{F}_{3^{6}}[x]/(I(x))$: T_{0} is a degree 508 polynomial over F36.

• We found a 30-smooth polynomial over \mathbb{F}_{3^6}

- much less elements to "descent"
- improve also the width and depth of "descent" tree

Thank you!

Pre-print available soon.