Individual Discrete Logarithm in $\operatorname{GF}\left(p^{k}\right)$ (last step of the Number Field Sieve algorithm)

Aurore Guillevic

INRIA Saclay / GRACE Team

École Polytechnique / LIX

Asiacrypt 2015 Conference, Auckland, New Zealand, November 30

Logjam attack (weakdh.org)

Solving actual practical problem: Given a fixed finite field GF(q),

Huge massive precomputation (weeks, months, years)

Logjam attack (weakdh.org)

Solving actual practical problem: Given a fixed finite field GF(q),

Huge massive precomputation (weeks, months, years)

Logjam attack (weakdh.org)

Solving actual practical problem: Given a fixed finite field GF(q),

Huge massive precomputation (weeks, months, years)

Thousands of individual log computation <1 min each

Logjam attack (weakdh.org)

Solving actual practical problem:
Given a fixed finite field GF(q),

> Huge massive precomputation (weeks, months, years)

Thousands of individual log computation $<1 \mathrm{~min}$ each

- Logjam: $\mathrm{GF}(q)=\mathrm{GF}(p)$ (standardized) prime field of 512 bits real-time man-in-the-middle attack on Diffie-Hellman key exchange compute a discrete log in $\operatorname{GF}(p)$ in 70 s in average

Logjam attack (weakdh.org)

Solving actual practical problem:
Given a fixed finite field GF(q),

> Huge massive precomputation (weeks, months, years)

Thousands of individual log computation $<1 \mathrm{~min}$ each

- Logjam: $\mathrm{GF}(q)=\mathrm{GF}(p)$ (standardized) prime field of 512 bits real-time man-in-the-middle attack on Diffie-Hellman key exchange compute a discrete log in $\operatorname{GF}(p)$ in 70 s in average
- Pairing-based cryptography: $\mathrm{GF}(q)=\mathrm{GF}\left(p^{2}\right), \mathrm{GF}\left(p^{6}\right), \mathrm{GF}\left(p^{12}\right)$

Logjam attack (weakdh.org)

Solving actual practical problem:
Given a fixed finite field GF(q),

Huge massive precomputation (weeks, months, years)

Thousands of individual log computation $<1 \mathrm{~min}$ each

- Logjam: $\mathrm{GF}(q)=\mathrm{GF}(p)$ (standardized) prime field of 512 bits real-time man-in-the-middle attack on Diffie-Hellman key exchange compute a discrete \log in $\mathrm{GF}(p)$ in 70 s in average
- Pairing-based cryptography: $\mathrm{GF}(q)=\mathrm{GF}\left(p^{2}\right), \mathrm{GF}\left(p^{6}\right), \mathrm{GF}\left(p^{12}\right)$

Could we compute individual discrete logs in $\operatorname{GF}\left(p^{2}\right), \operatorname{GF}\left(p^{6}\right), \operatorname{GF}\left(p^{12}\right)$ in less than 1 min ?

DLP in the target group of pairing-friendly curves

Why DLP in finite fields $\mathbb{F}_{p^{2}}, \mathbb{F}_{p^{3}}, \ldots$?

In a subgroup $\mathbb{G}=\langle g\rangle$ of order ℓ,

- $(g, x) \mapsto g^{x}$ is easy (polynomial time)
- $\left(g, g^{x}\right) \mapsto x$ is (in well-chosen subgroup) hard: DLP.

- where E / \mathbb{F}_{p} is a pairing-friendly curve
- $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ of large prime order ℓ (generic attacks in $O(\sqrt{\ell})$: take e.g. 256-bit ℓ)
- $1 \leq k \leq 12$ embedding degree: very specific property (specific attacks (NFS): take 3072-bit p^{k})

DL records in small characteristic

X Small characteristic:

- supersingular curves $E / \mathbb{F}_{2^{n}}: \mathbb{G}_{T} \subset \mathbb{F}_{2^{4 n}}, E / \mathbb{F}_{3^{m}}: \mathbb{G}_{T} \subset \mathbb{F}_{3^{6 m}}$

Practical attacks (first one and most recent):

- Hayashi, Shimoyama, Shinohara, Takagi: GF($3^{6.97}$) (923 bit field) (2012)
- Granger, Kleinjung, Zumbragel: GF($\left.2^{9234}\right)$, $\operatorname{GF}\left(2^{4404}\right)(2014)$
- Adj, Menezes, Oliveira, Rodríguez-Henríquez: GF(3^{822}) $\operatorname{GF}\left(3^{978}\right)$ (2014)
- Joux: GF($\left(3^{2335}\right)$ (with Pierrot, 2014), GF($\left.2^{6168}\right)$ (2013)

Theoretical attacks: Quasi-Polynomial-time Algorithm (QPA)

- [Barbulescu Gaudry Joux Thomé 14]
- [Granger Kleinjung Zumbragel 14]

Common used pairing-friendly curves

\checkmark Curves over prime fields E / \mathbb{F}_{p} where QPA does NOT apply (with $\log p \geq \log \ell \approx 256$ bits, s.t. $k \log p \geq 3072$)

- supersingular: $\mathbb{G}_{T} \subset \mathbb{F}_{p^{2}}(\log p=1536)$
- [Miyaji Nakabayashi Takano 01] (MNT): $\mathbb{G}_{T} \subset \mathbb{F}_{p^{3}}$
$(\log p=1024), \mathbb{F}_{p^{4}}(\log p=768), \mathbb{F}_{p^{6}}(\log p=512)$
- [Freeman 06] $\mathbb{G}_{T} \subset \mathbb{F}_{p^{10}}$
- [Barreto Naehrig 05] (BN): $\mathbb{G}_{T} \subset \mathbb{F}_{p^{12}}(\log p=256$, optimal $)$
- [Kachisa Schaefer Scott 08] (KSS): $\mathbb{G}_{T} \subset \mathbb{F}_{p^{18}}$ (used for 192-bit security level: 384-bit $\ell, \log p=512, k \log p=9216)$

Last DL records, with the NFS-DL algorithm

$\mathrm{GF}(p)$	$\mathrm{GF}\left({p^{\prime 2}}^{2}\right), p^{\prime 2}=q$ [BGGM15]

Massive precomputation ($\mathrm{d}=$ core-day, $\mathrm{y}=$ core-year)
[Logjam] 512-bit p: 10y
[BGIJT14] 596-bit $p: 131 y$ 598-bit $q: 0.75 y+18$ GPU-d
$175 \times$ faster
Individual Discrete Log
512-bit $p: 70$ s median $\sqrt{ }$
596-bit $p: 2 \mathrm{~d} \quad$ 600-bit $q:$ few $\mathrm{d} \quad$ slow
[Logjam]: see weakdh.org
[BGGM15]: Barbulescu, Gaudry, G., Morain
[BGIJT14]: Bouvier, Gaudry, Imbert, Jeljeli, Thomé

This work:

- Faster individual discrete logarithm in $\mathbb{F}_{p^{k}}$, especially $k=2,3,4,6$
- Apply to pairing target group \mathbb{G}_{T}
- large characteristic $\mathbb{F}_{p^{2}}, \mathbb{F}_{p^{3}}$
- medium characteristic $\mathbb{F}_{p^{4}}, \mathbb{F}_{p^{6}}, \ldots$
- source code: written in Magma
+ part of http://cado-nfs.gforge.inria.fr/

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:

compute $f(x), g(x)$ with
1.
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
$\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(\varphi(x))$

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
1.
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
$\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(\varphi(x))$
2. Relation collection

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
$\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(\varphi(x))$
2. Relation collection
3. Linear algebra modulo $\ell \mid p^{k}-1$.
\rightarrow here we know the discrete log of a subset of elements.

\log DB	
$p_{i}<B_{0}$	

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
1.
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
massive precomputation
2. Relation collection
3. Linear algebra modulo $\ell \mid p^{k}-1$)
\rightarrow here we know the discrete log of a subset of elements.

$\log \mathrm{DB}$	
$p_{i}<B_{0}$	

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
1.
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
massive precomputation
2. Relation collection
3. Linear algebra modulo $\ell \mid p^{k}-1$)
\rightarrow here we know the discrete log of a subset of elements.

1. Individual target discrete logarithm

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
1.
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
$\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(\varphi(x))$
2. Relation collection
3. Linear algebra modulo $\ell \mid p^{k}-1$)
\rightarrow here we know the discrete log of a subset of elements.

\log DB
$p_{i}<B_{0}$

1. Individual target discrete logarithm for each given DLP instance

- not so trivial
- this talk: practical improvements very efficient for small k or even k

Polynomial Selection for DL in $\mathbb{F}_{p^{k}}$, and norm

- f, g irreducible over $\mathbb{Q}, f \neq g$ (define \neq number fields)
- $\operatorname{gcd}(f \bmod p, g \bmod p)=\varphi$ irreducible of degree k
- $\|f\|_{\infty},\|g\|_{\infty}, \operatorname{deg} f, \operatorname{deg} g$ small enough s.t. $\operatorname{Norm}_{f}(\cdot), \operatorname{Norm}_{g}(\cdot)$ are as small as possible

Norm of degree 1 element $a-b x \in \mathbb{Z}[x] /(f(x))$:

- $\operatorname{Norm}_{f}(a-b x)=\sum_{i=0}^{\operatorname{deg} f} a^{i} b^{\operatorname{deg} f-i} f_{i}$

More generally, when f is monic:

- $\operatorname{Norm}_{f}(T)=\operatorname{Res}(T, f) \leq A(\operatorname{deg} f, \operatorname{deg} T)\|\mathbf{T}\|_{\infty}^{\operatorname{deg} f}\|f\|_{\infty}^{d}$ where $\|f\|_{\infty}=\max _{0 \leq i \leq \operatorname{deg} f}\left|f_{i}\right|$

Polynomial Selection for $\mathbb{F}_{p^{4}}$

Both polynomials have large coefficients. $\mathbb{F}_{p^{4}}$ record of 392 bits (120 dd):

- $p={ }_{314159265358979323846270891033}$ of 98 bits (30 decimal digits dd)
- $f=x^{4}-{ }_{560499121640472} X^{3}-6 x^{2}+{ }_{560499121640472} x+1$
- let $\mathbf{y}=560499121640472$ and compute $u / v \equiv \mathbf{y}(\bmod p)$
- $g=v \cdot f_{y \leftarrow u / v}(x)$

560499121639105

- $\operatorname{Norm}_{\mathbb{Q}[x] /(f(x))}(a-b x)=$
$a^{4}-{ }_{560499121640472 a^{3}} b-6 a^{2} b^{2}+{ }_{560499121640472} a b^{3}+b^{4}$
$\approx \max (|a|,|b|)^{4}\|f\|_{\infty}$

Relation collection and Linear algebra

2. Relation collection (cado-nfs: Pierrick Gaudry and Laurent Grémy)
3. Linear algebra (cado-nfs: Emmanuel Thomé and Cyril Bouvier)

- We know the log of small elements in $\mathbb{Z}[x] /(f(x))$ and $\mathbb{Z}[x] /(g(x))$
- small elements are of the form $a_{i}-b_{i} x=\in \mathbb{Z}[x] /(f(x))$, s.t.
$\left|\operatorname{Norm}\left(a_{i}-b_{i} x\right)\right|=q_{i} \leq B_{0}$

Individual Discrete Logarithm

Preimage in $\mathbb{Z}[x] /(f(x))$ and ρ map

Randomized target $T=t_{0}+t_{1} X+t_{2} X^{2}+t_{3} X^{3} \in \mathbb{F}_{p^{4}}^{*}=\mathbb{F}_{p}[X] /(\varphi(X))$ Simplest choice of preimage \mathbf{T} : since $f=\varphi$,
$\mathbf{T}=\mathbf{t}_{\mathbf{0}}+\mathbf{t}_{\mathbf{1}} x+\mathbf{t}_{\mathbf{2}} x^{2}+\mathbf{t}_{\mathbf{3}} x^{3} \in \mathbb{Z}[x] /(f(x))$, with $\mathbf{t}_{\mathbf{i}} \equiv t_{i}(\bmod p)$.
We can always choose \mathbf{T} s.t.

- $\left|\mathbf{t}_{\mathbf{i}}\right|<p$
- $\operatorname{deg} \mathbf{T}<\operatorname{deg} \varphi$

We need $\rho(\mathbf{T})=T$
(where ρ is simply a reduction modulo (φ, p) when f (resp. g) is monic)

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B_{0}, \log p_{i} \in$

$\log \mathrm{DB}$
$p_{i}<B_{0}$

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B_{0}, \log p_{i} \in$

1. boot step (a.k.a. smoothing step):

DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=G^{t} T_{0}$ (hence $\log _{G}\left(T_{0}\right)=\log _{G}(T)-t$)
1.2 factorize $\operatorname{Norm}(\mathbf{T})=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } B_{0}<q_{i} \leq B_{1}} \times$ (elements in DL database),

UNTIL $q_{i} \leq B_{1}$

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B_{0}, \log p_{i} \in$

1. boot step (a.k.a. smoothing step):

DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=G^{t} T_{0}$ (hence $\log _{G}\left(T_{0}\right)=\log _{G}(T)-t$)
1.2 factorize $\operatorname{Norm}(\mathbf{T})=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } B_{0}<q_{i} \leq B_{1}} \times$ (elements in DL database),

UNTIL $q_{i} \leq B_{1}$
2. Descent strategy: set $\mathcal{S}=\left\{q_{i}: B_{0}<q_{i} \leq B_{1}\right\}$ while $\mathcal{S} \neq \emptyset$ do

- set $B_{j}<B_{i}$
- find a relation $q_{i}=\prod_{B_{0}<q_{j}<B_{j}} q_{j} \times$ (elements in $\left.\log \mathrm{DB}\right)$
- $\mathcal{S} \leftarrow \mathcal{S} \backslash\left\{q_{i}\right\} \cup\left\{q_{j}\right\}_{j \in J}$
end while

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B_{0}, \log p_{i} \in$

1. boot step (a.k.a. smoothing step):

DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=G^{t} T_{0}$ (hence $\log _{G}\left(T_{0}\right)=\log _{G}(T)-t$)
1.2 factorize $\operatorname{Norm}(\mathbf{T})=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } B_{0}<q_{i} \leq B_{1}} \times$ (elements in DL database),

UNTIL $q_{i} \leq B_{1}$
2. Descent strategy: set $\mathcal{S}=\left\{q_{i}: B_{0}<q_{i} \leq B_{1}\right\}$ while $\mathcal{S} \neq \emptyset$ do

- set $B_{j}<B_{i}$
- find a relation $q_{i}=\prod_{B_{0}<q_{j}<B_{j}} q_{j} \times$ (elements in $\left.\log \mathrm{DB}\right)$
- $\mathcal{S} \leftarrow \mathcal{S} \backslash\left\{q_{i}\right\} \cup\left\{q_{j}\right\}_{j \in J}$
end while

3. log combination to find the individual target DL

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B_{0}, \log p_{i} \in$

1. boot step (a.k.a. smoothing step):

DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=G^{t} T_{0}$ (hence $\log _{G}\left(T_{0}\right)=\log _{G}(T)-t$)
1.2 factorize $\underbrace{\operatorname{Norm}(\mathbf{T})}_{\text {reduce this }}=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } B_{0}<q_{i} \leq B_{1}} \times$ (elements in DL database),

UNTIL $q_{i} \leq B_{1}$
2. Descent strategy: set $\mathcal{S}=\left\{q_{i}: B_{0}<q_{i} \leq B_{1}\right\}$ while $\mathcal{S} \neq \emptyset$ do

- set $B_{j}<B_{i}$
- find a relation $q_{i}=\prod_{B_{0}<q_{j}<B_{j}} q_{j} \times$ (elements in $\left.\log \mathrm{DB}\right)$
- $\mathcal{S} \leftarrow \mathcal{S} \backslash\left\{q_{i}\right\} \cup\left\{q_{j}\right\}_{j \in J}$
end while

3. log combination to find the individual target DL

Boot step complexity

Given random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$, and G a generator of $\mathbb{F}_{p^{k}}^{*}$ repeat

1. take t at random in $\{1, \ldots, \ell-1\}$ and set $T=G^{t} T_{0}$
2. factorize $\operatorname{Norm}(\mathbf{T})$
until it is B_{1}-smooth: $\operatorname{Norm}(\mathbf{T})=\prod_{q_{i} \leq B_{1}} q_{i} \times($ elts in $\log \mathrm{DB})$
L-notation: $Q=p^{k}, L_{Q}[1 / 3, \mathbf{c}]=\mathrm{e}^{(\mathbf{c}+o(1))(\log Q)^{1 / 3}(\log \log Q)^{2 / 3}}$ for $\mathbf{c}>0$.
Norm factorization done with ECM method, in time $L_{B_{1}}[1 / 2, \sqrt{2}]$
Lemma (Boot step running-time)
If $\operatorname{Norm}(\mathbf{T}) \leq Q^{e}$, take $B_{1}=L_{Q}\left[2 / 3,\left(e^{2} / 3\right)^{1 / 3}\right]$, then the running-time is $L_{Q}\left[1 / 3,(3 e)^{1 / 3}\right]$ (and this is optimal).

Preimage optimization

$f, \operatorname{deg} f,\|f\|_{\infty}, g, \operatorname{deg} g,\|g\|_{\infty}$ are given by the polynomial selection step (NFS-DL step 1)

$$
\operatorname{Norm}_{f}(\mathbf{T})=\operatorname{Res}(f, \mathbf{T}) \leq A\|\mathbf{T}\|_{\infty}^{\operatorname{deg} f}\|f\|_{\infty}^{d}
$$

To reduce the norm,

- reduce $\|\mathbf{T}\|_{\infty}$
- and/or reduce $d=\operatorname{deg} \mathbf{T}$

Boot step: First experiments

Commonly assumed to be very easy and very fast. This is not always so easy!

- $\mathbb{F}_{p_{90}^{2}} 600$ bits (BGGM15 record) was easy, as fast as for $\mathbb{F}_{p_{180}}$ ($<$ one day) with [JLSV06] improvement technique
- $\mathbb{F}_{p^{3}}$ MNT 508 bits was much slower (days, week)
- $\mathbb{F}_{p^{4}} 392$ bits was even worse ($>$ one week)

What happened?

- $\mathbb{F}_{p^{3}}$: asymptotically the same as $\mathbb{F}_{p^{2}}: L_{Q}[1 / 3, c=1.44]$ but still much slower, Because of the constant hidden in the $O()$?
- $\mathbb{F}_{p^{4}}$: [JLSV06] not suited, $\|f\|_{\infty}=O\left(p^{1 / 2}\right), \operatorname{Norm}(\mathbf{T}) \approx Q^{3 / 2} \rightarrow$ $L_{Q}[1 / 3, c=1.65]$

Our solution

Lemma

Let $T \in \mathbb{F}_{p^{k}}$.
Then $\log (T)=\log (u \cdot T)(\bmod \ell)$ for any u in a proper subfield of $\mathbb{F}_{p^{k}}$.

Our solution

Lemma

Let $T \in \mathbb{F}_{p^{k}}$.
Then $\log (T)=\log (u \cdot T)(\bmod \ell)$ for any u in a proper subfield of $\mathbb{F}_{p^{k}}$.

- \mathbb{F}_{p} is a proper subfield of $\mathbb{F}_{p^{k}}$
- target $T=t_{0}+t_{1} x+\ldots+t_{d} x^{d}$
- we divide the target by its leading term:

$$
\log (T)=\log \left(T / t_{d}\right) \quad(\bmod \ell)
$$

From now on we assume that the target is monic.

Our solution

Lemma

Let $T \in \mathbb{F}_{p^{k}}$.
Then $\log (T)=\log (u \cdot T)(\bmod \ell)$ for any u in a proper subfield of $\mathbb{F}_{p^{k}}$.

- \mathbb{F}_{p} is a proper subfield of $\mathbb{F}_{p^{k}}$
- target $T=t_{0}+t_{1} x+\ldots+t_{d} X^{d}$
- we divide the target by its leading term:

$$
\log (T)=\log \left(T / t_{d}\right) \quad(\bmod \ell)
$$

From now on we assume that the target is monic.
Similar technique in pairing computation:
Miller loop denominator elimination [Boneh Kim Lynn Scott 02]

$\mathbb{F}_{p^{4}}$ of 392 bits: Terribly slow booting step

- $p=314159265358979323846270891033$ of 98 bits (30 dd)
- $f=x^{4}-560499121640472 x^{3}-6 x^{2}+560499121640472 x+1$
- $T=t_{0}+t_{1} x+t_{2} x^{2}+x^{3}$
- we want to reduce $\|\mathbf{T}\|_{\infty}$. Define $L=$

$$
\left[\begin{array}{cccc}
p & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
t_{0} & t_{1} & t_{2} & 1
\end{array}\right]
$$

- $\operatorname{dim} 4$ because $\max (\operatorname{deg} f, \operatorname{deg} g)=4$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows. $r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} p x^{2}+\lambda_{3} T$,

$\mathbb{F}_{p^{4}}$ of 392 bits: Terribly slow booting step

- $p=314159265358979323846270891033$ of 98 bits (30 dd)
- $f=x^{4}-560499121640472 x^{3}-6 x^{2}+560499121640472 x+1$
- $T=t_{0}+t_{1} x+t_{2} x^{2}+x^{3}$
- we want to reduce $\|\mathbf{T}\|_{\infty}$. Define $L=$
$\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right] \begin{aligned} & p \mapsto 0 \text { in } \mathbb{F}_{p^{4}} \\ & p x \mapsto 0 \\ & p x^{2} \mapsto 0 \\ & \mathbf{T} \mapsto T\end{aligned}$
- $\operatorname{dim} 4$ because $\max (\operatorname{deg} f, \operatorname{deg} g)=4$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows. $r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} p x^{2}+\lambda_{3} T$,

$\mathbb{F}_{p^{4}}$ of 392 bits: Terribly slow booting step

- $p=314159265358979323846270891033$ of 98 bits (30 dd)
- $f=x^{4}-560499121640472 x^{3}-6 x^{2}+560499121640472 x+1$
- $T=t_{0}+t_{1} x+t_{2} x^{2}+x^{3}$
- we want to reduce $\|\mathbf{T}\|_{\infty}$. Define $L=$
$\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right] \begin{aligned} & p \mapsto 0 \text { in } \mathbb{F}_{p^{4}} \\ & p x \mapsto 0 \\ & p x^{2} \mapsto 0 \\ & \mathbf{T} \mapsto T\end{aligned}$
- $\operatorname{dim} 4$ because $\max (\operatorname{deg} f, \operatorname{deg} g)=4$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows. $r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} p x^{2}+\lambda_{3} T$,

$\mathbb{F}_{p^{4}}$ of 392 bits: Terribly slow booting step

- $p=314159265358979323846270891033$ of 98 bits (30 dd)
- $f=x^{4}-560499121640472 x^{3}-6 x^{2}+560499121640472 x+1$
- $T=t_{0}+t_{1} x+t_{2} x^{2}+x^{3}$
- we want to reduce $\|\mathbf{T}\|_{\infty}$. Define $L=$
$\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right] \begin{aligned} & p \mapsto 0 \text { in } \mathbb{F}_{p^{4}} \\ & p x \mapsto 0 \\ & p x^{2} \mapsto 0 \\ & \mathbf{T} \mapsto T\end{aligned}$
- $\operatorname{dim} 4$ because $\max (\operatorname{deg} f, \operatorname{deg} g)=4$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows. $r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} p x^{2}+\lambda_{3} T, \log \rho(\mathbf{r})=\log (T)(\bmod \ell)$

$\mathbb{F}_{p^{4}}$ of 392 bits: Terribly slow booting step

- $p=314159265358979323846270891033$ of 98 bits (30 dd)
- $f=x^{4}-560499121640472 x^{3}-6 x^{2}+560499121640472 x+1$
- $T=t_{0}+t_{1} x+t_{2} x^{2}+x^{3}$
- we want to reduce $\|\mathbf{T}\|_{\infty}$. Define $L=$
\(\left[\begin{array}{cccc}p \& 0 \& 0 \& 0

0 \& p \& 0 \& 0

0 \& 0 \& p \& 0

t_{0} \& t_{1} \& t_{2} \& 1\end{array}\right]\)| $p \mapsto 0$ in $\mathbb{F}_{p^{4}}$ |
| :--- |
| $p x \mapsto 0$ |
| $p x^{2} \mapsto 0$ |
| $\mathbf{T} \mapsto T$ |

- $\operatorname{dim} 4$ because $\max (\operatorname{deg} f, \operatorname{deg} g)=4$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows. $r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} p x^{2}+\lambda_{3} T, \log \rho(\mathbf{r})=\boldsymbol{\operatorname { l o g }}(\mathbf{T})(\bmod \ell)$
- $r=r_{0}+\ldots+r_{3} x^{3},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 4}=O\left(p^{3 / 4}\right)$
- $\operatorname{Norm}_{f}(r) \approx\|r\|_{\infty}^{4}\|f\|_{\infty}^{3} \approx p^{9 / 2}=Q^{9 / 8}$ of 450 bits instead of 588 b
- Booting step, number of operations: 2^{44}
- Large prime bound B_{1} of 81 bits

$\mathbb{F}_{p^{4}}$ of 392 bits: Terribly slow booting step

- $p=314159265358979323846270891033$ of 98 bits (30 dd)
- $f=x^{4}-560499121640472 x^{3}-6 x^{2}+560499121640472 x+1$
- $T=t_{0}+t_{1} x+t_{2} x^{2}+x^{3}$
- we want to reduce $\|\mathbf{T}\|_{\infty}$. Define $L=$
\(\left[\begin{array}{llll}p \& 0 \& 0 \& 0

0 \& p \& 0 \& 0

0 \& 0 \& p \& 0

t_{0} \& t_{1} \& t_{2} \& 1\end{array}\right]\)| $p \mapsto 0$ in $\mathbb{F}_{p^{4}}$ |
| :--- |
| $p x \mapsto 0$ |
| $p x^{2} \mapsto 0$ |
| $\mathbf{T} \mapsto T$ |

- $\operatorname{dim} 4$ because $\max (\operatorname{deg} f, \operatorname{deg} g)=4$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows. $r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} p x^{2}+\lambda_{3} T, \log \rho(\mathbf{r})=\log (T)(\bmod \ell)$
- $r=r_{0}+\ldots+r_{3} x^{3},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 4}=O\left(p^{3 / 4}\right)$
- $\operatorname{Norm}_{f}(r) \approx\|r\|_{\infty}^{4}\|f\|_{\infty}^{3} \approx p^{9 / 2}=Q^{9 / 8}$ of 450 bits instead of 588 b
- Booting step, number of operations: 2^{44}
- Large prime bound B_{1} of 81 bits

Our solution: quadratic subfield cofactor simplification

Lemma
Let $T \in \mathbb{F}_{p^{k}}, k$ even. We can always find $u \in \mathbb{F}_{p^{2}}$ and $T^{\prime} \in \mathbb{F}_{p^{k}}$ such that $T^{\prime}=u \cdot T$ and T^{\prime} is represented by a polynomial of degree $k-2$ instead of $k-1$.

Our solution: quadratic subfield cofactor simplification

Lemma

Let $T \in \mathbb{F}_{p^{k}}, k$ even. We can always find $u \in \mathbb{F}_{p^{2}}$ and $T^{\prime} \in \mathbb{F}_{p^{k}}$ such that $T^{\prime}=u \cdot T$ and T^{\prime} is represented by a polynomial of degree $k-2$ instead of $k-1$.

- define $L=\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t_{0}^{\prime} & t_{1}^{\prime} & 1 & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right]$
- $\operatorname{LLL}(L) \rightarrow$ short vector r linear combination of L 's rows

$$
r=r_{0}+\ldots+r_{3} x^{3},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 4}=O\left(p^{1 / 2}\right)
$$

Our solution: quadratic subfield cofactor simplification

Lemma

Let $T \in \mathbb{F}_{p^{k}}, k$ even. We can always find $u \in \mathbb{F}_{p^{2}}$ and $T^{\prime} \in \mathbb{F}_{p^{k}}$ such that $T^{\prime}=u \cdot T$ and T^{\prime} is represented by a polynomial of degree $k-2$ instead of $k-1$.

- define $L=\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t_{0}^{\prime} & t_{1}^{\prime} & 1 & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right] \begin{aligned} & \rho(p)=0 \in \mathbb{F}_{p^{k}} \\ & \rho(p x)=0 \in \mathbb{F}_{p^{k}} \\ & T^{\prime} \\ & T\end{aligned}$
- $\operatorname{LLL}(L) \rightarrow$ short vector r linear combination of L 's rows

$$
r=r_{0}+\ldots+r_{3} x^{3},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 4}=O\left(p^{1 / 2}\right)
$$

- $\rho(r)=\lambda_{2} T^{\prime}+\lambda_{3} T=\underbrace{\left(\lambda_{2} u+\lambda_{3}\right)} T$

$$
\in \text { subfield } \mathbb{F}_{p^{k} / 2}
$$

Our solution: quadratic subfield cofactor simplification

Lemma

Let $T \in \mathbb{F}_{p^{k}}, k$ even. We can always find $u \in \mathbb{F}_{p^{2}}$ and $T^{\prime} \in \mathbb{F}_{p^{k}}$ such that $T^{\prime}=u \cdot T$ and T^{\prime} is represented by a polynomial of degree $k-2$ instead of $k-1$.

- define $L=\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t_{0}^{\prime} & t_{1}^{\prime} & 1 & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right] \begin{aligned} & \rho(p)=0 \in \mathbb{F}_{p^{k}} \\ & \rho(p x)=0 \in \mathbb{F}_{p^{k}} \\ & T^{\prime} \\ & T\end{aligned}$
- $\operatorname{LLL}(L) \rightarrow$ short vector r linear combination of L 's rows

$$
r=r_{0}+\ldots+r_{3} x^{3},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 4}=O\left(p^{1 / 2}\right)
$$

- $\rho(r)=\lambda_{2} T^{\prime}+\lambda_{3} T=\underbrace{\left(\lambda_{2} u+\lambda_{3}\right)} T$

$$
\in \text { subfield } \mathbb{F}_{p^{k} / 2}
$$

- $\log \rho(r)=\log (T)(\bmod \ell)$
- $\operatorname{Norm}_{f}(r)=\|r\|_{\infty}^{4}\|f\|_{\infty}^{3}=p^{7 / 2}=Q^{7 / 8}<Q$

Subfield Cofactor Simplification + LLL results

		$\operatorname{Norm}_{f}(\mathbf{T})$		$L_{Q}[1 / 3, c]$		$\begin{gathered} q_{i} \leq B_{1}= \\ L_{Q}\left[\frac{2}{3}, c\right] \end{gathered}$
		Q^{e}	bits	c	time	
600 bits	$T=U / V$	$Q^{1 / 2} Q^{1 / 2}$	600	1.44	2^{52}	2^{100}
	This work	$\mathrm{Q}^{1 / 2}$	300	1.14	2^{41}	2^{64}
508 bits	$T=U / V$	$Q^{1 / 2} Q^{1 / 2}$	508	1.44	2^{48}	2^{90}
	This work	$\mathrm{Q}^{2 / 3}$	340	1.26	2^{42}	2^{69}
392 bits	prev.	$Q^{3 / 2}$	588	1.65	2^{49}	2^{98}
	This work	$Q^{7 / 8}$	343	1.38	2^{41}	2^{68}

Subfield Cofactor Simplification + LLL results

		$\operatorname{Norm}_{f}(\mathbf{T})$		$L_{Q}[1 / 3, c]$		$\begin{gathered} q_{i} \leq B_{1}= \\ L_{Q}\left[\frac{2}{3}, c\right] \end{gathered}$
		Q^{e}	bits	c	time	
600 bits	$T=U / V$	$Q^{1 / 2} Q^{1 / 2}$	600	1.44	2^{52}	2^{100}
	This work	$\mathrm{Q}^{1 / 2}$	300	1.14	2^{41}	2^{64}
508 bits	$T=U / V$	$Q^{1 / 2} Q^{1 / 2}$	508	1.44	2^{48}	2^{90}
	This work	$\mathrm{Q}^{2 / 3}$	340	1.26	2^{42}	2^{69}
392 bits	prev.	$Q^{3 / 2}$	588	1.65	2^{49}	2^{98}
	This work	$\mathrm{Q}^{7 / 8}$	343	1.38	2^{41}	2^{68}

Faster descent

DL record computation in $\mathbb{F}_{p^{4}}$ of 392 bits (120dd)

Joint work with R. Barbulescu, P. Gaudry, F. Morain

$$
\begin{aligned}
p= & 314159265358979323846270891033 \text { of } 98 \text { bits }(30 \mathrm{dd}) \\
\ell= & 9869604401089358618834902718477057428144064232778775980709 \text { of } 192 \text { bits } \\
f= & x^{4}-560499121640472 x^{3}-6 x^{2}+560499121640472 x+1 \\
g= & 560499121639105 x^{4}+4898685125033473 x^{3}-3362994729834630 x^{2} \\
& -4898685125033473 x+560499121639105 \\
\varphi= & g \\
G= & x+3 \in \mathbb{F}_{p^{4}} \\
T_{0}= & 31415926535897 x^{3}+93238462643383 x^{2}+27950288419716 x+93993751058209 \\
& \log _{G}\left(\mathbf{T}_{0}\right)=
\end{aligned}
$$

136439472586839838529440907219583201821950591984194257022

Summary of results

- better practical and asymptotic running-time of the boot step
- better when k is even
- online version HAL 01157378
- guillevic@lix.polytechnique.fr

Future work

- Degree-d subfield cofactor simplification thanks to an anonymous Asiacrypt 2015 reviewer remark, generalization in large characteristic, application to small characteristic
- look at Sarkar Singh (eprint 2015/944) polynomial selection
- optimize the descent
- add early abort strategy (Barbulescu improvement)
- $\mathbb{F}_{p^{6}}, \mathbb{F}_{p^{12}}$

Future work

- Degree-d subfield cofactor simplification thanks to an anonymous Asiacrypt 2015 reviewer remark, generalization in large characteristic, application to small characteristic
- look at Sarkar Singh (eprint 2015/944) polynomial selection
- optimize the descent
- add early abort strategy (Barbulescu improvement)
- $\mathbb{F}_{p^{6}}, \mathbb{F}_{p^{12}}$

Be careful with the hidden constant in the $O(\cdot)$

