Individual Discrete Logarithm in $GF(p^k)$ (last step of the Number Field Sieve algorithm)

Aurore Guillevic

INRIA Saclay / GRACE Team

École Polytechnique / LIX

Asiacrypt 2015 Conference, Auckland, New Zealand, November 30

Ínnin -

Solving actual practical problem: Given a **fixed** finite field GF(q),

Huge massive precomputation (weeks, months, years)

Solving actual practical problem: Given a **fixed** finite field GF(q),

Solving actual practical problem: Given a **fixed** finite field GF(q),

Solving actual practical problem: Given a **fixed** finite field GF(q),

 Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits real-time man-in-the-middle attack on Diffie-Hellman key exchange compute a discrete log in GF(p) in 70s in average

Solving actual practical problem: Given a **fixed** finite field GF(q),

- Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits real-time man-in-the-middle attack on Diffie-Hellman key exchange compute a discrete log in GF(p) in 70s in average
- Pairing-based cryptography: $GF(q) = GF(p^2)$, $GF(p^6)$, $GF(p^{12})$

Solving actual practical problem: Given a **fixed** finite field GF(q),

- Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits real-time man-in-the-middle attack on Diffie-Hellman key exchange compute a discrete log in GF(p) in 70s in average
- Pairing-based cryptography: $GF(q) = GF(p^2)$, $GF(p^6)$, $GF(p^{12})$

Could we compute individual discrete logs in $GF(p^2)$, $GF(p^6)$, $GF(p^{12})$ in less than 1 min?

DLP in the target group of pairing-friendly curves

Why DLP in finite fields \mathbb{F}_{p^2} , \mathbb{F}_{p^3} ,...?

In a subgroup $\mathbb{G} = \langle g
angle$ of order ℓ ,

- $(g, x) \mapsto g^x$ is easy (polynomial time)
- $(g, g^x) \mapsto x$ is (in well-chosen subgroup) hard: DLP.

pairing:	\mathbb{G}_1	\times	\mathbb{G}_2	\rightarrow	\mathbb{G}_T
	\cap		\cap		\cap
	$E(\mathbb{F}_p)$		$E(\mathbb{F}_{p^k})$		$\mathbb{F}_{p^k}^*$

- where E/\mathbb{F}_p is a *pairing-friendly* curve
- G₁, G₂, G_T of large prime order ℓ (generic attacks in O(√ℓ): take e.g. 256-bit ℓ)
- 1 ≤ k ≤ 12 embedding degree: very specific property (specific attacks (NFS): take 3072-bit p^k)

DL records in small characteristic

- X Small characteristic:
 - supersingular curves E/\mathbb{F}_{2^n} : $\mathbb{G}_T \subset \mathbb{F}_{2^{4n}}$, E/\mathbb{F}_{3^m} : $\mathbb{G}_T \subset \mathbb{F}_{3^{6m}}$

Practical attacks (first one and most recent):

- Hayashi, Shimoyama, Shinohara, Takagi: GF(3^{6.97}) (923 bit field) (2012)
- Granger, Kleinjung, Zumbragel: GF(2⁹²³⁴), GF(2⁴⁴⁰⁴) (2014)
- Adj, Menezes, Oliveira, Rodríguez-Henríquez: GF(3⁸²²), GF(3⁹⁷⁸) (2014)
- Joux: $GF(3^{2395})$ (with Pierrot, 2014), $GF(2^{6168})$ (2013)

Theoretical attacks: Quasi-Polynomial-time Algorithm (QPA)

- [Barbulescu Gaudry Joux Thomé 14]
- [Granger Kleinjung Zumbragel 14]

Common used pairing-friendly curves

- ✓ Curves over prime fields E/\mathbb{F}_p where QPA does NOT apply (with log $p \ge \log \ell \approx 256$ bits, s.t. $k \log p \ge 3072$)
 - supersingular: $\mathbb{G}_T \subset \mathbb{F}_{p^2}$ $(\log p = 1536)$
 - [Miyaji Nakabayashi Takano 01] (MNT): G_T ⊂ F_{p³} (log p = 1024), F_{p⁴} (log p = 768), F_{p⁶} (log p = 512)
 - [Freeman 06] $\mathbb{G}_T \subset \mathbb{F}_{p^{10}}$
 - [Barreto Naehrig 05] (BN): $\mathbb{G}_T \subset \mathbb{F}_{p^{12}}$ (log p = 256, optimal)
 - [Kachisa Schaefer Scott 08] (KSS): G_T ⊂ F_{p¹⁸} (used for 192-bit security level: 384-bit ℓ, log p = 512, k log p = 9216)

Last DL records, with the NFS-DL algorithm

GF(p)	GF $(p'^2), p'^2 = q$ [BGGM15]	
Massive precomputation	on (d=core-day, y=core-year)	
[Logjam] 512-bit <i>p</i> : 10y		
[BGIJT14] 596-bit p: 131y	598-bit q: 0.75y + 18 GPU-d	175× faster
Individual	-	
512-bit <i>p</i> : 70s median 🗸		
596-bit <i>p</i> : 2d	600-bit <i>q</i> : few d	slow

[Logjam]: see weakdh.org [BGGM15]: Barbulescu, Gaudry, G., Morain [BGIJT14]: Bouvier, Gaudry, Imbert, Jeljeli, Thomé This work:

- Faster individual discrete logarithm in \mathbb{F}_{p^k} , especially k = 2, 3, 4, 6
- Apply to pairing target group $\mathbb{G}_{\mathcal{T}}$
 - large characteristic \mathbb{F}_{p^2} , \mathbb{F}_{p^3}
 - medium characteristic \mathbb{F}_{p^4} , \mathbb{F}_{p^6} , ...
- source code: written in Magma
 - + part of http://cado-nfs.gforge.inria.fr/

Polynomial selection: 1. compute f(x), g(x) with $\varphi = \gcd(f,g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

Polynomial selection: 1. compute f(x), g(x) with $\varphi = \gcd(f,g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

2. Relation collection

Polynomial selection:

- compute f(x), g(x) with
- ¹. $\varphi = \gcd(f, g) \pmod{p}$ and
 - $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$
- 2. Relation collection
- 3. Linear algebra modulo $\ell \mid p^k 1$.
- → here we know the discrete log of a subset of elements.

Polynomial selection:

- compute f(x), g(x) with
- 1. $\varphi = \gcd(f, g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

massive precomputation

- 2. Relation collection
- 3. Linear algebra modulo $\ell \mid \rho^k 1$
- → here we know the discrete log of a subset of elements.

Polynomial selection:

- compute f(x), g(x) with
- 1. $\varphi = \gcd(f, g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

massive precomputation

- 2. Relation collection
- 3. Linear algebra modulo $\ell \mid \rho^k 1$
- → here we know the discrete log of a subset of elements.

1. Individual target discrete logarithm

Polynomial selection:

compute f(x), g(x) with

1. $\varphi = \gcd(f,g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

massive precomputation

- 2. Relation collection
- 3. Linear algebra modulo $\ell \mid \rho^k 1$
- → here we know the discrete log of a subset of elements.

1. Individual target discrete logarithm for each given DLP instance

- not so trivial
- this talk: practical improvements very efficient for small k or even k

Polynomial Selection for DL in \mathbb{F}_{p^k} , and norm

- f, g irreducible over \mathbb{Q} , $f \neq g$ (define \neq number fields)
- $gcd(f \mod p, g \mod p) = \varphi$ irreducible of degree k
- $||f||_{\infty}$, $||g||_{\infty}$, deg f, deg g small enough s.t. Norm_f(·), Norm_g(·) are as small as possible

Norm of degree 1 element $a - bx \in \mathbb{Z}[x]/(f(x))$:

•
$$Norm_f(a - bx) = \sum_{i=0}^{\deg f} a^i b^{\deg f - i} f_i$$

More generally, when f is monic:

•
$$Norm_f(T) = \text{Res}(T, f) \le A(\deg f, \deg T) \|\mathbf{T}\|_{\infty}^{\deg f} \|f\|_{\infty}^d$$

where $\|f\|_{\infty} = \max_{0 \le i \le \deg f} |f_i|$

Polynomial Selection for \mathbb{F}_{p^4}

Both polynomials have large coefficients. \mathbb{F}_{p^4} record of 392 bits (120 dd):

- $p = {}_{314159265358979323846270891033}$ of 98 bits (30 decimal digits dd)
- $f = x^4 \frac{560499121640472}{x^3} 6x^2 + \frac{560499121640472}{x} + 1$
- let $\mathbf{y} = {}_{560499121640472}$ and compute $u/v \equiv \mathbf{y} \pmod{p}$
- $g = v \cdot f_{y \leftarrow u/v}(x)$ $g = 560499121639105 x^4 + 4898685125033473 x^3 - 3362994729834630 x^2 - 4898685125033473 x + 560499121639105$

• Norm_{Q[x]/(f(x))}(a - bx) =

$$a^4 - 560499121640472a^3b - 6a^2b^2 + 560499121640472ab^3 + b^4$$

 $\approx \max(|a|, |b|)^4 ||f||_{\infty}$

Relation collection and Linear algebra

- 2. Relation collection (cado-nfs: Pierrick Gaudry and Laurent Grémy)
- 3. Linear algebra (cado-nfs: Emmanuel Thomé and Cyril Bouvier)

- We know the log of *small* elements in $\mathbb{Z}[x]/(f(x))$ and $\mathbb{Z}[x]/(g(x))$
- small elements are of the form $a_i b_i x = \in \mathbb{Z}[x]/(f(x))$, s.t. $|\operatorname{Norm}(a_i - b_i x)| = q_i \leq B_0$

Individual Discrete Logarithm

Preimage in $\mathbb{Z}[x]/(f(x))$ and ρ map

Randomized target $T = t_0 + t_1X + t_2X^2 + t_3X^3 \in \mathbb{F}_{p^4}^* = \mathbb{F}_p[X]/(\varphi(X))$ Simplest choice of preimage **T**: since $f = \varphi$, $\mathbf{T} = \mathbf{t}_0 + \mathbf{t}_1 x + \mathbf{t}_2 x^2 + \mathbf{t}_3 x^3 \in \mathbb{Z}[x]/(f(x))$, with $\mathbf{t}_i \equiv t_i \pmod{p}$. We can always choose **T** s.t.

•
$$|\mathbf{t_i}| < p$$

• $\deg \mathbf{T} < \deg \varphi$

We need $\rho(\mathbf{T}) = T$

(where ρ is simply a reduction modulo (φ, p) when f (resp. g) is monic)

14 / 25

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in$

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in \Box$

- boot step (a.k.a. smoothing step):
 DO
 - 1.1 take t at random in $\{1, \dots, \ell 1\}$ and set $T = G^t T_0$ (hence $\log_G(T_0) = \log_G(T) - t$)
 - 1.2 factorize Norm(**T**) = $\underbrace{q_1 \cdots q_i}_{i}$ ×(elements in DL database),

too large: $B_0 < q_i \le B_1$

UNTIL $q_i \leq B_1$

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in$

- boot step (a.k.a. smoothing step):
 DO
 - 1.1 take t at random in $\{1, \dots, \ell 1\}$ and set $T = G^t T_0$ (hence $\log_G(T_0) = \log_G(T) - t$)
 - 1.2 factorize Norm(**T**) = $\underbrace{q_1 \cdots q_i}_{\text{too large: } B_0 \leq q_i \leq B_1} \times (\text{elements in DL database}),$

D.

UNTIL $q_i \leq B_1$

- 2. Descent strategy: set $S = \{q_i : B_0 < q_i \le B_1\}$ while $S \neq \emptyset$ do
 - set $B_j < B_i$
 - find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times$ (elements in log DB)
 - $\mathcal{S} \leftarrow \mathcal{S} \setminus \{q_i\} \cup \{q_j\}_{j \in J}$

end while

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in$

- boot step (a.k.a. smoothing step):
 DO
 - 1.1 take t at random in $\{1, \dots, \ell 1\}$ and set $T = G^t T_0$ (hence $\log_G(T_0) = \log_G(T) - t$)
 - 1.2 factorize Norm(**T**) = $q_1 \cdots q_i$ ×(elements in DL database),

too large: $B_0 < q_i \le B_1$

UNTIL $q_i \leq B_1$

- 2. Descent strategy: set $S = \{q_i : B_0 < q_i \le B_1\}$ while $S \neq \emptyset$ do
 - set $B_j < B_i$
 - find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times$ (elements in log DB)

•
$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{q_i\} \cup \{q_j\}_{j \in J}$$

end while

3. log combination to find the individual target DL

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in$

- boot step (a.k.a. smoothing step):
 DO
 - 1.1 take t at random in $\{1, \dots, \ell 1\}$ and set $T = G^t T_0$ (hence $\log_G(T_0) = \log_G(T) - t$)
 - 1.2 factorize $\underbrace{\text{Norm}(\mathbf{T})}_{\text{reduce this}} = \underbrace{q_1 \cdots q_i}_{\text{too large: } B_0 < q_i \leq B_1} \times (\text{elements in DL database}),$

UNTIL $q_i \leq B_1$

- 2. Descent strategy: set $S = \{q_i : B_0 < q_i \le B_1\}$ while $S \neq \emptyset$ do
 - set $B_j < B_i$
 - find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times$ (elements in log DB)

•
$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{q_i\} \cup \{q_j\}_{j \in J}$$

end while

3. log combination to find the individual target DL

Boot step complexity

Given random target $T_0 \in \mathbb{F}_{p^k}^*$, and G a generator of $\mathbb{F}_{p^k}^*$ repeat

- 1. take t at random in $\{1, \ldots, \ell 1\}$ and set $T = G^t T_0$
- 2. factorize Norm(T)

until it is B_1 -smooth: Norm $(\mathbf{T}) = \prod_{q_i \leq B_1} q_i \times (\text{elts in log DB})$

L-notation: $Q = p^k$, $L_Q[1/3, \mathbf{c}] = e^{(\mathbf{c}+o(1))(\log Q)^{1/3}} (\log \log Q)^{2/3}$ for $\mathbf{c} > 0$. Norm factorization done with ECM method, in time $L_{B_1}[1/2, \sqrt{2}]$

Lemma (Boot step running-time)

If Norm(**T**) $\leq Q^e$, take $B_1 = L_Q[2/3, (e^2/3)^{1/3}]$, then the running-time is $L_Q[1/3, (3e)^{1/3}]$ (and this is optimal).

Preimage optimization

 $f,\,\deg f,\,\|f\|_\infty,\,g,\,\deg g,\,\|g\|_\infty$ are given by the polynomial selection step (NFS-DL step 1)

$$\operatorname{Norm}_{f}(\mathbf{T}) = \operatorname{Res}(f, \mathbf{T}) \leq A \|\mathbf{T}\|_{\infty}^{\deg f} \|f\|_{\infty}^{d}$$

To reduce the norm,

- reduce $\|\mathbf{T}\|_{\infty}$
- and/or reduce $d = \deg \mathbf{T}$

Boot step: First experiments

Commonly assumed to be very easy and very fast. This is not always so easy!

- $\mathbb{F}_{p_{90}^2}$ 600 bits (BGGM15 record) was easy, as fast as for $\mathbb{F}_{p_{180}}$ (< one day) with [JLSV06] improvement technique
- \mathbb{F}_{p^3} MNT 508 bits was much slower (days, week)
- \mathbb{F}_{p^4} 392 bits was even worse (> one week)

What happened?

- \mathbb{F}_{p^3} : asymptotically the same as \mathbb{F}_{p^2} : $L_Q[1/3, c = 1.44]$ but still much slower, Because of the constant hidden in the O()?
- \mathbb{F}_{p^4} : [JLSV06] not suited, $\|f\|_{\infty} = O(p^{1/2})$, Norm(**T**) $\approx Q^{3/2} \rightarrow L_Q[1/3, c = 1.65]$

Our solution

Lemma

Let $T \in \mathbb{F}_{p^k}$. Then $\log(T) = \log(u \cdot T) \pmod{\ell}$ for any u in a proper subfield of \mathbb{F}_{p^k} .

Our solution

Lemma

Let $T \in \mathbb{F}_{p^k}$. Then $\log(T) = \log(u \cdot T) \pmod{\ell}$ for any u in a proper subfield of \mathbb{F}_{p^k} .

•
$$\mathbb{F}_p$$
 is a proper subfield of \mathbb{F}_{p^k}

• target
$$T = t_0 + t_1 x + \ldots + t_d x^d$$

• we divide the target by its leading term:

$$\log(T) = \log(T/t_d) \pmod{\ell}$$

From now on we assume that the target is monic.

Our solution

Lemma

Let $T \in \mathbb{F}_{p^k}$. Then $\log(T) = \log(u \cdot T) \pmod{\ell}$ for any u in a proper subfield of \mathbb{F}_{p^k} .

•
$$\mathbb{F}_p$$
 is a proper subfield of \mathbb{F}_{p^k}

• target
$$T = t_0 + t_1 x + \ldots + t_d x^d$$

• we divide the target by its leading term:

$$\log(T) = \log(T/t_d) \pmod{\ell}$$

From now on we assume that the target is monic. Similar technique in pairing computation: Miller loop denominator elimination [Boneh Kim Lynn Scott 02]

- p = 314159265358979323846270891033 of 98 bits (30 dd)
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$

•
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$

- we want to reduce $\|\mathbf{T}\|_{\infty}$. Define L =
 - $\begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix}$
- dim 4 because $max(\deg f, \deg g) = 4$
- LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 p x^2 + \lambda_3 T$,

- p = 314159265358979323846270891033 of 98 bits (30 dd)
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$

•
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$

$$\begin{bmatrix} p & 0 & 0 & 0 \end{bmatrix} \quad p \mapsto 0 \text{ in } \mathbb{F}_{p^4}$$

$$0 \quad p \quad 0 \quad 0 \quad px \mapsto 0$$

$$0 \quad 0 \quad p \quad 0 \qquad px^2 \mapsto 0$$

$$\begin{bmatrix} t_0 & t_1 & t_2 & 1 \end{bmatrix} \quad \mathbf{T} \mapsto T$$

- dim 4 because $max(\deg f, \deg g) = 4$
- LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 p x^2 + \lambda_3 T$,

- p = 314159265358979323846270891033 of 98 bits (30 dd)
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$

•
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$

$$\begin{bmatrix} p & 0 & 0 & 0 \end{bmatrix} \quad p \mapsto 0 \text{ in } \mathbb{F}_{p^4}$$

$$0 \quad p \quad 0 \quad 0 \quad px \mapsto 0$$

$$0 \quad 0 \quad p \quad 0 \qquad px^2 \mapsto 0$$

$$\begin{bmatrix} t_0 & t_1 & t_2 & 1 \end{bmatrix} \quad \mathbf{T} \mapsto T$$

- dim 4 because $max(\deg f, \deg g) = 4$
- LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 p x^2 + \lambda_3 T$,

- p = 314159265358979323846270891033 of 98 bits (30 dd)
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$

•
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$

$$\begin{bmatrix} p & 0 & 0 & 0 \end{bmatrix} \quad p \mapsto 0 \text{ in } \mathbb{F}_{p^4}$$

$$0 \quad p \quad 0 \quad 0 \quad px \mapsto 0$$

$$0 \quad 0 \quad p \quad 0 \qquad px^2 \mapsto 0$$

$$\begin{bmatrix} t_0 & t_1 & t_2 & 1 \end{bmatrix} \quad \mathbf{T} \mapsto T$$

- dim 4 because $max(\deg f, \deg g) = 4$
- LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 \rho + \lambda_1 \rho x + \lambda_2 \rho x^2 + \lambda_3 T$, $\log \rho(\mathbf{r}) = \log(\mathbf{T}) \pmod{\ell}$

- p = 314159265358979323846270891033 of 98 bits (30 dd)
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$

•
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$

$$\begin{bmatrix} p & 0 & 0 & 0 \end{bmatrix} \quad p \mapsto 0 \text{ in } \mathbb{F}_{p^4}$$

$$0 \quad p \quad 0 \quad 0 \quad px \mapsto 0$$

$$0 \quad 0 \quad p \quad 0 \qquad px^2 \mapsto 0$$

$$\begin{bmatrix} t_0 & t_1 & t_2 & 1 \end{bmatrix} \quad \mathbf{T} \mapsto T$$

- dim 4 because $max(\deg f, \deg g) = 4$
- LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 p x^2 + \lambda_3 T$, $\log \rho(\mathbf{r}) = \log(\mathbf{T}) \pmod{\ell}$
- $r = r_0 + \ldots + r_3 x^3$, $||r_i||_{\infty} \le C \det(L)^{1/4} = O(p^{3/4})$
- Norm $_f(r)pprox \|r\|_\infty^4 \|f\|_\infty^3 pprox p^{9/2} = Q^{9/8}$ of 450 bits instead of 588 b
- Booting step, number of operations: 2⁴⁴
- Large prime bound B_1 of 81 bits

- p = 314159265358979323846270891033 of 98 bits (30 dd)
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$

•
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$

• we want to reduce $\|\mathbf{T}\|_{\infty}$. Define L =

$$p \quad 0 \quad 0 \quad 0 \mid p \mapsto 0 \text{ in } \mathbb{F}_{p^4}$$

$$0 \quad p \quad 0 \quad 0 \quad px \mapsto 0$$

 $\begin{bmatrix} 0 & p & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \begin{array}{c} px^2 \mapsto 0 & \leftarrow \text{ could we find something else, monic?} \\ \mathbf{T} \mapsto T \end{bmatrix}$

- dim 4 because $max(\deg f, \deg g) = 4$
- LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 p x^2 + \lambda_3 T$, $\log \rho(\mathbf{r}) = \log(\mathbf{T}) \pmod{\ell}$
- $r = r_0 + \ldots + r_3 x^3$, $||r_i||_{\infty} \le C \det(L)^{1/4} = O(p^{3/4})$
- Norm_f(r) $\approx \|r\|_{\infty}^{4} \|f\|_{\infty}^{3} \approx p^{9/2} = Q^{9/8}$ of 450 bits instead of 588 b
- Booting step, number of operations: 2⁴⁴
- Large prime bound B_1 of 81 bits

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is represented by a polynomial of degree k - 2 instead of k - 1.

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is represented by a polynomial of degree k - 2 instead of k - 1.

		Гр	0	0	0	
_	dofino 1	0	р	0	0	
•	define $L =$	t_0'	t_1'	1	0	
		t ₀	t_1	t_2	1	

• LLL(*L*) \rightarrow short vector *r* linear combination of *L*'s rows $r = r_0 + \ldots + r_3 x^3$, $||r_i||_{\infty} \leq C \det(L)^{1/4} = O(p^{1/2})$

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is represented by a polynomial of degree k - 2 instead of k - 1.

• define
$$L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \begin{pmatrix} \rho(p) = 0 \in \mathbb{F}_{p^k} \\ \rho(px) = 0 \in \mathbb{F}_{p^k} \\ T' \\ T \end{bmatrix}$$

• LLL $(L) \rightarrow$ short vector r linear combination of L 's rows $r = r_0 + \ldots + r_3 x^3, \ ||r_i||_{\infty} \le C \det(L)^{1/4} = O(p^{1/2})$
• $\rho(r) = \lambda_2 T' + \lambda_3 T = (\lambda_2 u + \lambda_3) T$

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is represented by a polynomial of degree k - 2 instead of k - 1.

• define
$$L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \begin{bmatrix} \rho(p) = 0 \in \mathbb{F}_{p^k} \\ \rho(px) = 0 \in \mathbb{F}_{p^k} \\ T' \\ T \end{bmatrix}$$

• LLL $(L) \rightarrow$ short vector r linear combination of L 's rows $r = r_0 + \ldots + r_3 x^3$, $||r_i||_{\infty} \leq C \det(L)^{1/4} = O(p^{1/2})$
• $\rho(r) = \lambda_2 T' + \lambda_3 T = \underbrace{(\lambda_2 u + \lambda_3)}_{\in \text{ subfield } \mathbb{F}_{p^{k/2}}} T$

•
$$\log \rho(r) = \log(T) \pmod{\ell}$$

• $\operatorname{Norm}_f(r) = ||r||_{\infty}^4 ||f||_{\infty}^3 = p^{7/2} = Q^{7/8} < Q^{7/8}$

Subfield Cofactor Simplification + LLL results

		$Norm_f(\mathbf{T})$		$L_Q[1/3, c]$		$q_i \leq B_1 =$
		Q ^e	bits	С	time	$L_Q[\frac{2}{3},c]$
\mathbb{F}_{p^2}	T = U/V	$Q^{1/2}Q^{1/2}$	600	1.44	2 ⁵²	2 ¹⁰⁰
600 bits	This work	$Q^{1/2}$	300	1.14	2 ⁴¹	2 ⁶⁴

\mathbb{F}_{p^3}	T = U/V	$Q^{1/2}Q^{1/2}$	508	1.44	2 ⁴⁸	2 ⁹⁰
508 bits	This work	$Q^{2/3}$	340	1.26	2 ⁴²	2 ⁶⁹

\mathbb{F}_{p^4}	prev.	Q ^{3/2}	588	1.65	2 ⁴⁹	2 ⁹⁸
392 bits	This work	Q ^{7/8}	343	1.38	2 ⁴¹	2 ⁶⁸

Subfield Cofactor Simplification + LLL results

		$Norm_f(\mathbf{T})$		$L_Q[1/3, c]$		$q_i \leq B_1 =$
		Q ^e	bits	С	time	$L_Q[\frac{2}{3},c]$
\mathbb{F}_{p^2}	T = U/V	$Q^{1/2}Q^{1/2}$	600	1.44	2 ⁵²	2 ¹⁰⁰
600 bits	This work	$Q^{1/2}$	300	1.14	2 ⁴¹	2 ⁶⁴

\mathbb{F}_{p^3}	T = U/V	$Q^{1/2}Q^{1/2}$	508	1.44	2 ⁴⁸	2 ⁹⁰
508 bits	This work	$Q^{2/3}$	340	1.26	2 ⁴²	2 ⁶⁹

\mathbb{F}_{p^4}	prev.	Q ^{3/2}	588	1.65	2 ⁴⁹	2 ⁹⁸
392 bits	This work	Q ^{7/8}	343	1.38	2 ⁴¹	2 ⁶⁸
					Fast	ter descent

Aurore Guillevic (INRIA/LIX)

DL record computation in \mathbb{F}_{p^4} of 392 bits (120dd)

Joint work with R. Barbulescu, P. Gaudry, F. Morain

- p = 314159265358979323846270891033 of 98 bits (30 dd)
- $\ell \ = \ 9869604401089358618834902718477057428144064232778775980709 \ of \ 192 \ bits$
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$
- $g = 560499121639105x^4 + 4898685125033473x^3 3362994729834630x^2$ -4898685125033473x + 560499121639105
- $\varphi = g$
- $G = x + 3 \in \mathbb{F}_{p^4}$
- $T_0 = 31415926535897x^3 + 93238462643383x^2 + 27950288419716x + 93993751058209$

$\log_G(\mathsf{T}_0) =$

$136439472586839838529440907219583201821950591984194257022 \pmod{\ell}$

Summary of results

- better practical and asymptotic running-time of the boot step
- better when k is even
- online version HAL 01157378
- guillevic@lix.polytechnique.fr

Future work

- Degree-*d* subfield cofactor simplification thanks to an anonymous Asiacrypt 2015 reviewer remark, generalization in large characteristic, application to small characteristic
- look at Sarkar Singh (eprint 2015/944) polynomial selection
- optimize the descent
- add early abort strategy (Barbulescu improvement)
- \mathbb{F}_{p^6} , $\mathbb{F}_{p^{12}}$

Future work

- Degree-*d* subfield cofactor simplification thanks to an anonymous Asiacrypt 2015 reviewer remark, generalization in large characteristic, application to small characteristic
- look at Sarkar Singh (eprint 2015/944) polynomial selection
- optimize the descent
- add early abort strategy (Barbulescu improvement)
- \mathbb{F}_{p^6} , $\mathbb{F}_{p^{12}}$

Be careful with the hidden constant in the $O(\cdot)$