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Logjam attack (weakdh.org)

Solving actual practical problem:
Given a fixed finite field GF(q),

Huge massive
precomputation
(weeks, months,
years)

log tab

pi < B0

Thousands of
individual log
computation
< 1 min each

Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits
real-time man-in-the-middle attack on Diffie-Hellman key exchange
compute a discrete log in GF(p) in 70s in average

Pairing-based cryptography: GF(q) = GF(p2), GF(p6), GF(p12)

Could we compute individual discrete logs in GF(p2), GF(p6), GF(p12) in
less than 1 min?

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 2 / 25



Logjam attack (weakdh.org)

Solving actual practical problem:
Given a fixed finite field GF(q),

Huge massive
precomputation
(weeks, months,
years)

log tab

pi < B0

Thousands of
individual log
computation
< 1 min each

Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits
real-time man-in-the-middle attack on Diffie-Hellman key exchange
compute a discrete log in GF(p) in 70s in average

Pairing-based cryptography: GF(q) = GF(p2), GF(p6), GF(p12)

Could we compute individual discrete logs in GF(p2), GF(p6), GF(p12) in
less than 1 min?

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 2 / 25



Logjam attack (weakdh.org)

Solving actual practical problem:
Given a fixed finite field GF(q),

Huge massive
precomputation
(weeks, months,
years)

log tab

pi < B0

Thousands of
individual log
computation
< 1 min each

Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits
real-time man-in-the-middle attack on Diffie-Hellman key exchange
compute a discrete log in GF(p) in 70s in average

Pairing-based cryptography: GF(q) = GF(p2), GF(p6), GF(p12)

Could we compute individual discrete logs in GF(p2), GF(p6), GF(p12) in
less than 1 min?

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 2 / 25



Logjam attack (weakdh.org)

Solving actual practical problem:
Given a fixed finite field GF(q),

Huge massive
precomputation
(weeks, months,
years)

log tab

pi < B0

Thousands of
individual log
computation
< 1 min each

Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits
real-time man-in-the-middle attack on Diffie-Hellman key exchange
compute a discrete log in GF(p) in 70s in average

Pairing-based cryptography: GF(q) = GF(p2), GF(p6), GF(p12)

Could we compute individual discrete logs in GF(p2), GF(p6), GF(p12) in
less than 1 min?

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 2 / 25



Logjam attack (weakdh.org)

Solving actual practical problem:
Given a fixed finite field GF(q),

Huge massive
precomputation
(weeks, months,
years)

log tab

pi < B0

Thousands of
individual log
computation
< 1 min each

Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits
real-time man-in-the-middle attack on Diffie-Hellman key exchange
compute a discrete log in GF(p) in 70s in average

Pairing-based cryptography: GF(q) = GF(p2), GF(p6), GF(p12)

Could we compute individual discrete logs in GF(p2), GF(p6), GF(p12) in
less than 1 min?

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 2 / 25



Logjam attack (weakdh.org)

Solving actual practical problem:
Given a fixed finite field GF(q),

Huge massive
precomputation
(weeks, months,
years)

log tab

pi < B0

Thousands of
individual log
computation
< 1 min each

Logjam: GF(q) = GF(p) (standardized) prime field of 512 bits
real-time man-in-the-middle attack on Diffie-Hellman key exchange
compute a discrete log in GF(p) in 70s in average

Pairing-based cryptography: GF(q) = GF(p2), GF(p6), GF(p12)

Could we compute individual discrete logs in GF(p2), GF(p6), GF(p12) in
less than 1 min?

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 2 / 25



DLP in the target group of pairing-friendly curves

DLP in the target group of pairing-friendly curves

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 3 / 25



DLP in the target group of pairing-friendly curves

Why DLP in finite fields Fp2, Fp3, . . .?

In a subgroup G = 〈g〉 of order `,

(g , x) 7→ g x is easy (polynomial time)

(g , g x) 7→ x is (in well-chosen subgroup) hard: DLP.

pairing: G1 × G2 → GT

∩ ∩ ∩
E (Fp) E (Fpk ) F∗

pk

where E/Fp is a pairing-friendly curve

G1,G2,GT of large prime order ` (generic attacks in O(
√
`): take

e.g. 256-bit `)

1 ≤ k ≤ 12 embedding degree: very specific property (specific attacks
(NFS): take 3072-bit pk)
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DLP in the target group of pairing-friendly curves

DL records in small characteristic

7 Small characteristic:

supersingular curves E/F2n : GT ⊂ F24n , E/F3m : GT ⊂ F36m

Practical attacks (first one and most recent):

Hayashi, Shimoyama, Shinohara, Takagi: GF(36·97) ( 923 bit
field) (2012)

Granger, Kleinjung, Zumbragel: GF(29234), GF(24404) (2014)

Adj, Menezes, Oliveira, Rodŕıguez-Henŕıquez: GF(3822), GF(3978)
(2014)

Joux: GF(32395) (with Pierrot, 2014), GF(26168) (2013)

Theoretical attacks: Quasi-Polynomial-time Algorithm (QPA)

[Barbulescu Gaudry Joux Thomé 14]

[Granger Kleinjung Zumbragel 14]
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DLP in the target group of pairing-friendly curves

Common used pairing-friendly curves

3 Curves over prime fields E/Fp where QPA does NOT apply
(with log p ≥ log ` ≈ 256 bits, s.t. k log p ≥ 3072)

supersingular: GT ⊂ Fp2 (log p = 1536)

[Miyaji Nakabayashi Takano 01] (MNT): GT ⊂ Fp3

(log p = 1024), Fp4 (log p = 768), Fp6 (log p = 512)

[Freeman 06] GT ⊂ Fp10

[Barreto Naehrig 05] (BN): GT ⊂ Fp12 (log p = 256, optimal)

[Kachisa Schaefer Scott 08] (KSS): GT ⊂ Fp18 (used for 192-bit
security level: 384-bit `, log p = 512, k log p = 9216)

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 6 / 25



DLP in the target group of pairing-friendly curves

Last DL records, with the NFS-DL algorithm

GF(p) GF(p′2), p′2 = q [BGGM15]
Massive precomputation (d=core-day, y=core-year)
[Logjam] 512-bit p: 10y

[BGIJT14] 596-bit p: 131y 598-bit q: 0.75y + 18 GPU-d 175× faster
Individual Discrete Log

512-bit p: 70s median 3
596-bit p: 2d 600-bit q : few d slow

[Logjam]: see weakdh.org

[BGGM15]: Barbulescu, Gaudry, G., Morain
[BGIJT14]: Bouvier, Gaudry, Imbert, Jeljeli, Thomé
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DLP in the target group of pairing-friendly curves

This work:

Faster individual discrete logarithm in Fpk , especially k = 2, 3, 4, 6

Apply to pairing target group GT

large characteristic Fp2 , Fp3

medium characteristic Fp4 , Fp6 , . . .

source code: written in Magma
+ part of http://cado-nfs.gforge.inria.fr/
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DLP in the target group of pairing-friendly curves

Number Field Sieve algorithm for DL in Fpk

1.

Polynomial selection:
compute f (x), g(x) with
ϕ = gcd(f , g) (mod p) and
Fpk = Fp[x ]/(ϕ(x))

2. Relation collection

3. Linear algebra modulo ` | pk − 1

Ù here we know the discrete log of a subset of elements.
log DB

pi < B0

1. Individual target discrete logarithm for each given DLP instance

not so trivial
this talk: practical improvements very efficient for small k or even k

massive precomputation
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DLP in the target group of pairing-friendly curves

Polynomial Selection for DL in Fpk , and norm

f , g irreducible over Q, f 6= g (define 6= number fields)

gcd(f mod p, g mod p) = ϕ irreducible of degree k

‖f ‖∞, ‖g‖∞, deg f , deg g small enough s.t. Normf (·), Normg (·) are
as small as possible

Norm of degree 1 element a− bx ∈ Z[x ]/(f (x)):

Normf (a− bx) =
∑deg f

i=0 aibdeg f−i fi

More generally, when f is monic:

Normf (T ) = Res(T , f ) ≤ A(deg f , deg T )‖T‖deg f
∞ ‖f ‖d∞

where ‖f ‖∞ = max0≤i≤deg f |fi |
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DLP in the target group of pairing-friendly curves

Polynomial Selection for Fp4

Both polynomials have large coefficients. Fp4 record of 392 bits (120 dd):

p = 314159265358979323846270891033 of 98 bits (30 decimal digits dd)

f = x4 − 560499121640472x3 − 6x2 + 560499121640472x + 1

let y = 560499121640472 and compute u/v ≡ y (mod p)

g = v · fy←u/v (x)
g = 560499121639105x4 + 4898685125033473x3 − 3362994729834630x2 − 4898685125033473x +
560499121639105

NormQ[x]/(f (x))(a− bx) =
a4 − 560499121640472a3b − 6a2b2 + 560499121640472ab3 + b4

≈ max(|a|, |b|)4‖f ‖∞
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DLP in the target group of pairing-friendly curves

Relation collection and Linear algebra

2. Relation collection (cado-nfs: Pierrick Gaudry and Laurent Grémy)

3. Linear algebra (cado-nfs: Emmanuel Thomé and Cyril Bouvier)

log DB

pi < B0

We know the log of small elements in Z[x ]/(f (x)) and Z[x ]/(g(x))

small elements are of the form ai − bix =∈ Z[x ]/(f (x)), s.t.
|Norm(ai − bix)| = qi ≤ B0
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Individual Discrete Logarithm

Individual Discrete Logarithm
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Individual Discrete Logarithm

Preimage in Z[x ]/(f (x)) and ρ map

Z[x ]

Z[x ]/(f (x)) Z[x ′]/(g(x ′))

Fpk = Fp[z ]/(ϕ(z))

ρf : x 7→ z ρg : x ′ 7→ z

Randomized target T = t0 + t1X + t2X 2 + t3X 3 ∈ F∗p4 = Fp[X ]/(ϕ(X ))
Simplest choice of preimage T: since f = ϕ,
T = t0 + t1x + t2x2 + t3x3 ∈ Z[x ]/(f (x)), with ti ≡ ti (mod p).
We can always choose T s.t.

|ti| < p
deg T < degϕ

We need ρ(T) = T
(where ρ is simply a reduction modulo (ϕ, p) when f (resp. g) is monic)
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Individual Discrete Logarithm

Individual DL of random target T0 ∈ F∗pk

Given G and a log database s.t. for all pi < B0, log pi ∈

log DB

pi < B0

1. boot step (a.k.a. smoothing step):
DO
1.1 take t at random in {1, . . . , `− 1} and set T = G tT0

(hence logG (T0) = logG (T )− t)
1.2 factorize = q1 · · · qi︸ ︷︷ ︸

too large: B0<qi≤B1

×(elements in DL database),

UNTIL qi ≤ B1

2. Descent strategy: set S = {qi : B0 < qi ≤ B1}
while S 6= ∅ do

set Bj < Bi

find a relation qi =
∏

B0<qj<Bj
qj× (elements in log DB)

S ← S \ {qi} ∪ {qj}j∈J
end while

3. log combination to find the individual target DL

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 15 / 25



Individual Discrete Logarithm

Individual DL of random target T0 ∈ F∗pk

Given G and a log database s.t. for all pi < B0, log pi ∈

log DB

pi < B0

1. boot step (a.k.a. smoothing step):
DO
1.1 take t at random in {1, . . . , `− 1} and set T = G tT0

(hence logG (T0) = logG (T )− t)
1.2 factorize Norm(T) = q1 · · · qi︸ ︷︷ ︸

too large: B0<qi≤B1

×(elements in DL database),

UNTIL qi ≤ B1

2. Descent strategy: set S = {qi : B0 < qi ≤ B1}
while S 6= ∅ do

set Bj < Bi

find a relation qi =
∏

B0<qj<Bj
qj× (elements in log DB)

S ← S \ {qi} ∪ {qj}j∈J
end while

3. log combination to find the individual target DL

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 15 / 25



Individual Discrete Logarithm

Individual DL of random target T0 ∈ F∗pk

Given G and a log database s.t. for all pi < B0, log pi ∈

log DB

pi < B0

1. boot step (a.k.a. smoothing step):
DO
1.1 take t at random in {1, . . . , `− 1} and set T = G tT0

(hence logG (T0) = logG (T )− t)
1.2 factorize Norm(T) = q1 · · · qi︸ ︷︷ ︸

too large: B0<qi≤B1

×(elements in DL database),

UNTIL qi ≤ B1

2. Descent strategy: set S = {qi : B0 < qi ≤ B1}
while S 6= ∅ do

set Bj < Bi

find a relation qi =
∏

B0<qj<Bj
qj× (elements in log DB)

S ← S \ {qi} ∪ {qj}j∈J
end while

3. log combination to find the individual target DL

Aurore Guillevic (INRIA/LIX) NFS-DL in F
pk

November 30, 2015 15 / 25



Individual Discrete Logarithm

Individual DL of random target T0 ∈ F∗pk

Given G and a log database s.t. for all pi < B0, log pi ∈

log DB

pi < B0

1. boot step (a.k.a. smoothing step):
DO
1.1 take t at random in {1, . . . , `− 1} and set T = G tT0

(hence logG (T0) = logG (T )− t)
1.2 factorize Norm(T) = q1 · · · qi︸ ︷︷ ︸

too large: B0<qi≤B1

×(elements in DL database),

UNTIL qi ≤ B1

2. Descent strategy: set S = {qi : B0 < qi ≤ B1}
while S 6= ∅ do

set Bj < Bi

find a relation qi =
∏

B0<qj<Bj
qj× (elements in log DB)

S ← S \ {qi} ∪ {qj}j∈J
end while

3. log combination to find the individual target DL
Aurore Guillevic (INRIA/LIX) NFS-DL in F

pk
November 30, 2015 15 / 25



Individual Discrete Logarithm

Individual DL of random target T0 ∈ F∗pk

Given G and a log database s.t. for all pi < B0, log pi ∈

log DB

pi < B0

1. boot step (a.k.a. smoothing step):
DO
1.1 take t at random in {1, . . . , `− 1} and set T = G tT0

(hence logG (T0) = logG (T )− t)
1.2 factorize Norm(T)︸ ︷︷ ︸

reduce this

= q1 · · · qi︸ ︷︷ ︸
too large: B0<qi≤B1

×(elements in DL database),

UNTIL qi ≤ B1

2. Descent strategy: set S = {qi : B0 < qi ≤ B1}
while S 6= ∅ do

set Bj < Bi

find a relation qi =
∏

B0<qj<Bj
qj× (elements in log DB)

S ← S \ {qi} ∪ {qj}j∈J
end while

3. log combination to find the individual target DL
Aurore Guillevic (INRIA/LIX) NFS-DL in F

pk
November 30, 2015 15 / 25



Individual Discrete Logarithm

Boot step complexity

Given random target T0 ∈ F∗
pk

, and G a generator of F∗
pk

repeat

1. take t at random in {1, . . . , `− 1} and set T = G tT0

2. factorize Norm(T)

until it is B1-smooth: Norm(T) =
∏

qi≤B1
qi×(elts in log DB)

L-notation: Q = pk , LQ [1/3, c] = e(c+o(1))(log Q)1/3 (log log Q)2/3
for c > 0.

Norm factorization done with ECM method, in time LB1 [1/2,
√

2]

Lemma (Boot step running-time)

If Norm(T) ≤ Qe , take B1 = LQ [2/3, (e2/3)1/3], then the running-time is
LQ [1/3, (3e)1/3] (and this is optimal).
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Individual Discrete Logarithm

Preimage optimization

f , deg f , ‖f ‖∞, g , deg g , ‖g‖∞ are given by the polynomial selection step
(NFS-DL step 1)

Normf (T) = Res(f ,T) ≤ A‖T‖deg f
∞ ‖f ‖d∞

To reduce the norm,

reduce ‖T‖∞
and/or reduce d = deg T
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Individual Discrete Logarithm

Boot step: First experiments

Commonly assumed to be very easy and very fast. This is not always so
easy!

Fp2
90

600 bits (BGGM15 record) was easy, as fast as for Fp180 (< one

day) with [JLSV06] improvement technique

Fp3 MNT 508 bits was much slower (days, week)

Fp4 392 bits was even worse (> one week)

What happened?

Fp3 : asymptotically the same as Fp2 : LQ [1/3, c = 1.44] but still much
slower, Because of the constant hidden in the O()?

Fp4 : [JLSV06] not suited, ‖f ‖∞ = O(p1/2), Norm(T) ≈ Q3/2 →
LQ [1/3, c = 1.65]
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Individual Discrete Logarithm

Our solution

Lemma

Let T ∈ Fpk .
Then log(T ) = log(u · T ) (mod `) for any u in a proper subfield of Fpk .

Fp is a proper subfield of Fpk

target T = t0 + t1x + . . .+ tdxd

we divide the target by its leading term:

log(T ) = log(T/td) (mod `)

From now on we assume that the target is monic.
Similar technique in pairing computation:
Miller loop denominator elimination [Boneh Kim Lynn Scott 02]
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Individual Discrete Logarithm

Fp4 of 392 bits: Terribly slow booting step

p = 314159265358979323846270891033 of 98 bits (30 dd)

f = x4 − 560499121640472x3 − 6x2 + 560499121640472x + 1

T = t0 + t1x + t2x2 + x3

we want to reduce ‖T‖∞. Define L =
p 0 0 0
0 p 0 0
0 0 p 0
t0 t1 t2 1



p 7→ 0 in Fp4

px 7→ 0
px2 7→ 0
T 7→ T

← could we find something else, monic?

dim 4 because max(deg f , deg g) = 4

LLL(L) outputs a short vector r , linear combination of L’s rows.
r = λ0p + λ1px + λ2px2 + λ3T ,

log ρ(r) = log(T) (mod `)

r = r0 + . . .+ r3x3, ‖ri‖∞ ≤ C det(L)1/4 = O(p3/4)

Normf (r) ≈ ‖r‖4
∞‖f ‖3
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Individual Discrete Logarithm

Our solution: quadratic subfield cofactor simplification

Lemma

Let T ∈ Fpk , k even. We can always find u ∈ Fp2 and T ′ ∈ Fpk

such that T ′ = u · T and T ′ is represented by a polynomial of degree
k − 2 instead of k − 1.

define L =


p 0 0 0
0 p 0 0
t ′0 t ′1 1 0
t0 t1 t2 1



ρ(p) = 0 ∈ Fpk

ρ(px) = 0 ∈ Fpk

T ′

T

LLL(L)→ short vector r linear combination of L’s rows
r = r0 + . . .+ r3x3, ‖ri‖∞ ≤ C det(L)1/4 = O(p1/2)

ρ(r) = λ2T ′ + λ3T = (λ2u + λ3)︸ ︷︷ ︸
∈ subfield F

pk/2

T

log ρ(r) = log(T ) (mod `)

Normf (r) = ‖r‖4
∞‖f ‖3

∞ = p7/2 = Q7/8 < Q
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Individual Discrete Logarithm

Subfield Cofactor Simplification + LLL results

Normf (T) LQ [1/3, c] qi ≤ B1 =
Qe bits c time LQ [ 2

3 , c]

Fp2 T = U/V Q1/2Q1/2 600 1.44 252 2100

600 bits This work Q1/2 300 1.14 241 264

Fp3 T = U/V Q1/2Q1/2 508 1.44 248 290

508 bits This work Q2/3 340 1.26 242 269

Fp4 prev. Q3/2 588 1.65 249 298

392 bits This work Q7/8 343 1.38 241 268

Faster descent
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Individual Discrete Logarithm

DL record computation in Fp4 of 392 bits (120dd)

Joint work with R. Barbulescu, P. Gaudry, F. Morain

p = 314159265358979323846270891033 of 98 bits (30 dd)
` = 9869604401089358618834902718477057428144064232778775980709 of 192 bits
f = x4 − 560499121640472x3 − 6x2 + 560499121640472x + 1
g = 560499121639105x4 + 4898685125033473x3 − 3362994729834630x2

−4898685125033473x + 560499121639105

ϕ = g
G = x + 3 ∈ Fp4

T0 = 31415926535897x3 + 93238462643383x2 + 27950288419716x + 93993751058209

logG(T0) =

136439472586839838529440907219583201821950591984194257022 (mod `)
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Individual Discrete Logarithm

Summary of results

better practical and asymptotic running-time of the boot step

better when k is even

online version HAL 01157378

guillevic@lix.polytechnique.fr
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Individual Discrete Logarithm

Future work

Degree-d subfield cofactor simplification thanks to an anonymous
Asiacrypt 2015 reviewer remark, generalization in large characteristic,
application to small characteristic

look at Sarkar Singh (eprint 2015/944) polynomial selection

optimize the descent

add early abort strategy (Barbulescu improvement)

Fp6 , Fp12

Be careful with the hidden constant in the O(·)
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