Improving NFS for the discrete logarithm problem in non-prime finite fields
 Polynomial selection and individual logarithm

Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, François Morain

Institut national de recherche en informatique et en automatique (INRIA)
École Polytechnique/LIX

Centre national de la recherche scientifique (CNRS)
Université de Lorraine
AGCT 2015, May 20th

Our Work

- $\mathrm{F}_{p^{2}}$: target group of pairing-based cryptosystems
- Record computation of a Discrete Logarithm (DL) in $\mathbf{F}_{p^{2}}$ of 600 bits ($\log _{2} p=300$ bits)
- DL in $\mathbf{F}_{p^{2}}$ is 260 times faster than DL in $\mathbf{F}_{p^{\prime}}$ of same size
\rightarrow serious consequences for pairing-based crypto
- source code: http://cado-nfs.gforge.inria.fr/

Context: Discrete logarithm problem (DLP) in $\mathbf{F}_{p^{n}}^{*}$

In a subgroup $\langle g\rangle$ of $\mathbf{F}_{p^{n}}^{*}$ of order ℓ,

- $(g, x) \mapsto g^{x}$ is easy (polynomial time)
- $\left(g, g^{x}\right) \mapsto x$ is (in well-chosen subgroup) hard: DLP.

In our work:

- We attack DL in $\mathbf{F}_{p^{2}}$, starting point of $\mathbf{F}_{p^{3}}, \mathbf{F}_{p^{4}}, \ldots \mathbf{F}_{p^{12}}$
- p is large: quasi polynomial time algo. does NOT apply
- DLP in these $\mathbf{F}_{p^{n}}$ still asymptotically as hard as in the 90's
- consequences for pairing-based crypto: $\mathbf{F}_{p^{2}}$ target group

Practical improvements and new asymptotic complexities

L-notation: $Q=p^{n}, L_{Q}[1 / 3, c]=\mathrm{e}^{(c+o(1))(\log Q)^{1 / 3}(\log \log Q)^{2 / 3}}$ for $c>0$.

- DL in $\mathbf{F}_{p^{n}}$, small n, large p : complexity in $L_{p^{n}}[1 / 3,1.92]$ (as for RSA modulus factorization) since the 90 's
- $n \geq 2$: two new polynomial selection methods
- great improvements in practice
- record of 600 bits

Bonus: asymptotic complexity improvements in medium characteristic case

$\alpha=1 / 3$	c, previous work	c, our work
DL in $\mathbf{F}_{p^{n}, p=L_{Q}\left(2 / 3, c^{\prime}\right)} 1.92<c<2.42 \boldsymbol{X}$	$1.74 \checkmark$	
DL in $\mathbf{F}_{p^{n},}$, medium p	$2.42 \boldsymbol{X}$	$2.20 \checkmark$

MNFS variants: see [Pierrot15], Eurocrypt 2015.

Number Field Sieve algorithm for DL in $\mathbf{F}_{p^{n}}$

Number Field Sieve algorithm for DL in $\mathbf{F}_{p^{n}}$

1. Polynomial Selection: compute $f(x), g(x) \rightarrow$ define number fields K_{f}, K_{g}.

Number Field Sieve algorithm for DL in $\mathbf{F}_{p^{n}}$

1. Polynomial Selection: compute $f(x), g(x) \rightarrow$ define number fields K_{f}, K_{g}.

Number Field Sieve algorithm for DL in $\mathbf{F}_{p^{n}}$

1. Polynomial Selection: compute $f(x), g(x) \rightarrow$ define number fields K_{f}, K_{g}.

Number Field Sieve algorithm for DL in $\mathbf{F}_{p^{n}}$

1. Polynomial Selection: compute $f(x), g(x) \rightarrow$ define number fields K_{f}, K_{g}.
2. Relation collection between ideals of each number field.

$$
a-b x \in \mathbf{Q}[x] /(f(x))
$$

Number Field Sieve algorithm for DL in $\mathbf{F}_{p^{n}}$

1. Polynomial Selection: compute $f(x), g(x) \rightarrow$ define number fields K_{f}, K_{g}.
2. Relation collection between ideals of each number field.

Number Field Sieve algorithm for DL in $\mathbf{F}_{p^{n}}$

1. Polynomial Selection: compute $f(x), g(x) \rightarrow$ define number fields K_{f}, K_{g}.
2. Relation collection between ideals of each number field.

3. Linear algebra modulo $\ell \mid p^{n}-1$.
\rightarrow here we know the discrete log of a subset of ideals of K_{f}, K_{g}.

Number Field Sieve algorithm for DL in $\mathbf{F}_{p^{n}}$

1. Polynomial Selection: compute $f(x), g(x) \rightarrow$ define number fields K_{f}, K_{g}.
2. Relation collection between ideals of each number field.

3. Linear algebra modulo $\ell \mid p^{n}-1$.
\rightarrow here we know the discrete log of a subset of ideals of K_{f}, K_{g}.
4. Individual Logarithm.

Relation collection

We need a high smoothness probability of

- ideals $(a-b x) \in K_{f},(a-b y) \in K_{g},|a|,|b|<E$
- integers $\operatorname{Norm}_{K_{f} / \mathbf{Q}}(a-b x)$ and $\operatorname{Norm}_{K_{g} / \mathbf{Q}}(a-b y)$
- we approximate $\left|\operatorname{Norm}_{K_{f} / \mathbf{Q}}(a-b x)\right| \leq E^{\operatorname{deg} f}| | f \|_{\infty}$ with $\|f\|_{\infty}=\max _{1 \leq i \leq \operatorname{deg} f}\left|f_{i}\right|$
- we want to minimize the product of norms:

$$
E^{\operatorname{deg} f}\|f\|_{\infty} E^{\operatorname{deg} g}\|g\|_{\infty}
$$

We need

- f, g of small degrees
- f, g of small coefficients

Relation collection

We need a high smoothness probability of

- ideals $(a-b x) \in K_{f},(a-b y) \in K_{g},|a|,|b|<E$
- integers $\operatorname{Norm}_{K_{f} / \mathbf{Q}}(a-b x)$ and $\operatorname{Norm}_{K_{g} / \mathbf{Q}}(a-b y)$
- we approximate $\left|\operatorname{Norm}_{K_{f} / \mathbf{Q}}(a-b x)\right| \leq E^{\operatorname{deg} f}| | f \|_{\infty}$ with $\|f\|_{\infty}=\max _{1 \leq i \leq \operatorname{deg} f}\left|f_{i}\right|$
- we want to minimize the product of norms:

$$
E^{\operatorname{deg} f}\|f\|_{\infty} E^{\operatorname{deg} g}\|g\|_{\infty}
$$

We need

- f, g of small degrees
- f, g of small coefficients

We cannot have both, we need to balance degrees and coefficient sizes.

A. Generalized Joux-Lercier method

Simplified version: $\operatorname{deg} f=n+1, \operatorname{deg} g=n$

1. choose $f, \operatorname{deg} f=n+1$, s.t.
2. $f \equiv \tilde{f} \varphi \bmod p, \varphi$ a monic irreducible factor of degree n modulo p

$$
\varphi(x)=\varphi_{0}+\varphi_{1} x+\cdots+x^{n}
$$

3. Reduce the following matrix using LLL

$$
M=\left[\begin{array}{cccc}
p & & & \\
& \ddots & & \\
& & p & \\
\varphi_{0} & \varphi_{1} & \cdots & 1
\end{array}\right]\left\{\begin{array}{l}
\begin{array}{l}
\operatorname{deg} \varphi= \\
n \text { rows }
\end{array} \\
1 \text { row }
\end{array} \quad \rightarrow \operatorname{LLL}(M)=\left[\begin{array}{llll}
g_{0} & g_{1} & \cdots & g_{n} \\
& & & \\
& & * & \\
& & &
\end{array}\right]\right.
$$

4. $g=g_{0}+g_{1} x+\cdots+g_{n} x^{n},\|g\|_{\infty}=O\left(p^{n /(n+1)}\right)$

$$
E^{\operatorname{deg} f+\operatorname{deg} g}\|f\|_{\infty}\|g\|_{\infty}=E^{2 n+1} O\left(p^{n /(n+1)}\right)
$$

A. Generalized Joux-Lercier method: example

- $p=10000000019$ and $n=2$
- $f=x^{3}+x+1$
- $\varphi=x^{2}+3402015304 x+6660167027$
- $M=\left[\begin{array}{ccc}p & & \\ & p & \\ \varphi_{0} & \varphi_{1} & 1\end{array}\right] \xrightarrow{\text { LLL }} g=746193 x^{2}+914408 x+4935648$
- $\|f\|_{\infty}=O(1),\|g\|_{\infty}=O\left(p^{2 / 3}\right)$

Historical remark:

- this construction appears in Barbulescu PhD thesis (2013)
- In January we were told about Matyukhin's work [МАтюхин 2006]: ЭФФЕКТИВНЫЙ ВАРИАНТ МЕТОДА РЕШЕТА ЧИСЛОВОГО ПОЛЯ ДЛЯ ДИСКРЕТНОГО ЛОГАРИФМИРОВАНИЯ В ПОЛЕ GF(p^{k}).

B. The Conjugation Method for $\mathbf{F}_{p^{2}}$: example

1. $p=7 \bmod 8$
2. $f=x^{4}+1$ irreducible over \mathbf{Z}, small
3. $f=\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right)$ over $\mathbf{Q}(\sqrt{2})$
4. $x^{2}-2$ has two roots $\pm \mathrm{r} \bmod p$
5. $\varphi=x^{2}+\mathbf{r} x+1$ is irreducible over \mathbf{F}_{p} since $p \equiv 7 \bmod 8$, and over \mathbf{Z}
6. compute (u, v) s.t. $u / v \equiv \operatorname{r} \bmod p$, with $|u|,|v| \sim p^{1 / 2}$ with the rational reconstruction method
7. $g=v x^{2}+u x+v \equiv v \cdot \varphi \bmod p$

Generalize to higher n :

- $\operatorname{deg} f=2 n, \operatorname{deg} g=n,\|f\|_{\infty}=O(1),\|g\|_{\infty}=O\left(p^{1 / 2}\right)$

$$
E^{\operatorname{deg} f+\operatorname{deg} g}\|f\|_{\infty}\|g\|_{\infty}=E^{3 n} O\left(p^{1 / 2}\right)
$$

Individual logarithm

- polynomial selection $\varphi(x), \mathbf{F}_{p^{n}}=\mathbf{F}_{p}[x] /(\varphi(x))$, f, number field $K=\mathbf{Q}[\bar{x}] /(f(\bar{x}))=\mathbf{Q}[\alpha], \operatorname{map} \rho: \alpha \mapsto x \in \mathbf{F}_{p^{n}}$
- known logs of $\left\{\mathfrak{p}_{i}\right\}, \operatorname{Norm}_{K / \mathbf{Q}}\left(\mathfrak{p}_{i}\right) \leq B$
- random target $s=\sum_{i=0}^{n-1} s_{i} X^{i} \in \mathbf{F}_{p^{n}}$
- preimage $\bar{s}=\sum_{i=0}^{n-1} \bar{s}_{i} \alpha^{i} \in K$, with $\rho\left(\bar{s}_{i}\right)=s_{i}$,
- needs B-smooth \bar{s}, i.e. B-smooth $\operatorname{Norm}_{K / \mathbf{Q}}(\bar{s})$
- deduce individual logarithm $\log \bar{s}$, then $\log s$

Bottleneck: find B-smooth \bar{s}.
Loop over $g^{e} \cdot s, g$ generator, in time $L_{Q}[1 / 3, c]$.

Norm bound

$$
\operatorname{Norm}_{K / \mathbf{Q}}(\bar{s}) \leq\|f\|_{\infty}^{\operatorname{deg} \bar{s}}\|\bar{s}\|_{\infty}^{\operatorname{deg} f}
$$

- $\|\bar{s}\|_{\infty}=O(p)$
- $\operatorname{deg} \bar{s}=n-1$
- $\mathrm{JLSV}_{1}:\|f\|_{\infty}=O\left(p^{1 / 2}\right) x$
- gJL, Conj: $\|f\|_{\infty}=O(1) \checkmark$
- $\operatorname{deg} f=n\left(\mathrm{JLSV}_{1}\right), n+1$ (gJL), $2 n X($ Conj $)$
\rightarrow Reduce $\|\bar{s}\|_{\infty}$
\rightarrow Reduce deg \bar{s}
Do both, use subfield structure.

$\mathbf{F}_{p^{2}}$, Conjugation

- $f=x^{4}+1$
- $s=s_{0}+s_{1} x$
- $\mathbf{F}_{p^{2}}$ subfield: \mathbf{F}_{p}
- $s \leftarrow\left(1 / s_{1}\right) \cdot s$ so $s_{1}=1$.

$$
\begin{aligned}
& \text { Define lattice } \\
& L=\left[\begin{array}{cccc}
p & 0 & 0 & 0 \\
s_{0} & 1 & 0 & 0 \\
\varphi_{0} & \varphi_{1} & 1 & 0 \\
0 & \varphi_{0} & \varphi_{1} & 1
\end{array}\right]
\end{aligned}
$$

LLL outputs $\bar{r} \in \mathbf{Z}[x]$, with $\|\bar{r}\|_{\infty} \leq C_{\mathrm{LLL}} \operatorname{det}(L)^{1 / \operatorname{dim}}=C_{\mathrm{LLL}} p^{1 / 4}, \operatorname{map} \bar{r}$ into K hence

$$
\operatorname{Norm}(\bar{r})=O(p) \text { instead of } \operatorname{Norm}(\bar{s})=O\left(p^{2}\right)
$$

\rightarrow Do we have $\log \rho(\bar{r})=\log s ?$

We need $\log \rho(\bar{r})=\log s$:

- LLL $\rightarrow \bar{r}$ linear combination of L rows.
- $\rho(\bar{r})=\rho\left(a_{1} p+a_{2} \bar{s}+a_{3} \varphi+a_{4} \times \varphi\right) \equiv u \cdot s \bmod (p, \varphi)$ with $u \in \mathbf{F}_{p}$
- $\log u=0 \bmod \ell$ with $\ell \mid p+1$ since $u \in \mathbf{F}_{p}$
- hence $\log \rho(\bar{r}) \equiv \log s \bmod \ell$.

Running-time for finding a B-smooth decomposition, $\mathbf{F}_{p^{2}}$ with Conj method:

$$
L_{Q}[1 / 3,1.14] \text { instead of } L_{Q}[1 / 3,1.44]
$$

Generalization:

- JLSV ${ }_{1}$, gJL, Conj
- $\mathbf{F}_{p^{2 m}}$, with $u \in \mathbf{F}_{p^{2}}$

Our Record: Discrete Logarithm in $\mathbf{F}_{p^{2}}$ of 600 bits

$p=314159265358979323846264338327950288419716939 \backslash$
(300 bits) 937510582097494459230781640628620899877709223
$p+1=8 \cdot \ell$
$\ell=392699081698724154807830422909937860524646174 \backslash$
(295 bits) 92188822762186807403847705078577612484713653 $p-1=6 \cdot h_{0}$ with h_{0} a 295 bit prime

- Cryptographic subgroup: G of order ℓ
- For our record: $Q=p^{2}, \log _{2} Q=600$, optimal value of E around $\log _{2} E=27$ bits.

Our Record: Discrete Logarithm in $\mathbf{F}_{p^{2}}$ of 600 bits

Polynomial selection:

- Generalized Joux Lercier: $f=x^{3}+x+1,\|g\|_{\infty}=O\left(p^{2 / 3}\right)$, Norms bounded by $E^{5} p^{2 / 3}$ of 339 bits X
- Conjugation: $f=x^{4}+1,\|g\|_{\infty}=O\left(p^{1 / 2}\right)$, Norms bounded by $E^{6} p^{1 / 2}$ of 317 bits $\rightarrow 22$ bits less
$f=x^{4}+1$
$g=448225077249286433565160965828828303618362474 x^{2}$
$-296061099084763680469275137306557962657824623 x$
+448225077249286433565160965828828303618362474 .
$\|g\|_{\infty}=150$ bits
$\varphi=x^{2}+y x+1, \quad \log _{2} y=\log _{2} p$
Target:

$$
\begin{aligned}
s & =\left\lfloor\left(\pi\left(2^{298}\right) / 8\right)\right\rfloor x+\left\lfloor\left(\gamma \cdot 2^{298}\right)\right\rfloor \in \mathbf{F}_{p^{2}}=\mathbf{F}_{p}[x] /(\varphi(x)) \\
\text { gen } & =x+2
\end{aligned}
$$

Speed-up of Relation Collection and Linear Algebra

- Galois automorphism: $x \mapsto 1 / x$ both for $f=x^{4}+1$ and $g=v x^{2}+u x+v$
- $a-b x \mapsto-b+a x$: a second relation for free
\rightarrow speed-up by a factor 2 for relation collection
\rightarrow speed-up by a factor 4 for linear algebra
- others important algebraic simplification and speed-up

Finally,

$$
\begin{aligned}
\log _{g e n} s \equiv & 276214243617912804300337349268306605403758173 \backslash \\
& 81941441861019832278568318885392430499058012 \bmod \ell .
\end{aligned}
$$

Record running-time comparison in years for 600-bit inputs

Algorithm	relation collection	linear algebra	total
NFS Integer Factorization	$5 y$	0.5y	5.5y
NFS DL in \mathbf{F}_{p}	50y	$80 y$	130 y
This work: NFS DL in $\mathrm{F}_{p^{2}}$	0.4y	0.05y (GPU)	0.5y

DL in $\mathrm{F}_{p^{2}}<$ Integer Factorization $<\mathrm{DL}$ in F_{p}

- Paper: https://hal.inria.fr/hal-01112879
- Algebraic secrets: https://hal.inria.fr/hal-01052449
- Source code: http://cado-nfs.gforge.inria.fr/
\rightarrow Download it and solve your own DL in $\mathbf{F}_{p^{2}}$
- Stay tuned for more records during summer.

