Improving NFS for the discrete logarithm problem in non-prime finite fields *Polynomial selection and individual logarithm*

Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, François Morain

Institut national de recherche en informatique et en automatique (INRIA)

École Polytechnique/LIX

Centre national de la recherche scientifique (CNRS)

Université de Lorraine

AGCT 2015, May 20th

Our Work

- **F**_{p²}: target group of pairing-based cryptosystems
- Record computation of a Discrete Logarithm (DL) in \mathbf{F}_{p^2} of 600 bits ($\log_2 p = 300$ bits)
- DL in \mathbf{F}_{p^2} is 260 times faster than DL in $\mathbf{F}_{p'}$ of same size
- → serious consequences for pairing-based crypto
 - source code: http://cado-nfs.gforge.inria.fr/

Context : Discrete logarithm problem (DLP) in $\mathbf{F}_{p^n}^*$

- In a subgroup $\langle g \rangle$ of $\mathbf{F}_{p^n}^*$ of order ℓ ,
 - $(g,x)\mapsto g^x$ is easy (polynomial time)
 - $(g, g^x) \mapsto x$ is (in well-chosen subgroup) hard: DLP.

In our work:

- We attack DL in \mathbf{F}_{p^2} , starting point of \mathbf{F}_{p^3} , \mathbf{F}_{p^4} , ... $\mathbf{F}_{p^{12}}$
- p is large: quasi polynomial time algo. does NOT apply
- DLP in these \mathbf{F}_{p^n} still asymptotically as hard as in the 90's
- \bullet consequences for pairing-based crypto: \mathbf{F}_{p^2} target group

Practical improvements and new asymptotic complexities

L-notation: $Q = p^n$, $L_Q[1/3, c] = e^{(c+o(1))(\log Q)^{1/3}} (\log \log Q)^{2/3}$ for c > 0.

- DL in F_{pⁿ}, small n, large p: complexity in L_{pⁿ}[1/3, 1.92] (as for RSA modulus factorization) since the 90's
- $n \ge 2$: two new polynomial selection methods
- great improvements in practice
- record of 600 bits

Bonus: asymptotic complexity improvements in medium characteristic case

$\alpha = 1/3$	<i>c</i> , previous work	<i>c</i> , our work
DL in $\mathbf{F}_{p^n}, \ p = L_Q(2/3, c')$	1.92 < c < 2.42 X	1.74 🗸
DL in F _p , medium p	2.42 🗡	2.20 🗸

MNFS variants: see [Pierrot15], Eurocrypt 2015.

1. Polynomial Selection: compute f(x), $g(x) \rightarrow$ define number fields K_f, K_g .

1. Polynomial Selection: compute f(x), $g(x) \rightarrow$ define number fields K_f, K_g .

1. Polynomial Selection: compute f(x), $g(x) \rightarrow$ define number fields K_f, K_g .

- Polynomial Selection: compute f(x), g(x) → define number fields K_f, K_g.
- 2. Relation collection between ideals of each number field.

- Polynomial Selection: compute f(x), g(x) → define number fields K_f, K_g.
- 2. Relation collection between ideals of each number field.

- Polynomial Selection: compute f(x), g(x) → define number fields K_f, K_g.
- 2. Relation collection between ideals of each number field.

3. Linear algebra modulo $\ell \mid p^n - 1$.

 \rightarrow here we know the discrete log of a subset of ideals of K_f , K_g .

- Polynomial Selection: compute f(x), g(x) → define number fields K_f, K_g.
- 2. Relation collection between ideals of each number field.

3. Linear algebra modulo $\ell \mid p^n - 1$.

- \rightarrow here we know the discrete log of a subset of ideals of K_f , K_g .
- 4. Individual Logarithm.

Relation collection

We need a high smoothness probability of

• ideals
$$(a - bx) \in K_f$$
, $(a - by) \in K_g$, $|a|, |b| < E$

- integers $\mathit{Norm}_{\mathcal{K}_f/\mathbf{Q}}(a-bx)$ and $\mathit{Norm}_{\mathcal{K}_g/\mathbf{Q}}(a-by)$
- we approximate $|Norm_{K_f/\mathbf{Q}}(a bx)| \le E^{\deg f} ||f||_{\infty}$ with $||f||_{\infty} = \max_{1 \le i \le \deg f} |f_i|$
- we want to minimize the product of norms:

```
E^{\deg f}||f||_{\infty}E^{\deg g}||g||_{\infty}
```

We need

- *f*, *g* of small degrees
- f, g of small coefficients

Relation collection

We need a high smoothness probability of

• ideals
$$(a - bx) \in K_f$$
, $(a - by) \in K_g$, $|a|, |b| < E$

- integers $\mathit{Norm}_{\mathcal{K}_f/\mathbf{Q}}(a-bx)$ and $\mathit{Norm}_{\mathcal{K}_g/\mathbf{Q}}(a-by)$
- we approximate $|Norm_{K_f/\mathbf{Q}}(a bx)| \le E^{\deg f} ||f||_{\infty}$ with $||f||_{\infty} = \max_{1 \le i \le \deg f} |f_i|$
- we want to minimize the product of norms:

```
E^{\deg f}||f||_{\infty}E^{\deg g}||g||_{\infty}
```

We need

- *f*, *g* of small degrees
- f, g of small coefficients

We cannot have both, we need to balance degrees and coefficient sizes.

A. Generalized Joux-Lercier method

Simplified version: deg f = n + 1, deg g = n

1. choose
$$f$$
, deg $f = n + 1$, s.t.

2. $f \equiv \tilde{f} \varphi \mod p$, φ a monic irreducible factor of degree n modulo p

$$\varphi(x) = \varphi_0 + \varphi_1 x + \dots + x^n$$

3. Reduce the following matrix using LLL

$$M = \begin{bmatrix} p & & \\ & \ddots & \\ & p & \\ \varphi_0 & \varphi_1 & \cdots & 1 \end{bmatrix} \begin{cases} \deg \varphi = & \\ n \text{ rows} & \\ 1 \text{ row} & \end{cases} \quad \rightarrow \text{LLL}(M) = \begin{bmatrix} g_0 & g_1 & \cdots & g_n \\ & & \\ & & * & \\ & & & \\ &$$

4. $g = g_0 + g_1 x + \dots + g_n x^n$, $||g||_{\infty} = O(p^{n/(n+1)})$

$$E^{\deg f + \deg g} ||f||_{\infty} ||g||_{\infty} = E^{2n+1} O(p^{n/(n+1)})$$

A. Generalized Joux-Lercier method: example

•
$$p = 1000000019$$
 and $n = 2$
• $f = x^3 + x + 1$
• $\varphi = x^2 + 3402015304x + 6660167027$
• $M = \begin{bmatrix} p \\ p \\ \varphi_0 & \varphi_1 & 1 \end{bmatrix} \stackrel{\text{LLL}}{\rightarrow} g = 746193x^2 + 914408x + 4935648$
• $||f||_{\infty} = O(1), ||g||_{\infty} = O(p^{2/3})$

Historical remark:

- this construction appears in Barbulescu PhD thesis (2013)
- In January we were told about Matyukhin's work [МАТЮХИН 2006]:
 ЭФФЕКТИВНЫЙ ВАРИАНТ МЕТОДА РЕШЕТА ЧИСЛОВОГО ПОЛЯ ДЛЯ ДИСКРЕТНОГО ЛОГАРИФМИРОВАНИЯ В ПОЛЕ GF(p^k).

B. The Conjugation Method for \mathbf{F}_{p^2} : example

1. $p = 7 \mod 8$

- 2. $f = x^4 + 1$ irreducible over **Z**, small
- 3. $f = (x^2 + \sqrt{2}x + 1)(x^2 \sqrt{2}x + 1)$ over $\mathbf{Q}(\sqrt{2})$
- 4. $x^2 2$ has two roots $\pm \mathbf{r} \mod p$
- 5. $\varphi = x^2 + \mathbf{r}x + 1$ is irreducible over \mathbf{F}_p since $p \equiv 7 \mod 8$, and over \mathbf{Z}
- 6. compute (u, v) s.t. $u/v \equiv r \mod p$, with $|u|, |v| \sim p^{1/2}$ with the rational reconstruction method

7.
$$g = vx^2 + ux + v \equiv v \cdot \varphi \mod p$$

Generalize to higher *n*:

• deg
$$f = 2n$$
, deg $g = n$, $||f||_{\infty} = O(1)$, $||g||_{\infty} = O(p^{1/2})$
 $E^{\deg f + \deg g} ||f||_{\infty} ||g||_{\infty} = E^{3n}O(p^{1/2})$

Individual logarithm

• polynomial selection $\varphi(x)$, $\mathbf{F}_{p^n} = \mathbf{F}_p[x]/(\varphi(x))$, f, number field $\mathcal{K} = \mathbf{Q}[\bar{x}]/(f(\bar{x})) = \mathbf{Q}[\alpha]$, map $\rho : \alpha \mapsto x \in \mathbf{F}_{p^n}$

• known logs of $\{\mathfrak{p}_i\}$, Norm $_{\mathcal{K}/\mathbf{Q}}(\mathfrak{p}_i) \leq B$

$$ullet$$
 random target $s=\sum_{i=0}^{n-1}s_ix^i\in {f F}_{p^n}$

- preimage $\bar{s} = \sum_{i=0}^{n-1} \bar{s}_i \alpha^i \in K$, with $\rho(\bar{s}_i) = s_i$,
- needs *B*-smooth \bar{s} , i.e. *B*-smooth Norm_{K/Q}(\bar{s})
- deduce individual logarithm log 5, then log s

Bottleneck: find *B*-smooth \bar{s} . Loop over $g^e \cdot s$, *g* generator, in time $L_Q[1/3, c]$.

Norm bound

$$\mathsf{Norm}_{\mathcal{K}/\mathbf{Q}}(ar{s}) \leq ||f||_{\infty}^{\deg ar{s}} ||ar{s}||_{\infty}^{\deg f}$$

- $||\bar{s}||_{\infty} = O(p)$
- deg $\overline{s} = n 1$
- JLSV₁: $||f||_{\infty} = O(p^{1/2})$ X
- gJL, Conj: $||f||_{\infty} = O(1)$ 🗸
- deg f = n (JLSV₁), n + 1 (gJL), $2n \times (Conj)$
- →Reduce $||\bar{s}||_{\infty}$
- →Reduce deg \overline{s}

Do both, use subfield structure.

\mathbf{F}_{p^2} , Conjugation

	Define lattice				
• $f = x^4 + 1$		Гр	0	0	0]
• $s = s_0 + s_1 x$	L =	<i>s</i> 0	1	0	0
• \mathbf{F}_{p^2} subfield: \mathbf{F}_p		φ_0	φ_1	1	0
• $s \leftarrow (1/s_1) \cdot s$ so $s_1 = 1$.			arphi0	φ_1	т]

LLL outputs $\bar{r} \in \mathbf{Z}[x]$, with $||\bar{r}||_{\infty} \leq C_{LLL} \det(L)^{1/dim} = C_{LLL} p^{1/4}$, map \bar{r} into K hence

 $\operatorname{Norm}(\overline{r}) = O(p)$ instead of $\operatorname{Norm}(\overline{s}) = O(p^2)$

 \rightarrow Do we have $\log \rho(\bar{r}) = \log s$?

We need $\log \rho(\bar{r}) = \log s$:

• LLL $\rightarrow \bar{r}$ linear combination of L rows.

•
$$\rho(\bar{r}) = \rho(a_1p + a_2\bar{s} + a_3\varphi + a_4x\varphi) \equiv u \cdot s \mod (p,\varphi)$$
 with $u \in \mathbf{F}_p$

• $\log u = 0 \mod \ell$ with $\ell \mid p+1$ since $u \in \mathbf{F}_p$

• hence
$$\log \rho(\bar{r}) \equiv \log s \mod \ell$$
.

Running-time for finding a B-smooth decomposition, \mathbf{F}_{p^2} with Conj method :

```
L_Q[1/3, 1.14] instead of L_Q[1/3, 1.44]
```

Generalization:

- JLSV₁, gJL, Conj
- $\mathbf{F}_{p^{2m}}$, with $u \in \mathbf{F}_{p^2}$

Our Record: Discrete Logarithm in \mathbf{F}_{p^2} of 600 bits

- Cryptographic subgroup: G of order ℓ
- For our record: $Q = p^2$, $\log_2 Q = 600$, optimal value of E around $\log_2 E = 27$ bits.

Our Record: Discrete Logarithm in \mathbf{F}_{p^2} of 600 bits

Polynomial selection:

- Generalized Joux Lercier: $f = x^3 + x + 1$, $||g||_{\infty} = O(p^{2/3})$, Norms bounded by $E^5 p^{2/3}$ of 339 bits \checkmark
- Conjugation: $f = x^4 + 1$, $||g||_{\infty} = O(p^{1/2})$, Norms bounded by $E^6 p^{1/2}$ of 317 bits $\rightarrow 22$ bits less \checkmark
 - $f = x^4 + 1$

$$s = \lfloor (\pi(2^{298})/8) \rfloor x + \lfloor (\gamma \cdot 2^{298}) \rfloor \in \mathbf{F}_{p^2} = \mathbf{F}_p[x]/(\varphi(x))$$

gen = x + 2

Speed-up of Relation Collection and Linear Algebra

- Galois automorphism: $x \mapsto 1/x$ both for $f = x^4 + 1$ and $g = vx^2 + ux + v$
- $a bx \mapsto -b + ax$: a second relation for free
- ➡ speed-up by a factor 2 for relation collection
- → speed-up by a factor 4 for linear algebra

• others important algebraic simplification and speed-up Finally,

Record running-time comparison in years for 600-bit inputs

	relation	linear		
Algorithm	collection	algebra	total	
NFS Integer Factorization	5y	0.5y	5.5y	$\times 11$
NFS DL in F _P	50y	80y	130y	×260
This work: NFS DL in F_{p^2}	0.4y	0.05y (GPU)	0.5y	imes1

DL in F_{p^2} < Integer Factorization < DL in F_p

- Paper: https://hal.inria.fr/hal-01112879
- Algebraic secrets: https://hal.inria.fr/hal-01052449
- Source code: http://cado-nfs.gforge.inria.fr/
- \rightarrow Download it and solve your own DL in \mathbf{F}_{p^2}
 - Stay tuned for more records during summer.