Individual Discrete Logarithm in $\operatorname{GF}\left(p^{k}\right)$
 (last step of the Number Field Sieve algorithm)

Aurore Guillevic

INRIA Saclay / GRACE Team

École Polytechnique / LIX

ECC 2015, Sept. 28thÉCOLE

POLYTECHNIQUE universite paris-saclay

Link with Logjam attack (N. Heninger's talk)

Solving actual practical problem:
Given a fixed finite field GF(q),

Huge massive
precomputation (weeks, months, years)

Link with Logjam attack (N. Heninger's talk)

Solving actual practical problem:
Given a fixed finite field GF(q),

| Huge massive
 precomputation
 (weeks, months,
 years) |
| :--- | :--- | :--- |

Link with Logjam attack (N. Heninger's talk)

Solving actual practical problem:
Given a fixed finite field GF(q),

| Huge massive
 precomputation
 (weeks, months,
 years) |
| :--- | :--- | :--- | :--- |

Link with Logjam attack (N. Heninger's talk)

Solving actual practical problem:
Given a fixed finite field GF(q),

- Logjam: $\mathrm{GF}(q)=\mathrm{GF}(p)$ (standardized) prime field

Link with Logjam attack (N. Heninger's talk)

Solving actual practical problem:
Given a fixed finite field GF(q),

- Logjam: $\operatorname{GF}(q)=\operatorname{GF}(p)$ (standardized) prime field
- Pairing-based cryptosystems: $\mathrm{GF}(q)=\mathrm{GF}\left(p^{2}\right), \mathrm{GF}\left(p^{6}\right), \mathrm{GF}\left(p^{12}\right)$

Link with Logjam attack (N. Heninger's talk)

Solving actual practical problem:
Given a fixed finite field GF(q),

- Logjam: $\operatorname{GF}(q)=\operatorname{GF}(p)$ (standardized) prime field
- Pairing-based cryptosystems: $\mathrm{GF}(q)=\mathrm{GF}\left(p^{2}\right), \mathrm{GF}\left(p^{6}\right), \mathrm{GF}\left(p^{12}\right)$

Could we compute individual discrete logs in $\operatorname{GF}\left(p^{2}\right), \operatorname{GF}\left(p^{6}\right), \operatorname{GF}\left(p^{12}\right)$ in less than 1 min ?

DLP in the target group of pairing-friendly curves

Why DLP in finite fields $\mathbb{F}_{p^{2}}, \mathbb{F}_{p^{3}}, \ldots$?

In a subgroup $\mathbb{G}=\langle g\rangle$ of order ℓ,

- $(g, x) \mapsto g^{x}$ is easy (polynomial time)
- $\left(g, g^{x}\right) \mapsto x$ is (in well-chosen subgroup) hard: DLP.

- where E / \mathbb{F}_{p} is a pairing-friendly curve
- $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ of large prime order ℓ (generic attacks in $O(\sqrt{\ell})$: take e.g. 256-bit ℓ)
- $1 \leq k \leq 12$ embedding degree: very specific property (specific attacks (NFS): take 3072-bit p^{k})

DL records in small characteristic

X Small characteristic:

- supersingular curves $E / \mathbb{F}_{2^{n}}: \mathbb{G}_{T} \subset \mathbb{F}_{2^{4 n}}, E / \mathbb{F}_{3^{m}}: \mathbb{G}_{T} \subset \mathbb{F}_{3^{6 m}}$

Practical attacks (first one and most recent):

- Hayashi, Shimoyama, Shinohara, Takagi: GF(3 $3^{6.97}$) (923 bit field) (2012)
- Granger, Kleinjung, Zumbragel: GF($\left.2^{9234}\right)$, $\operatorname{GF}\left(2^{4404}\right)(2014)$
- Adj, Menezes, Oliveira, Rodríguez-Henríquez: GF(3^{822}) $\operatorname{GF}\left(3^{978}\right)$ (2014)
- Joux: GF($\left(2^{2395}\right)$ (with Pierrot, 2014), GF($\left.2^{6168}\right)$ (2013)

Theoretical attacks:

- [Barbulescu Gaudry Joux Thomé 14] Quasi-Polynomial-time Algorithm (QPA)

Common used pairing-friendly curves

\checkmark Curves over prime fields E / \mathbb{F}_{p} where QPA does NOT apply (with $\log p \geq \log \ell \approx 256$ bits, s.t. $k \log p \geq 3072$)

- supersingular: $\mathbb{G}_{T} \subset \mathbb{F}_{p^{2}}(\log p=1536)$
- [Miyaji Nakabayashi Takano 01] (MNT): $\mathbb{G}_{T} \subset \mathbb{F}_{p^{3}}$ $(\log p=1024), \mathbb{F}_{p^{4}}(\log p=768), \mathbb{F}_{p^{6}}(\log p=512)$
- [Barreto Naehrig 05] (BN): $\mathbb{G}_{T} \subset \mathbb{F}_{p^{12}}(\log p=256$, optimal)
- [Kachisa Schaefer Scott 08] (KSS): $\mathbb{G}_{T} \subset \mathbb{F}_{p^{18}}$ (used for 192-bit security level: 384-bit $\ell, \log p=512, k \log p=9216)$

Theoretical attacks in non-small characteristic fields

Variants of NFS, generic fields

- MNFS [Coppersmith 89]: \mathbb{F}_{p}, [Barbulescu Pierrot 14], [Pierrot 15]: $\mathbb{F}_{p^{k}}$
Specific to pairing target groups, when $p=P\left(x_{0}\right)$, with $\operatorname{deg} P \geq 2$
- [Joux Pierrot 13]
- [Barbulescu Gaudry Kleinjung 15] Tower NFS

Theoretical attacks in non-small characteristic fields

Variants of NFS, generic fields

- MNFS [Coppersmith 89]: \mathbb{F}_{p}, [Barbulescu Pierrot 14], [Pierrot 15]: $\mathbb{F}_{p^{k}}$
Specific to pairing target groups, when $p=P\left(x_{0}\right)$, with $\operatorname{deg} P \geq 2$
- [Joux Pierrot 13]
- [Barbulescu Gaudry Kleinjung 15] Tower NFS

These attacks were not taken into account in the 3072-bit target field recommendation.

Last DL records, with the NFS-DL algorithm

$\operatorname{GF}(p)$	$\operatorname{GF}\left(p^{\prime 2}\right), p^{\prime 2}=q$ [BGGM15]

Massive precomputation ($\mathrm{d}=$ core-day, $\mathrm{y}=$ core-year)
[Logjam] 512-bit p: 10y \quad 530-bit q: 0.2y +1.25 GPU d
[BGIJT14] 596-bit $p: 131 \mathrm{y}$ 598-bit $q: 0.75 \mathrm{y}+18$ GPU-d
$175 \times$ faster
Individual Discrete Log

512 -bit $p: 70$ s median \checkmark	530 -bit $q:$ few d
slow	
slow	

[Logjam]: see weakdh.org
[BGGM15]: Barbulescu, Gaudry, G., Morain
[BGIJT14]: Bouvier, Gaudry, Imbert, Jeljeli, Thomé

This talk:

- Faster individual discrete logarithm in $\mathbb{F}_{p^{k}}$, especially $k=2,3,4,6$
- Apply to pairing target group \mathbb{G}_{T}
- source code: part of http://cado-nfs.gforge.inria.fr/

NFS - Number Field Sieve algorithm

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:

compute $f(x), g(x)$ with
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
$\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(\varphi(x))$

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
$\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(\varphi(x))$
2. Relation collection

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
$\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(\varphi(x))$
2. Relation collection
3. Linear algebra modulo $\ell \mid p^{k}-1$.
\rightarrow here we know the discrete log of a subset of elements.

\log DB	
$p_{i}<B_{0}$	

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
1.
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
massive precomputation
2. Relation collection
3. Linear algebra modulo $\ell \mid p^{k}-1$
\rightarrow here we know the discrete log of a subset of elements.

$\log \mathrm{DB}$	
$p_{i}<B_{0}$	

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
1.
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
massive precomputation
2. Relation collection
3. Linear algebra modulo $\ell \mid p^{k}-1$)
\rightarrow here we know the discrete log of a subset of elements.

1. Individual target discrete logarithm

Number Field Sieve algorithm for DL in $\mathbb{F}_{p^{k}}$

Polynomial selection:
compute $f(x), g(x)$ with
1.
$\varphi=\operatorname{gcd}(f, g)(\bmod p)$ and
$\mathbb{F}_{p^{k}}=\mathbb{F}_{p}[x] /(\varphi(x))$
2. Relation collection
3. Linear algebra modulo $\ell \mid p^{k}-1$)
\rightarrow here we know the discrete log of a subset of elements.

$\log \mathrm{DB}$
$p_{i}<B_{0}$

1. Individual target discrete logarithm for each given DLP instance

- not so trivial
- this talk: pratical improvements very efficient for small k

Example: [MNT01] parameters (explicitly advised to NOT use them)

Polynomial selection: Conjugation method [BGGM15]

- $k=3, p=12 y_{0}^{2}+1, t=-6 y_{0}-1, \ell \mid p+1-t=12 y_{0}^{2}+6 y_{0}+2$, with $y_{0}=-8702303353090049898316902$
- $f=12 x^{6}-24 x^{5}-85 x^{4}+70 x^{3}+215 x^{2}+96 x+12$
- $\varphi_{y}=g=x^{3}-y x^{2}-(y+3) x-1$, where $y=y_{0}+1$ ($\varphi_{y_{0}}$ not irr.) $=x^{3}+8702303353090049898316901 x^{2}+8702303353090049898316898 x-1$
- $f(\bmod p)=12 \varphi_{y} \varphi_{-y}=\operatorname{Res}_{y}\left(\varphi_{y}, 12 y^{2}+1\right)$

$$
G=X+6 \in \mathbb{F}_{p^{3}}^{*}=\mathbb{F}_{p}[X] /(\varphi(X))
$$

randomized target $T=t_{0}+t_{1} X+t_{2} X^{2} \in \mathbb{F}_{p^{3}}^{*}$

Preimage in $\mathbb{Z}[x] /(f(x))$ and ρ map

randomized target $T=t_{0}+t_{1} X+t_{2} X^{2} \in \mathbb{F}_{p^{3}}^{*}=\mathbb{F}_{p}[X] /(\varphi(X))$
Most simple preimage \mathbf{T} choice:
$\mathbf{T}=\mathbf{t}_{\mathbf{0}}+\mathbf{t}_{\mathbf{1}} x+\mathbf{t}_{\mathbf{2}} x^{2} \in \mathbb{Z}[x] /(f(x))$, with $\mathbf{t}_{\mathbf{i}} \equiv t_{i}(\bmod p)$.
We can always choose \mathbf{T} s.t.

- $\left|\mathbf{t}_{\mathbf{i}}\right|<p$
- $\operatorname{deg} \mathbf{T}<\operatorname{deg} f$

Preimage in $\mathbb{Z}[x] /(f(x))$ and ρ map

randomized target $T=t_{0}+t_{1} X+t_{2} X^{2} \in \mathbb{F}_{p^{3}}^{*}=\mathbb{F}_{p}[X] /(\varphi(X))$
Most simple preimage \mathbf{T} choice:
$\mathbf{T}=\mathbf{t}_{\mathbf{0}}+\mathbf{t}_{\mathbf{1}} x+\mathbf{t}_{\mathbf{2}} x^{2} \in \mathbb{Z}[x] /(f(x))$, with $\mathbf{t}_{\mathbf{i}} \equiv t_{i}(\bmod p)$.
We can always choose \mathbf{T} s.t.

- $\left|\mathbf{t}_{\mathbf{i}}\right|<p$
- $\operatorname{deg} \mathbf{T}<\operatorname{deg} f$

We need $\rho(\mathbf{T})=T$ (where ρ is simply a reduction modulo (φ, p)) when f (resp. g) is monic

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B, \log p_{i} \in$

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{\star}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B, \log p_{i} \in$

1. booting step (a.k.a. smoothing step): DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=G^{t} T_{0}$ (hence $\left.\log _{G}\left(T_{0}\right)=\log _{G}(T)-t\right)$
1.2 factorize $\operatorname{Norm}(\mathbf{T})=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } B_{0}<q_{i} \leq B_{1}} \times($ elements in DL database),

UNTIL $q_{i} \leq B_{1}$

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B, \log p_{i} \in$

1. booting step (a.k.a. smoothing step): DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=G^{t} T_{0}$ (hence $\left.\log _{G}\left(T_{0}\right)=\log _{G}(T)-t\right)$
1.2 factorize $\operatorname{Norm}(\mathbf{T})=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } B_{0}<q_{i} \leq B_{1}} \times$ (elements in DL database),

UNTIL $q_{i} \leq B_{1}$
2. dedicated recursive procedure for each new q_{i} :
$q_{i}=r_{1} \cdots r_{j} \times$ (elements in the DL database) with
$r_{1}, \ldots, r_{j}<B_{j}<q_{i}<B_{i}$.

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B, \log p_{i} \in$

1. booting step (a.k.a. smoothing step): DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=G^{t} T_{0}$ (hence $\left.\log _{G}\left(T_{0}\right)=\log _{G}(T)-t\right)$
1.2 factorize $\operatorname{Norm}(\mathbf{T})=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } B_{0}<q_{i} \leq B_{1}} \times$ (elements in DL database),

UNTIL $q_{i} \leq B_{1}$
2. dedicated recursive procedure for each new q_{i} :
$q_{i}=r_{1} \cdots r_{j} \times$ (elements in the DL database) with
$r_{1}, \ldots, r_{j}<B_{j}<q_{i}<B_{i}$.
3. log combination to find the individual target DL

Individual DL of random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$

Given G and a \log database s.t. for all $p_{i}<B, \log p_{i} \in$

1. booting step (a.k.a. smoothing step): DO
1.1 take t at random in $\{1, \ldots, \ell-1\}$ and set $T=G^{t} T_{0}$ (hence $\left.\log _{G}\left(T_{0}\right)=\log _{G}(T)-t\right)$
1.2 factorize $\underbrace{\operatorname{Norm}(\mathbf{T})}_{\text {reduce this }}=\underbrace{q_{1} \cdots q_{i}}_{\text {too large: } B_{0}<q_{i} \leq B_{1}} \times$ (elements in DL database),

UNTIL $q_{i} \leq B_{1}$
2. dedicated recursive procedure for each new q_{i} :
$q_{i}=r_{1} \cdots r_{j} \times$ (elements in the DL database) with
$r_{1}, \ldots, r_{j}<B_{j}<q_{i}<B_{i}$.
3. log combination to find the individual target DL

Booting Step

Norm computation

f monic,

$$
\mathbf{T}=t_{0}+t_{1} x+\ldots+t_{d} x^{d} \in \mathbb{Z}[x] /(f(x)), d<\operatorname{deg} f:
$$

$$
\operatorname{Norm}_{f}(\mathbf{T})=\operatorname{Res}(f, \mathbf{T}) \leq A\|\mathbf{T}\|_{\infty}^{\operatorname{deg} f}\|f\|_{\infty}^{d}
$$

with $\|f\|_{\infty}=\max _{1 \leq i \leq \operatorname{deg} f}\left|f_{i}\right|$
Example: [MNT01], $k=3, \operatorname{deg} g=3,\|g\|_{\infty}=O\left(p^{1 / 2}\right)$

$$
p=908761003790427908077548955758380356675829026531247
$$

$\mathbf{T}=314159265358979323846264338327950288419716939937510+$ $582097494459230781640628620899862803482534211706798 x+$ $214808651328230664709384460955058223172535940812829 x^{2}$
$f=12 x^{6}-24 x^{5}-85 x^{4}+70 x^{3}+215 x^{2}+96 x+12$
$g=x^{3}+8702303353090049898316901 x^{2}+8702303353090049898316898 x-1$
$\operatorname{Norm}_{f}(\mathbf{T})\left(\approx\|\mathbf{T}\|_{\infty}^{6}\|f\|_{\infty}^{2}\right)=1017$ bits $\sim p^{6}$
$\operatorname{Norm}_{g}(\mathbf{T})\left(\approx\|\mathbf{T}\|_{\infty}^{3}\|g\|_{\infty}^{2}\right)=665$ bits $\sim p^{4}$

Booting step complexity

Given random target $T_{0} \in \mathbb{F}_{p^{k}}^{*}$, and G a generator of $\mathbb{F}_{p^{k}}^{*}$ repeat

1. take t at random in $\{1, \ldots, \ell-1\}$ and set $T=g^{t} T_{0}$
2. factorize $\operatorname{Norm}(\mathbf{T})$
until it is B_{1}-smooth: $\operatorname{Norm}(\mathbf{T})=\prod_{q_{i} \leq B_{1}} q_{i} \prod_{p_{i} \leq B_{0}} p_{i}$
L-notation: $Q=p^{k}, L_{Q}[1 / 3, \mathbf{c}]=\mathrm{e}^{(\mathbf{c}+o(1))(\log Q)^{1 / 3}(\log \log Q)^{2 / 3}}$ for $\mathbf{c}>0$.
Norm factorization done with ECM method, in time $L_{B_{1}}[1 / 2, \sqrt{2}]$
Lemma (Booting step running-time)
if $\operatorname{Norm}(\mathbf{T}) \leq Q^{e}$, take $B_{1}=L_{Q}\left[2 / 3,\left(e^{2} / 3\right)^{1 / 3}\right]$, then the running-time is $L_{Q}\left[1 / 3,(3 e)^{1 / 3}\right]$ (and this is optimal).

Booting step complexity

- $\mathbb{F}_{p}: \operatorname{Norm}($ preimage $) \leq p=Q$, running-time: $L_{Q}[1 / 3,1.44]$ with $B_{1}=L_{Q}[\mathbf{2} / \mathbf{3}, 0.69]$ [Commeine Semaev 06, Barbulescu 13]
- med. char. $\mathbb{F}_{p^{k}}, J L S V 1$ poly. select.: $\operatorname{deg} f=\operatorname{deg} g=k$, $\|f\|_{\infty}=\|g\|_{\infty}=O\left(p^{1 / 2}\right)$, Norm(preimage) $\leq Q^{3 / 2}$, running-time: $L_{Q}[1 / 3,1.65]$, with $B_{1}=L_{Q}[\mathbf{2} / \mathbf{3}, 0.91]$ [Joux Lercier Naccache Thomé 09, Barbulescu Pierrot 14]

field	\mathbb{F}_{p}	$\mathbb{F}_{p^{k}}$		
polynomial selec.		gJL	JLSV_{1}	Conj
NFS dominating, c	1.92	1.92	2.42	2.20
$L_{Q}\left[\frac{1}{3}, c\right], 512$-bit Q	2^{64}	2^{64}	2^{81}	2^{73}
Norm(T) $)<Q^{e}=$	Q	Q	$Q^{3 / 2}$	Q
time $L_{Q}[1 / 3, c], c$	1.44	1.44	1.65	1.44
nb of operations, 512 -bit Q	2^{48}	2^{48}	2^{55}	2^{48}
q_{i} bound B_{1}	2^{90}	2^{90}	2^{118}	2^{90}

Optimizing the Preimage Computation

Preimage optimization

$f, \operatorname{deg} f,\|f\|_{\infty}, g, \operatorname{deg} g,\|g\|_{\infty}$ are given by the polynomial selection step (NFS-DL step 1)

To reduce the norm,

- reduce $\|\mathbf{T}\|_{\infty}$
- and/or reduce $d=\operatorname{deg} \mathbf{T}$

Previous work

- \mathbb{F}_{p} : Rational Reconstruction. $T \in \mathbb{Z} / p \mathbb{Z}, \mathbf{T}$ is an integer $<p$. Rational Reconstruction gives $\mathbf{T}=u / v(\bmod p)$ with $u, v<\sqrt{p}$
- booting step: we want u, v to be B_{1}-smooth at the same time, instead of \mathbf{T} to be B_{1}-smooth. \mathbf{T} is already split in two integers of half size each.
- [Blake Mullin Vanstone 84] Waterloo algorithm in $\mathbb{F}_{2}[x]$:
$\mathbf{T}=U / V=\frac{u_{0}+\ldots+u_{\left\lfloor d / 2 x^{\lfloor d / 2\rfloor}\right.}}{v_{0}+\ldots+v_{\lfloor d / 2\rfloor} x^{[d / 2\rfloor}}$ reduce degree
- [Joux Lercier Smart Vercauteren 06] in $\mathbb{F}_{p^{k}}: \mathbf{T}=U / V=\frac{u_{0}+\ldots+u_{d} X^{d}}{v_{0}+\ldots+v_{d} X^{d}}$, where $\left|u_{i}\right|,\left|v_{i}\right| \sim p^{1 / 2}$ reduce coefficient size

Previous work

- \mathbb{F}_{p} : Rational Reconstruction. $T \in \mathbb{Z} / p \mathbb{Z}, \mathbf{T}$ is an integer $<p$. Rational Reconstruction gives $\mathbf{T}=u / v(\bmod p)$ with $u, v<\sqrt{p}$
- booting step: we want u, v to be B_{1}-smooth at the same time, instead of \mathbf{T} to be B_{1}-smooth. \mathbf{T} is already split in two integers of half size each.
- [Blake Mullin Vanstone 84] Waterloo algorithm in $\mathbb{F}_{2}[x]$:
$\mathbf{T}=U / V=\frac{u_{0}+\ldots+u_{\left\lfloor d / 2 x^{\lfloor d / 2\rfloor}\right.}}{v_{0}+\ldots+v_{\lfloor d / 2\rfloor} x^{[d / 2\rfloor}}$ reduce degree
- [Joux Lercier Smart Vercauteren 06] in $\mathbb{F}_{p^{k}}: \mathbf{T}=U / V=\frac{u_{0}+\ldots+u_{d} X^{d}}{v_{0}+\ldots+v_{d} X^{d}}$, where $\left|u_{i}\right|,\left|v_{i}\right| \sim p^{1 / 2}$ reduce coefficient size

How much is the booting step improved?

Booting step: First experiments

Commonly assumed: launch at morning coffee ... finished for afternoon tea.

- $\mathbb{F}_{p^{2}} 600$ bits was easy (BGGM15 record), as fast as for $\mathbb{F}_{p^{\prime}}(<$ one day)
- $\mathbb{F}_{p^{3}} 400$ bits and MNT 508 bits were much slower (days, week)
- $\mathbb{F}_{p^{4}} 400$ bits was even worse ($>$ one week)

What happened?

- $\mathbb{F}_{p^{3}}:\|\mathbf{T}\|_{\infty}=p, \operatorname{deg} f=6,[J L S V 06]$ method: $\operatorname{Norm}(\mathbf{T}) \leq Q \rightarrow$ $c=1.44$ (but still much slower)
- $\mathbb{F}_{p^{4}}:\|f\|_{\infty}=O\left(p^{1 / 2}\right), \operatorname{Norm}(\mathbf{T}) \leq Q^{3 / 2} \rightarrow c=1.65$

Booting step: First experiments

Commonly assumed: launch at morning coffee ... finished for afternoon tea.

- $\mathbb{F}_{p^{2}} 600$ bits was easy (BGGM15 record), as fast as for $\mathbb{F}_{p^{\prime}}(<$ one day)
- $\mathbb{F}_{p^{3}} 400$ bits and MNT 508 bits were much slower (days, week)
- $\mathbb{F}_{p^{4}} 400$ bits was even worse ($>$ one week)

What happened?

- $\mathbb{F}_{p^{3}}:\|\mathbf{T}\|_{\infty}=p, \operatorname{deg} f=6,[J L S V 06]$ method: $\operatorname{Norm}(\mathbf{T}) \leq Q \rightarrow$ $c=1.44$ (but still much slower)
- $\mathbb{F}_{p^{4}}:\|f\|_{\infty}=O\left(p^{1 / 2}\right), \operatorname{Norm}(\mathbf{T}) \leq Q^{3 / 2} \rightarrow c=1.65$

Because of the constant hidden in the $O()$?

Our solution

Lemma

Let $T \in \mathbb{F}_{p^{k}}$.
$\log (T)=\log (u \cdot T)(\bmod \ell)$ for any u in a proper subfield of $\mathbb{F}_{p^{k}}$.

Our solution

Lemma

Let $T \in \mathbb{F}_{p^{k}}$.
$\log (T)=\log (u \cdot T)(\bmod \ell)$ for any u in a proper subfield of $\mathbb{F}_{p^{k}}$.

- \mathbb{F}_{p} is a proper subfield of $\mathbb{F}_{p^{k}}$
- target $T=t_{0}+t_{1} x+\ldots+t_{d} x^{d}$
- we divide the target by its leading term:

$$
\log (T)=\log \left(T / t_{d}\right) \quad(\bmod \ell)
$$

From now we assume that the target is monic.

Our solution

Lemma

Let $T \in \mathbb{F}_{p^{k}}$.
$\log (T)=\log (u \cdot T)(\bmod \ell)$ for any u in a proper subfield of $\mathbb{F}_{p^{k}}$.

- \mathbb{F}_{p} is a proper subfield of $\mathbb{F}_{p^{k}}$
- target $T=t_{0}+t_{1} x+\ldots+t_{d} X^{d}$
- we divide the target by its leading term:

$$
\log (T)=\log \left(T / t_{d}\right) \quad(\bmod \ell)
$$

From now we assume that the target is monic.
Similar technique in pairing computation: Miller loop denominator elimination [Boneh Kim Lynn Scott 02]

Subfield Simplification + LLL

We want to reduce $\|\mathbf{T}\|_{\infty}$. Example with $\mathbb{F}_{p^{3}}$:

- $f=x^{6}+19 x^{5}+90 x^{4}+95 x^{3}+10 x^{2}-13 x+1$
- $\varphi=x^{3}-y x^{2}-(y+3) x-1 y \in \mathbb{Z}$
- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{cccccc}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_{0} & t_{1} & 1 & 0 & 0 & 0 \\ \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 & 0 \\ 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 \\ 0 & 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1\end{array}\right]$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows.
$r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} T+\lambda_{3} \varphi+\lambda_{4} x \varphi+\lambda_{5} x^{2} \varphi$.
$r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 3}\right)$

Subfield Simplification + LLL

We want to reduce $\|\mathbf{T}\|_{\infty}$. Example with $\mathbb{F}_{p^{3}}$:

- $f=x^{6}+19 x^{5}+90 x^{4}+95 x^{3}+10 x^{2}-13 x+1$
- $\varphi=x^{3}-y x^{2}-(y+3) x-1 y \in \mathbb{Z}$
- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{cccccc}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_{0} & t_{1} & 1 & 0 & 0 & 0 \\ \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 & 0 \\ 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 \\ 0 & 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1\end{array}\right]$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows.
$r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} T+\lambda_{3} \varphi+\lambda_{4} x \varphi+\lambda_{5} x^{2} \varphi$.
$r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 3}\right)$
- $\log \rho(r)=\log (T)(\bmod \ell)$

Subfield Simplification + LLL

We want to reduce $\|\mathbf{T}\|_{\infty}$. Example with $\mathbb{F}_{p^{3}}$:

- $f=x^{6}+19 x^{5}+90 x^{4}+95 x^{3}+10 x^{2}-13 x+1$
- $\varphi=x^{3}-y x^{2}-(y+3) x-1 y \in \mathbb{Z}$
- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{cccccc}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_{0} & t_{1} & 1 & 0 & 0 & 0 \\ \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 & 0 \\ 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 \\ 0 & 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1\end{array}\right] \begin{aligned} & \rho(p)=0 \in \mathbb{F}_{p^{k}} \\ & T \\ & \rho(\varphi)=0 \in \mathbb{F}_{p^{k}}\end{aligned}$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows.
$r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} T+\lambda_{3} \varphi+\lambda_{4} x \varphi+\lambda_{5} x^{2} \varphi$.
$r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 3}\right)$
- $\log \rho(r)=\log (T)(\bmod \ell)$

Subfield Simplification + LLL

We want to reduce $\|\mathbf{T}\|_{\infty}$. Example with $\mathbb{F}_{p^{3}}$:

- $f=x^{6}+19 x^{5}+90 x^{4}+95 x^{3}+10 x^{2}-13 x+1$
- $\varphi=x^{3}-y x^{2}-(y+3) x-1 y \in \mathbb{Z}$
- $\mathbf{T}=t_{0}+t_{1} x+x^{2}$
- define $L=\left[\begin{array}{cccccc}p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_{0} & t_{1} & 1 & 0 & 0 & 0 \\ \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 & 0 \\ 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1 & 0 \\ 0 & 0 & \varphi_{0} & \varphi_{1} & \varphi_{2} & 1\end{array}\right] \begin{aligned} & \rho(p)=0 \in \mathbb{F}_{p^{k}} \\ & T \\ & \rho(\varphi)=0 \in \mathbb{F}_{p^{k}}\end{aligned}$
- $\operatorname{LLL}(L)$ outputs a short vector r, linear combination of L 's rows.
$r=\lambda_{0} p+\lambda_{1} p x+\lambda_{2} T+\lambda_{3} \varphi+\lambda_{4} x \varphi+\lambda_{5} x^{2} \varphi$. $r=r_{0}+\ldots+r_{5} x^{5},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 6}=O\left(p^{1 / 3}\right)$
- $\log \rho(r)=\log (T)(\bmod \ell)$ because $\rho(r)=\lambda_{2} T$ with $\lambda_{2} \in \mathbb{F}_{p}$

Subfield Simplification + LLL

$$
\operatorname{Norm}_{f}(\mathbf{T})=\operatorname{Res}(f, \mathbf{T}) \leq A\|\mathbf{T}\|_{\infty}^{\operatorname{deg} f}\|f\|_{\infty}^{d}
$$

- $\operatorname{Norm}_{f}(r) \leq\|r\|_{\infty}^{6}\|f\|_{\infty}^{5}=O\left(p^{2}\right)=O\left(Q^{2 / 3}\right)<O(Q)$

MNT example: $\log Q=508$ bits

	$\operatorname{Norm}_{f}(\mathbf{T})$		$\operatorname{Norm}_{g}(\mathbf{T})$		$L_{Q}[1 / 3, c]$		$q_{i} \leq B_{1}=$
	Q^{e}	bits	Q^{e}	bits	c	time	$L_{Q}\left[\frac{2}{3}, c\right]$
Nothing	Q^{2}	1010	$Q^{4 / 3}$	667	1.58	2^{53}	2^{109}
$[J L S V 06]$	Q	508	$Q^{5 / 3}$	847	1.44	2^{48}	2^{90}
This work	$\mathbf{Q}^{2 / 3}$	340	Q	508	$\mathbf{Q} .26$	2^{42}	$\mathbf{2}^{69}$

$\mathbb{F}_{p^{4}}: \mathrm{JLSV}_{1}$ polynomial selection and booting step improvement

$\mathbb{F}_{p^{4}}$ of 400 bits

[JLSV06] first method: choose f of degree 4 and very small coefficients, and set $g=f+p$. Booting step on f side, with the $\mathbf{T}=U / V$ method.

$\mathbb{F}_{p^{4}}$ of 400 bits

[JLSV06] first method: choose f of degree 4 and very small coefficients, and set $g=f+p$. Booting step on f side, with the $\mathbf{T}=U / V$ method.

Relation collection and Linear algebra do not scale well for large p

$\mathbb{F}_{p^{4}}$ of 400 bits

[JLSV06] first method: choose f of degree 4 and very small coefficients, and set $g=f+p$. Booting step on f side, with the $\mathbf{T}=U / V$ method.

Relation collection and Linear algebra do not scale well for large p
We use JLSV06 other method: $\operatorname{deg} f=\operatorname{deg} g=k,\|f\|_{\infty}=\|g\|_{\infty}=p^{1 / 2}$
$p=314159265358979323846270891033$ of 98 bits (30 dd)
$\ell=9869604401089358618834902718477057428144064232778775980709$ of 192 bits
$f=x^{4}-560499121640472 x^{3}-6 x^{2}+560499121640472 x+1$
$g=560499121639105 x^{4}+4898685125033473 x^{3}-3362994729834630 x^{2}$
$-4898685125033473 x+560499121639105$
$\varphi=g$

Terribly slow booting step (more than one week)

Terribly slow booting step

- $T=t_{0}+t_{1} x+t_{2} x^{2}+x^{3}$
- define
$L=\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right]$
- $\operatorname{dim} 4$ because $\max (\operatorname{deg} f, \operatorname{deg} g)=4$
- compute $\operatorname{LLL}(L)$, get $r,\|r\|_{\infty} \approx p^{3 / 4}$, $\operatorname{Norm}_{f}(r) \approx\|r\|_{\infty}^{4}\|f\|_{\infty}^{3} \approx p^{9 / 2}=Q^{9 / 8}$ of 450 bits!
- Booting step, nb of operations: 2^{44}
- Large prime bound B_{1} of 82 bits

Terribly slow booting step

- $T=t_{0}+t_{1} x+t_{2} x^{2}+x^{3}$
- define
$L=\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right] \leftarrow$ could we find something else, monic?
- $\operatorname{dim} 4$ because $\max (\operatorname{deg} f, \operatorname{deg} g)=4$
- compute $\operatorname{LLL}(L)$, get $r,\|r\|_{\infty} \approx p^{3 / 4}$, $\operatorname{Norm}_{f}(r) \approx\|r\|_{\infty}^{4}\|f\|_{\infty}^{3} \approx p^{9 / 2}=Q^{9 / 8}$ of 450 bits!
- Booting step, nb of operations: 2^{44}
- Large prime bound B_{1} of 82 bits

Our solution: quadratic subfield simplification

Lemma
Let $T \in \mathbb{F}_{p^{k}}, k$ even. We can always find $u \in \mathbb{F}_{p^{k / 2}}$ and $T^{\prime} \in \mathbb{F}_{p^{k}}$, such that $T^{\prime}=u \cdot T$ and T^{\prime} is of degree $k-2$ instead of $k-1$.

Our solution: quadratic subfield simplification

Lemma

Let $T \in \mathbb{F}_{p^{k}}, k$ even. We can always find $u \in \mathbb{F}_{p^{k / 2}}$ and $T^{\prime} \in \mathbb{F}_{p^{k}}$, such that $T^{\prime}=u \cdot T$ and T^{\prime} is of degree $k-2$ instead of $k-1$.

- define $L=\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t_{0}^{\prime} & t_{1}^{\prime} & 1 & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right]$
- $\operatorname{LLL}(L) \rightarrow$ short vector r linear combination of L rows

$$
r=r_{0}+\ldots+r_{3} x^{3},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 4}=O\left(p^{1 / 2}\right)
$$

Our solution: quadratic subfield simplification

Lemma

Let $T \in \mathbb{F}_{p^{k}}$, k even. We can always find $u \in \mathbb{F}_{p^{k / 2}}$ and $T^{\prime} \in \mathbb{F}_{p^{k}}$, such that $T^{\prime}=u \cdot T$ and T^{\prime} is of degree $k-2$ instead of $k-1$.

- define $L=\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t_{0}^{\prime} & t_{1}^{\prime} & 1 & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right] \begin{aligned} & \rho(p)=0 \in \mathbb{F}_{p^{k}} \\ & \\ & T^{\prime} \\ & T\end{aligned}$
- $\operatorname{LLL}(L) \rightarrow$ short vector r linear combination of L rows
$r=r_{0}+\ldots+r_{3} x^{3},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 4}=O\left(p^{1 / 2}\right)$
- $\rho(r)=\lambda_{2} T^{\prime}+\lambda_{3} T=\underbrace{\left(\lambda_{2} u+\lambda_{3}\right)} T$
\in subfield $\mathbb{F}_{p^{k / 2}}$

Our solution: quadratic subfield simplification

Lemma

Let $T \in \mathbb{F}_{p^{k}}$, k even. We can always find $u \in \mathbb{F}_{p^{k / 2}}$ and $T^{\prime} \in \mathbb{F}_{p^{k}}$, such that $T^{\prime}=u \cdot T$ and T^{\prime} is of degree $k-2$ instead of $k-1$.

- define $L=\left[\begin{array}{cccc}p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t_{0}^{\prime} & t_{1}^{\prime} & 1 & 0 \\ t_{0} & t_{1} & t_{2} & 1\end{array}\right] \begin{aligned} & \rho(p)=0 \in \mathbb{F}_{p^{k}} \\ & \\ & T^{\prime} \\ & T\end{aligned}$
- $\operatorname{LLL}(L) \rightarrow$ short vector r linear combination of L rows

$$
r=r_{0}+\ldots+r_{3} x^{3},\left\|r_{i}\right\|_{\infty} \leq C \operatorname{det}(L)^{1 / 4}=O\left(p^{1 / 2}\right)
$$

- $\rho(r)=\lambda_{2} T^{\prime}+\lambda_{3} T=\underbrace{\left(\lambda_{2} u+\lambda_{3}\right)} T$ \in subfield $\mathbb{F}_{p^{k / 2}}$
- $\log \rho(r)=\log (T)(\bmod \ell)$
$\operatorname{Norm}_{f}(r)=\|r\|_{\infty}^{4}\|f\|_{\infty}^{3}=p^{7 / 2}=Q^{7 / 8}<Q$

Summary of results

$\mathbb{G}_{T} \subset$	$\mathbb{F}_{p^{2}}$	$\mathbb{F}_{p^{3}}$	$\mathbb{F}_{p^{4}}$	$\mathbb{F}_{p^{6}}$
Norm bound				
prev.	Q [JLSV06]		$Q^{3 / 2}$ (nothing)	
this work	$Q^{1 / 2}$	$Q^{2 / 3}$	$Q^{7 / 8}$	$Q^{11 / 12}$
Booting step running time in $L_{Q}[1 / 3, c]$				
prev. c (*)	1.44		1.65	
new c	1.14	1.26	1.38	1.40**
numerical values for a 512-bit Q				
prev. nb of operations	2^{48}		2^{55}	
new nb of operations	2^{38}	2^{42}	2^{46}	2^{47}
q_{i} bound $B_{1}=L_{Q}\left[2 / 3, c^{\prime}\right]$				
previous B_{1}	2^{90}		2^{118}	
new B_{1}	2^{57}	2^{69}	2^{83}	2^{85}

* [CommeineSemaev06, JouxLercierNaccacheThomé09, Barbulescu13, Bar.Pierrot14]
** with cubic subfield simplification

Summary of results

- Accepted paper at Asiacrypt 2015, Auckland, New Zealand
- online version HAL 01157378
- guillevic@lix.polytechnique.fr

DL record computation in $\mathbb{F}_{p^{4}}$ of 392 bits (120dd)

Joint work with R. Barbulescu, P. Gaudry, F. Morain

$$
\begin{aligned}
p= & 314159265358979323846270891033 \text { of } 98 \text { bits }(30 \mathrm{dd}) \\
\ell= & 9869604401089358618834902718477057428144064232778775980709 \text { of } 192 \text { bits } \\
f= & x^{4}-560499121640472 x^{3}-6 x^{2}+560499121640472 x+1 \\
g= & 560499121639105 x^{4}+4898685125033473 x^{3}-3362994729834630 x^{2} \\
& -4898685125033473 x+560499121639105 \\
\varphi= & g \\
G= & x+3 \in \mathbb{F}_{p^{4}} \\
T_{0}= & 31415926535897 x^{3}+93238462643383 x^{2}+27950288419716 x+93993751058209 \\
& \log _{G}\left(\mathbf{T}_{0}\right)=
\end{aligned}
$$

136439472586839838529440907219583201821950591984194257022
$(\bmod \ell)$

