# Individual Discrete Logarithm in $GF(p^k)$ (last step of the Number Field Sieve algorithm)

Aurore Guillevic

INRIA Saclay / GRACE Team

École Polytechnique / LIX

ECC 2015, Sept. 28th





Solving actual practical problem: Given a **fixed** finite field GF(q),

Huge massive precomputation (weeks, months, years)

Solving actual practical problem: Given a **fixed** finite field GF(q),



Solving actual practical problem: Given a **fixed** finite field GF(q),



Solving actual practical problem: Given a **fixed** finite field GF(q),



• Logjam: GF(q) = GF(p) (standardized) prime field

Solving actual practical problem: Given a **fixed** finite field GF(q),



- Logjam: GF(q) = GF(p) (standardized) prime field
- Pairing-based cryptosystems:  $GF(q) = GF(p^2)$ ,  $GF(p^6)$ ,  $GF(p^{12})$

Solving actual practical problem: Given a **fixed** finite field GF(q),



• Logjam: GF(q) = GF(p) (standardized) prime field

• Pairing-based cryptosystems:  $GF(q) = GF(p^2)$ ,  $GF(p^6)$ ,  $GF(p^{12})$ 

Could we compute individual discrete logs in  $GF(p^2)$ ,  $GF(p^6)$ ,  $GF(p^{12})$  in less than 1 min?

# DLP in the target group of pairing-friendly curves

## Why DLP in finite fields $\mathbb{F}_{p^2}$ , $\mathbb{F}_{p^3}$ ,...?

In a subgroup  $\mathbb{G} = \langle g 
angle$  of order  $\ell$ ,

- $(g, x) \mapsto g^x$  is easy (polynomial time)
- $(g, g^x) \mapsto x$  is (in well-chosen subgroup) hard: DLP.

| pairing: | $\mathbb{G}_1$    | Х | $\mathbb{G}_2$        | $\rightarrow$ | $\mathbb{G}_T$       |
|----------|-------------------|---|-----------------------|---------------|----------------------|
|          | $\cap$            |   | $\cap$                |               | $\cap$               |
|          | $E(\mathbb{F}_p)$ |   | $E(\mathbb{F}_{p^k})$ |               | $\mathbb{F}_{p^k}^*$ |

- where  $E/\mathbb{F}_p$  is a *pairing-friendly* curve
- G<sub>1</sub>, G<sub>2</sub>, G<sub>T</sub> of large prime order ℓ (generic attacks in O(√ℓ): take e.g. 256-bit ℓ)
- 1 ≤ k ≤ 12 embedding degree: very specific property (specific attacks (NFS): take 3072-bit p<sup>k</sup>)

# DL records in small characteristic

- X Small characteristic:
  - supersingular curves  $E/\mathbb{F}_{2^n}$ :  $\mathbb{G}_T \subset \mathbb{F}_{2^{4n}}$ ,  $E/\mathbb{F}_{3^m}$ :  $\mathbb{G}_T \subset \mathbb{F}_{3^{6m}}$

Practical attacks (first one and most recent):

- Hayashi, Shimoyama, Shinohara, Takagi: GF(3<sup>6.97</sup>) ( 923 bit field) (2012)
- Granger, Kleinjung, Zumbragel: GF(2<sup>9234</sup>), GF(2<sup>4404</sup>) (2014)
- Adj, Menezes, Oliveira, Rodríguez-Henríquez: GF(3<sup>822</sup>), GF(3<sup>978</sup>) (2014)
- Joux:  $GF(3^{2395})$  (with Pierrot, 2014),  $GF(2^{6168})$  (2013)

Theoretical attacks:

• [Barbulescu Gaudry Joux Thomé 14] Quasi-Polynomial-time Algorithm (QPA)

### Common used pairing-friendly curves

- ✓ Curves over prime fields  $E/\mathbb{F}_p$  where QPA does NOT apply (with log  $p \ge \log \ell \approx 256$  bits, s.t.  $k \log p \ge 3072$ )
  - supersingular:  $\mathbb{G}_T \subset \mathbb{F}_{p^2}$   $(\log p = 1536)$
  - [Miyaji Nakabayashi Takano 01] (MNT): G<sub>T</sub> ⊂ F<sub>p<sup>3</sup></sub> (log p = 1024), F<sub>p<sup>4</sup></sub> (log p = 768), F<sub>p<sup>6</sup></sub> (log p = 512)
  - [Barreto Naehrig 05] (BN):  $\mathbb{G}_T \subset \mathbb{F}_{p^{12}}$  (log p = 256, optimal)
  - [Kachisa Schaefer Scott 08] (KSS): G<sub>T</sub> ⊂ F<sub>p<sup>18</sup></sub> (used for 192-bit security level: 384-bit ℓ, log p = 512, k log p = 9216)

## Theoretical attacks in non-small characteristic fields

Variants of NFS, generic fields

• MNFS [Coppersmith 89]:  $\mathbb{F}_p$ , [Barbulescu Pierrot 14], [Pierrot 15]:  $\mathbb{F}_{p^k}$ 

Specific to pairing target groups, when  $p = P(x_0)$ , with deg  $P \ge 2$ 

- [Joux Pierrot 13]
- [Barbulescu Gaudry Kleinjung 15] Tower NFS

## Theoretical attacks in non-small characteristic fields

Variants of NFS, generic fields

• MNFS [Coppersmith 89]:  $\mathbb{F}_p$ , [Barbulescu Pierrot 14], [Pierrot 15]:  $\mathbb{F}_{p^k}$ 

Specific to pairing target groups, when  $p = P(x_0)$ , with deg  $P \ge 2$ 

- [Joux Pierrot 13]
- [Barbulescu Gaudry Kleinjung 15] Tower NFS

These attacks were not taken into account in the 3072-bit target field recommendation.

### Last DL records, with the NFS-DL algorithm

| GF(p)                           | GF $(p'^2), p'^2 = q$ [BGGM15] |                     |  |  |  |
|---------------------------------|--------------------------------|---------------------|--|--|--|
| Massive precomputati            |                                |                     |  |  |  |
| [Logjam] 512-bit <i>p</i> : 10y | 530-bit q: $0.2y + 1.25$ GPU d |                     |  |  |  |
| [BGIJT14] 596-bit p: 131y       | 598-bit q: 0.75y + 18 GPU-d    | $175 \times faster$ |  |  |  |
| Individual Discrete Log         |                                |                     |  |  |  |
| 512-bit p: 70s median 🗸         | 530-bit <i>q</i> : few d       | slow                |  |  |  |
| 768-bit <i>p</i> : 2d           | 600-bit <i>q</i> : few d       | slow                |  |  |  |

[Logjam]: see weakdh.org [BGGM15]: Barbulescu, Gaudry, G., Morain [BGIJT14]: Bouvier, Gaudry, Imbert, Jeljeli, Thomé This talk:

- Faster individual discrete logarithm in  $\mathbb{F}_{p^k}$ , especially k = 2, 3, 4, 6
- Apply to pairing target group  $\mathbb{G}_{\mathcal{T}}$
- source code: part of http://cado-nfs.gforge.inria.fr/

# NFS – Number Field Sieve algorithm

Polynomial selection: 1. compute f(x), g(x) with  $\varphi = \gcd(f,g) \pmod{p}$  and  $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$ 

Polynomial selection: compute f(x), g(x) with  $\varphi = \gcd(f,g) \pmod{p}$  and  $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$ 

2. Relation collection

Polynomial selection:

- compute f(x), g(x) with
- <sup>1</sup>.  $\varphi = \gcd(f, g) \pmod{p}$  and
  - $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$
- 2. Relation collection
- 3. Linear algebra modulo  $\ell \mid p^k 1$ .
- → here we know the discrete log of a subset of elements.



Polynomial selection:

compute f(x), g(x) with

1.  $\varphi = \gcd(f, g) \pmod{p}$  and  $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$ 

massive precomputation

- 2. Relation collection
- 3. Linear algebra modulo  $\ell \mid \rho^k 1$
- → here we know the discrete log of a subset of elements.



Polynomial selection:

compute f(x), g(x) with

1.  $\varphi = \gcd(f, g) \pmod{p}$  and  $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$ 

2 Relation collection

- 3. Linear algebra modulo  $\ell \mid \rho^k 1$
- → here we know the discrete log of a subset of elements.



1. Individual target discrete logarithm

massive precomputation

Polynomial selection:

compute f(x), g(x) with

1.  $\varphi = \gcd(f,g) \pmod{p}$  and  $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$ 

massive precomputation

- 2. Relation collection
- 3. Linear algebra modulo  $\ell \mid \rho^k 1$
- → here we know the discrete log of a subset of elements.



1. Individual target discrete logarithm for each given DLP instance

- not so trivial
- this talk: pratical improvements very efficient for small k

# Example: [MNT01] parameters (explicitly advised to NOT use them)

Polynomial selection: Conjugation method [BGGM15]

•  $k = 3, p = 12y_0^2 + 1, t = -6y_0 - 1, \ell | p + 1 - t = 12y_0^2 + 6y_0 + 2,$ with  $y_0 = -8702303353090049898316902$ •  $f = 12x^6 - 24x^5 - 85x^4 + 70x^3 + 215x^2 + 96x + 12$ •  $\varphi_y = g = x^3 - yx^2 - (y + 3)x - 1,$  where  $y = y_0 + 1$  ( $\varphi_{y_0}$  not irr.)  $= x^3 + 8702303353090049898316901x^2 + 8702303353090049898316898x - 1$ •  $f \pmod{p} = 12\varphi_y\varphi_{-y} = \operatorname{Res}_y(\varphi_y, 12y^2 + 1)$   $G = X + 6 \in \mathbb{F}_{p^3}^* = \mathbb{F}_p[X]/(\varphi(X))$ randomized target  $T = t_0 + t_1X + t_2X^2 \in \mathbb{F}_{p^3}^*$ 

# Preimage in $\mathbb{Z}[x]/(f(x))$ and $\rho$ map

randomized target  $T = t_0 + t_1 X + t_2 X^2 \in \mathbb{F}_{p^3}^* = \mathbb{F}_p[X]/(\varphi(X))$ Most simple preimage **T** choice:  $\mathbf{T} = \mathbf{t_0} + \mathbf{t_1} x + \mathbf{t_2} x^2 \in \mathbb{Z}[x]/(f(x))$ , with  $\mathbf{t_i} \equiv t_i \pmod{p}$ . We can always choose **T** s.t.

- |**t**<sub>i</sub>| < *p*
- deg **T** < deg *f*

# Preimage in $\mathbb{Z}[x]/(f(x))$ and $\rho$ map

randomized target  $T = t_0 + t_1 X + t_2 X^2 \in \mathbb{F}_{p^3}^* = \mathbb{F}_p[X]/(\varphi(X))$ Most simple preimage **T** choice:  $\mathbf{T} = \mathbf{t_0} + \mathbf{t_1} x + \mathbf{t_2} x^2 \in \mathbb{Z}[x]/(f(x))$ , with  $\mathbf{t_i} \equiv t_i \pmod{p}$ . We can always choose **T** s.t.

- $|\mathbf{t_i}| < p$
- deg **T** < deg *f*

We need  $\rho(\mathbf{T}) = T$  (where  $\rho$  is simply a reduction modulo  $(\varphi, p)$ ) when f (resp. g) is monic



# Individual DL of random target $T_0 \in \mathbb{F}_{p^k}^*$



Given G and a log database s.t. for all  $p_i < B$ , log  $p_i \in$ 

# Individual DL of random target $T_0 \in \mathbb{F}_{p^k}^*$



Given G and a log database s.t. for all  $p_i < B$ , log  $p_i \in \Box$ 

- 1. booting step (a.k.a. smoothing step): DO
  - 1.1 take t at random in  $\{1, \dots, \ell 1\}$  and set  $T = G^t T_0$  (hence  $\log_G(T_0) = \log_G(T) t$ ) 1.2 factorize Norm(**T**) =  $g_{1,2}$  ,  $g_{2,3}$  ,  $\chi$  (elements in DL database)
  - 1.2 factorize Norm(**T**) =  $q_1 \cdots q_i$  ×(elements in DL database),

too large:  $B_0 < q_i \le B_1$ 

**UNTIL**  $q_i \leq B_1$ 

# Individual DL of random target $T_0 \in \mathbb{F}_{n^k}^*$



Given G and a log database s.t. for all  $p_i < B$ , log  $p_i \in$ 

- 1. booting step (a.k.a. smoothing step): **DO** 
  - 1.1 take t at random in  $\{1, \ldots, \ell 1\}$  and set  $T = G^t T_0$  (hence  $\log_{C}(T_{0}) = \log_{C}(T) - t$ 1.2 factorize Norm(**T**) =  $q_1 \cdots q_i$  ×(elements in DL database),

too large:  $B_0 < q_i < B_1$ 

### **UNTIL** $q_i < B_1$

2. dedicated recursive procedure for each new  $q_i$ :  $q_i = r_1 \cdots r_i \times (\text{elements in the DL database})$  with  $r_1, \ldots, r_i < B_i < q_i < B_i$ 

# Individual DL of random target $T_0 \in \mathbb{F}_{p^k}^*$



Given G and a log database s.t. for all  $p_i < B$ , log  $p_i \in \Box$ 

- 1. booting step (a.k.a. smoothing step): DO
  - 1.1 take t at random in  $\{1, ..., \ell 1\}$  and set  $T = G^t T_0$  (hence  $\log_G(T_0) = \log_G(T) t$ ) 1.2 factorize Norm( $\mathbf{T}$ ) =  $q_1 \cdots q_i$  ×(elements in DL database),

too large:  $B_0 < q_i \le B_1$ 

### **UNTIL** $q_i \leq B_1$

- 2. dedicated recursive procedure for each new  $q_i$ :  $q_i = r_1 \cdots r_j \times (\text{elements in the DL database})$  with  $r_1, \ldots, r_j < B_j < q_i < B_j.$
- 3. log combination to find the individual target DL

# Individual DL of random target $T_0 \in \mathbb{F}_{p^k}^*$



Given G and a log database s.t. for all  $p_i < B$ , log  $p_i \in \Box$ 

- 1. booting step (a.k.a. smoothing step): DO
  - 1.1 take t at random in  $\{1, \ldots, \ell 1\}$  and set  $T = G^t T_0$  (hence  $\log_G(T_0) = \log_G(T) t$ ) 1.2 factorize  $\underbrace{\operatorname{Norm}(\mathbf{T})}_{\text{reduce this}} = \underbrace{q_1 \cdots q_i}_{\text{too large: } B_0 < q_i \le B_1} \times (\text{elements in DL database}),$

### **UNTIL** $q_i \leq B_1$

- 2. dedicated recursive procedure for each new  $q_i$ :  $q_i = r_1 \cdots r_j \times$  (elements in the DL database) with  $r_1, \ldots, r_j < B_j < q_i < B_j$ .
- 3. log combination to find the individual target DL

# Booting Step

### Norm computation

f monic.  $\mathbf{T} = t_0 + t_1 x + \ldots + t_d x^d \in \mathbb{Z}[x]/(f(x)), \ d < \deg f$ :  $\operatorname{Norm}_{f}(\mathbf{T}) = \operatorname{Res}(f, \mathbf{T}) \leq A ||\mathbf{T}||_{\infty}^{\operatorname{deg} f} ||f||_{\infty}^{d}$ with  $||f||_{\infty} = \max_{1 \le i \le \deg f} |f_i|$ Example: [MNT01], k = 3, deg g = 3,  $||g||_{\infty} = O(p^{1/2})$ 908761003790427908077548955758380356675829026531247 D T = 314159265358979323846264338327950288419716939937510 +582097494459230781640628620899862803482534211706798X+ 214808651328230664709384460955058223172535940812829x<sup>2</sup>  $f = 12x^6 - 24x^5 - 85x^4 + 70x^3 + 215x^2 + 96x + 12$  $g = x^3 + 8702303353090049898316901x^2 + 8702303353090049898316898x - 1$  $\operatorname{Norm}_{f}(\mathbf{T})(\approx ||\mathbf{T}||_{\infty}^{6}||f||_{\infty}^{2}) = 1017 \operatorname{bits} \sim p^{6}$  $\operatorname{Norm}_{\mathfrak{g}}(\mathbf{T})(\approx ||\mathbf{T}||_{\infty}^{3} ||\mathfrak{g}||_{\infty}^{2}) = \mathbf{665} \operatorname{bits} \sim p^{4}$ 

### Booting step complexity

Given random target  $T_0 \in \mathbb{F}_{p^k}^*$ , and G a generator of  $\mathbb{F}_{p^k}^*$  repeat

- 1. take t at random in  $\{1, \ldots, \ell 1\}$  and set  $T = g^t T_0$
- 2. factorize Norm(T)

**until** it is  $B_1$ -smooth: Norm( $\mathbf{T}$ ) =  $\prod_{q_i \leq B_1} q_i \prod_{p_i \leq B_0} p_i$ 

*L*-notation:  $Q = p^k$ ,  $L_Q[1/3, \mathbf{c}] = e^{(\mathbf{c}+o(1))(\log Q)^{1/3}} (\log \log Q)^{2/3}$  for  $\mathbf{c} > 0$ . Norm factorization done with ECM method, in time  $L_{B_1}[1/2, \sqrt{2}]$ 

#### Lemma (Booting step running-time)

if Norm(**T**)  $\leq Q^e$ , take  $B_1 = L_Q[2/3, (e^2/3)^{1/3}]$ , then the running-time is  $L_Q[1/3, (3e)^{1/3}]$  (and this is optimal).

### Booting step complexity

- $\mathbb{F}_p$ : Norm(preimage)  $\leq p = Q$ , running-time:  $L_Q[1/3, 1.44]$  with  $B_1 = L_Q[2/3, 0.69]$  [Commeine Semaev 06, Barbulescu 13]
- med. char.  $\mathbb{F}_{p^k}$ , JLSV1 poly. select.: deg  $f = \deg g = k$ ,  $||f||_{\infty} = ||g||_{\infty} = O(p^{1/2})$ , Norm(preimage)  $\leq Q^{3/2}$ , running-time:  $L_Q[1/3, 1.65]$ , with  $B_1 = L_Q[2/3, 0.91]$  [Joux Lercier Naccache Thomé 09, Barbulescu Pierrot 14]

| field                                         | $\mathbb{F}_{p}$ | $\mathbb{F}_{p^k}$ |                  |                 |
|-----------------------------------------------|------------------|--------------------|------------------|-----------------|
| polynomial selec.                             |                  | gJL                | $JLSV_1$         | Conj            |
| NFS dominating, <i>c</i>                      | 1.92             | 1.92               | 2.42             | 2.20            |
| $L_Q[\frac{1}{3}, c]$ , 512-bit Q             | 2 <sup>64</sup>  | 2 <sup>64</sup>    | 2 <sup>81</sup>  | 2 <sup>73</sup> |
| Norm $(\mathbf{T}) < Q^e =$                   | Q                | Q                  | $Q^{3/2}$        | Q               |
| time <i>L<sub>Q</sub></i> [1/3, <i>c</i> ], c | 1.44             | 1.44               | 1.65             | 1.44            |
| nb of operations, 512-bit $Q$                 | 2 <sup>48</sup>  | 2 <sup>48</sup>    | 2 <sup>55</sup>  | 2 <sup>48</sup> |
| $q_i$ bound $B_1$                             | 2 <sup>90</sup>  | 2 <sup>90</sup>    | 2 <sup>118</sup> | 2 <sup>90</sup> |

# Optimizing the Preimage Computation

## Preimage optimization

 $f, \deg f, ||f||_{\infty}, g, \deg g, ||g||_{\infty}$  are given by the polynomial selection step (NFS-DL step 1)

To reduce the norm,

- reduce  $||\mathbf{T}||_{\infty}$
- and/or reduce  $d = \deg \mathbf{T}$

## Previous work

- $\mathbb{F}_p$ : Rational Reconstruction.  $T \in \mathbb{Z}/p\mathbb{Z}$ , **T** is an integer < p. Rational Reconstruction gives  $\mathbf{T} = u/v \pmod{p}$  with  $u, v < \sqrt{p}$ 
  - booting step: we want u, v to be  $B_1$ -smooth at the same time, instead of **T** to be  $B_1$ -smooth. **T** is already split in two integers of half size each.
- [Blake Mullin Vanstone 84] Waterloo algorithm in  $\mathbb{F}_2[x]$ :  $\mathbf{T} = U/V = \frac{u_0 + \dots + u_{\lfloor d/2 \rfloor} x^{\lfloor d/2 \rfloor}}{v_0 + \dots + v_{\lfloor d/2 \rfloor} x^{\lfloor d/2 \rfloor}} \text{ reduce degree}$
- [Joux Lercier Smart Vercauteren 06] in  $\mathbb{F}_{p^k}$ :  $\mathbf{T} = U/V = \frac{u_0 + ... + u_d x^d}{v_0 + ... + v_d x^d}$ , where  $|u_i|, |v_i| \sim p^{1/2}$  reduce coefficient size

## Previous work

- $\mathbb{F}_p$ : Rational Reconstruction.  $T \in \mathbb{Z}/p\mathbb{Z}$ , **T** is an integer < p. Rational Reconstruction gives  $\mathbf{T} = u/v \pmod{p}$  with  $u, v < \sqrt{p}$ 
  - booting step: we want u, v to be  $B_1$ -smooth at the same time, instead of **T** to be  $B_1$ -smooth. **T** is already split in two integers of half size each.
- [Blake Mullin Vanstone 84] Waterloo algorithm in  $\mathbb{F}_2[x]$ :  $\mathbf{T} = U/V = \frac{u_0 + \dots + u_{\lfloor d/2 \rfloor} x^{\lfloor d/2 \rfloor}}{v_0 + \dots + v_{\lfloor d/2 \rfloor} x^{\lfloor d/2 \rfloor}} \text{ reduce degree}$
- [Joux Lercier Smart Vercauteren 06] in  $\mathbb{F}_{p^k}$ :  $\mathbf{T} = U/V = \frac{u_0 + ... + u_d x^d}{v_0 + ... + v_d x^d}$ , where  $|u_i|, |v_i| \sim p^{1/2}$  reduce coefficient size

How much is the booting step improved?

# Booting step: First experiments

Commonly assumed: launch at morning coffee ... finished for afternoon tea.

- $\mathbb{F}_{p^2}$  600 bits was easy (BGGM15 record), as fast as for  $\mathbb{F}_{p'}$  (< one day)
- $\mathbb{F}_{p^3}$  400 bits and MNT 508 bits were much slower (days, week)
- $\mathbb{F}_{p^4}$  400 bits was even worse (> one week)

What happened?

•  $\mathbb{F}_{p^3}$ :  $||\mathbf{T}||_{\infty} = p$ , deg f = 6, [JLSV06] method: Norm $(\mathbf{T}) \leq Q \rightarrow c = 1.44$  (but still much slower)

• 
$$\mathbb{F}_{p^4}$$
:  $||f||_{\infty} = O(p^{1/2})$ ,  $\mathsf{Norm}(\mathsf{T}) \leq Q^{3/2} o c = 1.65$ 

# Booting step: First experiments

Commonly assumed: launch at morning coffee ... finished for afternoon tea.

- $\mathbb{F}_{p^2}$  600 bits was easy (BGGM15 record), as fast as for  $\mathbb{F}_{p'}$  (< one day)
- $\mathbb{F}_{p^3}$  400 bits and MNT 508 bits were much slower (days, week)
- $\mathbb{F}_{p^4}$  400 bits was even worse (> one week)

What happened?

- $\mathbb{F}_{p^3}$ :  $||\mathbf{T}||_{\infty} = p$ , deg f = 6, [JLSV06] method: Norm $(\mathbf{T}) \leq Q \rightarrow c = 1.44$  (but still much slower)
- $\mathbb{F}_{p^4}$ :  $||f||_{\infty} = O(p^{1/2})$ ,  $\mathsf{Norm}(\mathsf{T}) \leq Q^{3/2} o c = 1.65$

Because of the constant hidden in the O()?

## Our solution

## Lemma

Let  $T \in \mathbb{F}_{p^k}$ .  $\log(T) = \log(u \cdot T) \pmod{\ell}$  for any u in a proper subfield of  $\mathbb{F}_{p^k}$ .

## Our solution

## Lemma

Let  $T \in \mathbb{F}_{p^k}$ . log $(T) = \log(u \cdot T) \pmod{\ell}$  for any u in a proper subfield of  $\mathbb{F}_{p^k}$ .

• 
$$\mathbb{F}_p$$
 is a proper subfield of  $\mathbb{F}_{p^k}$ 

• target 
$$T = t_0 + t_1 x + \ldots + t_d x^d$$

• we divide the target by its leading term:

$$\log(T) = \log(T/t_d) \pmod{\ell}$$

From now we assume that the target is monic.

## Our solution

## Lemma

Let  $T \in \mathbb{F}_{p^k}$ . log $(T) = \log(u \cdot T) \pmod{\ell}$  for any u in a proper subfield of  $\mathbb{F}_{p^k}$ .

• 
$$\mathbb{F}_p$$
 is a proper subfield of  $\mathbb{F}_{p^k}$ 

• target 
$$T = t_0 + t_1 x + \ldots + t_d x^d$$

• we divide the target by its leading term:

$$\log(T) = \log(T/t_d) \pmod{\ell}$$

From now we assume that the target is monic. Similar technique in pairing computation: Miller loop denominator elimination [Boneh Kim Lynn Scott 02]

We want to reduce  $||\mathbf{T}||_{\infty}$ . Example with  $\mathbb{F}_{p^3}$ : •  $f = x^6 + 19x^5 + 90x^4 + 95x^3 + 10x^2 - 13x + 1$ •  $\varphi = x^3 - yx^2 - (y+3)x - 1 \ y \in \mathbb{Z}$ •  $\mathbf{T} = t_0 + t_1 x + x^2$ • define  $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_0 & t_1 & 1 & 0 & 0 & 0 \\ \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 & 0 \\ 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 \\ 0 & 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 \end{bmatrix}$ 

• LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows.  $r = \lambda_0 p + \lambda_1 p x + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi$ .  $r = r_0 + \ldots + r_5 x^5$ ,  $||r_i||_{\infty} \le C \det(L)^{1/6} = O(p^{1/3})$ 

We want to reduce  $||\mathbf{T}||_{\infty}$ . Example with  $\mathbb{F}_{p^3}$ : •  $f = x^6 + 19x^5 + 90x^4 + 95x^3 + 10x^2 - 13x + 1$ •  $\varphi = x^3 - yx^2 - (y+3)x - 1 \ y \in \mathbb{Z}$ •  $\mathbf{T} = t_0 + t_1 x + x^2$ • define  $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_0 & t_1 & 1 & 0 & 0 & 0 \\ \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 & 0 \\ 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 \\ 0 & 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 \end{bmatrix}$ 

• LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows.  $r = \lambda_0 p + \lambda_1 p x + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi.$   $r = r_0 + \ldots + r_5 x^5, ||r_i||_{\infty} \leq C \det(L)^{1/6} = O(p^{1/3})$ •  $\log \rho(r) = \log(T) \pmod{\ell}$ 

We want to reduce 
$$||\mathbf{T}||_{\infty}$$
. Example with  $\mathbb{F}_{p^3}$ :  
•  $f = x^6 + 19x^5 + 90x^4 + 95x^3 + 10x^2 - 13x + 1$   
•  $\varphi = x^3 - yx^2 - (y+3)x - 1 \ y \in \mathbb{Z}$   
•  $\mathbf{T} = t_0 + t_1x + x^2$   
• define  $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_0 & t_1 & 1 & 0 & 0 & 0 \\ \phi_0 & \varphi_1 & \varphi_2 & 1 & 0 & 0 \\ 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 \\ 0 & 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 \end{bmatrix} \quad \rho(\varphi) = 0 \in \mathbb{F}_{p^k}$   
• LLL(L) outputs a short vector  $r$ , linear combination of L's rows.  
 $r = \lambda_0 p + \lambda_1 px + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi$ .

 $r = r_0 + \ldots + r_5 x^5, ||r_i||_{\infty} \le C \det(L)^{1/6} = O(p^{1/3})$ 

•  $\log \rho(r) = \log(T) \pmod{\ell}$ 

We want to reduce 
$$||\mathbf{T}||_{\infty}$$
. Example with  $\mathbb{F}_{p^3}$ :  
•  $f = x^6 + 19x^5 + 90x^4 + 95x^3 + 10x^2 - 13x + 1$   
•  $\varphi = x^3 - yx^2 - (y+3)x - 1 \ y \in \mathbb{Z}$   
•  $\mathbf{T} = t_0 + t_1x + x^2$   
• define  $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_0 & t_1 & 1 & 0 & 0 & 0 \\ \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 & 0 \\ 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 \\ 0 & 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 \end{bmatrix} \qquad \rho(p) = 0 \in \mathbb{F}_{p^k}$   
• LLL(L) outputs a short vector r, linear combination of L's rows.  
 $r = \lambda_0 p + \lambda_1 px + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi$ .  
 $r = r_0 + \dots + r_5 x^5$ ,  $||r_i||_{\infty} \leq C \det(L)^{1/6} = O(p^{1/3})$ 

•  $\log \rho(r) = \log(T) \pmod{\ell}$  because  $\rho(r) = \lambda_2 T$  with  $\lambda_2 \in \mathbb{F}_p$ 

$$\operatorname{Norm}_{f}(\mathbf{T}) = \operatorname{Res}(f, \mathbf{T}) \leq A ||\mathbf{T}||_{\infty}^{\deg f} ||f||_{\infty}^{d}$$

• 
$$\operatorname{Norm}_f(r) \le ||r||_\infty^6 ||f||_\infty^5 = O(p^2) = O(Q^{2/3}) < O(Q)$$

MNT example:  $\log Q = 508$  bits

|           | $Norm_f(\mathbf{T})$ |      | $Norm_g(\mathbf{T})$ |      | $L_Q[1/3, c]$ |                 | $q_i \leq B_1 =$     |
|-----------|----------------------|------|----------------------|------|---------------|-----------------|----------------------|
|           | $Q^e$                | bits | $Q^e$                | bits | С             | time            | $L_Q[\frac{2}{3},c]$ |
| Nothing   | $Q^2$                | 1010 | $Q^{4/3}$            | 667  | 1.58          | 2 <sup>53</sup> | 2 <sup>109</sup>     |
| [JLSV06]  | Q                    | 508  | $Q^{5/3}$            | 847  | 1.44          | 2 <sup>48</sup> | 2 <sup>90</sup>      |
| This work | $Q^{2/3}$            | 340  | Q                    | 508  | 1.26          | 2 <sup>42</sup> | 2 <sup>69</sup>      |



# $\mathbb{F}_{p^4}$ : JLSV<sub>1</sub> polynomial selection and booting step improvement

# $\mathbb{F}_{p^4}$ of 400 bits

[JLSV06] first method: choose f of degree 4 and very small coefficients, and set g = f + p. Booting step on f side, with the  $\mathbf{T} = U/V$  method.

# $\mathbb{F}_{p^4}$ of 400 bits

[JLSV06] first method: choose f of degree 4 and very small coefficients, and set g = f + p. Booting step on f side, with the  $\mathbf{T} = U/V$  method.

Relation collection and Linear algebra do not scale well for large p

# $\mathbb{F}_{p^4}$ of 400 bits

[JLSV06] first method: choose f of degree 4 and very small coefficients, and set g = f + p. Booting step on f side, with the  $\mathbf{T} = U/V$  method.

FΔ

Relation collection and Linear algebra do not scale well for large p

We use JLSV06 other method: deg  $f = \deg g = k$ ,  $||f||_{\infty} = ||g||_{\infty} = p^{1/2}$ p = 314159265358979323846270891033 of 98 bits (30 dd)

- $\ell$  = 9869604401089358618834902718477057428144064232778775980709 of 192 bits
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$
- $g = 560499121639105x^4 + 4898685125033473x^3 3362994729834630x^2$ -4898685125033473x + 560499121639105
- $\varphi = g$

## Terribly slow booting step (more than one week)

## Terribly slow booting step

• 
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$

define

|     | Гр    | 0     | 0              | 0] |  |
|-----|-------|-------|----------------|----|--|
| L = | 0     | р     | 0              | 0  |  |
|     | 0     | 0     | р              | 0  |  |
|     | $t_0$ | $t_1$ | t <sub>2</sub> | 1  |  |

• dim 4 because  $max(\deg f, \deg g) = 4$ 

- compute LLL(L), get r,  $||r||_{\infty} \approx p^{3/4}$ , Norm<sub>f</sub>(r)  $\approx ||r||_{\infty}^4 ||f||_{\infty}^3 \approx p^{9/2} = Q^{9/8}$  of 450 bits!
- Booting step, nb of operations: 2<sup>44</sup>
- Large prime bound B<sub>1</sub> of 82 bits

## Terribly slow booting step

• 
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$
  
• define  
 $L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \leftarrow \text{ could we find something else, monic?}$ 

• dim 4 because  $max(\deg f, \deg g) = 4$ 

- compute LLL(*L*), get *r*,  $||r||_{\infty} \approx p^{3/4}$ , Norm<sub>*f*</sub>(*r*)  $\approx ||r||_{\infty}^4 ||f||_{\infty}^3 \approx p^{9/2} = Q^{9/8}$  of 450 bits!
- Booting step, nb of operations: 2<sup>44</sup>
- Large prime bound  $B_1$  of 82 bits

#### Lemma

Let  $T \in \mathbb{F}_{p^k}$ , k even. We can always find  $u \in \mathbb{F}_{p^{k/2}}$  and  $T' \in \mathbb{F}_{p^k}$ , such that  $T' = u \cdot T$  and T' is of degree k - 2 instead of k - 1.

F-4

### Lemma

Let  $T \in \mathbb{F}_{p^k}$ , k even. We can always find  $u \in \mathbb{F}_{p^{k/2}}$  and  $T' \in \mathbb{F}_{p^k}$ , such that  $T' = u \cdot T$  and T' is of degree k - 2 instead of k - 1.

FΔ

• define 
$$L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix}$$

• LLL(L)  $\rightarrow$  short vector r linear combination of L rows  $r = r_0 + \ldots + r_3 x^3$ ,  $||r_i||_{\infty} \leq C \det(L)^{1/4} = O(p^{1/2})$ 

#### Lemma

Let  $T \in \mathbb{F}_{p^k}$ , k even. We can always find  $u \in \mathbb{F}_{p^{k/2}}$  and  $T' \in \mathbb{F}_{p^k}$ , such that  $T' = u \cdot T$  and T' is of degree k - 2 instead of k - 1.

F 4

• define 
$$L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \begin{bmatrix} \rho(p) = 0 \in \mathbb{F}_{p^k} \\ T' \\ T \end{bmatrix}$$

• LLL(L)  $\rightarrow$  short vector r linear combination of L rows  $r = r_0 + \ldots + r_3 x^3$ ,  $||r_i||_{\infty} \leq C \det(L)^{1/4} = O(p^{1/2})$ •  $\rho(r) = \lambda_2 T' + \lambda_3 T = \underbrace{(\lambda_2 u + \lambda_3)}_{\in \text{ subfield } \mathbb{F}_{p^{k/2}}} T$ 

#### Lemma

Let  $T \in \mathbb{F}_{p^k}$ , k even. We can always find  $u \in \mathbb{F}_{p^{k/2}}$  and  $T' \in \mathbb{F}_{p^k}$ , such that  $T' = u \cdot T$  and T' is of degree k - 2 instead of k - 1.

F 4

• define 
$$L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \begin{bmatrix} \rho(p) = 0 \in \mathbb{F}_{p^k} \\ T' \\ T \end{bmatrix}$$

• LLL(L)  $\rightarrow$  short vector r linear combination of L rows  $r = r_0 + \ldots + r_3 x^3$ ,  $||r_i||_{\infty} \leq C \det(L)^{1/4} = O(p^{1/2})$ •  $\rho(r) = \lambda_2 T' + \lambda_3 T = \underbrace{(\lambda_2 u + \lambda_3)}_{\in \text{ subfield } \mathbb{F}_{x^{k/2}}} T$ 

•  $\log \rho(r) = \log(T) \pmod{\ell}$ Norm<sub>f</sub>(r) =  $||r||_{\infty}^{4} ||f||_{\infty}^{3} = \rho^{7/2} = Q^{7/8} < Q$ 

## Summary of results

| $\mathbb{G}_{T} \subset$                   | $\mathbb{F}_{p^2}$  | $\mathbb{F}_{p^3}$ | $\mathbb{F}_{p^4}$  | $\mathbb{F}_{p^6}$ |  |  |
|--------------------------------------------|---------------------|--------------------|---------------------|--------------------|--|--|
| Norm bound                                 |                     |                    |                     |                    |  |  |
| prev.                                      | Q [JLSV06]          |                    | $Q^{3/2}$ (nothing) |                    |  |  |
| this work                                  | $Q^{1/2}$ $Q^{2/3}$ |                    | $Q^{7/8}$           | $Q^{11/12}$        |  |  |
| Booting step running time in $L_Q[1/3, c]$ |                     |                    |                     |                    |  |  |
| prev. <i>c</i> (*)                         | 1.44                |                    | 1.65                |                    |  |  |
| new c                                      | 1.14                | 1.26               | 1.38                | 1.40**             |  |  |
| numerical values for a 512-bit $Q$         |                     |                    |                     |                    |  |  |
| prev. nb of operations                     | 2 <sup>48</sup>     |                    | 2 <sup>55</sup>     |                    |  |  |
| new nb of operations                       | 2 <sup>38</sup>     | 2 <sup>42</sup>    | 2 <sup>46</sup>     | 2 <sup>47</sup>    |  |  |
| $q_i$ bound $B_1 = L_Q[2/3, c']$           |                     |                    |                     |                    |  |  |
| previous B <sub>1</sub>                    | 2 <sup>90</sup>     |                    | 2 <sup>118</sup>    |                    |  |  |
| new B <sub>1</sub>                         | 2 <sup>57</sup>     | 2 <sup>69</sup>    | 2 <sup>83</sup>     | 2 <sup>85</sup>    |  |  |

\* [CommeineSemaev06, JouxLercierNaccacheThomé09, Barbulescu13, Bar.Pierrot14] \*\* with cubic subfield simplification

Aurore Guillevic (INRIA/LIX)

## Summary of results

- Accepted paper at Asiacrypt 2015, Auckland, New Zealand
- online version HAL 01157378
- guillevic@lix.polytechnique.fr

DL record computation in  $\mathbb{F}_{p^4}$  of 392 bits (120dd)

FΔ

## Joint work with R. Barbulescu, P. Gaudry, F. Morain

- p = 314159265358979323846270891033 of 98 bits (30 dd)
- $\ell$  = 9869604401089358618834902718477057428144064232778775980709 of 192 bits
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$
- $g = 560499121639105x^4 + 4898685125033473x^3 3362994729834630x^2$ -4898685125033473x + 560499121639105
- $\varphi = g$
- $G = x + 3 \in \mathbb{F}_{p^4}$
- $T_0 = 31415926535897x^3 + 93238462643383x^2 + 27950288419716x + 93993751058209$

## $\log_{G}(T_0) =$

#### 136439472586839838529440907219583201821950591984194257022 (mod $\ell$ )