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Can these works tell us anything interesting about the
DLP in finite fields?

Executive Summary:

No

So what is this all about?
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Hardcore bits

Let f : X → Y be a one-way function.

This means: Given x one can efficiently compute
y = f (x), but given y it is computationally infeasible to
find x ∈ X such that f (x) = y .

By definition, given f (x) one cannot efficiently deduce x .
But, given f (x) it might be possible to compute some
partial information about x .

Let X = {0, 1}n and x = (x1, . . . , xn) ∈ X .
Define biti(x) = xi .
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Hardcore bits

Let f : X → Y be a one-way function.

We say the i -th bit is easy for f if, given f (x), one can
compute the value biti(x) with probability significantly
better than guessing.
(I assume the values x are sampled uniformly in the
game.)

It is immediate that a one-way function has many bits
that are not easy.
We call such bits hardcore bits for f .

The problem is to prove that a specific bit is hardcore.
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Proof technique

To show biti(x) is hardcore one argues as follows:

Suppose one has an algorithm/oracle that on input any
y ∈ Y outputs with high probability the correct value of
biti(x) where y = f (x).

Suppose one is also given a challenge y ∗ = f (x∗).

Then one constructs an efficient algorithm that computes
x∗ by making oracle queries to the algorithm.
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Proof technique

When f is “algebraic” and the oracle is always correct
then this is easy.

For example, suppose f (x) = g x (mod p) where g has
odd prime order r .

Let O be an oracle such that O(y) returns bit0(x).

Let y ∗ = g x∗ be the challenge.

Calling O(y ∗) gives x∗0 .

Now set
y = (y ∗g−x

∗
0 )2

−1 (mod r)

Calling O(y) gives x∗1 .

The process repeats in the obvious way.
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Hardcore bits

This approach generalises to functions other than bits.

Let g : X → Z be some function.

Then one can talk about whether g(x) is hardcore.

For example g(x1, . . . , xn) = (x1, . . . , xk) for some
1 < k < n.

One is arguing that it is hard to compute the first k bits
of x .

This is a weaker notion: It might be hard to compute the
first k bits of x , but that does not imply it is hard to
compute the first bit of x .
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Ancient history

The big challenge is to handle oracles that are not correct
all the time.
First case of interest was hardcore bits for RSA.
Goldwasser, Micali and Tong (FOCS 1982): least
significant bit of RSA is hardcore if oracle is correct with
probability 1− 1/ log2(N).
In other words, make about log2(N) oracle queries and
only one of them is wrong.
Ben Or, Chor and Shamir (STOC 1983): least significant
bit of RSA is hardcore if oracle is correct with probability
3/4 + ε.
Alexi, Chor, Goldreich and Schnorr (1988): handles oracle
that is correct with probability 1/2 + ε.
None of these papers discuss Fourier analysis.
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A general solution

Goldreich, Levin (1989) gave a construction to derive a
hardcore bit for any one-way function.
Idea: Let X = Fn

2. Given x ∈ X one chooses t ∈ X and
sends (t, f (x)).
The hardcore bit is

t · x =
n∑

j=1

tjxj .

Idea: Let O be an oracle that, on input f (x), outputs t · x
non-negligibly better than guessing.
Using O and choosing t one can compute x .
It was pointed out by Rackoff and Wigderson that the
Goldreich-Levin algorithm is based on the Walsh
transform (fourier analysis in the group Fn

2).
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Elementary approach to Goldreich-Levin

Let O be an oracle that, for a secret value x , on input t
outputs t · x non-negligibly better than guessing.

If there are no errors: query O(e i) for unit vectors e i .

Basic trick: Choose random a and query
O(a + e i)− O(a).

If both oracle outputs correct then have

(a + e i) · x − a · x = xi .

Repeat for many random a and take majority vote.

Note: It is essential to be able to choose the inputs to O.
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Connection with decoding linear codes

We are getting a lot of values t · x , for various t ∈ X ,
some of them with errors.

Putting all the rows t together as an m × n matrix we
have measurements Tx + e where e is a length m column
vector of low weight.

Hence, can re-phrase computing x in terms of T being
the “generator matrix” of a code and Tx + e being the
received “code word”.

This is of course a bit of a cheat: We are essentially
choosing the generator matrix to have a special structure.
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Fourier Analysis on Finite Groups

Consider G = Fn
2, a finite additive group of order 2n.

The set of functions f : G → C is a C-vector space of
dimension 2n.

There is an inner product

〈f , g〉 = 1
2n

∑
x∈G

f (x)g(x)

An orthonormal basis for this set of functions is

χa(x) = (−1)a·x

where a runs over all elements of Fn
2.
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Fourier analysis on finite groups

Let f : G → C be given, G = Fn
2.

Then f has a Fourier expansion

f (x) =
∑
a∈Fn

2

f̂ (a)χa(x)

where the Fourier coefficients are f̂ (a) = 〈f , χa〉.
Parseval’s identity: 〈f , f 〉 =

∑
a∈G f̂ (a)2.

We call a character χa heavy if |f̂ (a)| is relatively large
with respect to 〈f , f 〉.
Parseval implies there cannot be many heavy Fourier
coefficients.
f (x) is called concentrated if it has some heavy Fourier
coefficients.

Steven Galbraith

Fourier learning



Lemma

Let f : Fn
2 → {1,−1} be such that

f (x) = (−1)x ·s = χs(x)

for all x ∈ X ⊆ Fn
2, and

f (x) = (−1)x ·s+1 = −χs(x)

for all x ∈ X = Fn
2 \ X .

Let |X | = δ2n.

Then 〈f , f 〉 = 1 and f̂ (s) = 2δ − 1.

Steven Galbraith

Fourier learning



Fourier approach to Goldreich-Levin

Let G = Fn
2 and fix s ∈ G .

Let f (t) : G → {−1, 1} be such that on 1/2 + δ of the
inputs t ∈ G we have f (t) = (−1)t·s .

Consider the Fourier series for f (t).

By the previous Lemma, f (t) is concentrated and χs is a
heavy Fourier character.
In other words, the coefficient |f̂ (s)| is large.

One extends the algorithmic ideas from learning one
secret s to learning all the heavy Fourier characters.
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List decoding connection

Suppose f (x) is a function on G = Fn
2 which has several

heavy characters s1, . . . , sk .

It means f (x) and (−1)x ·s j agree on a large set of inputs
for each 1 ≤ j ≤ k .

We can write T again for the matrix corresponding to the
function queries we will make, and represent the outputs
of f (turned back from {−1, 1} to {0, 1}) as a codeword.

An algorithm that computes a list of heavy coefficients
s1, . . . , sk can be viewed as a list decoding algorithm.
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Further work

There are general algorithms to compute all heavy Fourier
coefficients of any concentrated function on a finite
abelian group G .

Best paper to read to get the main ideas is Kushilevitz
and Mansour (STOC 1991).

There are improved algrithms, see recent survey paper by
Gilbert, Indyk, Iwen and Schmidt.

All these works require chosen queries to the function.
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Bit security of CDH

Given g , g a, gb ∈ F∗p want to know what bits of g ab are
secure.

So suppose one has an oracle O(g , g a, gb) that outputs
some bits of g ab.

We want to use O to compute all of s = g ab.

Idea is to choose random r and call O(g , g a, gbg r ), which
gives bits of g a(b+r) = s(g a)r .

Hidden number problem: Fix s ∈ F∗p and let O be an
oracle such that O(t) = LSB(st). Goal is to compute s
given access to O.
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Boneh-Venkatesan

Hidden number problem: Given (t, bits(ts)) to compute
s ∈ F∗p.

BV consider oracle that computes the
√

log(p) most
significant bits of the Diffie-Hellman secret s = g ab.

Oracle is always correct.

Multipliers t chosen randomly and non-adaptively.

BV use lattice method.

Lots of following work.

Challenge: one bit, unreliable oracle.
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Fourier analysis in F∗p

Let G = F∗p and consider functions f : G → C.

Let ζ = exp(2πi/p).

For a ∈ {1, . . . , p − 1} define the character

χa(x) = ζax .

Then, for a, b ∈ {1, . . . , p − 1}

〈χa, χb〉 = 1
p

p−1∑
x=1

χa(x)χb(x) = 1
p

p−1∑
x=1

ζ(a−b)x .

This is 0 if a 6= b and 1 if a = b.
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Application: Bit security of CDH

Given g , g a, gb ∈ F∗p want to prove that a single bit of g ab

is secure.

Akavia et al considered function f (x) : Fp → {−1, 1} by
f (x) = (−1)LSB(x).
One can show that this is concentrated.
[Also (−1)MSB(x).]

Big result from CRYPTO 2009: “Solving Hidden Number
Problem with One Bit Oracle and Advice”.

Idea: Translation of Fourier coefficients by s.

Recall that we choose random r and call O(g , g a, gbg r )
to get a bit of g a(b+r) = s(g a)r .

Steven Galbraith

Fourier learning



Applications to elliptic curves

Would like to prove certain bits are hardcore for ECDH.

Given P , aP , bP want to show that if can compute some
bit of abP then can compute all abP .

Boneh and Shparlinski developed an approach.

Suppose O is an oracle that takes (E ,P , aP , bP) such
that P ∈ E and computes the most significant bits of the
x-coordinate of abP .
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Boneh and Shparlinski

Trick is to consider isomorphism φ : E → E ′ of
Weierstrass curves given by

φ(x , y) = (λ2x , λ3y).

Then call O(E ′, φ(P), φ(aP), φ(bP)).

The secret is s = x(abP) and, for chosen λ, get bits of
λ2s, which is more-or-less back to hidden number problem
with chosen multipliers.

Boneh and Shparlinski used lattice methods.

Duc and Jetchev used Fourier methods.
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Elliptic curve Diffie-Hellman

Changing Weierstrass models does not actually prove a
hardcore bit for a fixed representation.

I call it the “BS” trick.

Hence, the problem of hardcore bits for ECDH is still
open.

Any ideas?
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Obstruction

“Beurling-Helson theorem”.

f (x) concentrated and f (g(x)) concentrated implies that
g(x) is an affine map.

If g(x) comes from elliptic curve operations then it is a
non-trivial rational function.

Hence, elliptic curve operations do not preserve
concentrated.
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CDH in non-prime finite fields

Fazio, Gennaro, Perera and Skeith (CRYPTO 2013)
showed bit security for CDH in Fp2 .

Their model involves field isomorphisms (a version of the
“BS trick”).

The paper “The Multivariate Hidden Number Problem”
(ICITS 2015) written with my student Barak Shani treats
general fields Fpn .

Also uses a “BS trick”.

It is still open to prove bit security of Diffie-Hellman in
finite fields.
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Open Questions

Do these ideas have anything to do with DLP?

Can one actually prove bit security results for single bits in
realistic models?

Are Fourier learning algorithms optimal from a concrete
point of view?
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Thank you for your attention

See you at Asiacrypt!
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