Catrel Workshop, École Polytechnique - October 1-2, 2015

How to get rid of units?

Razvan Barbulescu

Institut de Mathématiques
de

Motivation

Context

Ccomputing discrete logs in $\mathbb{F}_{p^{n}}$ with $n>1$ and small.

One wants to "turn off the Schirokauer maps"

1. when using Galois action in linear algebra (preprint theorem is correct for polys without Schirokauer maps (SMs));
2. when implementing linear algebra on GPU (currect CADO for GPU is slower in presence of SMs);
3. when adapting the code to MNFS.

Zoom on Galois action

Joux Lercier Smart Vercauteren proposed to reduce the matrix using equations of type:

$$
\log \sigma(\mathfrak{q})=p^{\kappa} \log \mathfrak{q}
$$

One can prove the equation for elements

$$
\forall x \in K, \log \sigma(x)=p^{\kappa} \log x
$$

The result on ideals is true only if the logs of units are zero.

Pohlig-Hellman simplification

Logarithms modulo ℓ

1. In order to compute discrete logs in $\mathbb{F}_{p^{n}}$ it is enough to implement an algorithm which computes discrete logs modulo any prime factor of $p^{n}-1$.
2. In pairing-based cryptography, the computations are done in a subgroup of prime order ℓ.

Logs in subfields when ℓ divides $\Phi_{n}(p)$
Let g be a generator of $\left(\mathbb{F}_{p^{n}}\right)^{*}$ and $y \in\left(\mathbb{F}_{p^{d}}\right)^{*}$ for some divisor d of n.

$$
y^{p^{d}-1}=1 \Rightarrow y^{\frac{\rho^{n}-1}{\Phi_{n}(p)}}=1 \Rightarrow y^{\frac{\rho^{n}-1}{\ell}}=1 \Leftrightarrow \log _{g} y \equiv 0 \quad(\bmod \ell)
$$

Logarithms of subfield elements (1/2)

Lemma

If σ is an automorphism of the number field of $f \in \mathbb{Z}[x]$ such that

- $\sigma \mathfrak{p}=\mathfrak{p}$;
- $\operatorname{Disc}(f) \not \equiv 0 \bmod p$.

Then the map

$$
\begin{array}{rccc}
\bar{\sigma}: \quad k_{\mathfrak{p}} & \rightarrow & k_{\mathfrak{p}} \\
x \bmod \mathfrak{p} & \mapsto & \sigma(x) \bmod \mathfrak{p} .
\end{array}
$$

belongs to $\operatorname{Gal}\left(k_{\mathfrak{p}}\right)$ and $\operatorname{ord}(\bar{\sigma})=\operatorname{ord}(\sigma)$.

Logarithms of subfield elements $(1 / 2)$

Logarithms of subfield elements (1/2)

Degree 4 family without units

Idea

We choose f so that $\operatorname{ord}(\sigma)=2$ and all the units of its number field K are in $K^{\langle\sigma\rangle}$.

1. signature of K : $(0, r)$;
2. signature of $K^{\langle\sigma\rangle}:(r, 0)$;

Proposition

Polynomials $f=x^{4}+b x^{3}+a x^{2}+b x+1$ are as above if and only if

1. $b^{2}-4(a-2)>0$;
2. and $|b|<1+a / 2$.

Convex subfamily

Convex subfamily

Convex subfamily

Corollary

When $|a|<2$ and $|b|<a / 2+1$ we can combine polys for MNFS.

Constructing pairs of polynomials without units

Algorithm

1: $\kappa \leftarrow 100$;
2: repeat
3: $\quad a \leftarrow \operatorname{Random}(\sqrt{p}, p)$;
4: $\quad\left(\begin{array}{ll}u_{1} & v_{1} \\ u_{2} & v_{2}\end{array}\right) \leftarrow \operatorname{LLL}\left(\begin{array}{cc}p & 0 \\ a & 1\end{array}\right)$;
5: until $\left|u_{1} / v_{1}\right|<\frac{2 \kappa}{2+\kappa}$ and $\left|u_{2} / v_{2}\right|<\frac{2 \kappa}{2+\kappa}$.
6: $a_{1} \leftarrow u_{1} / v_{1}$;
7: $a_{2} \leftarrow u_{2} / v_{2}$;
8: $b_{1} \leftarrow a_{1} / \kappa$;
9: $b_{2} \leftarrow a_{2} / \kappa$;
10: return $x^{4}+b_{1} x^{3}+a_{1} x^{2}+b_{1} x+1$ and $x^{4}+b_{2} x^{3}+a_{2} x^{2}+b_{2} x+1$.

Experimental law

The termination condition occurs for $\approx 40 \%$ of values for a.

Degree six family of polynomials without units

Theorem

For all positive rationals a, b, c, d the polynomial

$$
\begin{aligned}
P(x)= & (a+3 b+3 c+d)\left(x^{2}+4\right)^{3}+(-3 a-6 b-3 c)\left(x^{2}+4\right)^{2}+ \\
& (2 a-3 b-6 c-d)\left(x^{2}+4\right)-6 b
\end{aligned}
$$

has signature $(0,3)$, is even and the subfield fixed by $x \mapsto-x$ has three real roots.

Proof.

$P(x)=Q\left(x^{2}+4\right)$ where Q has three real roots less than 4.

Degree six family of polynomials without units

Theorem

For all positive rationals a, b, c, d the polynomial

$$
\begin{aligned}
P(x)= & (a+3 b+3 c+d)\left(x^{2}+4\right)^{3}+(-3 a-6 b-3 c)\left(x^{2}+4\right)^{2}+ \\
& (2 a-3 b-6 c-d)\left(x^{2}+4\right)-6 b
\end{aligned}
$$

has signature $(0,3)$, is even and the subfield fixed by $x \mapsto-x$ has three real roots.

Proof.

$P(x)=Q\left(x^{2}+4\right)$ where Q has three real roots less than 4.

Are there other families without units?

Characterization of polynomials "without units"

Lemma

Let f be fixed polynomial with automorphism σ. For large enough prime ℓ we have

$$
\forall \varepsilon \text { unit, } \sigma(\varepsilon) / \varepsilon \in E^{\ell} \Rightarrow \sigma(\varepsilon)=\varepsilon
$$

Theorem

Let $n \leq 7$ be an integer, $f \in \mathbb{Z}[x]$ irreducible of degree n. Let p be a prime and ℓ a factor of $\Phi_{n}(p)$. If $\log \rho(\varepsilon) \equiv 0(\bmod \ell)$ for all unit ε, and ℓ is large enough, then $n=4$ or 6 and the number field of f is CM or biquadratic real.

Characterization of polynomials "without units"

Lemma

Let f be fixed polynomial with automorphism σ. For large enough prime ℓ we have

$$
\forall \varepsilon \text { unit, } \sigma(\varepsilon) / \varepsilon \in E^{\ell} \Rightarrow \sigma(\varepsilon)=\varepsilon
$$

Theorem

Let $n \leq 7$ be an integer, $f \in \mathbb{Z}[x]$ irreducible of degree n. Let p be a prime and ℓ a factor of $\Phi_{n}(p)$. If $\log \rho(\varepsilon) \equiv 0(\bmod \ell)$ for all unit ε, and ℓ is large enough, then $n=4$ or 6 and the number field of f is CM or biquadratic real.

Proof.

- when n is prime, there are no proper subfield;
- when $n=4$ and there are subfields f is Galois, and then CM or biquadratic;
- when $n=6$ and there are subfields then $\# \operatorname{Gal}(f)=6$ or 12 , and then CM.

Unit group as \mathbb{F}_{ℓ}-vector space

Let E be the unit group of f.

Vector space structure

Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be a basis of E / E^{ℓ}.

$$
\left(u_{1}, \ldots, u_{r}\right) \in \mathbb{F}_{\ell}^{r} \leftrightarrow \prod_{i=1}^{r} \varepsilon_{i}^{u_{i}} \in E / E^{\ell}
$$

Eigenspaces

For any eigenvalue $c \in \mathbb{F}_{\ell}$ of σ, we denote by E_{c} the eigenspace of c :

$$
E_{c}=\left\{\epsilon \in E \mid \exists \eta \in E, \sigma(\epsilon)=\epsilon^{c} \eta^{\ell}\right\} .
$$

Exemple of partial vanishing

- $f=x^{6}+2 x^{5}-10 x^{4}-20 x^{3}-5 x^{2}+4 x+1$;
- $A=u$ root of Φ_{3} modulo $\ell=360187$.
- η_{i} units depending on ℓ (not on p);
- ℓ fixed and $p \equiv 1039(\bmod \ell)$.

		E_{1}	E_{u}		$E_{u^{2}}$	
p	A	$\log \left(\rho_{p}\left(\eta_{1}\right)\right)$	$\log \left(\rho_{p}\left(\eta_{2}\right)\right)$	$\log \left(\rho_{p}\left(\eta_{3}\right)\right)$	$\log \left(\rho_{p}\left(\eta_{4}\right)\right)$	$\log \left(\rho_{p}\left(\eta_{5}\right)\right)$
1039	u	0	\star	\star	0	0
30256747	u	0	\star	\star	0	0
46825349	u	0	\star	\star	0	0
54029089	u^{2}	0	0	0	\star	\star
70597691	u	0	\star	\star	0	0
73479187	u^{2}	0	0	0	\star	\star

Eigenspaces

Lemma

If $A \in \mathbb{F}_{\ell}$ is such that $\log \rho(\sigma(x))=A \log \rho(x)(\bmod \ell)$, then

$$
\forall c \neq A, \forall \varepsilon \in E_{c}, \log \rho(\varepsilon) \equiv 0 \quad \bmod \ell
$$

Eigenspaces

Lemma

If $A \in \mathbb{F}_{\ell}$ is such that $\log \rho(\sigma(x))=A \log \rho(x)(\bmod \ell)$, then

$$
\forall c \neq A, \forall \varepsilon \in E_{c}, \log \rho(\varepsilon) \equiv 0 \quad \bmod \ell .
$$

Theorem

For large enough ℓ, the dimesion of E_{u} is the same for all $u \in \mathbb{F}_{\ell}$ of the maximal order.

Proof.

- σ cancels a poly with simple roots so it is diagonal in a basis of $\mathbb{Q}(\zeta)^{r}$;
- for large enough ℓ, the basis projects into a basis of \mathbb{F}_{ℓ}^{r}, so $\operatorname{dim} E_{\gamma}=\operatorname{dim} E_{\bar{\gamma}}$;
- $\operatorname{dim} E_{\gamma}=\operatorname{dim} E_{\gamma}^{i} \operatorname{when} \operatorname{gcd}(i, n)=1$ because automorphisms of $\mathbb{Q}(\zeta)$ are semi-linear maps.

Results on partial vanishing

Odd prime degree

- totally real;
- $\operatorname{dim} E_{1}=0$ because no subfields;
- $\operatorname{dim} E_{u}=1$ for all u because same dimension.

Degree 4 and 6

Depending on the signatures of K and $K^{\langle\sigma\rangle}$ there are 16 cases.

Degree 4 and 6 (table)

	$\operatorname{deg}(K)$	$\operatorname{ord}(\sigma)$	rk(K)	rk($K^{\langle\sigma\rangle}$)	$\operatorname{dim} E_{u}$	example
i	4	2	3	1	2	$x^{4}-5 x^{2}+2$
ii			2	1	1	$x^{4}-5 x^{2}-2$
iii			1	0	1	$x^{4}-x^{2}+2$
iv			1	1	0	$x^{4}+5 x^{2}+2$
v		4	3	0	1	$\begin{gathered} x^{4}+x^{3}-6 x^{2}-x+1 \\ x^{4}+x^{3}+x^{2}+x+1 \end{gathered}$
vi			1	0	0	
vii	6	2	5	2	3	$x^{6}-6 x^{4}+9 x^{2}-3$
viii			4	2	2	$x^{6}-3 x^{2}+1$
ix			3	1	2	$x^{6}+3 x^{2}-1$
x			3	2	1	$x^{6}-3 x^{2}-1$
xi			2	1	1	$x^{6}+3 x^{2}+1$
xii			2	2	0	$x^{6}+6 x^{4}+8 x^{2}+1$
xiii		3	5	1	2	$\begin{gathered} x^{6}-8 x^{4}+6 x^{3}+7 x^{2}-6 x+1 \\ x^{6}-5 x^{4}+10 x^{2}-6 x+1 \end{gathered}$
xiv			2	0	2	
xv		6	5	0	1	$\begin{gathered} x^{6}+2 x^{5}-10 x^{4}-20 x^{3}-5 x^{2}+4 x+1 \\ x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \end{gathered}$
$x \mathrm{xi}$			2	0	0	

