Catrel Workshop, École Polytechnique — October 1-2, 2015

How to get rid of units?

Razvan Barbulescu

Motivation

Context

Ccomputing discrete logs in \mathbb{F}_{p^n} with n > 1 and small.

One wants to "turn off the Schirokauer maps"

- 1. when using Galois action in linear algebra (preprint theorem is correct for polys without Schirokauer maps (SMs));
- 2. when implementing linear algebra on GPU (currect CADO for GPU is slower in presence of SMs);
- 3. when adapting the code to MNFS.

Zoom on Galois action

Joux Lercier Smart Vercauteren proposed to reduce the matrix using equations of type:

$$\log \sigma(\mathfrak{q}) = p^{\kappa} \log \mathfrak{q}.$$

One can prove the equation for elements

$$\forall x \in K, \log \sigma(x) = p^{\kappa} \log x.$$

The result on ideals is true only if the logs of units are zero.

Pohlig-Hellman simplification

Logarithms modulo ℓ

- 1. In order to compute discrete logs in \mathbb{F}_{p^n} it is enough to implement an algorithm which computes discrete logs modulo any prime factor of $p^n 1$.
- 2. In pairing-based cryptography, the computations are done in a subgroup of prime order ℓ .

Logs in subfields when ℓ divides $\Phi_n(p)$

Let g be a generator of $(\mathbb{F}_{p^n})^*$ and $y \in (\mathbb{F}_{p^d})^*$ for some divisor d of n.

$$y^{p^d-1} = 1 \Rightarrow y^{rac{p^n-1}{\Phi_n(p)}} = 1 \Rightarrow y^{rac{p^n-1}{\ell}} = 1 \Leftrightarrow \log_g y \equiv 0 \pmod{\ell}.$$

Logarithms of subfield elements (1/2)

Lemma

If σ is an automorphism of the number field of $f \in \mathbb{Z}[x]$ such that

- $\sigma \mathfrak{p} = \mathfrak{p}$;
- $\operatorname{Disc}(f) \not\equiv 0 \mod p$.

Then the map

$$\overline{\sigma}: \begin{array}{ccc} k_{\mathfrak{p}} &
ightarrow & k_{\mathfrak{p}} \ & x mod \mathfrak{p} & \mapsto & \sigma(x) mod \mathfrak{p}. \end{array}$$

belongs to $\operatorname{Gal}(k_{\mathfrak{p}})$ and $\operatorname{ord}(\overline{\sigma}) = \operatorname{ord}(\sigma)$.

Logarithms of subfield elements (1/2)

Logarithms of subfield elements (1/2)

Degree 4 family without units

Idea

We choose f so that $\operatorname{ord}(\sigma) = 2$ and all the units of its number field K are in $K^{\langle \sigma \rangle}$.

- 1. signature of K: (0, r);
- 2. signature of $K^{\langle \sigma \rangle}$: (r, 0);

Proposition

Polynomials
$$f = x^4 + bx^3 + ax^2 + bx + 1$$
 are as above if and only if

- 1. $b^2 4(a-2) > 0;$
- 2. and |b| < 1 + a/2.

Convex subfamily

Convex subfamily

Convex subfamily

Corollary When |a| < 2 and |b| < a/2 + 1 we can combine polys for MNFS.

Constructing pairs of polynomials without units

Algorithm
1:
$$\kappa \leftarrow 100;$$

2: repeat
3: $a \leftarrow \text{Random}(\sqrt{p}, p);$
4: $\begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix} \leftarrow \text{LLL}\begin{pmatrix} p & 0 \\ a & 1 \end{pmatrix};$
5: until $|u_1/v_1| < \frac{2\kappa}{2+\kappa}$ and $|u_2/v_2| < \frac{2\kappa}{2+\kappa}$.
6: $a_1 \leftarrow u_1/v_1;$
7: $a_2 \leftarrow u_2/v_2;$
8: $b_1 \leftarrow a_1/\kappa;$
9: $b_2 \leftarrow a_2/\kappa;$
10: return $x^4 + b_1x^3 + a_1x^2 + b_1x + 1$ and $x^4 + b_2x^3 + a_2x^2 + b_2x + 1$.

Experimental law

The termination condition occurs for $\approx 40\%$ of values for *a*.

Degree six family of polynomials without units

Theorem

For all positive rationals a, b, c, d the polynomial

$$P(x) = (a + 3b + 3c + d) (x^{2} + 4)^{3} + (-3a - 6b - 3c) (x^{2} + 4)^{2} + (2a - 3b - 6c - d) (x^{2} + 4) - 6b$$

has signature (0,3), is even and the subfield fixed by $x \mapsto -x$ has three real roots.

Proof.

 $P(x) = Q(x^2 + 4)$ where Q has three real roots less than 4.

Degree six family of polynomials without units

Theorem

For all positive rationals a, b, c, d the polynomial

$$P(x) = (a + 3b + 3c + d) (x^{2} + 4)^{3} + (-3a - 6b - 3c) (x^{2} + 4)^{2} + (2a - 3b - 6c - d) (x^{2} + 4) - 6b$$

has signature (0,3), is even and the subfield fixed by $x \mapsto -x$ has three real roots.

Proof. $P(x) = Q(x^2 + 4)$ where Q has three real roots less than 4.

Are there other families without units?

Characterization of polynomials "without units"

Lemma

Let f be fixed polynomial with automorphism σ . For large enough prime ℓ we have

$$\forall \varepsilon \text{ unit}, \sigma(\varepsilon) / \varepsilon \in E^{\ell} \Rightarrow \sigma(\varepsilon) = \varepsilon.$$

Theorem

Let $n \leq 7$ be an integer, $f \in \mathbb{Z}[x]$ irreducible of degree n. Let p be a prime and ℓ a factor of $\Phi_n(p)$. If $\log \rho(\varepsilon) \equiv 0 \pmod{\ell}$ for all unit ε , and ℓ is large enough, then n = 4 or 6 and the number field of f is CM or biquadratic real.

Characterization of polynomials "without units"

Lemma

Let f be fixed polynomial with automorphism σ . For large enough prime ℓ we have

$$\forall \varepsilon \text{ unit}, \sigma(\varepsilon) / \varepsilon \in E^{\ell} \Rightarrow \sigma(\varepsilon) = \varepsilon.$$

Theorem

Let $n \leq 7$ be an integer, $f \in \mathbb{Z}[x]$ irreducible of degree n. Let p be a prime and ℓ a factor of $\Phi_n(p)$. If $\log \rho(\varepsilon) \equiv 0 \pmod{\ell}$ for all unit ε , and ℓ is large enough, then n = 4 or 6 and the number field of f is CM or biquadratic real.

Proof.

- when *n* is prime, there are no proper subfield;
- when n = 4 and there are subfields f is Galois, and then CM or biquadratic;
- when n = 6 and there are subfields then $\# \operatorname{Gal}(f) = 6$ or 12, and then CM.

Unit group as $\mathbb{F}_\ell\text{-vector space}$

Let E be the unit group of f.

Vector space structure

Let $\varepsilon_1, \ldots, \varepsilon_r$ be a basis of E/E^{ℓ} .

$$(u_1,\ldots,u_r)\in \mathbb{F}_\ell^r\leftrightarrow\prod_{i=1}^rarepsilon_i^{u_i}\in E/E^\ell.$$

Eigenspaces

For any eigenvalue $c \in \mathbb{F}_{\ell}$ of σ , we denote by E_c the eigenspace of c:

$$E_{c} = \left\{ \epsilon \in E \mid \exists \eta \in E, \sigma(\epsilon) = \epsilon^{c} \eta^{\ell}
ight\}.$$

Exemple of partial vanishing

- $f = x^6 + 2x^5 10x^4 20x^3 5x^2 + 4x + 1;$
- A = u root of Φ_3 modulo $\ell = 360187$.
- η_i units depending on ℓ (not on p);
- ℓ fixed and $p \equiv 1039 \pmod{\ell}$.

		E_1	E _u		E_{u^2}	
p	A	$\log(\rho_p(\eta_1))$	$\log(\rho_p(\eta_2))$	$\log(\rho_p(\eta_3))$	$\log(\rho_p(\eta_4))$	$\log(\rho_p(\eta_5))$
1039	u	0	*	*	0	0
30256747	u	0	*	*	0	0
46825349	u	0	*	*	0	0
54029089	<i>u</i> ²	0	0	0	*	*
70597691	u	0	*	*	0	0
73479187	<i>u</i> ²	0	0	0	*	*

Eigenspaces

Lemma

If $A \in \mathbb{F}_{\ell}$ is such that $\log \rho(\sigma(x)) = A \log \rho(x) \pmod{\ell}$, then

 $\forall c \neq A, \forall \varepsilon \in E_c, \log \rho(\varepsilon) \equiv 0 \mod \ell.$

Eigenspaces

Lemma

If $A \in \mathbb{F}_{\ell}$ is such that $\log \rho(\sigma(x)) = A \log \rho(x) \pmod{\ell}$, then

$$\forall c \neq A, \forall \varepsilon \in E_c, \log \rho(\varepsilon) \equiv 0 \mod \ell.$$

Theorem

For large enough ℓ , the dimesion of E_u is the same for all $u \in \mathbb{F}_{\ell}$ of the maximal order.

Proof.

- σ cancels a poly with simple roots so it is diagonal in a basis of $\mathbb{Q}(\zeta)^r$;
- for large enough ℓ , the basis projects into a basis of \mathbb{F}_{ℓ}^{r} , so dim $E_{\gamma} = \dim E_{\overline{\gamma}}$;
- dim E_γ = dim Eⁱ_γ when gcd(i, n) = 1 because automorphisms of Q(ζ) are semi-linear maps.

Results on partial vanishing

Odd prime degree

- totally real;
- dim $E_1 = 0$ because no subfields;
- dim $E_u = 1$ for all *u* because same dimension.

Degree 4 and 6

Depending on the signatures of K and $K^{\langle \sigma \rangle}$ there are 16 cases.

Degree 4 and 6 (table)

	$\deg(K)$	$\operatorname{ord}(\sigma)$	rk(K)	$rk(K^{\langle\sigma angle})$	dim E_u	example
i			3	1	2	$x^4 - 5x^2 + 2$
ii		2	2	1	1	$x^4 - 5x^2 - 2$
iii			1	0	1	$x^4 - x^2 + 2$
iv	4		1	1	0	$x^4 + 5x^2 + 2$
v		4	3	0	1	$x^4 + x^3 - 6x^2 - x + 1$
vi			1	0	0	$x^4 + x^3 + x^2 + x + 1$
vii			5	2	3	$x^6 - 6x^4 + 9x^2 - 3$
viii			4	2	2	$x^6 - 3x^2 + 1$
ix		2	3	1	2	$x^{6} + 3x^{2} - 1$
х			3	2	1	$x^6 - 3x^2 - 1$
xi			2	1	1	$x^{6} + 3x^{2} + 1$
xii	6		2	2	0	$x^6 + 6x^4 + 8x^2 + 1$
xiii		3	5	1	2	$x^{6} - 8x^{4} + 6x^{3} + 7x^{2} - 6x + 1$
xiv			2	0	2	$x^{6} - 5x^{4} + 10x^{2} - 6x + 1$
xv		6	5	0	1	$x^{6} + 2x^{5} \overline{-10x^{4} - 20x^{3} - 5x^{2} + 4x + 1}$
xvi			2	0	0	$x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1$