The CADO-NFS software

Pierrick Gaudry

CARAMEL – LORIA, NANCY CNRS, UNIVERSITÉ DE LORRAINE, INRIA

CATREL Workshop, October 2, 2015

General presentation of CADO-NFS

Features and algorithms

Concluding remarks

Identity card of CADO-NFS

Name: CADO-NFS - (Crible Algébrique: Distribution, Optimisation)

Date of birth: Around 2007

Authors: Many!

```
Webpage: http://cado-nfs.gforge.inria.fr/
```

Purpose: Integer factorization and discrete logarithm using the number field sieve.

Language: C / C++.

Build/test manager: CMake / CTest

License: GNU LGPL 2.1 or later.

```
Latest release: 2.1.1 (October 2014).
```

Identity card of CADO-NFS

Name: CADO-NFS - (Crible Algébrique: Distribution, Optimisation)

```
Date of birth: Around 2007
```

Authors: Many!

```
Webpage: http://cado-nfs.gforge.inria.fr/
```

Purpose: Integer factorization and discrete logarithm using the number field sieve.

```
Language: C / C++.
```

Build/test manager: CMake / CTest

License: GNU LGPL 2.1 or later.

```
Latest release: 2.1.1 (October 2014).
```

If you have a laptop, you are encouraged to download CADO-NFS and play with it during my talk!

(Slowly) learning software engineering...

Most of the developers had no training in software engineering.

We have made **progress**:

- Version control system (git);
- Continuous integration;
- Bug tracker;
- Mailing lists (discuss, commit-logs);
- Coverage reports;
- Official releases from time to time;
- Documentation, READMEs.

Still missing:

- Global coding style;
- Code review;
- Better packaging in distributions.

Some statistics

Number of lines of code:

- 300 k, including 80 k that are macro-generated.
- "active lines" covered by tests: 100 k.
- 20 k lines of python scripts.

Number of **commits**:

- 10,600 commits since 2007.
- around 2000 in the past year.

Main authors (in number of commits):

Paul Zimmermann	2601
Alex Kruppa	2587
Emmanuel Thomé	2112
Pierrick Gaudry	1030
Cyril Bouvier	727
François Morain	426

General presentation of CADO-NFS

Features and algorithms

Concluding remarks

Polynomial selection

Feature/algorithm	DL	IF	Comment	Status
Kleinjung's algorithm	Х	Х	2008 and 2015 improv.	Prod
Conj method for \mathbb{F}_{p^2}	Х		for $p \equiv 7 \mod 8$	Prod
JL, GJL, JLSV	Х		for \mathbb{F}_{p^k}	Todo
Two quadratics		Х		Impl
MNFS	Х	Х		Todo
SNFS	Х	Х		Todo

Rem. It is possible to import a hand-crafted polynomial pair; with or without rational side.

Feature/algorithm	DL	IF	Comment	Status
Data for sieving primes and powers	Х	Х		Prod
Data for exact ideal factorization	Х		uses Magma	Prod

Rem. For primes not dividing discriminant nor leading coefficient, very easy.

Rem. For DL, basically need Round 2 at "bad" primes. Currently with Magma, but without using advanced machinery. Translation to C/C++/Python should not be difficult (basic linear algebra).

Feature/algorithm	DL	IF	Comment	Status
F-K sieving algorithm	Х	Х	only 2 sides	Prod
Cofac using ECM	Х	Х	fixed sequence	Prod
Multi-threaded	Х	Х	for saving RAM	Prod
Cofac strategies	Х	Х		Impl
Batch smoothness cofac	Х	Х		At work
Scaling to large sizes	Х	Х	say, more than 768	At work
Sieving in dim > 2	Х		Grémy's PhD	At work
Adjust I to q	Х	Х		Todo
Separation sieve / cofac	Х	Х		Todo
MNFS	Х	?		Todo
(obsolete) Sieving for FFS	Х		char 2 and 3	Impl

Filtering

Feature/algorithm	DL	IF	Comment	Status
Duplicate removal	Х	Х	2-step, on disks	Prod
			on-the-fly	Impl
Singleton and clique	Х	Х	incl. Bouvier	Prod
Merge	Х	Х		Prod
Dble matrix trick	?	Х	Kleinjung's idea	Todo
Parallel versions	Х	Х	already multi-thread	Todo

Linear algebra

Feature/algorithm	DL	IF	Comment	Status
Block-Wiedemann	Х	Х	very flexible	Prod
Node and thread parallelism	Х	Х	distribute matrix	Prod
Cluster-level parallelism	Х	Х	with several seq.	Impl
SM incl. as input vectors	Х			Prod
Berlekamp-Massey step	Х		Fast, parallel	Prod
		X	operational	Prod
Dble matrix trick	?	X		Todo
Lanczos		X		Todo
RNS/AVX/GPU arith.	Х		fast!	Impl
Use Galois action	Х		for \mathbb{F}_{p^k}	Todo

Characters / SM / Sqrt

Feature/algorithm	DL	IF	Comment	Status
Characters		Х		Prod
Schirokauer maps	Х			Prod
Sqrt		Х	naive	Prod
		X	CRT-based, parallel	Impl

Individual logarithm

Feature/algorithm	DL	IF	Comment	Status
Descent over \mathbb{F}_p	Х		missing param files	Prod
Automatic parameters	Х			Todo
Init and descent over \mathbb{F}_{p^k}	Х			Todo

Rem. For the descent init over \mathbb{F}_p , we use continued fractions and sieving (same binary as for relation collection).

Helper scripts

Feature/algorithm	DL	IF	Comment	Status
Single command-line run	Х	Х	DL only for \mathbb{F}_p	Prod
Client-server setting	Х	Х		Prod
Automatic sieving parameters		Х	OPAL-based	Impl
HPC scheduler integration	Х	Х	we have only OAR	Todo
DL in \mathbb{F}_{p^k}	Х			At work

General presentation of CADO-NFS

Features and algorithms

Concluding remarks

Ben Buhrow did some comparisons, using latest release (Oct. 2014).

Some more recent comparison with git version of January 2015:

- CADO-NFS much faster than Magma and Gp/pari for 80dd.
- Crossover point between Cado-nfs and Msieve-qs is around 85dd.

• Crossover point between Cado-nfs and Yafu-qs is around 95dd. (tests done with just one thread) Computations by CADO-NFS developers:

- 180 digit DL in 𝔽_p. June 2014. Bouvier, Gaudry, Imbert, Jeljeli and Thomé.
- 180 digit DL in \mathbb{F}_{p^2} . June 2014. Barbulescu, Gaudry, Guillevic, Morain
- 120 digit DL in \mathbb{F}_{p^4} . One week ago! Barbulescu, Gaudry, Guillevic, Morain.
- DL in 𝔽₂₈₀₉ (with FFS). April 2013. Barbulescu, Bouvier, Detrey, Gaudry, Jeljeli, Thomé, Videau, Paul Zimmermann.
- Many integer factorizations in the 150–190 digits range (aliquot sequences). Zimmermann.
- More to come!

Used for security analysis:

- Breaking a ransomware using 128 dd RSA keys. Feb 2014. Perigaud, Pernet.
- Breaking Google email DKIM 512-bit RSA key. Oct 2012. Harris.
- PoC for the FREAK attack (Bhargavan et al.). Heninger used Amazon EC2 to factor 512 RSA keys in about 7 hours for 70 USD.
- PoC for the LogJam attack.

Conclusion

CADO-NFS is not the fastest NFS implementation, but:

- Reasonably well packaged, easy to use, even in a parallel context.
- Effort made on portability in Unix world (including MacOS).
- Only "push a button" free implementation of NFS for DL over 𝔽_p.

Conclusion

CADO-NFS is not the fastest NFS implementation, but:

- Reasonably well packaged, easy to use, even in a parallel context.
- Effort made on portability in Unix world (including MacOS).
- Only "push a button" free implementation of NFS for DL over 𝔽_p.

We welcome new contributors!