
The CADO-NFS software

Pierrick Gaudry

Caramel – LORIA, Nancy
CNRS, Université de Lorraine, Inria

CATREL Workshop, October 2, 2015

1/19



Plan

General presentation of CADO-NFS

Features and algorithms

Concluding remarks

2/19



Identity card of CADO-NFS
Name: CADO-NFS – (Crible Algébrique: Distribution, Optimisation)
Date of birth: Around 2007
Authors: Many!
Webpage: http://cado-nfs.gforge.inria.fr/

Purpose: Integer factorization and discrete logarithm using the
number field sieve.
Language: C / C++.
Build/test manager: CMake / CTest
License: GNU LGPL 2.1 or later.
Latest release: 2.1.1 (October 2014).

If you have a laptop, you are encouraged to download
CADO-NFS and play with it during my talk!

3/19

http://cado-nfs.gforge.inria.fr/


Identity card of CADO-NFS
Name: CADO-NFS – (Crible Algébrique: Distribution, Optimisation)
Date of birth: Around 2007
Authors: Many!
Webpage: http://cado-nfs.gforge.inria.fr/

Purpose: Integer factorization and discrete logarithm using the
number field sieve.
Language: C / C++.
Build/test manager: CMake / CTest
License: GNU LGPL 2.1 or later.
Latest release: 2.1.1 (October 2014).

If you have a laptop, you are encouraged to download
CADO-NFS and play with it during my talk!

3/19

http://cado-nfs.gforge.inria.fr/


(Slowly) learning software engineering. . .
Most of the developers had no training in software engineering.

We have made progress:
Version control system (git);
Continuous integration;
Bug tracker;
Mailing lists (discuss, commit-logs);
Coverage reports;
Official releases from time to time;
Documentation, READMEs.

Still missing:
Global coding style;
Code review;
Better packaging in distributions.

4/19



Some statistics
Number of lines of code:

300 k, including 80 k that are macro-generated.
“active lines” covered by tests: 100 k.
20 k lines of python scripts.

Number of commits:
10,600 commits since 2007.
around 2000 in the past year.

Main authors (in number of commits):

Paul Zimmermann 2601
Alex Kruppa 2587
Emmanuel Thomé 2112
Pierrick Gaudry 1030
Cyril Bouvier 727
François Morain 426

5/19



Plan

General presentation of CADO-NFS

Features and algorithms

Concluding remarks

6/19



Polynomial selection

Feature/algorithm DL IF Comment Status
Kleinjung’s algorithm X X 2008 and 2015 improv. Prod
Conj method for Fp2 X for p ≡ 7 mod 8 Prod
JL, GJL, JLSV X for Fpk Todo
Two quadratics X Impl
MNFS X X Todo
SNFS X X Todo

Rem. It is possible to import a hand-crafted polynomial pair; with
or without rational side.

7/19



Factor base construction

Feature/algorithm DL IF Comment Status
Data for sieving primes and powers X X Prod
Data for exact ideal factorization X uses Magma Prod

Rem. For primes not dividing discriminant nor leading coefficient,
very easy.
Rem. For DL, basically need Round 2 at “bad” primes. Currently
with Magma, but without using advanced machinery. Translation
to C/C++/Python should not be difficult (basic linear algebra).

8/19



Relation collection

Feature/algorithm DL IF Comment Status
F-K sieving algorithm X X only 2 sides Prod
Cofac using ECM X X fixed sequence Prod
Multi-threaded X X for saving RAM Prod
Cofac strategies X X Impl
Batch smoothness cofac X X At work
Scaling to large sizes X X say, more than 768 At work
Sieving in dim > 2 X Grémy’s PhD At work
Adjust I to q X X Todo
Separation sieve / cofac X X Todo
MNFS X ? Todo
(obsolete) Sieving for FFS X char 2 and 3 Impl

9/19



Filtering

Feature/algorithm DL IF Comment Status
Duplicate removal X X 2-step, on disks Prod

on-the-fly Impl
Singleton and clique X X incl. Bouvier Prod
Merge X X Prod
Dble matrix trick ? X Kleinjung’s idea Todo
Parallel versions X X already multi-thread Todo

10/19



Linear algebra

Feature/algorithm DL IF Comment Status
Block-Wiedemann X X very flexible Prod
Node and thread parallelism X X distribute matrix Prod
Cluster-level parallelism X X with several seq. Impl
SM incl. as input vectors X Prod
Berlekamp-Massey step X Fast, parallel Prod

X operational Prod
Dble matrix trick ? X Todo
Lanczos X Todo
RNS/AVX/GPU arith. X fast! Impl
Use Galois action X for Fpk Todo

11/19



Characters / SM / Sqrt

Feature/algorithm DL IF Comment Status
Characters X Prod
Schirokauer maps X Prod
Sqrt X naive Prod

X CRT-based, parallel Impl

12/19



Individual logarithm

Feature/algorithm DL IF Comment Status
Descent over Fp X missing param files Prod
Automatic parameters X Todo
Init and descent over Fpk X Todo

Rem. For the descent init over Fp, we use continued fractions and
sieving (same binary as for relation collection).

13/19



Helper scripts

Feature/algorithm DL IF Comment Status
Single command-line run X X DL only for Fp Prod
Client-server setting X X Prod
Automatic sieving parameters X OPAL-based Impl
HPC scheduler integration X X we have only OAR Todo
DL in Fpk X At work

14/19



Plan

General presentation of CADO-NFS

Features and algorithms

Concluding remarks

15/19



Comparison with QS

Ben Buhrow did some comparisons, using latest release (Oct.
2014).

Some more recent comparison with git version of January 2015:
CADO-NFS much faster than Magma and Gp/pari for 80dd.
Crossover point between Cado-nfs and Msieve-qs is around
85dd.
Crossover point between Cado-nfs and Yafu-qs is around 95dd.

(tests done with just one thread)

16/19



Success stories

Computations by CADO-NFS developers:
180 digit DL in Fp. June 2014. Bouvier, Gaudry, Imbert,
Jeljeli and Thomé.
180 digit DL in Fp2 . June 2014. Barbulescu, Gaudry,
Guillevic, Morain
120 digit DL in Fp4 . One week ago! Barbulescu, Gaudry,
Guillevic, Morain.
DL in F2809 (with FFS). April 2013. Barbulescu, Bouvier,
Detrey, Gaudry, Jeljeli, Thomé, Videau, Paul Zimmermann.
Many integer factorizations in the 150–190 digits range
(aliquot sequences). Zimmermann.
More to come!

17/19



Success stories – 2

Used for security analysis:
Breaking a ransomware using 128 dd RSA keys. Feb 2014.
Perigaud, Pernet.
Breaking Google email DKIM 512-bit RSA key. Oct 2012.
Harris.
PoC for the FREAK attack (Bhargavan et al.). Heninger used
Amazon EC2 to factor 512 RSA keys in about 7 hours for 70
USD.
PoC for the LogJam attack.

18/19



Conclusion

CADO-NFS is not the fastest NFS implementation, but:
Reasonably well packaged, easy to use, even in a parallel
context.
Effort made on portability in Unix world (including MacOS).
Only “push a button” free implementation of NFS for DL
over Fp.

We welcome new contributors!

19/19



Conclusion

CADO-NFS is not the fastest NFS implementation, but:
Reasonably well packaged, easy to use, even in a parallel
context.
Effort made on portability in Unix world (including MacOS).
Only “push a button” free implementation of NFS for DL
over Fp.

We welcome new contributors!

19/19


	General presentation of CADO-NFS
	Features and algorithms
	Concluding remarks

