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DLP on general groups

Let H be a cyclic group of order N with a generator g then

H = {g i : 0 ≤ i < N}.

The discrete logarithm problem (DLP) in H consists in:

I Given: h ∈ H,

I Find: 0 ≤ i < N, such that h = g i .

Notation: i is the discrete logarithm of h in base g , denoted logg h.

For the general case where we don’t know very specific structures on H,
this problem is believed to be hard (exponential run time in the size of N).
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Symmetric bilinear pairings

I (G,+), (GT , ·), cyclic groups of order |G| = |GT | = r .

I A symmetric bilinear pairing on (G,GT ) is a map

ê : G×G→ GT ,

such that

ê(P,P) 6= 1 for P 6= 0G,

ê(Q1 + Q2,R) = ê(Q1,R) · ê(Q2,R),

ê(Q,R1 + R2) = ê(Q,R1) · ê(Q,R2).

For cryptographic purpose, we want it to be efficiently computable.

I Immediate property: for any two integers k1 and k2,

ê(k1Q, k2R) = ê(Q,R)k1k2 .
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Adj et al. (CINVESTAV) Small char. DLP: Attacking Type 1 pairings CATREL 2015 3 / 20



Symmetric bilinear pairings

I (G,+), (GT , ·), cyclic groups of order |G| = |GT | = r .

I A symmetric bilinear pairing on (G,GT ) is a map
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Adj et al. (CINVESTAV) Small char. DLP: Attacking Type 1 pairings CATREL 2015 3 / 20



Symmetric bilinear pairings

I (G,+), (GT , ·), cyclic groups of order |G| = |GT | = r .

I A symmetric bilinear pairing on (G,GT ) is a map
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Type 1 pairing-based cryptography

A Type 1 paring means that we have

I G is a subgroup of prime order r of either

E (Fq), the group of rational points of an elliptic curve E ; or

JacC (Fq), the jacobian of a genus-2 hyperelliptic curve C .

I GT is the subgroup of order r of F∗
qk

,

k is the embedding degree of G, that is the
smallest positive integer k such that r |(qk − 1).

I Used pairing maps:

Weil pairings.

Tate pairings and modifications (Eta, Ate ...).
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Main Type 1 pairings

Most interesting small characteristic Type 1 pairings:

I The k = 4 pairings derived from supersingular elliptic curves over F2n :

Y 2 + Y = X 3 + X ; and

Y 2 + Y = X 3 + X + 1.

I The k = 6 pairings derived from supersingular elliptic curves over F3n :

Y 2 = X 3 − X + 1; and

Y 2 = X 3 − X − 1.

I The k = 12 pairing derived from supersingular gen.-2 curves over F2n :

Y 2 + Y = X 5 + X 3; and

Y 2 + Y = X 5 + X 3 + 1.
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Example of protocols

I Identity-based non-interactive key exchange
Sakai-Oghishi-Kasahara, 2000.

I One-round three-party key agreement

Joux, 2000.

I Identity-based encryption
Boneh–Franklin, 2001.
Sakai–Kasahara, 2001.

I Short digital signatures
Boneh–Lynn–Shacham, 2001.
Zang–Safavi-Naini–Susilo, 2004.

I ...
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The MOV attack

The elliptic (hyperelliptic) curve discrete logarithm problem (ECDLP) is
believed to be hard in genus-1 and 2 curves (exponential complexity).

Reduction attack on supersingular elliptic curves:

I Menezes-Okamoto-Vanstone (1993), Frey-Rück (1994)

DLPG <P DLPGT

dP −→ ê(dP,P) = ê(P,P)d .

I For cryptographic applications on pairings over supersingular curves:

The embedding degree is relatively small.

Require the DLP in GT to be hard.
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Algorithm for small characteristic DLP in FQ

Fastest general-purpose algorithm: Coppersmith (1984) of subexponential
run time LQ [13 , 1.526], where LQ [α, c] with 0 < α < 1 and c > 0 denotes

LQ [α, c] = e [c+o(1)](logQ)α(log logQ)1−α = (logQ)
[c+o(1)]

(
logQ

log logQ

)α
.

Table: Believed security for supersingular curves till 2012

Base field (Fq) F2n F3n F2n

Embedding degree (k) 4 6 12

Lower security (≈ 264) n = 239 n = 97 n = 71

Medium security (≈ 280) n = 373 n = 163 n = 127

Higher security (≈ 2128) n = 1223 n = 509 n = 367
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Joux-Lercier Algorithm for FQ = Fqn

In 2006, Joux and Lercier presented an algorithm with running time
LQ [13 , 1.442] when q and n are ‘balanced’

q = LQ [1/3, 3−2/3], n = 32/3 · (logQ/(log logQ))2/3 .

In 2012, Shinohara-Shimoyama-Hayashi-Takagi analyzed the Joux-Lercier
algorithm applied to base fields F3n for the case k = 6:

Base Field F3n n = 97 n = 163 n = 509

Security level 252.79 268.17 2111.35

That same year, they solved the DLP in the order 923-bit subgroup of F397

in 103.74 CPU years (using 252 CPU cores).

Later in 2012, Joux introduced a “pinpointing” technique that improved
the Joux-Lercier algorithm to LQ [13 , 0.961].
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2013’s advances

Let Q = qdn, with q a power of 2 or 3, n ≈ q and d a small integer

I Feb 2013 - Joux:

LQ [
1

4
+ o(1), c].

I Feb, May 2013 - Göloğlu, Granger, McGuire and Zumbrägel:
ideas somewhat similar to Joux’s.

Subsequent records

I Apr 2013 - Göloğlu et al. solve DLP in F∗
26120 = F∗

(28)3·255

in 750 CPU hours.

I May 2013 - Joux solves DLP in F∗
26168 = F∗

(28)3·257

in 550 CPU hours.

Kummer/twisted Kummer extensions: Fqn with n | q ∓ 1.
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Overview on the Joux 2013 algorithm

Select polynomials h0, h1 ∈ Fqd [X ] such that

I degree of h0 and h1 is at most δ, a small positive integer.

I X q · h1 − h0 has a degree-n irreducible factor IX in Fqd [X ].

Then Fqdn = Fqd (x) = Fqd [X ]/(IX ) and xq = h0(x)
h1(x)

.

Let g ∈ F∗
qdn

be a generator, and let h ∈ F∗
qdn

.

Compute logg h:

I Factor base computation: find logarithms of all degree-1 elements
(and degree-2 if d = 2) in Fqdn in polynomial time.

I Descent stage: logg h is expressed as a linear combination of logs of
elements in the factor base using classical methods and a new descent
method (based on solving multivariate bilinear equations).
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Descent Steps in F28·3·257

X 256 + . . .

X 128 + . . . X 128 + . . .

X 27 + . . . X + . . .. . . X 27 + . . . X + . . .. . .

256-to-27
descent

X 6 + . . . X + . . .. . . X 6 + . . . X + . . .. . .. . .

27-to-6
descent

X 2 + . . . X + . . .. . . X 2 + . . . X + . . .. . .. . .

6-to-2
descent

X + . . . X + . . .. . . X + . . . X + . . .. . .. . .

2-to-1
descent
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QPA: a much faster algorithm

Let Q = q2n, with q a power of 2 or 3 and n ≤ q + 2.

Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

I quasi-polynomial time algorithm (QPA):

(logQ)O(log logQ) ≈ (LQ [−1, c])(logQ).

I asymptotically smaller than LQ [α, c], for any α > 0 and c > 0.

I same setup as in Joux’s algorithm:

Factor base computation: find logarithms of linears in polynomial time.

Descent stage: logg h is expressed as a linear combination of logs of
elements in the factor base using a descent strategy quite similar to
Joux’s method for computing logarithms of degree-2 elements.

[We have another QPA by Granger-Kleinjung-Zumbrägel from April 2014.]
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Adj et al. (CINVESTAV) Small char. DLP: Attacking Type 1 pairings CATREL 2015 13 / 20



QPA: a much faster algorithm

Let Q = q2n, with q a power of 2 or 3 and n ≤ q + 2.

Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:
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First contributions

We combined the Joux 2013 algorithm and QPA to show in a concrete
analysis that the cryptographic DLP in the field F36·509 can be computed
much faster than previously believed:

DLP algorithm Coppersmith04 JL06 Joux12 Joux13-QPA13

Run time 2128 2111 2103 275

We also analyzed the cryptographic DLP in the field F212·367 and found the
new algorithms more effective (much more parallelizable) than the Joux
2012 algorithm:

DLP algorithm Coppersmith04 Joux12 Joux13-QPA13

Run time 2128 292 295

Our preliminary analysis suggested that the new algorithms have no effect
in computing discrete logs in F24·1223 . [Incredibly optimistic!]

Adj et al. (CINVESTAV) Small char. DLP: Attacking Type 1 pairings CATREL 2015 14 / 20
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A new polynomial representation

In ECC 2013, Granger presented (joint work with Zumbrägel) a
modification of Joux’s field representation:

I Fqdn = Fqd [X ]/(IX ) with IX dividing X · h1(X q)− h0(X q).

I h0(X ), h1(X ) polynomials over Fq[X ] of small degree δ.

Very useful: allows to have n ≤ δ · q instead of necessarily n ≤ q + δ.

Resulting analysis:

DLP algorithm Coppersmith04 Joux13-QPA13 GZ13
(as analyzed by A. et al)

Run time on F212·367 2128 295 276

Run time on F24·1223 2128 ≥2128 295

In December 2013, we used the Granger-Zumbrägel representation to show
that the cryptographic DLP in F36·1429 and F24·3041 can be solved in time
296 and 2129, respectively. [Initially believed to enjoy a 2192 security level.]

Adj et al. (CINVESTAV) Small char. DLP: Attacking Type 1 pairings CATREL 2015 15 / 20
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Solving cryptographic DLP using Magma

I January 27 2014, A.-Menezes-Oliveira-Rodŕıguez: F36·137 .

We used Joux’s algorithm with the Granger-Zumbrägel representation
to break the supersingular curve E : y2 = x3− x + 1 defined over F3137 .

F36·137 : 276 against Coppersmith. [we actually embed F36·137 in F34·3·137 .]

Field of size of 1303-bit and we worked in a 155-bit prime order
subgroup. [previous record on characteristic 3: the 923-bit field F36·97 .]

Main issue: only 50% of the degree-2 polynomial descended.
Fix: adapt an idea of Coppersmith and employ a Joux and Göloğlu et
al. strategy to get 97% of the quadratics descending while avoiding the
remainder in the descent phase.

Run time: 888 CPU hours. [previous record: 896313 CPU hours]

First computations of discrete logarithms in a cryptographic finite field
using the new algorithms.
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Practical improvements

I January 30 2014, Granger-Kleinjung-Zumbrägel: F212·367 , F24·1223

DLP algorithm Copp.04 Joux13-QPA13 GZ13 GKZ14a
(as analyzed by A. et al)

Run time on F212·367 2128 295 276 248

Run time on F24·1223 2128 ≥ 2128 295 259

Always start trying to descend an element down to elements of smaller
degree staying in the same field.

Only when this is not possible, promote it into an extension field where
it may split into smaller elements.

Not necessary to embed Fqn into larger extensions whenever q ≈ δ · n,
for some small integer δ.

Discrete logarithm computation in the cryptographic subgroup of
F212·367 in 52,240 CPU hours.
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More improvements

I September 15 2014, Joux and Pierrot: F35·479 .

Solving DLP in Fqn when q ≈ δ · n for some small integer δ

The descent phase works exactly as in [GKZ14a].

Compute the logarithms of degree-1 and degree-2 by solving one linear
algebra in time O(q5).

Compute the logarithms of degree-3 elements solving q linear algebras
in time O(q6).

Compute the logarithms of elements in a degree-4 family solving q
linear algebras in time O(q6) and the logarithms of some other
degree-4 families of smaller size.

Discrete logarithm computation in the cryptographic subgroup of F35·479

in time 8,600 CPU hours.

Current record in characteristic three.
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Current computations

A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodŕıguez: F36·509

I Want to break the field F36·509 of initial proposed security 2128.

I Use JP14 factor base comput. method + GKZ14a descent strategy.

DLP algorithm Copp.04 JL06 Joux12 Joux13-QPA13 JP14-GKZ14.

Run time 2128 2111 2103 275 249.

I Computation of logarithms of degree-1, 2, 3 elements: already done
378163 CPU hours in a cluster of 5096 cores (Abacus Cinvestav).

I Descent of a challenge element 508-to-15: already done
619413 CPU hours using about 300 cores.

I Main issue: management of small degree elements during the descent
(billions of nodes expected).
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Future work

I Get our own C implementation of Faugère’s F4 or F5 algorithm.

I Improve our C implementation for solving linear algebra systems.

I Find a polynomial-time algorithm for DLP in F2n or F3n .
[It’s just a dream!]

Thanks For Your Attention!
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