Discrete logarithms in small characteristic finite fields: Attacking Type 1 pairing-based cryptography

> Gora Adj CINVESTAV, Mexico

Joint work with:

Alfred Menezes Thomaz Oliveira

Francisco Rodríguez-Henríquez CINVESTAV, Mexico

U. of Waterloo, Canada CINVESTAV, Mexico CINVESTAV, Mexico

CATREL Workshop, September 1-2 2015

Let \mathbb{H} be a cyclic group of order N with a generator g then

$$\mathbb{H} = \{ g^i : 0 \le i < N \}.$$

Let \mathbb{H} be a cyclic group of order N with a generator g then

$$\mathbb{H} = \{ g^i : 0 \le i < N \}.$$

The discrete logarithm problem (DLP) in $\mathbb H$ consists in:

- Given: $h \in \mathbb{H}$,
- Find: $0 \le i < N$, such that $h = g^i$.

Notation: *i* is the discrete logarithm of *h* in base *g*, denoted $\log_g h$.

Let \mathbb{H} be a cyclic group of order N with a generator g then

$$\mathbb{H} = \{ g^i : 0 \le i < N \}.$$

The discrete logarithm problem (DLP) in $\mathbb H$ consists in:

- Given: $h \in \mathbb{H}$,
- Find: $0 \le i < N$, such that $h = g^i$.

Notation: *i* is the discrete logarithm of *h* in base *g*, denoted $\log_g h$.

For the general case where we don't know very specific structures on \mathbb{H} , this problem is believed to be hard (exponential run time in the size of N).

▶ (\mathbb{G} , +), ($\mathbb{G}_{\mathcal{T}}$, ·), cyclic groups of order $|\mathbb{G}| = |\mathbb{G}_{\mathcal{T}}| = r$.

- ▶ (G, +), (G_T, ·), cyclic groups of order $|G| = |G_T| = r$.
- A symmetric bilinear pairing on $(\mathbb{G}, \mathbb{G}_T)$ is a map

 $\hat{e}: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T,$

such that

•
$$\hat{e}(P,P) \neq 1$$
 for $P \neq 0_{\mathbb{G}}$,

- $\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R),$
- $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2).$

- ▶ (G, +), (G_T, ·), cyclic groups of order $|G| = |G_T| = r$.
- A symmetric bilinear pairing on $(\mathbb{G}, \mathbb{G}_T)$ is a map

 $\hat{e}: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T,$

such that

•
$$\hat{e}(P,P)
eq 1$$
 for $P
eq 0_{\mathbb{G}}$,

- $\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R),$
- $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2).$

For cryptographic purpose, we want it to be efficiently computable.

- ▶ (G, +), (G_T, ·), cyclic groups of order $|G| = |G_T| = r$.
- A symmetric bilinear pairing on $(\mathbb{G}, \mathbb{G}_T)$ is a map

 $\hat{e}: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T,$

such that

•
$$\hat{e}(P,P) \neq 1$$
 for $P \neq 0_{\mathbb{G}}$,

- $\hat{e}(Q_1 + Q_2, R) = \hat{e}(Q_1, R) \cdot \hat{e}(Q_2, R),$
- $\hat{e}(Q, R_1 + R_2) = \hat{e}(Q, R_1) \cdot \hat{e}(Q, R_2).$

For cryptographic purpose, we want it to be efficiently computable.

• Immediate property: for any two integers k_1 and k_2 ,

$$\hat{e}(\mathbf{k}_1 Q, \mathbf{k}_2 R) = \hat{e}(Q, R)^{\mathbf{k}_1 \mathbf{k}_2}.$$

A Type 1 paring means that we have

A Type 1 paring means that we have

• \mathbb{G} is a subgroup of prime order r of either

- A Type 1 paring means that we have
 - \mathbb{G} is a subgroup of prime order r of either
 - $E(\mathbb{F}_q)$, the group of rational points of an elliptic curve E; or

- A Type 1 paring means that we have
 - \mathbb{G} is a subgroup of prime order r of either
 - $E(\mathbb{F}_q)$, the group of rational points of an elliptic curve E; or
 - $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$, the jacobian of a genus-2 hyperelliptic curve \mathcal{C} .

- A Type 1 paring means that we have
 - \mathbb{G} is a subgroup of prime order r of either
 - $E(\mathbb{F}_q)$, the group of rational points of an elliptic curve E; or
 - $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$, the jacobian of a genus-2 hyperelliptic curve \mathcal{C} .
 - \mathbb{G}_T is the subgroup of order r of $\mathbb{F}_{q^k}^*$,
 - k is the embedding degree of G, that is the smallest positive integer k such that r | (q^k - 1).

- A Type 1 paring means that we have
 - \mathbb{G} is a subgroup of prime order r of either
 - $E(\mathbb{F}_q)$, the group of rational points of an elliptic curve E; or
 - $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$, the jacobian of a genus-2 hyperelliptic curve \mathcal{C} .
 - \mathbb{G}_T is the subgroup of order r of $\mathbb{F}_{q^k}^*$,
 - k is the embedding degree of G, that is the smallest positive integer k such that r | (q^k - 1).
 - Used pairing maps:
 - Weil pairings.
 - Tate pairings and modifications (Eta, Ate ...).

Most interesting small characteristic Type 1 pairings:

Most interesting small characteristic Type 1 pairings:

• The k = 4 pairings derived from supersingular elliptic curves over \mathbb{F}_{2^n} :

•
$$Y^2 + Y = X^3 + X$$
; and

•
$$Y^2 + Y = X^3 + X + 1$$
.

Most interesting small characteristic Type 1 pairings:

• The k = 4 pairings derived from supersingular elliptic curves over \mathbb{F}_{2^n} :

•
$$Y^2 + Y = X^3 + X$$
; and

•
$$Y^2 + Y = X^3 + X + 1$$
.

• The k = 6 pairings derived from supersingular elliptic curves over \mathbb{F}_{3^n} :

Most interesting small characteristic Type 1 pairings:

• The k = 4 pairings derived from supersingular elliptic curves over \mathbb{F}_{2^n} :

•
$$Y^2 + Y = X^3 + X$$
; and

•
$$Y^2 + Y = X^3 + X + 1$$
.

• The k = 6 pairings derived from supersingular elliptic curves over \mathbb{F}_{3^n} :

•
$$Y^2 = X^3 - X + 1$$
; and

•
$$Y^2 = X^3 - X - 1$$
.

• The k = 12 pairing derived from supersingular gen.-2 curves over \mathbb{F}_{2^n} :

•
$$Y^2 + Y = X^5 + X^3$$
; and

• $Y^2 + Y = X^5 + X^3 + 1$.

Example of protocols

- Identity-based non-interactive key exchange
 - Sakai-Oghishi-Kasahara, 2000.
- One-round three-party key agreement
 - Joux, 2000.

Identity-based encryption

- Boneh-Franklin, 2001.
- Sakai–Kasahara, 2001.
- Short digital signatures
 - Boneh–Lynn–Shacham, 2001.
 - Zang-Safavi-Naini-Susilo, 2004.

The MOV attack

The elliptic (hyperelliptic) curve discrete logarithm problem (ECDLP) is believed to be hard in genus-1 and 2 curves (exponential complexity).

The MOV attack

The elliptic (hyperelliptic) curve discrete logarithm problem (ECDLP) is believed to be hard in genus-1 and 2 curves (exponential complexity).

Reduction attack on supersingular elliptic curves:

▶ Menezes-Okamoto-Vanstone (1993), Frey-Rück (1994)

 $DLP_{\mathbb{G}} <_{\mathbb{P}} DLP_{\mathbb{G}_{T}}$ $\frac{dP}{dP} \longrightarrow \hat{e}(dP,P) = \hat{e}(P,P)^{d}.$

The MOV attack

The elliptic (hyperelliptic) curve discrete logarithm problem (ECDLP) is believed to be hard in genus-1 and 2 curves (exponential complexity).

Reduction attack on supersingular elliptic curves:

▶ Menezes-Okamoto-Vanstone (1993), Frey-Rück (1994)

For cryptographic applications on pairings over supersingular curves:

- The embedding degree is relatively small.
- Require the DLP in \mathbb{G}_T to be hard.

Algorithm for small characteristic DLP in \mathbb{F}_Q

Fastest general-purpose algorithm: Coppersmith (1984) of subexponential run time $L_Q[\frac{1}{3}, 1.526]$, where $L_Q[\alpha, c]$ with $0 < \alpha < 1$ and c > 0 denotes

 $L_Q[\alpha, c] = e^{[c+o(1)](\log Q)^{\alpha}(\log \log Q)^{1-\alpha}} = (\log Q)^{[c+o(1)]\left(\frac{\log Q}{\log \log Q}\right)^{\alpha}}.$

Algorithm for small characteristic DLP in \mathbb{F}_Q

Fastest general-purpose algorithm: Coppersmith (1984) of subexponential run time $L_Q[\frac{1}{3}, 1.526]$, where $L_Q[\alpha, c]$ with $0 < \alpha < 1$ and c > 0 denotes

$$L_Q[\alpha, c] = e^{[c+o(1)](\log Q)^{\alpha}(\log \log Q)^{1-\alpha}} = (\log Q)^{[c+o(1)]\left(\frac{\log Q}{\log \log Q}\right)^{\alpha}}$$

Table: Believed security for supersingular curves till 2012

Base field $(\mathbb{F}q)$	\mathbb{F}_{2^n}	\mathbb{F}_{3^n}	\mathbb{F}_{2^n}
Embedding degree (k)	4	6	12
Lower security ($\approx 2^{64}$)	n = 239	n = 97	<i>n</i> = 71
Medium security ($\approx 2^{80}$)	n = 373	<i>n</i> = 163	n = 127
Higher security ($\approx 2^{128}$)	n = 1223	<i>n</i> = 509	n = 367

In 2006, Joux and Lercier presented an algorithm with running time $L_Q[\frac{1}{3}, 1.442]$ when q and n are 'balanced'

 $q = L_Q[1/3, 3^{-2/3}], \quad n = 3^{2/3} \cdot (\log Q/(\log \log Q))^{2/3}.$

In 2006, Joux and Lercier presented an algorithm with running time $L_Q[\frac{1}{3}, 1.442]$ when q and n are 'balanced'

$$q = L_Q[1/3, 3^{-2/3}], \quad n = 3^{2/3} \cdot (\log Q/(\log \log Q))^{2/3}.$$

In 2012, Shinohara-Shimoyama-Hayashi-Takagi analyzed the Joux-Lercier algorithm applied to base fields \mathbb{F}_{3^n} for the case k = 6:

Base Field \mathbb{F}_{3^n}	<i>n</i> = 97	<i>n</i> = 163	<i>n</i> = 509
Security level	2 ^{52.79}	2 ^{68.17}	$2^{111.35}$

In 2006, Joux and Lercier presented an algorithm with running time $L_Q[\frac{1}{3}, 1.442]$ when q and n are 'balanced'

$$q = L_Q[1/3, 3^{-2/3}], \quad n = 3^{2/3} \cdot (\log Q/(\log \log Q))^{2/3}.$$

In 2012, Shinohara-Shimoyama-Hayashi-Takagi analyzed the Joux-Lercier algorithm applied to base fields \mathbb{F}_{3^n} for the case k = 6:

Base Field \mathbb{F}_{3^n}	<i>n</i> = 97	<i>n</i> = 163	<i>n</i> = 509
Security level	2 ^{52.79}	2 ^{68.17}	2 ^{111.35}

That same year, they solved the DLP in the order 923-bit subgroup of $\mathbb{F}_{3^{97}}$ in 103.74 CPU years (using 252 CPU cores).

In 2006, Joux and Lercier presented an algorithm with running time $L_Q[\frac{1}{3}, 1.442]$ when q and n are 'balanced'

$$q = L_Q[1/3, 3^{-2/3}], \quad n = 3^{2/3} \cdot (\log Q/(\log \log Q))^{2/3}.$$

In 2012, Shinohara-Shimoyama-Hayashi-Takagi analyzed the Joux-Lercier algorithm applied to base fields \mathbb{F}_{3^n} for the case k = 6:

Base Field \mathbb{F}_{3^n}	<i>n</i> = 97	<i>n</i> = 163	<i>n</i> = 509
Security level	2 ^{52.79}	2 ^{68.17}	2 ^{111.35}

That same year, they solved the DLP in the order 923-bit subgroup of $\mathbb{F}_{3^{97}}$ in 103.74 CPU years (using 252 CPU cores).

Later in 2012, Joux introduced a "pinpointing" technique that improved the Joux-Lercier algorithm to $L_Q[\frac{1}{3}, 0.961]$.

Let $Q = q^{dn}$, with q a power of 2 or 3, $n \approx q$ and d a small integer

Let $Q = q^{dn}$, with q a power of 2 or 3, $n \approx q$ and d a small integer

Feb 2013 - Joux:

$$L_Q[\frac{1}{4}+o(1),c].$$

- Let $Q = q^{dn}$, with q a power of 2 or 3, $n \approx q$ and d a small integer
 - Feb 2013 Joux:

$$L_Q[\frac{1}{4}+o(1),c].$$

Feb, May 2013 - Göloğlu, Granger, McGuire and Zumbrägel: ideas somewhat similar to Joux's.

- Let $Q = q^{dn}$, with q a power of 2 or 3, $n \approx q$ and d a small integer
 - Feb 2013 Joux:

$$L_Q[\frac{1}{4}+o(1),c].$$

Feb, May 2013 - Göloğlu, Granger, McGuire and Zumbrägel: ideas somewhat similar to Joux's.

Subsequent records

- ► Apr 2013 Göloğlu et al. solve DLP in
 ^{*}
 _{2⁶¹²⁰} =
 ^{*}
 ^{*}
 _{(2⁸)^{3·255}} in 750 CPU hours.
- ► May 2013 Joux solves DLP in F^{*}₂₆₁₆₈ = F^{*}_{(2⁸)^{3·257}} in 550 CPU hours.

- Let $Q = q^{dn}$, with q a power of 2 or 3, $n \approx q$ and d a small integer
 - Feb 2013 Joux:

$$L_Q[\frac{1}{4}+o(1),c].$$

Feb, May 2013 - Göloğlu, Granger, McGuire and Zumbrägel: ideas somewhat similar to Joux's.

Subsequent records

- ► Apr 2013 Göloğlu et al. solve DLP in
 ^{*}
 _{2⁶¹²⁰} =
 ^{*}
 ^{*}
 _{(2⁸)^{3·255}} in 750 CPU hours.
- ► May 2013 Joux solves DLP in F^{*}₂₆₁₆₈ = F^{*}_{(2⁸)^{3·257}} in 550 CPU hours.

Kummer/twisted Kummer extensions: \mathbb{F}_{q^n} with $n \mid q \neq 1$.

Overview on the Joux 2013 algorithm

Select polynomials $h_0, h_1 \in \mathbb{F}_{q^d}[X]$ such that

• degree of h_0 and h_1 is at most δ , a small positive integer.

• $X^q \cdot h_1 - h_0$ has a degree-n irreducible factor I_X in $\mathbb{F}_{a^d}[X]$.

Then $\mathbb{F}_{q^{dn}} = \mathbb{F}_{q^d}(x) = \mathbb{F}_{q^d}[X]/(I_X)$ and $x^q = \frac{h_0(x)}{h_1(x)}$.
Overview on the Joux 2013 algorithm

Select polynomials $h_0, h_1 \in \mathbb{F}_{q^d}[X]$ such that

• degree of h_0 and h_1 is at most δ , a small positive integer.

• $X^q \cdot h_1 - h_0$ has a degree-n irreducible factor I_X in $\mathbb{F}_{q^d}[X]$. Then $\mathbb{F}_{q^{dn}} = \mathbb{F}_{q^d}(x) = \mathbb{F}_{q^d}[X]/(I_X)$ and $x^q = \frac{h_0(x)}{h_1(x)}$. Let $g \in \mathbb{F}_{q^{dn}}^*$ be a generator, and let $h \in \mathbb{F}_{q^{dn}}^*$. Compute $\log_g h$:

Overview on the Joux 2013 algorithm

Select polynomials $h_0, h_1 \in \mathbb{F}_{q^d}[X]$ such that

• degree of h_0 and h_1 is at most δ , a small positive integer.

► $X^q \cdot h_1 - h_0$ has a degree-n irreducible factor I_X in $\mathbb{F}_{q^d}[X]$. Then $\mathbb{F}_{q^{dn}} = \mathbb{F}_{q^d}(x) = \mathbb{F}_{q^d}[X]/(I_X)$ and $x^q = \frac{h_0(x)}{h_1(x)}$.

Let $g\in \mathbb{F}_{q^{dn}}^{*}$ be a generator, and let $h\in \mathbb{F}_{q^{dn}}^{*}.$

Compute $\log_g h$:

► Factor base computation: find logarithms of all degree-1 elements (and degree-2 if d = 2) in F_{q^{dn}} in polynomial time.

Overview on the Joux 2013 algorithm

Select polynomials $h_0, h_1 \in \mathbb{F}_{q^d}[X]$ such that

• degree of h_0 and h_1 is at most δ , a small positive integer.

• $X^q \cdot h_1 - h_0$ has a degree-n irreducible factor I_X in $\mathbb{F}_{q^d}[X]$.

Then $\mathbb{F}_{q^{dn}} = \mathbb{F}_{q^d}(x) = \mathbb{F}_{q^d}[X]/(I_X)$ and $x^q = \frac{h_0(x)}{h_1(x)}$.

Let
$$g\in \mathbb{F}_{q^{dn}}^{*}$$
 be a generator, and let $h\in \mathbb{F}_{q^{dn}}^{*}.$

Compute $\log_g h$:

- ► Factor base computation: find logarithms of all degree-1 elements (and degree-2 if d = 2) in F_{q^{dn}} in polynomial time.
- Descent stage: log_g h is expressed as a linear combination of logs of elements in the factor base using classical methods and a new descent method (based on solving multivariate bilinear equations).

Descent Steps in $\mathbb{F}_{2^{8\cdot 3\cdot 257}}$

Small char. DLP: Attacking Type 1 pairings

Let $Q = q^{2n}$, with q a power of 2 or 3 and $n \le q + 2$.

Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

• quasi-polynomial time algorithm (QPA):

 $(\log Q)^{O(\log \log Q)} \approx (L_Q[-1,c])^{(\log Q)}.$

Let $Q = q^{2n}$, with q a power of 2 or 3 and $n \le q + 2$.

Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

quasi-polynomial time algorithm (QPA):

 $(\log Q)^{O(\log \log Q)} \approx (L_Q[-1,c])^{(\log Q)}.$

• asymptotically smaller than $L_Q[\alpha, c]$, for any $\alpha > 0$ and c > 0.

Let $Q = q^{2n}$, with q a power of 2 or 3 and $n \le q + 2$.

Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

quasi-polynomial time algorithm (QPA):

 $(\log Q)^{O(\log \log Q)} \approx (L_Q[-1,c])^{(\log Q)}.$

- asymptotically smaller than $L_Q[\alpha, c]$, for any $\alpha > 0$ and c > 0.
- same setup as in Joux's algorithm:

Let $Q = q^{2n}$, with q a power of 2 or 3 and $n \le q + 2$.

Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

quasi-polynomial time algorithm (QPA):

$$(\log Q)^{O(\log \log Q)} \approx (L_Q[-1,c])^{(\log Q)}$$

- asymptotically smaller than $L_Q[\alpha, c]$, for any $\alpha > 0$ and c > 0.
- same setup as in Joux's algorithm:
 - Factor base computation: find logarithms of linears in polynomial time.

Let $Q = q^{2n}$, with q a power of 2 or 3 and $n \le q + 2$.

Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

quasi-polynomial time algorithm (QPA):

$$(\log Q)^{O(\log \log Q)} \approx (L_Q[-1,c])^{(\log Q)}$$

- asymptotically smaller than $L_Q[\alpha, c]$, for any $\alpha > 0$ and c > 0.
- same setup as in Joux's algorithm:
 - Factor base computation: find logarithms of linears in polynomial time.
 - Descent stage: log_g h is expressed as a linear combination of logs of elements in the factor base using a descent strategy quite similar to Joux's method for computing logarithms of degree-2 elements.

Let $Q = q^{2n}$, with q a power of 2 or 3 and $n \le q + 2$.

Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

quasi-polynomial time algorithm (QPA):

 $(\log Q)^{O(\log \log Q)} \approx (L_Q[-1,c])^{(\log Q)}.$

- asymptotically smaller than $L_Q[\alpha, c]$, for any $\alpha > 0$ and c > 0.
- same setup as in Joux's algorithm:
 - Factor base computation: find logarithms of linears in polynomial time.
 - Descent stage: log_g h is expressed as a linear combination of logs of elements in the factor base using a descent strategy quite similar to Joux's method for computing logarithms of degree-2 elements.

[We have another QPA by Granger-Kleinjung-Zumbrägel from April 2014.]

Adj et al. (CINVESTAV)

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{3^{6-509}}$ can be computed much faster than previously believed:

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{3^{6}\cdot 50^{9}}$ can be computed much faster than previously believed:

DLP algorithm	Coppersmith04	JL06	Joux12	Joux13-QPA13
Run time	2 ¹²⁸	2 ¹¹¹	2 ¹⁰³	2 ⁷⁵

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{3^{6-509}}$ can be computed much faster than previously believed:

DLP algorithm	Coppersmith04	JL06	Joux12	Joux13-QPA13
Run time	2 ¹²⁸	2 ¹¹¹	2 ¹⁰³	2 ⁷⁵

We also analyzed the cryptographic DLP in the field $\mathbb{F}_{2^{12\cdot 367}}$ and found the new algorithms more effective (much more parallelizable) than the Joux 2012 algorithm:

DLP algorithm	Coppersmith04	Joux12	Joux13-QPA13
Run time	2 ¹²⁸	2 ⁹²	2 ⁹⁵

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{3^{6-509}}$ can be computed much faster than previously believed:

DLP algorithm	Coppersmith04	JL06	Joux12	Joux13-QPA13
Run time	2 ¹²⁸	2 ¹¹¹	2 ¹⁰³	2 ⁷⁵

We also analyzed the cryptographic DLP in the field $\mathbb{F}_{2^{12\cdot 367}}$ and found the new algorithms more effective (much more parallelizable) than the Joux 2012 algorithm:

DLP algorithm	Coppersmith04	Joux12	Joux13-QPA13
Run time	2 ¹²⁸	2 ⁹²	2 ⁹⁵

Our preliminary analysis suggested that the new algorithms have no effect in computing discrete logs in $\mathbb{F}_{2^{4\cdot 1223}}.$

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{3^{6-509}}$ can be computed much faster than previously believed:

DLP algorithm	Coppersmith04	JL06	Joux12	Joux13-QPA13
Run time	2 ¹²⁸	2 ¹¹¹	2 ¹⁰³	2 ⁷⁵

We also analyzed the cryptographic DLP in the field $\mathbb{F}_{2^{12\cdot 367}}$ and found the new algorithms more effective (much more parallelizable) than the Joux 2012 algorithm:

DLP algorithm	Coppersmith04	Joux12	Joux13-QPA13
Run time	2 ¹²⁸	2 ⁹²	2 ⁹⁵

Our preliminary analysis suggested that the new algorithms have no effect in computing discrete logs in $\mathbb{F}_{2^{4\cdot 1223}}$. [Incredibly optimistic!]

In ECC 2013, Granger presented (joint work with Zumbrägel) a modification of Joux's field representation:

- $\mathbb{F}_{q^{dn}} = \mathbb{F}_{q^d}[X]/(I_X)$ with I_X dividing $X \cdot h_1(X^q) h_0(X^q)$.
- $h_0(X), h_1(X)$ polynomials over $\mathbb{F}_q[X]$ of small degree δ .

In ECC 2013, Granger presented (joint work with Zumbrägel) a modification of Joux's field representation:

- $\mathbb{F}_{q^{dn}} = \mathbb{F}_{q^d}[X]/(I_X)$ with I_X dividing $X \cdot h_1(X^q) h_0(X^q)$.
- $h_0(X), h_1(X)$ polynomials over $\mathbb{F}_q[X]$ of small degree δ .

Very useful: allows to have $n \leq \delta \cdot q$ instead of necessarily $n \leq q + \delta$.

In ECC 2013, Granger presented (joint work with Zumbrägel) a modification of Joux's field representation:

- $\mathbb{F}_{q^{dn}} = \mathbb{F}_{q^d}[X]/(I_X)$ with I_X dividing $X \cdot h_1(X^q) h_0(X^q)$.
- $h_0(X), h_1(X)$ polynomials over $\mathbb{F}_q[X]$ of small degree δ .

Very useful: allows to have $n \le \delta \cdot q$ instead of necessarily $n \le q + \delta$. Resulting analysis:

DLP algorithm	Coppersmith04 Joux13-QPA13		GZ13
		(as analyzed by A. et al)	
Run time on $\mathbb{F}_{2^{12\cdot 367}}$	2 ¹²⁸	2 ⁹⁵	2 ⁷⁶
Run time on $\mathbb{F}_{2^{4\cdot 1223}}$	2 ¹²⁸	$\geq 2^{128}$	2 ⁹⁵

In ECC 2013, Granger presented (joint work with Zumbrägel) a modification of Joux's field representation:

- $\mathbb{F}_{q^{dn}} = \mathbb{F}_{q^d}[X]/(I_X)$ with I_X dividing $X \cdot h_1(X^q) h_0(X^q)$.
- $h_0(X), h_1(X)$ polynomials over $\mathbb{F}_q[X]$ of small degree δ .

Very useful: allows to have $n \leq \delta \cdot q$ instead of necessarily $n \leq q + \delta$. Resulting analysis:

DLP algorithm	Coppersmith04 Joux13-QPA13		GZ13
		(as analyzed by A. et al)	
Run time on $\mathbb{F}_{2^{12\cdot 367}}$	2 ¹²⁸	2 ⁹⁵	2 ⁷⁶
Run time on $\mathbb{F}_{2^{4\cdot 1223}}$	2 ¹²⁸	$\geq 2^{128}$	2 ⁹⁵

In December 2013, we used the Granger-Zumbrägel representation to show that the cryptographic DLP in $\mathbb{F}_{3^{6}\cdot 1^{429}}$ and $\mathbb{F}_{2^{4}\cdot 3041}$ can be solved in time 2^{96} and 2^{129} , respectively. [Initially believed to enjoy a 2^{192} security level.]

► January 27 2014, A.-Menezes-Oliveira-Rodríguez: 𝔽_{36·137}.

- ► January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{3^{6\cdot 137}}$.
 - We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^2 = x^3 x + 1$ defined over $\mathbb{F}_{3^{137}}$.

- ► January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{3^{6\cdot 137}}$.
 - We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^2 = x^3 x + 1$ defined over $\mathbb{F}_{3^{137}}$.
 - $\mathbb{F}_{3^{6}\cdot 137}$: 2⁷⁶ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6}\cdot 137}$ in $\mathbb{F}_{3^{4}\cdot 3\cdot 137}$.]

- ► January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{3^{6\cdot 137}}$.
 - We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^2 = x^3 x + 1$ defined over $\mathbb{F}_{3^{137}}$.
 - $\mathbb{F}_{3^{6}\cdot 137}$: 2⁷⁶ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6}\cdot 137}$ in $\mathbb{F}_{3^{4}\cdot 3\cdot 137}$.]
 - Field of size of 1303-bit and we worked in a 155-bit prime order subgroup. [previous record on characteristic 3: the 923-bit field $\mathbb{F}_{3^{6\cdot97}}$.]

- ► January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{3^{6\cdot 137}}$.
 - We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^2 = x^3 x + 1$ defined over $\mathbb{F}_{3^{137}}$.
 - $\mathbb{F}_{3^{6}\cdot 137}$: 2⁷⁶ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6}\cdot 137}$ in $\mathbb{F}_{3^{4}\cdot 3\cdot 137}$.]
 - Field of size of 1303-bit and we worked in a 155-bit prime order subgroup. [previous record on characteristic 3: the 923-bit field $\mathbb{F}_{3^{6\cdot97}}$.]
 - Main issue: only 50% of the degree-2 polynomial descended. Fix: adapt an idea of Coppersmith and employ a Joux and Göloğlu et al. strategy to get 97% of the quadratics descending while avoiding the remainder in the descent phase.

- ► January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{3^{6\cdot 137}}$.
 - We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^2 = x^3 x + 1$ defined over $\mathbb{F}_{3^{137}}$.
 - $\mathbb{F}_{3^{6}\cdot 137}$: 2⁷⁶ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6}\cdot 137}$ in $\mathbb{F}_{3^{4}\cdot 3\cdot 137}$.]
 - Field of size of 1303-bit and we worked in a 155-bit prime order subgroup. [previous record on characteristic 3: the 923-bit field $\mathbb{F}_{3^{6\cdot97}}$.]
 - Main issue: only 50% of the degree-2 polynomial descended. Fix: adapt an idea of Coppersmith and employ a Joux and Göloğlu et al. strategy to get 97% of the quadratics descending while avoiding the remainder in the descent phase.
 - Run time: 888 CPU hours. [previous record: 896313 CPU hours]

- ► January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{3^{6\cdot 137}}$.
 - We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^2 = x^3 x + 1$ defined over $\mathbb{F}_{3^{137}}$.
 - $\mathbb{F}_{3^{6}\cdot 137}$: 2⁷⁶ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6}\cdot 137}$ in $\mathbb{F}_{3^{4}\cdot 3\cdot 137}$.]
 - Field of size of 1303-bit and we worked in a 155-bit prime order subgroup. [previous record on characteristic 3: the 923-bit field $\mathbb{F}_{3^{6\cdot97}}$.]
 - Main issue: only 50% of the degree-2 polynomial descended. Fix: adapt an idea of Coppersmith and employ a Joux and Göloğlu et al. strategy to get 97% of the quadratics descending while avoiding the remainder in the descent phase.
 - Run time: 888 CPU hours. [previous record: 896313 CPU hours]
 - First computations of discrete logarithms in a cryptographic finite field using the new algorithms.

► January 30 2014, Granger-Kleinjung-Zumbrägel: $\mathbb{F}_{2^{12\cdot 367}}$, $\mathbb{F}_{2^{4\cdot 1223}}$

► January 30 2014, Granger-Kleinjung-Zumbrägel: F_{212.367}, F_{24.1223}

DLP algorithm	Copp.04	Joux13-QPA13	GZ13	GKZ14a
		(as analyzed by A. et al)		
Run time on $\mathbb{F}_{2^{12\cdot 367}}$	2 ¹²⁸	2 ⁹⁵	2 ⁷⁶	2 ⁴⁸
Run time on $\mathbb{F}_{2^{4} \cdot 1223}$	2 ¹²⁸	$\geq 2^{128}$	2 ⁹⁵	2 ⁵⁹

► January 30 2014, Granger-Kleinjung-Zumbrägel: F_{212.367}, F_{24.1223}

DLP algorithm	Copp.04	Joux13-QPA13	GZ13	GKZ14a
		(as analyzed by A. et al)		
Run time on $\mathbb{F}_{2^{12\cdot 367}}$	2 ¹²⁸	2 ⁹⁵	2 ⁷⁶	2 ⁴⁸
Run time on $\mathbb{F}_{2^{4} \cdot 1223}$	2 ¹²⁸	$\geq 2^{128}$	2 ⁹⁵	2 ⁵⁹

• Always start trying to descend an element down to elements of smaller degree staying in the same field.

► January 30 2014, Granger-Kleinjung-Zumbrägel: F_{212.367}, F_{24.1223}

DLP algorithm	Copp.04	Joux13-QPA13	GZ13	GKZ14a
		(as analyzed by A. et al)		
Run time on $\mathbb{F}_{2^{12\cdot 367}}$	2 ¹²⁸	2 ⁹⁵	2 ⁷⁶	2 ⁴⁸
Run time on $\mathbb{F}_{2^{4\cdot 1223}}$	2 ¹²⁸	$\geq 2^{128}$	2 ⁹⁵	2 ⁵⁹

- Always start trying to descend an element down to elements of smaller degree staying in the same field.
- Only when this is not possible, promote it into an extension field where it may split into smaller elements.

► January 30 2014, Granger-Kleinjung-Zumbrägel: 𝔽_{212.367}, 𝔽_{24.1223}

DLP algorithm	Copp.04	Joux13-QPA13	GZ13	GKZ14a
		(as analyzed by A. et al)		
Run time on $\mathbb{F}_{2^{12\cdot 367}}$	2 ¹²⁸	2 ⁹⁵	2 ⁷⁶	2 ⁴⁸
Run time on $\mathbb{F}_{2^{4} \cdot 1223}$	2 ¹²⁸	$\geq 2^{128}$	2 ⁹⁵	2 ⁵⁹

- Always start trying to descend an element down to elements of smaller degree staying in the same field.
- Only when this is not possible, promote it into an extension field where it may split into smaller elements.
- Not necessary to embed \mathbb{F}_{q^n} into larger extensions whenever $q \approx \delta \cdot n$, for some small integer δ .

► January 30 2014, Granger-Kleinjung-Zumbrägel: 𝔽_{212.367}, 𝔽_{24.1223}

DLP algorithm	Copp.04	Joux13-QPA13	GZ13	GKZ14a
		(as analyzed by A. et al)		
Run time on $\mathbb{F}_{2^{12\cdot 367}}$	2 ¹²⁸	2 ⁹⁵	2 ⁷⁶	2 ⁴⁸
Run time on $\mathbb{F}_{2^{4} \cdot 1223}$	2 ¹²⁸	$\geq 2^{128}$	2 ⁹⁵	2 ⁵⁹

- Always start trying to descend an element down to elements of smaller degree staying in the same field.
- Only when this is not possible, promote it into an extension field where it may split into smaller elements.
- Not necessary to embed \mathbb{F}_{q^n} into larger extensions whenever $q \approx \delta \cdot n$, for some small integer δ .
- Discrete logarithm computation in the cryptographic subgroup of $\mathbb{F}_{2^{12\cdot 367}}$ in 52,240 CPU hours.

• September 15 2014, Joux and Pierrot: $\mathbb{F}_{3^{5\cdot479}}$.

Solving DLP in \mathbb{F}_{q^n} when $q \approx \delta \cdot n$ for some small integer δ

- September 15 2014, Joux and Pierrot: $\mathbb{F}_{3^{5\cdot479}}$. Solving DLP in \mathbb{F}_{q^n} when $q \approx \delta \cdot n$ for some small integer δ
 - The descent phase works exactly as in [GKZ14a].

• September 15 2014, Joux and Pierrot: $\mathbb{F}_{3^{5\cdot479}}$.

Solving DLP in \mathbb{F}_{q^n} when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O(q^5)$.

• September 15 2014, Joux and Pierrot: $\mathbb{F}_{3^{5\cdot479}}$.

Solving DLP in \mathbb{F}_{q^n} when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O(q^5)$.
- Compute the logarithms of degree-3 elements solving q linear algebras in time $O(q^6)$.
More improvements

• September 15 2014, Joux and Pierrot: $\mathbb{F}_{3^{5\cdot479}}$.

Solving DLP in \mathbb{F}_{q^n} when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O(q^5)$.
- Compute the logarithms of degree-3 elements solving q linear algebras in time $O(q^6)$.
- Compute the logarithms of elements in a degree-4 family solving q linear algebras in time $O(q^6)$ and the logarithms of some other degree-4 families of smaller size.

More improvements

• September 15 2014, Joux and Pierrot: $\mathbb{F}_{3^{5\cdot479}}$.

Solving DLP in \mathbb{F}_{q^n} when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O(q^5)$.
- Compute the logarithms of degree-3 elements solving q linear algebras in time $O(q^6)$.
- Compute the logarithms of elements in a degree-4 family solving q linear algebras in time $O(q^6)$ and the logarithms of some other degree-4 families of smaller size.
- Discrete logarithm computation in the cryptographic subgroup of $\mathbb{F}_{3^{5\cdot479}}$ in time 8,600 CPU hours.

More improvements

• September 15 2014, Joux and Pierrot: $\mathbb{F}_{3^{5\cdot479}}$.

Solving DLP in \mathbb{F}_{q^n} when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O(q^5)$.
- Compute the logarithms of degree-3 elements solving q linear algebras in time $O(q^6)$.
- Compute the logarithms of elements in a degree-4 family solving q linear algebras in time $O(q^6)$ and the logarithms of some other degree-4 families of smaller size.
- Discrete logarithm computation in the cryptographic subgroup of $\mathbb{F}_{3^{5\cdot479}}$ in time 8,600 CPU hours.
- Current record in characteristic three.

A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodríguez: $\mathbb{F}_{\mathbf{3}^{6\cdot509}}$

• Want to break the field $\mathbb{F}_{3^{6\cdot 509}}$ of initial proposed security 2^{128} .

- Want to break the field $\mathbb{F}_{3^{6\cdot 509}}$ of initial proposed security 2^{128} .
- ▶ Use JP14 factor base comput. method + GKZ14a descent strategy.

- Want to break the field $\mathbb{F}_{3^{6\cdot 509}}$ of initial proposed security 2^{128} .
- ▶ Use JP14 factor base comput. method + GKZ14a descent strategy.

DLP algorithm	Copp.04	JL06	Joux12	Joux13-QPA13	JP14-GKZ14.
Run time	2 ¹²⁸	2111	2 ¹⁰³	2 ⁷⁵	2 ⁴⁹ .

A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodríguez: $\mathbb{F}_{3^{6\cdot 509}}$

- Want to break the field $\mathbb{F}_{3^{6\cdot 509}}$ of initial proposed security 2^{128} .
- ▶ Use JP14 factor base comput. method + GKZ14a descent strategy.

DLP algorithm	Copp.04	JL06	Joux12	Joux13-QPA13	JP14-GKZ14.
Run time	2 ¹²⁸	2 ¹¹¹	2 ¹⁰³	2 ⁷⁵	2 ⁴⁹ .

 Computation of logarithms of degree-1, 2, 3 elements: already done 378163 CPU hours in a cluster of 5096 cores (Abacus Cinvestav).

- Want to break the field $\mathbb{F}_{3^{6\cdot 509}}$ of initial proposed security 2^{128} .
- ▶ Use JP14 factor base comput. method + GKZ14a descent strategy.

DLP algorithm	Copp.04	JL06	Joux12	Joux13-QPA13	JP14-GKZ14.
Run time	2 ¹²⁸	2 ¹¹¹	2 ¹⁰³	2 ⁷⁵	2 ⁴⁹ .

- Computation of logarithms of degree-1, 2, 3 elements: already done 378163 CPU hours in a cluster of 5096 cores (Abacus Cinvestav).
- Descent of a challenge element 508-to-15: already done 619413 CPU hours using about 300 cores.

- Want to break the field $\mathbb{F}_{3^{6\cdot 509}}$ of initial proposed security 2^{128} .
- ▶ Use JP14 factor base comput. method + GKZ14a descent strategy.

DLP algorithm	Copp.04	JL06	Joux12	Joux13-QPA13	JP14-GKZ14.
Run time	2 ¹²⁸	2 ¹¹¹	2 ¹⁰³	2 ⁷⁵	2 ⁴⁹ .

- Computation of logarithms of degree-1, 2, 3 elements: already done 378163 CPU hours in a cluster of 5096 cores (Abacus Cinvestav).
- Descent of a challenge element 508-to-15: already done 619413 CPU hours using about 300 cores.
- Main issue: management of small degree elements during the descent (billions of nodes expected).

▶ Get our own C implementation of Faugère's F4 or F5 algorithm.

- ▶ Get our own C implementation of Faugère's F4 or F5 algorithm.
- ► Improve our C implementation for solving linear algebra systems.

- ► Get our own C implementation of Faugère's F4 or F5 algorithm.
- Improve our C implementation for solving linear algebra systems.
- Find a polynomial-time algorithm for DLP in \mathbb{F}_{2^n} or \mathbb{F}_{3^n} .

- ► Get our own C implementation of Faugère's F4 or F5 algorithm.
- ► Improve our C implementation for solving linear algebra systems.
- ▶ Find a polynomial-time algorithm for DLP in F_{2ⁿ} or F_{3ⁿ}. [It's just a dream!]

- ► Get our own C implementation of Faugère's F4 or F5 algorithm.
- ► Improve our C implementation for solving linear algebra systems.
- ▶ Find a polynomial-time algorithm for DLP in 𝔽_{2ⁿ} or 𝔽_{3ⁿ}. [It's just a dream!]

Thanks For Your Attention!