Discrete logarithms in small characteristic finite fields: Attacking Type 1 pairing-based cryptography

Joint work with:

Alfred Menezes	U. of Waterloo, Canada
Thomaz Oliveira	CINVESTAV, Mexico
Francisco Rodríguez-Henríquez	CINVESTAV, Mexico

CATREL Workshop, September 1-2 2015

DLP on general groups

DLP on general groups

Let \mathbb{H} be a cyclic group of order N with a generator g then

$$
\mathbb{H}=\left\{g^{i}: 0 \leq i<N\right\} .
$$

DLP on general groups

Let \mathbb{H} be a cyclic group of order N with a generator g then

$$
\mathbb{H}=\left\{g^{i}: 0 \leq i<N\right\} .
$$

The discrete logarithm problem (DLP) in \mathbb{H} consists in:

- Given: $h \in \mathbb{H}$,
- Find: $0 \leq i<N$, such that $h=g^{i}$.

Notation: i is the discrete logarithm of h in base g, denoted $\log _{g} h$.

DLP on general groups

Let \mathbb{H} be a cyclic group of order N with a generator g then

$$
\mathbb{H}=\left\{g^{i}: 0 \leq i<N\right\}
$$

The discrete logarithm problem (DLP) in \mathbb{H} consists in:

- Given: $h \in \mathbb{H}$,
- Find: $0 \leq i<N$, such that $h=g^{i}$.

Notation: i is the discrete logarithm of h in base g, denoted $\log _{g} h$.
For the general case where we don't know very specific structures on \mathbb{H}, this problem is believed to be hard (exponential run time in the size of N).

Symmetric bilinear pairings

Symmetric bilinear pairings

- $(\mathbb{G},+),\left(\mathbb{G}_{T}, \cdot\right)$, cyclic groups of order $|\mathbb{G}|=\left|\mathbb{G}_{T}\right|=r$.

Symmetric bilinear pairings

- $(\mathbb{G},+),\left(\mathbb{G}_{T}, \cdot\right)$, cyclic groups of order $|\mathbb{G}|=\left|\mathbb{G}_{T}\right|=r$.
- A symmetric bilinear pairing on $\left(\mathbb{G}, \mathbb{G}_{T}\right)$ is a map

$$
\hat{e}: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T},
$$

such that

- $\hat{e}(P, P) \neq 1$ for $P \neq 0_{\mathbb{G}}$,
- $\hat{e}\left(Q_{1}+Q_{2}, R\right)=\hat{e}\left(Q_{1}, R\right) \cdot \hat{e}\left(Q_{2}, R\right)$,
- $\hat{e}\left(Q, R_{1}+R_{2}\right)=\hat{e}\left(Q, R_{1}\right) \cdot \hat{e}\left(Q, R_{2}\right)$.

Symmetric bilinear pairings

- $(\mathbb{G},+),\left(\mathbb{G}_{T}, \cdot\right)$, cyclic groups of order $|\mathbb{G}|=\left|\mathbb{G}_{T}\right|=r$.
- A symmetric bilinear pairing on $\left(\mathbb{G}, \mathbb{G}_{T}\right)$ is a map

$$
\hat{e}: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T},
$$

such that

- $\hat{e}(P, P) \neq 1$ for $P \neq 0_{\mathbb{G}}$,
- $\hat{e}\left(Q_{1}+Q_{2}, R\right)=\hat{e}\left(Q_{1}, R\right) \cdot \hat{e}\left(Q_{2}, R\right)$,
- $\hat{e}\left(Q, R_{1}+R_{2}\right)=\hat{e}\left(Q, R_{1}\right) \cdot \hat{e}\left(Q, R_{2}\right)$.

For cryptographic purpose, we want it to be efficiently computable.

Symmetric bilinear pairings

- $(\mathbb{G},+),\left(\mathbb{G}_{T}, \cdot\right)$, cyclic groups of order $|\mathbb{G}|=\left|\mathbb{G}_{T}\right|=r$.
- A symmetric bilinear pairing on $\left(\mathbb{G}, \mathbb{G}_{T}\right)$ is a map

$$
\hat{e}: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T},
$$

such that

- $\hat{e}(P, P) \neq 1$ for $P \neq 0_{\mathbb{G}}$,
- $\hat{e}\left(Q_{1}+Q_{2}, R\right)=\hat{e}\left(Q_{1}, R\right) \cdot \hat{e}\left(Q_{2}, R\right)$,
- $\hat{e}\left(Q, R_{1}+R_{2}\right)=\hat{e}\left(Q, R_{1}\right) \cdot \hat{e}\left(Q, R_{2}\right)$.

For cryptographic purpose, we want it to be efficiently computable.

- Immediate property: for any two integers k_{1} and k_{2},

$$
\hat{e}\left(k_{1} Q, k_{2} R\right)=\hat{e}(Q, R)^{k_{1} k_{2}} .
$$

Type 1 pairing-based cryptography

A Type 1 paring means that we have

Type 1 pairing-based cryptography

A Type 1 paring means that we have

- \mathbb{G} is a subgroup of prime order r of either

Type 1 pairing-based cryptography

A Type 1 paring means that we have

- \mathbb{G} is a subgroup of prime order r of either
- $E\left(\mathbb{F}_{q}\right)$, the group of rational points of an elliptic curve E; or

Type 1 pairing-based cryptography

A Type 1 paring means that we have

- \mathbb{G} is a subgroup of prime order r of either
- $E\left(\mathbb{F}_{q}\right)$, the group of rational points of an elliptic curve E; or
- $\operatorname{Jac}_{C}\left(\mathbb{F}_{q}\right)$, the jacobian of a genus-2 hyperelliptic curve C.

Type 1 pairing-based cryptography

A Type 1 paring means that we have

- \mathbb{G} is a subgroup of prime order r of either
- $E\left(\mathbb{F}_{q}\right)$, the group of rational points of an elliptic curve E; or
- Jac $C_{C}\left(\mathbb{F}_{q}\right)$, the jacobian of a genus-2 hyperelliptic curve C.
- \mathbb{G}_{T} is the subgroup of order r of $\mathbb{F}_{q^{k}}{ }^{k}$
- k is the embedding degree of \mathbb{G}, that is the smallest positive integer k such that $r \mid\left(q^{k}-1\right)$.

Type 1 pairing-based cryptography

A Type 1 paring means that we have

- \mathbb{G} is a subgroup of prime order r of either
- $E\left(\mathbb{F}_{q}\right)$, the group of rational points of an elliptic curve E; or
- $\operatorname{Jac} C_{C}\left(\mathbb{F}_{q}\right)$, the jacobian of a genus-2 hyperelliptic curve C.
- \mathbb{G}_{T} is the subgroup of order r of $\mathbb{F}_{q^{k}}{ }^{k}$
- k is the embedding degree of \mathbb{G}, that is the smallest positive integer k such that $r \mid\left(q^{k}-1\right)$.
- Used pairing maps:
- Weil pairings.
- Tate pairings and modifications (Eta, Ate ...).

Main Type 1 pairings

Most interesting small characteristic Type 1 pairings:

Main Type 1 pairings

Most interesting small characteristic Type 1 pairings:

- The $k=4$ pairings derived from supersingular elliptic curves over $\mathbb{F}_{2^{n}}$:
- $Y^{2}+Y=X^{3}+X$; and
- $Y^{2}+Y=X^{3}+X+1$.

Main Type 1 pairings

Most interesting small characteristic Type 1 pairings:

- The $k=4$ pairings derived from supersingular elliptic curves over $\mathbb{F}_{2 n}$:
- $Y^{2}+Y=X^{3}+X$; and
- $Y^{2}+Y=X^{3}+X+1$.
- The $k=6$ pairings derived from supersingular elliptic curves over $\mathbb{F}_{3^{n}}$:
- $Y^{2}=X^{3}-X+1$; and
- $Y^{2}=X^{3}-X-1$.

Main Type 1 pairings

Most interesting small characteristic Type 1 pairings:

- The $k=4$ pairings derived from supersingular elliptic curves over $\mathbb{F}_{2 n}$:
- $Y^{2}+Y=X^{3}+X$; and
- $Y^{2}+Y=X^{3}+X+1$.
- The $k=6$ pairings derived from supersingular elliptic curves over $\mathbb{F}_{3 n}$:
- $Y^{2}=X^{3}-X+1$; and
- $Y^{2}=X^{3}-X-1$.
- The $k=12$ pairing derived from supersingular gen.-2 curves over $\mathbb{F}_{2^{n}}$:
- $Y^{2}+Y=X^{5}+X^{3}$; and
- $Y^{2}+Y=X^{5}+X^{3}+1$.

Example of protocols

- Identity-based non-interactive key exchange
- Sakai-Oghishi-Kasahara, 2000.
- One-round three-party key agreement
- Joux, 2000.
- Identity-based encryption
- Boneh-Franklin, 2001.
- Sakai-Kasahara, 2001.
- Short digital signatures
- Boneh-Lynn-Shacham, 2001.
- Zang-Safavi-Naini-Susilo, 2004.

The MOV attack

The elliptic (hyperelliptic) curve discrete logarithm problem (ECDLP) is believed to be hard in genus-1 and 2 curves (exponential complexity).

The MOV attack

The elliptic (hyperelliptic) curve discrete logarithm problem (ECDLP) is believed to be hard in genus-1 and 2 curves (exponential complexity).

Reduction attack on supersingular elliptic curves:

- Menezes-Okamoto-Vanstone (1993), Frey-Rück (1994)

$$
\begin{array}{ccc}
\operatorname{DLP}_{\mathbb{G}} & <\mathrm{P} & \operatorname{DLP}_{\mathbb{G}_{T}} \\
d P & \longrightarrow & \hat{e}(d P, P)=\hat{e}(P, P)^{d} .
\end{array}
$$

The MOV attack

The elliptic (hyperelliptic) curve discrete logarithm problem (ECDLP) is believed to be hard in genus-1 and 2 curves (exponential complexity).

Reduction attack on supersingular elliptic curves:

- Menezes-Okamoto-Vanstone (1993), Frey-Rück (1994)

$\mathrm{DLP}_{\mathbb{G}}$	$<\mathrm{P}$	$\operatorname{DLP}_{\mathbb{G}_{T}}$
$d P$	\longrightarrow	$\hat{e}(d P, P)=\hat{e}(P, P)^{d}$.

- For cryptographic applications on pairings over supersingular curves:
- The embedding degree is relatively small.
- Require the DLP in \mathbb{G}_{T} to be hard.

Algorithm for small characteristic DLP in \mathbb{F}_{Q}

Fastest general-purpose algorithm: Coppersmith (1984) of subexponential run time $L_{Q}\left[\frac{1}{3}, 1.526\right]$, where $L_{Q}[\alpha, c]$ with $0<\alpha<1$ and $c>0$ denotes

$$
L_{Q}[\alpha, c]=e^{[c+o(1)](\log Q)^{\alpha}(\log \log Q)^{1-\alpha}}=(\log Q)^{[c+o(1)]\left(\frac{\log Q}{\log \log Q}\right)^{\alpha}} .
$$

Algorithm for small characteristic DLP in \mathbb{F}_{Q}

Fastest general-purpose algorithm: Coppersmith (1984) of subexponential run time $L_{Q}\left[\frac{1}{3}, 1.526\right]$, where $L_{Q}[\alpha, c]$ with $0<\alpha<1$ and $c>0$ denotes

$$
L_{Q}[\alpha, c]=e^{[c+o(1)](\log Q)^{\alpha}(\log \log Q)^{1-\alpha}}=(\log Q)^{[c+o(1)]\left(\frac{\log Q}{\log \log Q}\right)^{\alpha}} .
$$

Table: Believed security for supersingular curves till 2012

Base field $(\mathbb{F} q)$	$\mathbb{F}_{2^{n}}$	$\mathbb{F}_{3^{n}}$	$\mathbb{F}_{2^{n}}$
Embedding degree (k)	4	6	12
Lower security $\left(\approx 2^{64}\right)$	$n=239$	$n=97$	$n=71$
Medium security $\left(\approx 2^{80}\right)$	$n=373$	$n=163$	$n=127$
Higher security $\left(\approx 2^{128}\right)$	$n=1223$	$n=509$	$n=367$

Joux-Lercier Algorithm for $\mathbb{F}_{Q}=\mathbb{F}_{q^{n}}$

In 2006, Joux and Lercier presented an algorithm with running time $L_{Q}\left[\frac{1}{3}, 1.442\right]$ when q and n are 'balanced'

$$
q=L_{Q}\left[1 / 3,3^{-2 / 3}\right], \quad n=3^{2 / 3} \cdot(\log Q /(\log \log Q))^{2 / 3}
$$

Joux-Lercier Algorithm for $\mathbb{F}_{Q}=\mathbb{F}_{q^{n}}$

In 2006, Joux and Lercier presented an algorithm with running time $L_{Q}\left[\frac{1}{3}, 1.442\right]$ when q and n are 'balanced'

$$
q=L_{Q}\left[1 / 3,3^{-2 / 3}\right], \quad n=3^{2 / 3} \cdot(\log Q /(\log \log Q))^{2 / 3} .
$$

In 2012, Shinohara-Shimoyama-Hayashi-Takagi analyzed the Joux-Lercier algorithm applied to base fields $\mathbb{F}_{3^{n}}$ for the case $k=6$:

Base Field $\mathbb{F}_{3^{n}}$	$n=97$	$n=163$	$n=509$
Security level	$2^{52.79}$	$2^{68.17}$	$2^{111.35}$

Joux-Lercier Algorithm for $\mathbb{F}_{Q}=\mathbb{F}_{q^{n}}$

In 2006, Joux and Lercier presented an algorithm with running time $L_{Q}\left[\frac{1}{3}, 1.442\right]$ when q and n are 'balanced'

$$
q=L_{Q}\left[1 / 3,3^{-2 / 3}\right], \quad n=3^{2 / 3} \cdot(\log Q /(\log \log Q))^{2 / 3} .
$$

In 2012, Shinohara-Shimoyama-Hayashi-Takagi analyzed the Joux-Lercier algorithm applied to base fields $\mathbb{F}_{3^{n}}$ for the case $k=6$:

Base Field $\mathbb{F}_{3^{n}}$	$n=97$	$n=163$	$n=509$
Security level	$2^{52.79}$	$2^{68.17}$	$2^{111.35}$

That same year, they solved the DLP in the order 923-bit subgroup of \mathbb{F}_{397} in 103.74 CPU years (using 252 CPU cores).

Joux-Lercier Algorithm for $\mathbb{F}_{Q}=\mathbb{F}_{q^{n}}$

In 2006, Joux and Lercier presented an algorithm with running time $L_{Q}\left[\frac{1}{3}, 1.442\right]$ when q and n are 'balanced'

$$
q=L_{Q}\left[1 / 3,3^{-2 / 3}\right], \quad n=3^{2 / 3} \cdot(\log Q /(\log \log Q))^{2 / 3}
$$

In 2012, Shinohara-Shimoyama-Hayashi-Takagi analyzed the Joux-Lercier algorithm applied to base fields $\mathbb{F}_{3^{n}}$ for the case $k=6$:

Base Field $\mathbb{F}_{3^{n}}$	$n=97$	$n=163$	$n=509$
Security level	$2^{52.79}$	$2^{68.17}$	$2^{111.35}$

That same year, they solved the DLP in the order 923-bit subgroup of \mathbb{F}_{397} in 103.74 CPU years (using 252 CPU cores).

Later in 2012, Joux introduced a "pinpointing" technique that improved the Joux-Lercier algorithm to $L_{Q}\left[\frac{1}{3}, 0.961\right]$.

2013's advances

Let $Q=q^{d n}$, with q a power of 2 or $3, n \approx q$ and d a small integer

2013's advances

Let $Q=q^{d n}$, with q a power of 2 or $3, n \approx q$ and d a small integer

- Feb 2013 - Joux:

$$
L_{Q}\left[\frac{1}{4}+o(1), c\right] .
$$

2013's advances

Let $Q=q^{d n}$, with q a power of 2 or $3, n \approx q$ and d a small integer

- Feb 2013 - Joux:

$$
L_{Q}\left[\frac{1}{4}+o(1), c\right] .
$$

- Feb, May 2013 - Göloğlu, Granger, McGuire and Zumbrägel: ideas somewhat similar to Joux's.

2013's advances

Let $Q=q^{d n}$, with q a power of 2 or $3, n \approx q$ and d a small integer

- Feb 2013 - Joux:

$$
L_{Q}\left[\frac{1}{4}+o(1), c\right] .
$$

- Feb, May 2013 - Göloğlu, Granger, McGuire and Zumbrägel: ideas somewhat similar to Joux's.

Subsequent records

- Apr 2013 - Göloğlu et al. solve DLP in $\mathbb{F}_{2^{6120}}^{*}=\mathbb{F}_{\left(2^{8}\right)^{3.255}}^{*}$ in 750 CPU hours.
- May 2013 - Joux solves DLP in $\mathbb{F}_{2^{6168}}^{*}=\mathbb{F}_{\left(2^{8}\right)}^{*}{ }^{3.257}$ in 550 CPU hours.

2013's advances

Let $Q=q^{d n}$, with q a power of 2 or $3, n \approx q$ and d a small integer

- Feb 2013 - Joux:

$$
L_{Q}\left[\frac{1}{4}+o(1), c\right] .
$$

- Feb, May 2013 - Göloğlu, Granger, McGuire and Zumbrägel: ideas somewhat similar to Joux's.

Subsequent records

- Apr 2013 - Göloğlu et al. solve DLP in $\mathbb{F}_{2^{6120}}^{*}=\mathbb{F}_{\left(2^{8}\right){ }^{3.255}}^{*}$ in 750 CPU hours.
- May 2013 - Joux solves DLP in $\mathbb{F}_{2^{6168}}^{*}=\mathbb{F}_{\left(2^{8}\right)^{3.257}}^{*}$ in 550 CPU hours.

Kummer/twisted Kummer extensions: $\mathbb{F}_{q^{n}}$ with $n \mid q \mp 1$.

Overview on the Joux 2013 algorithm

Select polynomials $h_{0}, h_{1} \in \mathbb{F}_{q^{d}}[X]$ such that

- degree of h_{0} and h_{1} is at most δ, a small positive integer.
- $X^{q} \cdot h_{1}-h_{0}$ has a degree-n irreducible factor I_{X} in $\mathbb{F}_{q^{d}}[X]$.

Then $\mathbb{F}_{q^{d n}}=\mathbb{F}_{q^{d}}(x)=\mathbb{F}_{q^{d}}[X] /\left(I_{X}\right)$ and $x^{q}=\frac{h_{0}(x)}{h_{1}(x)}$.

Overview on the Joux 2013 algorithm

Select polynomials $h_{0}, h_{1} \in \mathbb{F}_{q^{d}}[X]$ such that

- degree of h_{0} and h_{1} is at most δ, a small positive integer.
- $X^{q} \cdot h_{1}-h_{0}$ has a degree-n irreducible factor I_{X} in $\mathbb{F}_{q^{d}}[X]$.

Then $\mathbb{F}_{q^{d n}}=\mathbb{F}_{q^{d}}(x)=\mathbb{F}_{q^{d}}[X] /\left(I_{X}\right)$ and $x^{q}=\frac{h_{0}(x)}{h_{1}(x)}$.
Let $g \in \mathbb{F}_{q^{d n}}^{*}$ be a generator, and let $h \in \mathbb{F}_{q^{d n}}^{*}$.
Compute $\log _{g} h$:

Overview on the Joux 2013 algorithm

Select polynomials $h_{0}, h_{1} \in \mathbb{F}_{q^{d}}[X]$ such that

- degree of h_{0} and h_{1} is at most δ, a small positive integer.
- $X^{q} \cdot h_{1}-h_{0}$ has a degree-n irreducible factor I_{X} in $\mathbb{F}_{q^{d}}[X]$.

Then $\mathbb{F}_{q^{d n}}=\mathbb{F}_{q^{d}}(x)=\mathbb{F}_{q^{d}}[X] /\left(I_{X}\right)$ and $x^{q}=\frac{h_{0}(x)}{h_{1}(x)}$.
Let $g \in \mathbb{F}_{q^{d n}}^{*}$ be a generator, and let $h \in \mathbb{F}_{q^{d n}}^{*}$.
Compute $\log _{g} h$:

- Factor base computation: find logarithms of all degree-1 elements (and degree-2 if $d=2$) in $\mathbb{F}_{q^{d n}}$ in polynomial time.

Overview on the Joux 2013 algorithm

Select polynomials $h_{0}, h_{1} \in \mathbb{F}_{q^{d}}[X]$ such that

- degree of h_{0} and h_{1} is at most δ, a small positive integer.
- $X^{q} \cdot h_{1}-h_{0}$ has a degree-n irreducible factor I_{X} in $\mathbb{F}_{q^{d}}[X]$.

Then $\mathbb{F}_{q^{d n}}=\mathbb{F}_{q^{d}}(x)=\mathbb{F}_{q^{d}}[X] /\left(I_{X}\right)$ and $x^{q}=\frac{h_{0}(x)}{h_{1}(x)}$.
Let $g \in \mathbb{F}_{q^{d n}}^{*}$ be a generator, and let $h \in \mathbb{F}_{q^{d n}}^{*}$.
Compute $\log _{g} h$:

- Factor base computation: find logarithms of all degree-1 elements (and degree-2 if $d=2$) in $\mathbb{F}_{q^{d n}}$ in polynomial time.
- Descent stage: $\log _{g} h$ is expressed as a linear combination of logs of elements in the factor base using classical methods and a new descent method (based on solving multivariate bilinear equations).

Descent Steps in $\mathbb{F}_{2^{8 \cdot 3 \cdot 257}}$

QPA: a much faster algorithm

Let $Q=q^{2 n}$, with q a power of 2 or 3 and $n \leq q+2$.
Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

- quasi-polynomial time algorithm (QPA):

$$
(\log Q)^{O(\log \log Q)} \approx\left(L_{Q}[-1, c]\right)^{(\log Q)}
$$

QPA: a much faster algorithm

Let $Q=q^{2 n}$, with q a power of 2 or 3 and $n \leq q+2$.
Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

- quasi-polynomial time algorithm (QPA):

$$
(\log Q)^{O(\log \log Q)} \approx\left(L_{Q}[-1, c]\right)^{(\log Q)}
$$

- asymptotically smaller than $L_{Q}[\alpha, c]$, for any $\alpha>0$ and $c>0$.

QPA: a much faster algorithm

Let $Q=q^{2 n}$, with q a power of 2 or 3 and $n \leq q+2$.
Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

- quasi-polynomial time algorithm (QPA):

$$
(\log Q)^{O(\log \log Q)} \approx\left(L_{Q}[-1, c]\right)^{(\log Q)}
$$

- asymptotically smaller than $L_{Q}[\alpha, c]$, for any $\alpha>0$ and $c>0$.
- same setup as in Joux's algorithm:

QPA: a much faster algorithm

Let $Q=q^{2 n}$, with q a power of 2 or 3 and $n \leq q+2$.
Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

- quasi-polynomial time algorithm (QPA):

$$
(\log Q)^{O(\log \log Q)} \approx\left(L_{Q}[-1, c]\right)^{(\log Q)}
$$

- asymptotically smaller than $L_{Q}[\alpha, c]$, for any $\alpha>0$ and $c>0$.
- same setup as in Joux's algorithm:
- Factor base computation: find logarithms of linears in polynomial time.

QPA: a much faster algorithm

Let $Q=q^{2 n}$, with q a power of 2 or 3 and $n \leq q+2$.
Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

- quasi-polynomial time algorithm (QPA):

$$
(\log Q)^{O(\log \log Q)} \approx\left(L_{Q}[-1, c]\right)^{(\log Q)} .
$$

- asymptotically smaller than $L_{Q}[\alpha, c]$, for any $\alpha>0$ and $c>0$.
- same setup as in Joux's algorithm:
- Factor base computation: find logarithms of linears in polynomial time.
- Descent stage: $\log _{g} h$ is expressed as a linear combination of logs of elements in the factor base using a descent strategy quite similar to Joux's method for computing logarithms of degree-2 elements.

QPA: a much faster algorithm

Let $Q=q^{2 n}$, with q a power of 2 or 3 and $n \leq q+2$.
Jun 2013 - Barbulescu, Gaudry, Joux and Thomé:

- quasi-polynomial time algorithm (QPA):

$$
(\log Q)^{O(\log \log Q)} \approx\left(L_{Q}[-1, c]\right)^{(\log Q)} .
$$

- asymptotically smaller than $L_{Q}[\alpha, c]$, for any $\alpha>0$ and $c>0$.
- same setup as in Joux's algorithm:
- Factor base computation: find logarithms of linears in polynomial time.
- Descent stage: $\log _{g} h$ is expressed as a linear combination of logs of elements in the factor base using a descent strategy quite similar to Joux's method for computing logarithms of degree-2 elements.
[We have another QPA by Granger-Kleinjung-Zumbrägel from April 2014.]

First contributions

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{36.509}$ can be computed much faster than previously believed:

First contributions

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{36.509}$ can be computed much faster than previously believed:

DLP algorithm	Coppersmith04	JL06	Joux12	Joux13-QPA13
Run time	2^{128}	2^{111}	2^{103}	2^{75}

First contributions

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{36.509}$ can be computed much faster than previously believed:

DLP algorithm	Coppersmith04	JL06	Joux12	Joux13-QPA13
Run time	2^{128}	2^{111}	2^{103}	2^{75}

We also analyzed the cryptographic DLP in the field $\mathbb{F}_{2^{12 \cdot 367}}$ and found the new algorithms more effective (much more parallelizable) than the Joux 2012 algorithm:

DLP algorithm	Coppersmith04	Joux12	Joux13-QPA13
Run time	2^{128}	2^{92}	2^{95}

First contributions

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{36.509}$ can be computed much faster than previously believed:

DLP algorithm	Coppersmith04	JL06	Joux12	Joux13-QPA13
Run time	2^{128}	2^{111}	2^{103}	2^{75}

We also analyzed the cryptographic DLP in the field $\mathbb{F}_{2^{12 \cdot 367}}$ and found the new algorithms more effective (much more parallelizable) than the Joux 2012 algorithm:

DLP algorithm	Coppersmith04	Joux12	Joux13-QPA13
Run time	2^{128}	2^{92}	2^{95}

Our preliminary analysis suggested that the new algorithms have no effect in computing discrete logs in $\mathbb{F}_{2^{4 \cdot 1223}}$.

First contributions

We combined the Joux 2013 algorithm and QPA to show in a concrete analysis that the cryptographic DLP in the field $\mathbb{F}_{36.509}$ can be computed much faster than previously believed:

DLP algorithm	Coppersmith04	JL06	Joux12	Joux13-QPA13
Run time	2^{128}	2^{111}	2^{103}	2^{75}

We also analyzed the cryptographic DLP in the field $\mathbb{F}_{2^{12 \cdot 367}}$ and found the new algorithms more effective (much more parallelizable) than the Joux 2012 algorithm:

DLP algorithm	Coppersmith04	Joux12	Joux13-QPA13
Run time	2^{128}	2^{92}	2^{95}

Our preliminary analysis suggested that the new algorithms have no effect in computing discrete logs in $\mathbb{F}_{2^{4 \cdot 1223}}$. [Incredibly optimistic!]

A new polynomial representation

In ECC 2013, Granger presented (joint work with Zumbrägel) a modification of Joux's field representation:

- $\mathbb{F}_{q^{d n}}=\mathbb{F}_{q^{d}}[X] /\left(I_{X}\right)$ with I_{X} dividing $X \cdot h_{1}\left(X^{q}\right)-h_{0}\left(X^{q}\right)$.
- $h_{0}(X), h_{1}(X)$ polynomials over $\mathbb{F}_{q}[X]$ of small degree δ.

A new polynomial representation

In ECC 2013, Granger presented (joint work with Zumbrägel) a modification of Joux's field representation:

- $\mathbb{F}_{q^{d n}}=\mathbb{F}_{q^{d}}[X] /\left(I_{X}\right)$ with I_{X} dividing $X \cdot h_{1}\left(X^{q}\right)-h_{0}\left(X^{q}\right)$.
- $h_{0}(X), h_{1}(X)$ polynomials over $\mathbb{F}_{q}[X]$ of small degree δ.

Very useful: allows to have $n \leq \delta \cdot q$ instead of necessarily $n \leq q+\delta$.

A new polynomial representation

In ECC 2013, Granger presented (joint work with Zumbrägel) a modification of Joux's field representation:

- $\mathbb{F}_{q^{d n}}=\mathbb{F}_{q^{d}}[X] /\left(I_{X}\right)$ with I_{X} dividing $X \cdot h_{1}\left(X^{q}\right)-h_{0}\left(X^{q}\right)$.
- $h_{0}(X), h_{1}(X)$ polynomials over $\mathbb{F}_{q}[X]$ of small degree δ.

Very useful: allows to have $n \leq \delta \cdot q$ instead of necessarily $n \leq q+\delta$. Resulting analysis:

DLP algorithm	Coppersmith04	Joux13-QPA13 (as analyzed by A. et al)	GZ13
Run time on $\mathbb{F}_{2^{12 \cdot 367}}$	2^{128}	2^{95}	2^{76}
Run time on $\mathbb{F}_{2^{4 \cdot 1223}}$	2^{128}	$\geq 2^{128}$	2^{95}

A new polynomial representation

In ECC 2013, Granger presented (joint work with Zumbrägel) a modification of Joux's field representation:

- $\mathbb{F}_{q^{d n}}=\mathbb{F}_{q^{d}}[X] /\left(I_{X}\right)$ with I_{X} dividing $X \cdot h_{1}\left(X^{q}\right)-h_{0}\left(X^{q}\right)$.
- $h_{0}(X), h_{1}(X)$ polynomials over $\mathbb{F}_{q}[X]$ of small degree δ.

Very useful: allows to have $n \leq \delta \cdot q$ instead of necessarily $n \leq q+\delta$. Resulting analysis:

DLP algorithm	Coppersmith04	Joux13-QPA13 (as analyed by A. et al)	GZ13
Run time on $\mathbb{F}_{2^{12 \cdot 367}}$	2^{128}	2^{95}	2^{76}
Run time on $\mathbb{F}_{2^{4 \cdot 1223}}$	2^{128}	$\geq 2^{128}$	2^{95}

In December 2013, we used the Granger-Zumbrägel representation to show that the cryptographic DLP in $\mathbb{F}_{3^{6.1429}}$ and $\mathbb{F}_{2^{4 \cdot 3041}}$ can be solved in time 2^{96} and 2^{129}, respectively. [Initially believed to enjoy a 2^{192} security level.]

Solving cryptographic DLP using Magma

- January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{\text {36-137 }}$.

Solving cryptographic DLP using Magma

- January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{\text {36-137 }}$.
- We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^{2}=x^{3}-x+1$ defined over $\mathbb{F}_{3^{137}}$.

Solving cryptographic DLP using Magma

- January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{\text {36-137 }}$.
- We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^{2}=x^{3}-x+1$ defined over $\mathbb{F}_{3^{137}}$.
- $\mathbb{F}_{3^{6 \cdot 137}}: 2^{76}$ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6 \cdot 137}}$ in $\mathbb{F}_{3^{4 \cdot 3 \cdot 137}}$.]

Solving cryptographic DLP using Magma

- January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{\text {36-137 }}$.
- We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^{2}=x^{3}-x+1$ defined over $\mathbb{F}_{3^{137}}$.
- $\mathbb{F}_{3^{6 \cdot 137}}: 2^{76}$ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6 \cdot 137}}$ in $\mathbb{F}_{3^{4 \cdot 3 \cdot 137}}$.]
- Field of size of 1303 -bit and we worked in a 155 -bit prime order subgroup. [previous record on characteristic 3 : the 923 -bit field $\mathbb{F}_{3^{6.97}}$.]

Solving cryptographic DLP using Magma

- January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{\text {36-137 }}$.
- We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^{2}=x^{3}-x+1$ defined over $\mathbb{F}_{3^{137}}$.
- $\mathbb{F}_{3^{6 \cdot 137}}: 2^{76}$ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6 \cdot 137}}$ in $\mathbb{F}_{3^{4 \cdot 3 \cdot 137}}$.]
- Field of size of 1303 -bit and we worked in a 155 -bit prime order subgroup. [previous record on characteristic 3: the 923-bit field $\mathbb{F}_{3 \text { 3.97. }}$.]
- Main issue: only 50% of the degree-2 polynomial descended. Fix: adapt an idea of Coppersmith and employ a Joux and Göloğlu et al. strategy to get 97% of the quadratics descending while avoiding the remainder in the descent phase.

Solving cryptographic DLP using Magma

- January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{\text {36-137 }}$.
- We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^{2}=x^{3}-x+1$ defined over $\mathbb{F}_{3^{137}}$.
- $\mathbb{F}_{3^{6 \cdot 137}}: 2^{76}$ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6 \cdot 137}}$ in $\mathbb{F}_{3^{4 \cdot 3 \cdot 137}}$.]
- Field of size of 1303 -bit and we worked in a 155 -bit prime order subgroup. [previous record on characteristic 3: the 923-bit field $\mathbb{F}_{3 \text { 3.97. }}$.]
- Main issue: only 50% of the degree-2 polynomial descended. Fix: adapt an idea of Coppersmith and employ a Joux and Göloğlu et al. strategy to get 97% of the quadratics descending while avoiding the remainder in the descent phase.
- Run time: 888 CPU hours. [previous record: 896313 CPU hours]

Solving cryptographic DLP using Magma

- January 27 2014, A.-Menezes-Oliveira-Rodríguez: $\mathbb{F}_{\text {36-137 }}$.
- We used Joux's algorithm with the Granger-Zumbrägel representation to break the supersingular curve $E: y^{2}=x^{3}-x+1$ defined over $\mathbb{F}_{3^{137}}$.
- $\mathbb{F}_{3^{6 \cdot 137}}: 2^{76}$ against Coppersmith. [we actually embed $\mathbb{F}_{3^{6 \cdot 137}}$ in $\mathbb{F}_{3^{4 \cdot 3 \cdot 137}}$.]
- Field of size of 1303 -bit and we worked in a 155 -bit prime order subgroup. [previous record on characteristic 3: the 923-bit field $\mathbb{F}_{3 \text { 3.97. }}$.]
- Main issue: only 50% of the degree-2 polynomial descended. Fix: adapt an idea of Coppersmith and employ a Joux and Göloğlu et al. strategy to get 97% of the quadratics descending while avoiding the remainder in the descent phase.
- Run time: 888 CPU hours. [previous record: 896313 CPU hours]
- First computations of discrete logarithms in a cryptographic finite field using the new algorithms.

Practical improvements

- January 30 2014, Granger-Kleinjung-Zumbrägel: $\mathbb{F}_{2^{12 \cdot 367}}, \mathbb{F}_{2^{4 \cdot 1223}}$

Practical improvements

- January 30 2014, Granger-Kleinjung-Zumbrägel: $\mathbb{F}_{2^{12 \cdot 367}}, \mathbb{F}_{2^{4 \cdot 1223}}$

DLP algorithm	Copp.04	Joux13-QPA13 (as analyzed by A. et al)	GZ13	GKZ14a
Run time on $\mathbb{F}_{2^{12 \cdot 367}}$	2^{128}	2^{95}	2^{76}	2^{48}
Run time on $\mathbb{F}_{2^{4 \cdot 1223}}$	2^{128}	$\geq 2^{128}$	2^{95}	2^{59}

Practical improvements

- January 30 2014, Granger-Kleinjung-Zumbrägel: $\mathbb{F}_{2^{12 \cdot 367}}, \mathbb{F}_{2^{4 \cdot 1223}}$

DLP algorithm	Copp.04	Joux13-QPA13 (as analyzed by A. et al)	GZ13	GKZ14a
Run time on $\mathbb{F}_{2^{12 \cdot 367}}$	2^{128}	2^{95}	2^{76}	2^{48}
Run time on $\mathbb{F}_{2^{4 \cdot 1223}}$	2^{128}	$\geq 2^{128}$	2^{95}	2^{59}

- Always start trying to descend an element down to elements of smaller degree staying in the same field.

Practical improvements

- January 30 2014, Granger-Kleinjung-Zumbrägel: $\mathbb{F}_{2^{12 \cdot 367}}, \mathbb{F}_{2^{4 \cdot 1223}}$

DLP algorithm	Copp.04	Joux13-QPA13 (as analyzed by A. et al)	GZ13	GKZ14a
Run time on $\mathbb{F}_{2^{12 \cdot 367}}$	2^{128}	2^{95}	2^{76}	2^{48}
Run time on $\mathbb{F}_{2^{4 \cdot 1223}}$	2^{128}	$\geq 2^{128}$	2^{95}	2^{59}

- Always start trying to descend an element down to elements of smaller degree staying in the same field.
- Only when this is not possible, promote it into an extension field where it may split into smaller elements.

Practical improvements

- January 30 2014, Granger-Kleinjung-Zumbrägel: $\mathbb{F}_{2^{12 \cdot 367}}, \mathbb{F}_{2^{4 \cdot 1223}}$

DLP algorithm	Copp.04	Joux13-QPA13 (as analyzed by A. et al)	GZ13	GKZ14a
Run time on $\mathbb{F}_{2^{12 \cdot 367}}$	2^{128}	2^{95}	2^{76}	2^{48}
Run time on $\mathbb{F}_{2^{4 \cdot 1223}}$	2^{128}	$\geq 2^{128}$	2^{95}	2^{59}

- Always start trying to descend an element down to elements of smaller degree staying in the same field.
- Only when this is not possible, promote it into an extension field where it may split into smaller elements.
- Not necessary to embed $\mathbb{F}_{q^{n}}$ into larger extensions whenever $q \approx \delta \cdot n$, for some small integer δ.

Practical improvements

- January 30 2014, Granger-Kleinjung-Zumbrägel: $\mathbb{F}_{2^{12 \cdot 367}}, \mathbb{F}_{2^{4 \cdot 1223}}$

DLP algorithm	Copp.04	Joux13-QPA13 (as analyzed by A. et al)	GZ13	GKZ14a
Run time on $\mathbb{F}_{2^{12 \cdot 367}}$	2^{128}	2^{75}	2^{48}	
Run time on $\mathbb{F}_{2^{4 \cdot 1223}}$	2^{128}	$\geq 2^{128}$	2^{95}	2^{59}

- Always start trying to descend an element down to elements of smaller degree staying in the same field.
- Only when this is not possible, promote it into an extension field where it may split into smaller elements.
- Not necessary to embed $\mathbb{F}_{q^{n}}$ into larger extensions whenever $q \approx \delta \cdot n$, for some small integer δ.
- Discrete logarithm computation in the cryptographic subgroup of $\mathbb{F}_{2^{12: 367}}$ in 52,240 CPU hours.

More improvements

- September 15 2014, Joux and Pierrot: $\mathbb{F}_{35 \text {-479 }}$.

Solving DLP in $\mathbb{F}_{q^{n}}$ when $q \approx \delta \cdot n$ for some small integer δ

More improvements

- September 15 2014, Joux and Pierrot: $\mathbb{F}_{35 \text { 4.479 }}$.

Solving DLP in $\mathbb{F}_{q^{n}}$ when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].

More improvements

- September 15 2014, Joux and Pierrot: $\mathbb{F}_{35 \text { 4.479 }}$.

Solving DLP in $\mathbb{F}_{q^{n}}$ when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O\left(q^{5}\right)$.

More improvements

- September 15 2014, Joux and Pierrot: $\mathbb{F}_{35 \text { 4.479 }}$.

Solving DLP in $\mathbb{F}_{q^{n}}$ when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O\left(q^{5}\right)$.
- Compute the logarithms of degree-3 elements solving q linear algebras in time $O\left(q^{6}\right)$.

More improvements

- September 15 2014, Joux and Pierrot: $\mathbb{F}_{35 \text { 4.479 }}$.

Solving DLP in $\mathbb{F}_{q^{n}}$ when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O\left(q^{5}\right)$.
- Compute the logarithms of degree-3 elements solving q linear algebras in time $O\left(q^{6}\right)$.
- Compute the logarithms of elements in a degree-4 family solving q linear algebras in time $O\left(q^{6}\right)$ and the logarithms of some other degree-4 families of smaller size.

More improvements

- September 15 2014, Joux and Pierrot: $\mathbb{F}_{35 \text { 479 }}$.

Solving DLP in $\mathbb{F}_{q^{n}}$ when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O\left(q^{5}\right)$.
- Compute the logarithms of degree-3 elements solving q linear algebras in time $O\left(q^{6}\right)$.
- Compute the logarithms of elements in a degree-4 family solving q linear algebras in time $O\left(q^{6}\right)$ and the logarithms of some other degree-4 families of smaller size.
- Discrete logarithm computation in the cryptographic subgroup of \mathbb{F}_{35-479} in time 8,600 CPU hours.

More improvements

- September 15 2014, Joux and Pierrot: $\mathbb{F}_{35 \text { 4.479 }}$.

Solving DLP in $\mathbb{F}_{q^{n}}$ when $q \approx \delta \cdot n$ for some small integer δ

- The descent phase works exactly as in [GKZ14a].
- Compute the logarithms of degree-1 and degree-2 by solving one linear algebra in time $O\left(q^{5}\right)$.
- Compute the logarithms of degree-3 elements solving q linear algebras in time $O\left(q^{6}\right)$.
- Compute the logarithms of elements in a degree-4 family solving q linear algebras in time $O\left(q^{6}\right)$ and the logarithms of some other degree-4 families of smaller size.
- Discrete logarithm computation in the cryptographic subgroup of $\mathbb{F}_{3 \text { 3-479 }}$ in time 8,600 CPU hours.
- Current record in characteristic three.

Current computations

A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodríguez: $\mathbb{F}_{36 \cdot 509}$

- Want to break the field $\mathbb{F}_{36.509}$ of initial proposed security 2^{128}.

Current computations

A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodríguez: $\mathbb{F}_{36 \cdot 509}$

- Want to break the field $\mathbb{F}_{36.509}$ of initial proposed security 2^{128}.
- Use JP14 factor base comput. method + GKZ14a descent strategy.

Current computations

A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodríguez: $\mathbb{F}_{36 \cdot 509}$

- Want to break the field $\mathbb{F}_{3^{6.509}}$ of initial proposed security 2^{128}.
- Use JP14 factor base comput. method + GKZ14a descent strategy.

DLP algorithm	Copp.04	JL06	Joux12	Joux13-QPA13	JP14-GKZ14.
Run time	2^{128}	2^{111}	2^{103}	2^{75}	2^{49}.

Current computations

A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodríguez: $\mathbb{F}_{36 \cdot 509}$

- Want to break the field $\mathbb{F}_{3^{6.509}}$ of initial proposed security 2^{128}.
- Use JP14 factor base comput. method + GKZ14a descent strategy.

DLP algorithm	Copp.04	JL06	Joux12	Joux13-QPA13	JP14-GKZ14.
Run time	2^{128}	2^{111}	2^{103}	2^{75}	2^{49}.

- Computation of logarithms of degree-1, 2, 3 elements: already done 378163 CPU hours in a cluster of 5096 cores (Abacus Cinvestav).

Current computations

A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodríguez: $\mathbb{F}_{36 \cdot 509}$

- Want to break the field $\mathbb{F}_{3^{6.509}}$ of initial proposed security 2^{128}.
- Use JP14 factor base comput. method + GKZ14a descent strategy.

DLP algorithm	Copp.04	JL06	Joux12	Joux13-QPA13	JP14-GKZ14.
Run time	2^{128}	2^{111}	2^{103}	2^{75}	2^{49}.

- Computation of logarithms of degree-1, 2, 3 elements: already done 378163 CPU hours in a cluster of 5096 cores (Abacus Cinvestav).
- Descent of a challenge element 508-to-15: already done 619413 CPU hours using about 300 cores.

Current computations

A.-Canales-Cruz-Menezes-Oliveira-Rivera-Rodríguez: $\mathbb{F}_{36 \cdot 509}$

- Want to break the field $\mathbb{F}_{3^{6.509}}$ of initial proposed security 2^{128}.
- Use JP14 factor base comput. method + GKZ14a descent strategy.

DLP algorithm	Copp.04	JL06	Joux12	Joux13-QPA13	JP14-GKZ14.
Run time	2^{128}	2^{111}	2^{103}	2^{75}	2^{49}.

- Computation of logarithms of degree-1, 2, 3 elements: already done 378163 CPU hours in a cluster of 5096 cores (Abacus Cinvestav).
- Descent of a challenge element 508-to-15: already done 619413 CPU hours using about 300 cores.
- Main issue: management of small degree elements during the descent (billions of nodes expected).

Future work

Future work

- Get our own C implementation of Faugère's F4 or F5 algorithm.

Future work

- Get our own C implementation of Faugère's F4 or F5 algorithm.
- Improve our C implementation for solving linear algebra systems.

Future work

- Get our own C implementation of Faugère's F4 or F5 algorithm.
- Improve our C implementation for solving linear algebra systems.
- Find a polynomial-time algorithm for DLP in $\mathbb{F}_{2^{n}}$ or $\mathbb{F}_{3^{n}}$.

Future work

- Get our own C implementation of Faugère's F4 or F5 algorithm.
- Improve our C implementation for solving linear algebra systems.
- Find a polynomial-time algorithm for DLP in $\mathbb{F}_{2^{n}}$ or $\mathbb{F}_{3^{n}}$. [It's just a dream!]

Future work

- Get our own C implementation of Faugère's F4 or F5 algorithm.
- Improve our C implementation for solving linear algebra systems.
- Find a polynomial-time algorithm for DLP in $\mathbb{F}_{2^{n}}$ or $\mathbb{F}_{3^{n}}$. [It's just a dream!]

Thanks For Your Attention!

