Block Wiedemann likes Schirokauer maps

E. Thomé

INRIA/CARAMEL, Nancy.

Oct. 2nd, 2015

Plan

Context

The linear system

Wiedemann algorithm

Block Wiedemann algorithm

Ways around

More inhomogeneous systems

General context

The main application target for this talk is

- the computation of discrete logarithms
- ... in large or medium characteristic finite fields
- ... using using the Number Field Sieve or its variants.

More specifically, we present a practical improvement to the linear algebra step of NFS-DL.
Throughout the talk, we consider the DLP problem in a subgroup of prime order ℓ within \mathbb{F}_{p}^{*}.

Relations in NFS

Relations in NFS

NFS collects many "good pairs" (a, b) such that:

- the integer $a-b m$ is smooth: product of small primes;
- the ideal $a-b \alpha$ is a product of small prime ideals.

Combining relations

NFS-DL can combine together (multiply) many ($a-b x$).

- See what happens multiplicatively on both sides;
- Gain knowledge about logarithms in our subgroup of order ℓ.

First task:

- Which kind of objects are we looking at on both sides ?
- Which knowledge do we get ?

Prelude: introduce virtual logs and Schirokauer maps.

Multiplying things

Fact 1: being smooth is a multiplicative property
If $a_{0}-b_{0} m$ and $a_{1}-b_{1} m$ are smooth, so is $\left(a_{0}-b_{0} m\right) \cdot\left(a_{1}-b_{1} m\right)$. Same on the other side.

$$
\downarrow x \mapsto x^{(p-1) / \ell}
$$

our subgroup of order ℓ within \mathbb{F}_{p}^{*}

Multiplying things

Fact 1: being smooth is a multiplicative property

If $a_{0}-b_{0} m$ and $a_{1}-b_{1} m$ are smooth, so is $\left(a_{0}-b_{0} m\right) \cdot\left(a_{1}-b_{1} m\right)$. Same on the other side.

$$
\downarrow x \mapsto x^{(p-1) / \ell}
$$

our subgroup of order ℓ within \mathbb{F}_{p}^{*}

Taking out powers

Our two subgroups of smooth things are important.

$$
\text { Fact 2: } \ell \text {-th powers map to } 1 \text { eventually }
$$

What are exactly the subgroups of interest on both sides ?

$$
\{\text { smooth things }\} /\{\text { smooth things }\}^{\ell} .
$$

- vector spaces (fact 1);
- defined over \mathbb{F}_{ℓ} (fact 2);
- finite dimensional:
- smooth rationals (mod ℓ-th powers) determined by ...
- smooth algebraic numbers (mod ℓ-th powers) determined by

Describing smooth elements

Smooth rationals (mod ℓ-th powers): Σ_{r}

They are simply determined by valuations at small primes mod ℓ.

- A bound on "small primes" is set beforehand.
- Units in \mathbb{Z} are just ± 1 : trivial modulo ℓ-th powers.

Smooth algebraic numbers (mod ℓ-th powers): Σ_{a}

- Need valuations at small prime ideals mod ℓ.
- Torsion units are harmless;
- But non-torsion units lead to (finite-dimensional) ambiguity.
- The map $\Sigma_{a} \rightarrow\left\{\nu_{p}(\cdot) \bmod \ell\right\}$ is not injective.
- Fix: use $\Sigma_{a} \rightarrow\left\{\nu_{\mathfrak{p}}(\cdot) \bmod \ell\right\}+\{$ Schirokauer maps $\}$.

The log map

NFS-DL lifts the log to a linear form coming from smooth things.

$$
\begin{gathered}
\Sigma_{r} \times \Sigma_{a} \subset \mathbb{F}_{\ell}^{\# \mathcal{F}_{r}+\# \mathcal{F}_{a}+\text { unit rank }} \\
\downarrow \\
\text { subgroup of } \mathbb{F}_{p}^{*}(\bmod \ell \text {-th powers }) \\
\mid x \mapsto x^{(p-1) / \ell} \\
\text { our subgroup of order } \ell \\
\mid x \mapsto \log x \\
\mathbb{F}_{\ell}
\end{gathered}
$$

The log map

NFS-DL lifts the log to a linear form coming from smooth things.

$$
\Sigma_{r} \times \Sigma_{a} \subset \mathbb{F}_{\ell}^{\# \mathcal{F}_{r}+\# \mathcal{F}_{a}+\text { unit rank }}
$$

Linear form Φ

The log map

NFS-DL lifts the log to a linear form coming from smooth things.

$$
\Sigma_{r} \times \Sigma_{a} \subset \mathbb{F}_{\ell}^{\# \mathcal{F}_{r}+\# \mathcal{F}_{a}+\text { unit rank }}
$$

Our concern: the presence of Schirokauer maps in the relations.

Plan

Context

The linear system

Wiedemann algorithm

Block Wiedemann algorithm

Ways around

More inhomogeneous systems

The linear system

We have many relations = rows of a matrix M. We want to solve

$$
M w=0
$$

The solution vector is the set of virtual logarithms.

- By construction, a non-zero solution exists.
- If we have sufficiently many relations, it is unique.
- In practice, it may happen the set of solutions of $M w=0$ has dimension slightly more than 1 , generated by:
- The good Φ;
- plus some small hamming weight vectors, quite harmless.

Bottom line: any non-zero solution to $M w=0$ is good to go.

Relations with SM

Why are Schirokauer maps here ?

- Because they are a key part of a coordinate system for Σ_{a}.

Why are Schirokauer maps annoying ?

- extra coordinates in each row of M (number = unit rank);
- full-size integers mod ℓ, much larger than valuations.

[^0]
What does the matrix look like?

The matrix M is large and sparse.

- N rows and columns;
- Want to solve $M w=0$ over \mathbb{F}_{ℓ}, with roughly 200-bit ℓ;
- d dense columns (Schirokauer maps; same size as ℓ);
- Other coefficients (typically $c \approx 100$ per row) are all <10.

We use sparse linear algebra techniques.

- Touching the matrix is forbidden (want to avoid densification);
- Rely only on the matrix times vector operation.

SM overhead for doing $v \rightarrow M \times v$

Coefficients of v are integers $\bmod \ell$.

Cost for each coefficient of $M \times v$

- about 100 multiplications (tiny coeff of $\mathrm{M} \times$ coeff of v) (more than 90% of the time, tiny means ± 1);
- about d multiplications (SM coeff \times coeff of v);
- about $100+d$ additions;
- one reduction modulo ℓ.
- The multiplications by SM coeffs are not negligible in practice.
- Because of them, some alternative representation formats are hampered or ineffective (RNS), or we have to take into account conversion costs.

Related linear algebra problems

- Factoring : solve $w \times$

$$
=0 \text { over } K=\mathbb{F}_{2}
$$

- FFS of old : solve
- NFS-DL : solve

$$
\times w=0 \text { over } K=\mathbb{F}_{\ell} \text { (obsolete) }
$$

$$
\times w=0 \text { over } K=\mathbb{F}_{\ell}
$$

Sad thing

The SM columns would be harmless if we were to solve $w M=0$. For NFS-DL, not.

- no such thing as a "partial solution" which we can complete.
- for the p180 record, significant cost from SM columns.

Homogeneous vs inhomogeneous

We can as well write:

$$
M \times w=\left(\square M_{0} \square b \times w=0\right.
$$

M_{0} sparse of size $N \times(N-d)$. Dense SM block b of size $N \times d$.

- We look for one solution vector w : size $N \times 1$.
\Rightarrow a priori knowledge that a solution space exists.
- NOTE: if $d=1$, this amounts to solving $M_{0} w_{0}=b$. \Rightarrow knowledge that $b \in \operatorname{Im}\left(M_{0}\right)$. Can pad M_{0} to square.

How does sparse LA do this ? How to expand to $d>1$?

Plan

Context

The linear system

Wiedemann algorithm

Block Wiedemann algorithm

Ways around

More inhomogeneous systems

Several sparse algorithms

Solving sparse linear systems over finite fields (hence exact) often done with the following black-box algorithms:

- Lanczos algorithm (1950);
- Wiedemann algorithm (1986);
- their block variants: Block Lanczos (Montgomery, 1995), Block Wiedemann (Coppersmith, 1994).

Desired properties: complexity, parallelization, distribution.

Wiedemann algorithm

Let x and y be an arbitrary vectors in K^{N}.
The Wiedemann algorithm computes $\left(a_{i}\right)_{i}$, with $a_{i}=x^{T} M^{i} y \in K$.
Rational reconstruction on $A(X)=\sum_{i=0}^{2 N} a_{i} X^{i}$
Find $F(X)$ and $G(X)$ such that:

$$
\begin{gathered}
A(X) F(X)=G(X)+O\left(X^{2 N}\right) \\
\operatorname{deg} F \leq N \quad \operatorname{deg} G<N
\end{gathered}
$$

The N zero coefficients in the middle of the RHS rewrite as:

$$
\forall k \in[0, N-1], \quad x^{T} M^{k} \widehat{F}(M) y=0
$$

Unless disaster occurs, this means $\widehat{F}(M) y=0$.

Wiedemann algorithm

Wiedemann for inhomogeneous system:

To solve $M w=b$, Wiedemann sets $y=b$, and x random.
We hope that \widehat{F} has non-zero constant coefficient: $\widehat{F}=1-X Q$.
This implies $M \cdot(Q(M) b)=b$. Found solution $w=Q(M) b$.

Wiedemann for homogeneous system:

Simple strategy: set $y=M z$. Then $M \cdot(\widehat{F}(M) z)=0$.
Found solution $w=\widehat{F}(M) z$.
(alternatively, compute F from $A(X) \bmod X$)
Bottom line: non-block Wiedemann adapts to both.
Correctness ? In order to defend against degeneracy mishaps, preconditioning might be required.

Plan

Context

The linear system

Wiedemann algorithm

Block Wiedemann algorithm

Ways around

More inhomogeneous systems

Block Wiedemann

Invented by Coppersmith (1994), for the factoring context.
Replace black box by matrix times block of vectors.
The black box (BB) becomes a block black box (BBB).

- Replace x and y by vector blocks $\mathbf{x}, \mathbf{y} \in K^{N \times n}$.
- Expect that fewer black box calls are required.
- Very well adapted to the $K=\mathbb{F}_{2}$ case.

Good distribution opportunities;
Can also be used for DLP with $K=\mathbb{F}_{\ell}$.

Block Wiedemann

Let \mathbf{x} and \mathbf{y} be an arbitrary vector blocks in $K^{N \times n}$.
Compute $\left(\mathbf{a}_{i}\right)_{i}$, with $\mathbf{a}_{i}=\mathbf{x}^{T} M^{i} \mathbf{y} \in K^{n \times n}$.

Hermite-Padé approximation on $\mathbf{A}(X)=\sum_{i=0}^{2 N / n} \mathbf{a}_{i} X^{i}$

Find $\mathbf{F}(X)$ and $\mathbf{G}(X)$ such that:

$$
\begin{gathered}
\mathbf{A}(X) \mathbf{F}(X)=\mathbf{G}(X)+O\left(X^{2 N / n}\right) \\
\operatorname{deg} \mathbf{F} \leq N / n \quad \operatorname{deg} \mathbf{G}<N / n
\end{gathered}
$$

Algorithms: Beckermann-Labahn (1994), T. (2001).
The N / n zero coefficients in the middle of the RHS rewrite as:

$$
\forall k \in[0, N / n-1], \quad \mathbf{x}^{T} M^{k} \text { THING }=0
$$

Means THING is orthogonal to $n \times N / n$ columns of $\left\{\left(M^{T}\right)^{k} \mathbf{x}\right\}$.
Unless disaster occurs, this means THING $=0$.

What is this THING ?

The Hermite-Padé approximation computes $\mathbf{F} \in K[X]^{n \times n}$.

- As in the non-block case, $\widehat{\mathbf{F}}$ is related to the min.poly. of M.
- Actually $\operatorname{det} \widehat{\mathbf{F}}$ is "close to" μ_{M}.

Let $\mathbf{F}=\left(F_{i, j}\right)_{1 \leq i, j \leq n}$ and columns of \mathbf{y} be $\left(y_{1} \ldots y_{n}\right)$. column 1 of THING $=\widehat{F_{1,1}}(M) y_{1}+\cdots+\widehat{F_{n, 1}}(M) y_{n}$,
column 2 of THING $=\widehat{F_{1,2}}(M) y_{1}+\cdots+\widehat{F_{n, 2}}(M) y_{n}$,

Conclusion: THING is made of n distinct expressions, all evaluating to zero.

Columns of F

$$
\text { column } 1 \text { of THING }=\widehat{F_{1,1}}(M) y_{1}+\cdots+\widehat{F_{n, 1}}(M) y_{n} .
$$

Solving $M w=0$:

- take $\mathbf{y}=M \mathbf{z}$ for a random z.
- each column of THING gives a solution.
- needs N / n extra BBB calls.

Correctness: same as non-block, but harder.
In practice, we only want a select number of solutions. Use this many columns of \mathbf{F}.

- For RSA-768, maybe fetching 512 solutions was overkill. (not embarrassing, since computational excess is negligible).
- DLP: one will be good enough. Better not do more. Because of SM, we have our d annoying dense columns.

Plan

Context

The linear system

Wiedemann algorithm

Block Wiedemann algorithm

Ways around

More inhomogeneous systems

Homogeneous vs inhomogeneous

Recall that in the non-block case, for $d=1$, we can solve the inhomogeneous linear system, then the SM column disappears.
Can we do the same in the block case ?

SMs within y

Assumption from now on $n \geq d$.

- First d columns of \mathbf{y} are chosen as \mathbf{b}.
- Last $n-d$ chosen as $M \mathbf{z}$ for a random $\mathbf{z} \in K^{N \times(n-d)}$.
- Erase the d dense columns in M. Call that M_{0} From now on, M_{0} is $N \times N$, but has d zero columns.

Run Block Wiedemann on this.

- expect smaller cost for each matrix times vector operation;
- exact same cost everywhere else, provided that we are able to work with any column of $\widehat{\mathbf{F}}$.

Writing down solutions

How can we use one of the THING $=0$ equations ?

$$
\text { column } 1 \text { of THING }=\widehat{F_{1,1}}\left(M_{0}\right) y_{1}+\cdots+\widehat{F_{n, 1}}\left(M_{0}\right) y_{n} .
$$

For $i \leq d$, let $\widehat{F_{i, 1}}=c_{i}+X Q_{i}$; for $i>d$, let $\widehat{F_{i, 1}}=Q_{i}$

$$
0=c_{1} b_{1}+\cdots+c_{d} b_{d}+M_{0} \cdot\left(\sum_{i} Q_{i}\left(M_{0}\right) z_{i}\right)
$$

Deriving a solution to $M w=0$

Set $N-d$ first columns of w to be those of $\sum_{i} Q_{i}\left(M_{0}\right) z_{i}$; Set d last columns to be $\left(c_{1}, \ldots c_{d}\right)$.

- Overhead from SM columns is eliminated, provided $n \geq d$.
- Implemented in CADO-NFS since nov. 2014.

Change in cost

Cost impact analyzed by Joux and Pierrot.

- Assume c non-zero coefficients per row in M_{0}, and d SMs.
- Take $\mathrm{SM} \times v_{j}$ to cost β times more than $m_{i j} v_{j}$.

With SMs in the matrix:

$$
3(c+\beta d) N^{2}+\kappa n^{2} N \log ^{2} N
$$

- $\mathbf{A}(X): 3 N / n$ BBB calls: $3(c+\beta d) N^{2}$, or n-fold distributed.
- $\mathbf{F}(X): \kappa n^{2} N \log ^{2} N$ for some κ.

Now with SMs in \mathbf{y} : $3 c N^{2}+\kappa \min (n, d)^{2} N \log ^{2} N$

- $\mathbf{A}(X): 3 N / n$ BBB calls: $3 c N^{2}$, or n-fold distributed.
- $\mathbf{F}(X)$: same, but recall we want $n \geq d$.

Plan

Context

The linear system

Wiedemann algorithm

Block Wiedemann algorithm

Ways around

More inhomogeneous systems

Is that new ?

Short answer: NO.

MATHEMATICS OF COMPUTATION
VOLUME 62, NUMBER 205
VOLUME 62, NUMBER 205
JANUARY 1994, PAGES 333-350

SOLVING HOMOGENEOUS LINEAR EQUATIONS OVER $G F(2)$ VIA BLOCK WIEDEMANN ALGORITHM

DON COPPERSMITH

Inhomogeneous equations. We developed this algorithm for homogeneous equations, because that is the case of interest for integer factorization. For the inhomogeneous system of equations $B \mathbf{w}=\mathbf{b}$, where \mathbf{b} is a block of at most n vectors, variants that can be tried include the following:

1. Set the first few columns of \mathbf{y} equal to \mathbf{b}, and calculate the rest of \mathbf{y} as Bz . Then hope that in the equation

$$
\mathbf{x}_{\mu}^{\mathrm{T}} B^{j-d^{\prime}} \sum_{\nu, k} f_{l, \nu}^{(t, k)} B^{d^{\prime}-k} \mathbf{y}_{\nu}=0
$$

the coefficients of $B^{0} \mathbf{y}_{\nu}$ form an invertible matrix, allowing one to solve for \mathbf{y} in terms of vectors in the image of B.

> Longer answer: let's see why.

What Coppersmith is doing

Coppersmith aims at solving $\mathbf{M w}=\mathbf{b}$.
In effect this means d independent one-vector systems.
Claim: this solves a harder problem. Ours is an easy by-product.
How does Coppersmith do this ? As we do.

- First d columns of \mathbf{y} are chosen as \mathbf{b}.
- Last $n-d$ chosen as $M \mathbf{z}$ for some $\mathbf{z} \in K^{N \times(n-d)}$.

To solve $\mathbf{M w}=\mathbf{b}$, we need to be able to force:

- one solution with $\left(c_{1}, \ldots, c_{d}\right)=(1,0, \ldots, 0)$,
- one solution with $\left(c_{1}, \ldots, c_{d}\right)=(0,1,0, \ldots, 0)$, etc.

Can we force $\left(c_{1}, \ldots, c_{d}\right)$?

Our proposed approach uses one single column of $\widehat{\mathbf{F}}$.
This won't do for $\mathbf{M w}=\mathbf{b}$. Have only one $\left(c_{1}, \ldots, c_{d}\right)$ choice. BUT we may combine the columns linearly.

- If $\left[X^{0}\right] \mathbf{F}_{\{1 \ldots d\} \times\{1 \ldots n\}}$ has rank d, then we can force any value for $\left(c_{1}, \ldots, c_{d}\right)$.
- More generally, the set of possible $\left(c_{1}, \ldots, c_{d}\right)$ is a vector space, and it can be covered.
- If we don't mind which $\left(c_{1}, \ldots, c_{d}\right)$ value we get, easy.

Cost: once for \mathbf{F} is computed, cost for each vector in w is same as ours for one.

Conclusion

- Solving inhomogeneous linear systems with block Wiedemann has small overhead.
- Key is to put the right hand side in the starting vectors.
- For NFS-DL, SM columns do NOT have to go in the matrix.
- The same applies to block Lanczos (but less appealing anyway).

Implementation is more or less straightforward.
Must handle $\mathbf{F}_{\{1 \ldots d\} \times\{1 \ldots n\}}$ and $\mathbf{F}_{\{d+1 \ldots n\} \times\{1 \ldots n\}}$ properly.

[^0]:

 1918902163910971358342249522003507866580463311636550391 587691104072599510196942808794364879161331978889856821 1962472614102761699352739429726112125956851202601753243

 $-1705-373586127261214-31901629-2912 \quad 1127410666564395270853143485574066017695384913999852661389257887743132560050638908235896167973209639160674338$ 2034480659967088911878326251186212823038149619256053339

 $3264-5220-2118 \quad 2119-1046 \quad 2724-25742575-2992-4092 \quad 1048231183511536198615135379807103196736412597046455151 \quad 1637498222607624361471047203748763659968941246535430330$ 1979115440994922488817888530191549492933831869476915978

 $1283287581040594781486025452041390384261817830179664397 \quad 2064834356908888032261261330546281386296771592938000965$

 195034409710595535568154864584670155461868363355754563910037582212024752790316718901068821290300505642040622451367801815154152297425303265007561885189049816683159375
 $-56943062-4567 \quad 2648 \quad 2823 \quad 391647361048377121178237271597689366106770963115064670 \quad 1830283519180431509869252718141272896294800331899283996$
 196885450478721390927427269646235342796732758310643336

