Cold Boot Attacks in the Discrete Logarithm Setting

B. Poettering ¹ & D. L. Sibborn ²

¹Ruhr University of Bochum

²Royal Holloway, University of London

October, 2015

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Outline of the talk

B. Poettering & D. L. Sibborn Cold boot attacks for DL

ヘロト 人間 ト ヘヨト ヘヨト

3

Cold Boot Attacks

- Usenix 2008 Halderman et al. noted that DRAMs retain their contents for a while after power is lost.
- Bits in memory can be extracted (but it requires physical access to the machine).
 - The attacker can insert a flash drive to the target machine,
 - 2 the attacker turns off the machine,
 - the computer is restarted and the memory contents are copied to the flash drive.
- Unfortunately, the extracted bits will have errors.

(日)

Cold Boot Attacks

- The number of errors depends on a number of things.
- The machine: newer machines lose data quicker.
- The temperature: bits decay quicker at higher temperatures.
- The amount of time since power was lost: less time results in fewer errors.

イロト イポト イヨト イヨト

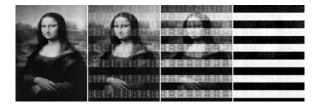
Degradation of bits

- At room temperature, some machines erase all data within 2.5 seconds. Others require 35 seconds.
- At temperatures of -50°C (via the use of compressed air) all machines retained at least 99.9% of data after 60 seconds without power.
- Cooling memory chips with liquid nitrogen resulted in only 0.17% of bits degrading after 60 minutes without power.

< □ > < 三 >

Cold Boot Attacks

- Portions of memory are either a $1 \rightarrow 0$ region or $0 \rightarrow 1$.
- In a 1 → 0 region, 0 bits will always flip with very low probability (<1%), but 1 bits will flip with much higher probability.



▲ (目) ▶ (● (目) ▶

Cold Boot Attacks

- Why is this a problem?
- Secrets will be stored in memory.
- If we can recover a noisy memory image, it might be possible to recover private keys.

Important Question

Given a noisy key obtained from a cold boot attack, how can we recover the original key?

・ 同 ト ・ 三 ト ・

Previous Approaches

- This question has been addressed many times before.
- Most cold boot attacks consider the reconstruction of RSA private keys.
- There are attacks against symmetric schemes such as DES and AES.
- There is only one paper that discusses cold boot attacks in the discrete logarithm setting.

・ 戸 ・ ・ 三 ・ ・

Cold Boot Attacks for Discrete Logarithm Keys

- Cold boot attacks usually exploit redundancy in the private key's in-memory representation.
- E.g. in practice RSA private keys contain the parameters $(p, q, d, d_p, d_q, q_p^{-1})$ instead of just *d*.
- For previous DL cold boot attacks, the authors (Lee et al.) assumed there was no redundancy in the key.

Lee et al.'s Approach

 Algorithm in a nutshell: Let *n* be the length of the key, and let δ be the maximum probability that a bit flips.

For i = 0 to $\lfloor n\delta \rfloor$:

- Assume the key has i errors,
- attempt to recover the key using a modified 'splitting system' algorithm,
- if the key is found, output it.

イロト イポト イヨト イヨト

Problems with this approach

- It is not much better than a brute-force search.
- The algorithm assumes we know an upper bound for the number of errors.
- The algorithm is designed to work for symmetric errors (i.e., P(1→0) = P(0→1)), but this does not reflect the behaviour of a cold boot attack.

・ 戸 ・ ・ 三 ・ ・

Improving the approach

- There are several ways we can improve key-recovery techniques in the DL setting.
- The most obvious way is to find redundant representations of keys.

Important Question

Are there any discrete logarithm implementations that contain redundant information about the private key?

イロト イポト イヨト イヨト

Non-Adjacent Forms (NAFs)

- The simplest NAF re-encodes a scalar x ∈ {0,1}^ℓ as a string x' ∈ {0,1,-1}^{ℓ+1}.
- Binary expansion: $7 = 2^2 + 2^1 + 2^0 = 111_2$.
- Alternatively $7 = 2^3 2^0$, so NAF(111₂) = 1 0 0 1.
- The NAF is designed to reduce the number of additions.
- For elliptic curves, subtractions are as efficient as additions.
- The NAF is more efficient than the standard double-and-add algorithm.

ヘロト 人間 とくほとく ほとう

NAFs

- A generalised and modified version of this NAF is used for OpenSSL elliptic curve implementations.
- The generalised NAF has *width w*. This means there is at most one non-zero digit in any string of length w (and digits are any odd number between $-2^{w-1} + 1$ and $2^{w-1} 1$).
- The modified version of the NAF may alter the w + 1 most significant digits of the NAF (to increase efficiency).

くロト (過) (目) (日)

In-memory representation of NAFs

- In OpenSSL, each digit of the NAF is represented as a byte in memory.
- The digits are represented using two-complement arithmetic.
- For example,
 - $\bullet \ -3 \rightarrow 11111101$
 - $\bullet \ -1 \rightarrow 11111111$
 - $\bullet \quad 0 \rightarrow 0000000$
 - $1 \rightarrow 0000001$
 - $3 \rightarrow 0000011.$

く 同 と く ヨ と く ヨ と

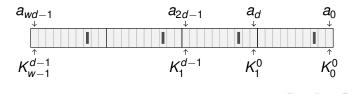
æ

Comb-Based Methods

- Comb methods are designed to reduce the number of multiplications.
- They require some pre-computation that depends on a fixed base point.
- Basic combs are a re-ordering of the bits.

Basic Comb

- The basic comb has parameters *w* and *d*.
- Consider a bit string, *a*, which has *wd* bits (prepend zeros, if necessary).
- The string *a* is rearranged into *d* blocks of length *w*, called K^i , for $i \in \{0, ..., d-1\}$.
- Let K_j^i denote the *j*th bit of K^i , then $K_j^i = a_{i+jd}$.



Basic Comb

- For a point *P*, the value *aP* is computed by evaluating a sum over the *Kⁱ* values.
- The basic comb is vulnerable to power analysis techniques, since $K^i = \underline{0}$ with probability 2^{-w} .
- When Kⁱ = 0, the addition of this zero vector is easily identifiable.

A (1) > A (2) > A

PolarSSL Comb

- PolarSSL employs a modified comb technique.
- The modifications are designed to prevent the previous power analysis attacks.
- The output of the PolarSSL comb is $(\sigma^d, K^d, \sigma^{d-1}, K^{d-1}, \dots, \sigma^0, K^0)$.
- The K^i are always odd in the PolarSSL comb, which prevents $K^i = \underline{0}$.
- The σ values are either 1 or -1, to denote whether Kⁱ is positive or negative.

ヘロン ヘアン ヘビン ヘビン

PolarSSL Comb

- For the PolarSSL comb, we have $w \in \{2, \ldots, 7\}$.
- Recall that each Kⁱ has length w. Hence, each pair (σⁱ, Kⁱ) can be stored in a byte.
- For σ , $-1 \mapsto 1$ and $1 \mapsto 0$.
- The Kⁱ values are unchanged.
- We store (σ^i, K^i) as " σ^i , padding, K^i ".
- Example: w = 3 and $(\sigma, K) = (-1, (1, 0, 1))$. The in-memory representation as a byte is 10000101.

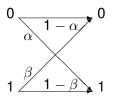
・ロト ・ 理 ト ・ ヨ ト ・

Attack Model

- Neither OpenSSL nor PolarSSL explicitly states that the original private key should be discarded.
- Hence, both the original key and its re-encoding (NAF or comb) will be contained in memory, at least for some time.
- We assume an adversary has mounted a cold boot attack and obtains noisy versions of the key and its re-encoding.

Attack Model

 We assume the adversary knows α and β, where bits degrade according to the following channel:



 We may estimate α and β by comparing public values with the degraded public values that were in memory.

The Reconstruction Technique

- The (textbook) NAF is constructed by starting from the least significant bits.
- i.e., for the simplest NAF, the least t signed digits only rely on knowledge of the least t + 1 bits of the bit string.
- For example, take the integer 7:

partial bit string					:	partial NAF		
			1	1	\rightarrow	— 1		
		1	1	1	\rightarrow	0 - 1		
	0	1	1	1	\rightarrow	$0 \ 0 \ -1$		
0	0	1	1	1	\rightarrow	$1 \ 0 \ 0 \ -1$		

• Comb encodings have a similar property.

The Reconstruction Technique

- Our reconstruction procedure will consider partial solutions for the private key (across a small section of bits).
- For each candidate we can compute a partial re-encoding (NAF/comb).
- We compare these candidate solutions (and their re-encodings) against the noisy information.
- We keep a (possibly large) list of candidates for which the 'correlation' is 'good'. Candidates with bad correlation are discarded.
- We then consider candidate solutions across a new section of bits, and repeat the procedure.

The Reconstruction Technique (Example for NAFs)

• Suppose we consider 2 bits at a time. We begin like this:

candidate, x	partial-NAF(x)	Correlation	
0 0	0	bad	
0 1	1	bad	
1 0	0	bad	
1 1	-1	good	

• The second stage would then look like this:

candidate, x			э, <i>х</i>	partial-NAF(x)	Correlation
0	0	1	1	1 0 -1	bad
0	1	1	1	0 0 -1	good
1	0	1	1	10-1	bad
1	1	1	1	0 0 -1	good

(4回) (日) (日)

The Reconstruction Technique

- This process would repeat until the candidate solutions are all of equal size to the private key.
- We can then compare each remaining candidate solution against the public key Q = aP.
- If xP = Q for any candidate x, the algorithm outputs x as the private key. Otherwise the algorithm fails.
- A similar technique applies to our comb reconstruction procedure.
- Note, our actual OpenSSL reconstruction differs slightly from the description given here (please see the paper!).

・ロト ・同ト ・ヨト ・ヨト

How Do We Measure Correlation?

- How is the correlation measured? However you like.
- We could use Hamming distance, Maximum-Likelihood, ...
- We could measure the correlation of all bits, or only the newly-added bits, ...
- But, we chose to use a multinomial test because it provides us with a neat theoretical analysis of success.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Multinomial Distributions

- Multinomial distributions are a generalisation of binomial distributions.
- Multinomial distributions have *k* mutually exclusive events.
- Each of the *k* events has probability $p_i > 0$, and $\sum_{i=1}^{k} p_i = 1$.

イロト 不得 とくほと くほとう

э.

Multinomial Distributions

• Consider a bowl of sweets from which we sample at random (with replacement):

- Suppose we have four colours, with $\mathbb{P}(\text{red}) = 0.4$, $\mathbb{P}(\text{blue}) = 0.3$, $\mathbb{P}(\text{yellow}) = 0.2$, $\mathbb{P}(\text{green}) = 0.1$.
- If we pick 10 sweets randomly, what is the probability of picking:
 - 5 red, 2 blue, 2 yellow, 1 green?
 - 1 red, 6 blue, 1 yellow, 2 green?
- The multinomial distribution tells us the probability of any combination.

Multinomial Test

- Suppose we observe a set of values (say 6 red, 1 blue, 2 yellow, and 1 green).
- Suppose we believe that $(p_1, p_2, p_3, p_4) = (0.5, 0.2, 0.2, 0.1).$
- How can we be confident that the observed values were chosen according to the probabilities p₁, p₂, p₃ and p₄?
- There are several methods, but we chose to use the multinomial test.

ヘロト ヘアト ヘビト ヘビト

Multinomial Test Statistic

- Suppose we sample N items, with each item belonging to one of k distinct categories.
- Let *x_i* be the number of sampled items that belong to category *i*.
- If we hypothesise that each category has probability *p_i*, then we define

$$\mathrm{LR} = \sum_{i=0}^{k} x_i \ln \left(\frac{p_i N}{x_i} \right).$$

・ロト ・ 理 ト ・ ヨ ト ・

1

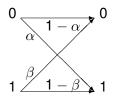
Multinomial Test Statistic

- Asymptotically, we have −2LR → χ²_{k−1} whenever the observed values follow the hypothesised distribution.
- Therefore $\mathbb{P}(-2LR < C) \rightarrow \mathbb{P}(\chi^2_{k-1} < C).$
- This allows us to set an appropriate confidence interval to decide whether to reject the hypothesis.
- i.e., if we are happy to reject the correct hypothesis with probability 0.05, we set C such that P(χ²_{k-1} < C) = 0.95.
- Computing *C* is easy.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Multinomial Test

- How does this help us?
- Recall that our algorithm measures the 'correlation' between our candidate key and the noisy bits.
- Recall that in a cold boot attack the bits will degrade according to the following channel:



・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Multinomial Test

- Hence, there are four possible bit-pairs.
- These are: 0 \rightarrow 0, 0 \rightarrow 1, 1 \rightarrow 0 and 1 \rightarrow 1.
- These four pairs can be viewed as the colours red, blue, green and yellow of the previous example.
- If we let p_b denote the probability of a b-bit appearing in the original key (together with the re-encoding), then:

•
$$\mathbb{P}(\mathbf{0} \to \mathbf{0}) = p_0(\mathbf{1} - \alpha),$$

•
$$\mathbb{P}(\mathbf{0} \to \mathbf{1}) = \mathbf{p}_{\mathbf{0}} \alpha$$
,

•
$$\mathbb{P}(1 \rightarrow 0) = p_1 \beta$$
,

•
$$\mathbb{P}(1 \rightarrow 1) = p_1(1 - \beta).$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Multinomial Test

- For each candidate solution, we perform a multinomial test.
- If the candidate's degradation is consistent with the probability vector (p₀(1 − α), p₀α, p₁β, p₁(1 − β)), it is kept.
- Otherwise, the algorithm discards the candidate.
- The user can specify his own confidence interval for the multinomial test.
- This allows the user to recover the private key with an arbitrary success (with a trade-off between running-time).
- N.B. This test also works in the RSA setting (and others!).

ヘロン ヘアン ヘビン ヘビン

Estimating p_0 and p_1

- We have not yet addressed how to set the values of p₀ and p₁.
- One option is to estimate these values by using knowledge of the asymptotic distribution of bits of the NAF or comb.
- However, given the small sample sizes, the asymptotic estimates may not be very good or useful.
- Instead, we perform two multinomial tests: one for the 0 bits of the candidate key, and one for the 1s.

A (10) × (10)

Consider the following example.

Candidate key:	01001010100010111
Noisy memory:	11100001100100001

• We parse the candidate key into 1s and 0s.

Candidate key:	00000000	11111111
Noisy memory:	110010010	10010001

・ロト ・ ア・ ・ ヨト ・ ヨト

æ

 Now we test the 1s and 0s separately, which avoids the need to estimate p₀ and p₁.

Why Not Maximum-Likelihood?

- At Asiacrypt 2012, Paterson et al. showed that Maximum-Likelihood (ML) decoding is very successful and quick to recover RSA keys from a cold boot attack.
- Why, then, do we not use ML decoding?
- Firstly, the ML algorithm does not have a rigorous theoretical analysis of success, whereas the multinomial test does.
- Secondly, the ML algorithm benefits from several advantages that are inherent in the RSA recovery procedure.

・ロト ・四ト ・ヨト ・ヨト

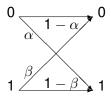
Experiments

- We will shortly see some of our experimental results.
- For each experiment we degraded 100 keys (each of length 160 bits).
- We then used our algorithm to attempt to recover the original keys.

OpenSSL (NAF) Experiments

 For these experiments we set α = 0.001. (N.B. There are several extra parameters to the algorithm that are not displayed here.)

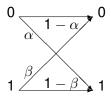
β	0.1	0.15	0.2	0.25	0.3
Predicted Success	0.15	0.15	0.02	0.01	0.01
Success	0.17	0.2	0.07	0.06	0.04



PolarSSL (comb) Experiments

 For these experiments we set α = 0.001. (N.B. There are several extra parameters to the algorithm that are not displayed here.)

β	0.01	0.03	0.06	0.08	0.1
Predicted Success	0.73	0.17	0.04	0.01	0.01
Success	0.81	0.6	0.55	0.37	0.08



Predicted Success vs Actual Success

- There is sometimes a big discrepancy between the predicted success and the observed success!
- The predicted success is based on the chi-squared distribution.
- Recall that the distribution of the multinomial test converges to the chi-squared distribution.
- For small sample sizes, the convergence is poor.
- Due to the probabilities used in our model (i.e., α = 0.001), the chi-squared test is providing a lower bound on the success of our algorithm.

◆□ > ◆□ > ◆豆 > ◆豆 > →

$0 \rightarrow 1 \text{ vs } 1 \rightarrow 0 \text{ region}$

- Recall that portions of memory are either $0 \rightarrow 1$ or $1 \rightarrow 0$.
- In previous cold boot attacks, the targeted private keys have an (approximately) uniform distribution of 1 bits and 0 bits.
- Hence, the key-recovery algorithms work equally well in each region.
- For the PolarSSL comb, there are slightly more 1s than 0s, but this will make a negligible difference to the algorithm.

イロト イポト イヨト イヨト

$0 \rightarrow 1 \text{ vs } 1 \rightarrow 0$

- For the OpenSSL NAF, there are many more 0s than 1s.
- Theoretically, the success of the algorithm is independent of whether we are in a 0 \rightarrow 1 or 1 \rightarrow 0 region.
- However, in practice the success will be affected (because different regions will result in different rates of convergence to the chi-squared statistic).
- It will also affect the running time of the algorithm.
- In a $0 \rightarrow 1$ region, the running-time will be much longer.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Open Problems

- Bound the running-time of the algorithm.
- Bound the probability of a Type II error for the multinomial test.
 - This requires assumptions regarding the distribution of incorrect solutions.
 - In the RSA setting there is a conjecture regarding this distribution, and this would allow us to bound the running-time of the algorithm (but not the running-time of our DL algorithm).

イロト イポト イヨト イヨト

Conclusions

- We have proposed practical key-recovery algorithms against OpenSSL and PolarSSL elliptic curve implementations.
- Our algorithms allow keys to be recovered with a user-chosen success rate (at the expense of running-time).
- The statistical test we use can be implemented with other key-recovery algorithms in other settings, such as RSA.
- Our paper provides the first exposition of the PolarSSL encoding in the cryptographic literature.

▲ ■ ▶ | ▲ ■ ▶ |