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Cold Boot Attacks

Usenix 2008 - Halderman et al. noted that DRAMs retain
their contents for a while after power is lost.
Bits in memory can be extracted (but it requires physical
access to the machine).

1 The attacker can insert a flash drive to the target machine,
2 the attacker turns off the machine,
3 the computer is restarted and the memory contents are

copied to the flash drive.

Unfortunately, the extracted bits will have errors.
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Cold Boot Attacks

The number of errors depends on a number of things.

The machine: newer machines lose data quicker.

The temperature: bits decay quicker at higher
temperatures.

The amount of time since power was lost: less time results
in fewer errors.
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Degradation of bits

At room temperature, some machines erase all data within
2.5 seconds. Others require 35 seconds.

At temperatures of −50◦C (via the use of compressed air)
all machines retained at least 99.9% of data after 60
seconds without power.

Cooling memory chips with liquid nitrogen resulted in only
0.17% of bits degrading after 60 minutes without power.
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Cold Boot Attacks

Portions of memory are either a 1→ 0 region or 0→ 1.
In a 1→ 0 region, 0 bits will always flip with very low
probability (<1%), but 1 bits will flip with much higher
probability.
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Cold Boot Attacks

Why is this a problem?
Secrets will be stored in memory.
If we can recover a noisy memory image, it might be
possible to recover private keys.

Important Question
Given a noisy key obtained from a cold boot attack, how can we

recover the original key?
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Previous Approaches

This question has been addressed many times before.
Most cold boot attacks consider the reconstruction of RSA
private keys.
There are attacks against symmetric schemes such as
DES and AES.
There is only one paper that discusses cold boot attacks in
the discrete logarithm setting.
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Cold Boot Attacks for Discrete Logarithm Keys

Cold boot attacks usually exploit redundancy in the private
key’s in-memory representation.

E.g. in practice RSA private keys contain the parameters
(p,q,d ,dp,dq,q−1

p ) instead of just d .

For previous DL cold boot attacks, the authors (Lee et al.)
assumed there was no redundancy in the key.
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Lee et al.’s Approach

Algorithm in a nutshell:
Let n be the length of the key, and let δ be the maximum
probability that a bit flips.

For i = 0 to bnδc:
1 Assume the key has i errors,
2 attempt to recover the key using a modified ‘splitting

system’ algorithm,
3 if the key is found, output it.
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Problems with this approach

It is not much better than a brute-force search.

The algorithm assumes we know an upper bound for the
number of errors.

The algorithm is designed to work for symmetric errors
(i.e., P(1→ 0) = P(0→ 1)), but this does not reflect the
behaviour of a cold boot attack.
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Improving the approach

There are several ways we can improve key-recovery
techniques in the DL setting.
The most obvious way is to find redundant representations
of keys.

Important Question
Are there any discrete logarithm implementations that contain

redundant information about the private key?
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Non-Adjacent Forms (NAFs)

The simplest NAF re-encodes a scalar x ∈ {0,1}` as a
string x ′ ∈ {0,1,−1}`+1.
Binary expansion: 7 = 22 + 21 + 20 = 1112.
Alternatively 7 = 23–20, so NAF(1112) = 1 0 0 − 1.
The NAF is designed to reduce the number of additions.
For elliptic curves, subtractions are as efficient as
additions.
The NAF is more efficient than the standard
double-and-add algorithm.
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NAFs

A generalised and modified version of this NAF is used for
OpenSSL elliptic curve implementations.

The generalised NAF has width w. This means there is at
most one non-zero digit in any string of length w (and digits
are any odd number between -2w−1 + 1 and 2w−1 − 1).

The modified version of the NAF may alter the w + 1 most
significant digits of the NAF (to increase efficiency).
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In-memory representation of NAFs

In OpenSSL, each digit of the NAF is represented as a
byte in memory.
The digits are represented using two-complement
arithmetic.
For example,

−3→ 11111101
−1→ 11111111
−0→ 00000000
−1→ 00000001
−3→ 00000011.
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Comb-Based Methods

Comb methods are designed to reduce the number of
multiplications.

They require some pre-computation that depends on a
fixed base point.

Basic combs are a re-ordering of the bits.
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Basic Comb

The basic comb has parameters w and d .
Consider a bit string, a, which has wd bits (prepend zeros,
if necessary).
The string a is rearranged into d blocks of length w , called
K i , for i ∈ {0, . . . ,d − 1}.
Let K i

j denote the j th bit of K i , then K i
j = ai+jd .

K d−1
w−1 K d−1

1 K 0
1 K 0

0

awd−1 a2d−1 ad a0
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Basic Comb

For a point P, the value aP is computed by evaluating a
sum over the K i values.

The basic comb is vulnerable to power analysis
techniques, since K i = 0 with probability 2−w .

When K i = 0, the addition of this zero vector is easily
identifiable.
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PolarSSL Comb

PolarSSL employs a modified comb technique.
The modifications are designed to prevent the previous
power analysis attacks.
The output of the PolarSSL comb is
(σd ,K d , σd−1,K d−1, . . . , σ0,K 0).
The K i are always odd in the PolarSSL comb, which
prevents K i = 0.
The σ values are either 1 or −1, to denote whether K i is
positive or negative.
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PolarSSL Comb

For the PolarSSL comb, we have w ∈ {2, . . . ,7}.
Recall that each K i has length w . Hence, each pair (σi ,K i)
can be stored in a byte.
For σ, −1 7→ 1 and 1 7→ 0.
The K i values are unchanged.
We store (σi ,K i) as “σi , padding, K i ”.
Example: w = 3 and (σ,K ) = (−1, (1,0,1)). The
in-memory representation as a byte is 10000101.

B. Poettering & D. L. Sibborn Cold boot attacks for DL



Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

Attack Model

Neither OpenSSL nor PolarSSL explicitly states that the
original private key should be discarded.

Hence, both the original key and its re-encoding (NAF or
comb) will be contained in memory, at least for some time.

We assume an adversary has mounted a cold boot attack
and obtains noisy versions of the key and its re-encoding.
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Attack Model

We assume the adversary knows α and β, where bits
degrade according to the following channel:
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We may estimate α and β by comparing public values with
the degraded public values that were in memory.
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The Reconstruction Technique

The (textbook) NAF is constructed by starting from the
least significant bits.
i.e., for the simplest NAF, the least t signed digits only rely
on knowledge of the least t + 1 bits of the bit string.
For example, take the integer 7:

partial bit string : partial NAF
1 1 → 1 0 0 − 1

1 1 1 → 0 0 0 − 1
0 1 1 1 → 0 0 0 − 1

0 0 1 1 1 → 1 0 0 − 1

Comb encodings have a similar property.
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The Reconstruction Technique

Our reconstruction procedure will consider partial solutions
for the private key (across a small section of bits).
For each candidate we can compute a partial re-encoding
(NAF/comb).
We compare these candidate solutions (and their
re-encodings) against the noisy information.
We keep a (possibly large) list of candidates for which the
‘correlation’ is ‘good’. Candidates with bad correlation are
discarded.
We then consider candidate solutions across a new
section of bits, and repeat the procedure.
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The Reconstruction Technique (Example for NAFs)

Suppose we consider 2 bits at a time. We begin like this:

candidate, x partial-NAF(x) Correlation
0 0 0 bad
0 1 1 bad
1 0 0 bad
1 1 -1 good

The second stage would then look like this:

candidate, x partial-NAF(x) Correlation
0 0 1 1 1 0 -1 bad
0 1 1 1 0 0 -1 good
1 0 1 1 1 0 -1 bad
1 1 1 1 0 0 -1 good

B. Poettering & D. L. Sibborn Cold boot attacks for DL



Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

The Reconstruction Technique

This process would repeat until the candidate solutions are
all of equal size to the private key.
We can then compare each remaining candidate solution
against the public key Q = aP.
If xP = Q for any candidate x , the algorithm outputs x as
the private key. Otherwise the algorithm fails.
A similar technique applies to our comb reconstruction
procedure.
Note, our actual OpenSSL reconstruction differs slightly
from the description given here (please see the paper!).
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How Do We Measure Correlation?

How is the correlation measured? However you like.
We could use Hamming distance, Maximum-Likelihood, . . .
We could measure the correlation of all bits, or only the
newly-added bits, . . .
But, we chose to use a multinomial test because it
provides us with a neat theoretical analysis of success.
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Multinomial Distributions

Multinomial distributions are a generalisation of binomial
distributions.

Multinomial distributions have k mutually exclusive events.

Each of the k events has probability pi > 0, and∑k
i=1 pi = 1.
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Multinomial Distributions

Consider a bowl of sweets from which we sample at
random (with replacement):

Suppose we have four colours, with P(red) = 0.4,
P(blue) = 0.3, P(yellow) = 0.2, P(green) = 0.1.
If we pick 10 sweets randomly, what is the probability of
picking:

5 red, 2 blue, 2 yellow, 1 green?
1 red, 6 blue, 1 yellow, 2 green?

The multinomial distribution tells us the probability of any
combination.
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Multinomial Test

Suppose we observe a set of values (say 6 red, 1 blue, 2
yellow, and 1 green).
Suppose we believe that
(p1,p2,p3,p4) = (0.5,0.2,0.2,0.1).
How can we be confident that the observed values were
chosen according to the probabilities p1,p2,p3 and p4?
There are several methods, but we chose to use the
multinomial test.
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Multinomial Test Statistic

Suppose we sample N items, with each item belonging to
one of k distinct categories.
Let xi be the number of sampled items that belong to
category i .
If we hypothesise that each category has probability pi ,
then we define

LR =
k∑

i=0

xi ln
(

piN
xi

)
.
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Multinomial Test Statistic

Asymptotically, we have −2LR→ χ2
k−1 whenever the

observed values follow the hypothesised distribution.
Therefore P(−2LR < C)→ P(χ2

k−1 < C).
This allows us to set an appropriate confidence interval to
decide whether to reject the hypothesis.
i.e., if we are happy to reject the correct hypothesis with
probability 0.05, we set C such that P(χ2

k−1 < C) = 0.95.
Computing C is easy.
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Multinomial Test

How does this help us?
Recall that our algorithm measures the ‘correlation’
between our candidate key and the noisy bits.
Recall that in a cold boot attack the bits will degrade
according to the following channel:
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Multinomial Test

Hence, there are four possible bit-pairs.
These are: 0→ 0, 0→ 1, 1→ 0 and 1→ 1.
These four pairs can be viewed as the colours red, blue,
green and yellow of the previous example.
If we let pb denote the probability of a b-bit appearing in
the original key (together with the re-encoding), then:

P(0→ 0) = p0(1− α),
P(0→ 1) = p0α,
P(1→ 0) = p1β,
P(1→ 1) = p1(1− β).
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Multinomial Test

For each candidate solution, we perform a multinomial test.
If the candidate’s degradation is consistent with the
probability vector (p0(1− α),p0α,p1β,p1(1− β)), it is kept.
Otherwise, the algorithm discards the candidate.
The user can specify his own confidence interval for the
multinomial test.
This allows the user to recover the private key with an
arbitrary success (with a trade-off between running-time).
N.B. This test also works in the RSA setting (and others!).
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Estimating p0 and p1

We have not yet addressed how to set the values of p0 and
p1.
One option is to estimate these values by using knowledge
of the asymptotic distribution of bits of the NAF or comb.
However, given the small sample sizes, the asymptotic
estimates may not be very good or useful.
Instead, we perform two multinomial tests: one for the 0
bits of the candidate key, and one for the 1s.
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Example

Consider the following example.

Candidate key: 01001010100010111 . . .
Noisy memory: 11100001100100001 . . .

We parse the candidate key into 1s and 0s.

Candidate key: 000000000 11111111
Noisy memory: 110010010 10010001

Now we test the 1s and 0s separately, which avoids the
need to estimate p0 and p1.
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Why Not Maximum-Likelihood?

At Asiacrypt 2012, Paterson et al. showed that
Maximum-Likelihood (ML) decoding is very successful and
quick to recover RSA keys from a cold boot attack.
Why, then, do we not use ML decoding?
Firstly, the ML algorithm does not have a rigorous
theoretical analysis of success, whereas the multinomial
test does.
Secondly, the ML algorithm benefits from several
advantages that are inherent in the RSA recovery
procedure.
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Experiments

We will shortly see some of our experimental results.

For each experiment we degraded 100 keys (each of
length 160 bits).

We then used our algorithm to attempt to recover the
original keys.
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OpenSSL (NAF) Experiments

For these experiments we set α = 0.001. (N.B. There are
several extra parameters to the algorithm that are not
displayed here.)

β 0.1 0.15 0.2 0.25 0.3
Predicted Success 0.15 0.15 0.02 0.01 0.01

Success 0.17 0.2 0.07 0.06 0.04

1
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0
1− α

α

1− β
β
�
�
�
�
�
��@

@
@
@
@
@R-

-

B. Poettering & D. L. Sibborn Cold boot attacks for DL



Introduction
NAFs and Combs

Multinomial Distribution and Test
Experimental Results

PolarSSL (comb) Experiments

For these experiments we set α = 0.001. (N.B. There are
several extra parameters to the algorithm that are not
displayed here.)

β 0.01 0.03 0.06 0.08 0.1
Predicted Success 0.73 0.17 0.04 0.01 0.01

Success 0.81 0.6 0.55 0.37 0.08
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Predicted Success vs Actual Success

There is sometimes a big discrepancy between the
predicted success and the observed success!
The predicted success is based on the chi-squared
distribution.
Recall that the distribution of the multinomial test
converges to the chi-squared distribution.
For small sample sizes, the convergence is poor.
Due to the probabilities used in our model (i.e., α = 0.001),
the chi-squared test is providing a lower bound on the
success of our algorithm.
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0→ 1 vs 1→ 0 region

Recall that portions of memory are either 0→ 1 or 1→ 0.
In previous cold boot attacks, the targeted private keys
have an (approximately) uniform distribution of 1 bits and 0
bits.
Hence, the key-recovery algorithms work equally well in
each region.
For the PolarSSL comb, there are slightly more 1s than 0s,
but this will make a negligible difference to the algorithm.
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0→ 1 vs 1→ 0

For the OpenSSL NAF, there are many more 0s than 1s.
Theoretically, the success of the algorithm is independent
of whether we are in a 0→ 1 or 1→ 0 region.
However, in practice the success will be affected (because
different regions will result in different rates of convergence
to the chi-squared statistic).
It will also affect the running time of the algorithm.
In a 0→ 1 region, the running-time will be much longer.
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Open Problems

Bound the running-time of the algorithm.

Bound the probability of a Type II error for the multinomial
test.

This requires assumptions regarding the distribution of
incorrect solutions.
In the RSA setting there is a conjecture regarding this
distribution, and this would allow us to bound the
running-time of the algorithm (but not the running-time of
our DL algorithm).
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Conclusions

We have proposed practical key-recovery algorithms
against OpenSSL and PolarSSL elliptic curve
implementations.

Our algorithms allow keys to be recovered with a
user-chosen success rate (at the expense of running-time).

The statistical test we use can be implemented with other
key-recovery algorithms in other settings, such as RSA.

Our paper provides the first exposition of the PolarSSL
encoding in the cryptographic literature.
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