
The filtering step of discrete logarithm and integer
factorization algorithms

Cyril BOUVIER

Institut de Mathématiques de Bordeaux (IMB)
Cyril.Bouvier@u-bordeaux.fr

CATREL Workshop – October 2nd, 2015



Outline of the presentation

1. Introduction

2. Description of the filtering step

3. Weight functions for clique removal

4. Experiments



Outline of the presentation

1. Introduction

2. Description of the filtering step

3. Weight functions for clique removal

4. Experiments



The filtering step

I Filtering step: common step of integer factorization and discrete
logarithms (DL) algorithms.

I In particular in NFS, NFS-DL and FFS algorithms. Also in other
algorithms like MPQS for factorization and algorithms for DL based on
index-calculus method.

I All these algorithms have a common structure:
I first step (often, a kind of polynomial selection);

I computations of relations;

I filtering step;

I linear algebra step;

I last step (square root for factorization and individual logarithm for DL).

1 / 26



Common characteristics

I In these algorithms, a relation is the decomposition of an element in a
factor base.

I The set of relations is seen as a matrix where
I a row corresponds to a relation;

I a column corresponds to an element of the factor base.

I The value of the coefficient in row i and column j is the valuation of the
element of the factor base corresponding to the jth column in the ith
relation.

I Excess: difference between the number of rows and the number of
columns of the matrix.

I Goal of the filtering step: build a “good” matrix from the given relations.

2 / 26



Integer Factorization context

I Wanted: a subset of the relations that, when multiplied together, forms
a square.

I Reformulation: a subset of the rows of the matrix that, when added,
produces a vector with only even coefficients, i.e. the null vector
over GF(2).

I The linear algebra step: computation of the left kernel of the matrix
over GF(2).

I Excess is an lower bound on the dimension of the left kernel. Need
around 150 vectors in the kernel, so final excess should be around 150.

3 / 26



Discrete Logarithm (DL) context

I Wanted: the logarithms of all the elements of the factor base.

I A relation is interpreted as an equality between the logarithms of the
elements of the factor base

I The size of the group in which the DL computation is performed is
denoted by `. The size of ` is around a few hundred bits.

I The linear algebra step: computation of the right kernel of the matrix
over GF(`).

I Need non-negative excess in order to have a kernel of dimension at
most 1. Excess do not need to be positive, so the final matrix is often
square.

4 / 26



Goal of the filtering step

I At the beginning of the filtering step, the matrix is
I very large: up to a few billion rows and columns.

I very sparse: around 20 to 30 non-zero coefficients per row.

I Goal of the filtering step: to produce a matrix as small and as sparse as
possible from the given relations in order to decrease the time spent in
the linear algebra step.

I Example: data from the factorization of RSA-768:
I input: 48 billion rows and 35 billion columns.

I output: 193 million rows and columns with 144 non-zero coefficients per
row in average.

I Publicly available implementation: GGNFS, Msieve, cado-nfs for
factorization (based on Cavallar’s thesis); none for DL before this work.

5 / 26



Outline of the presentation

1. Introduction

2. Description of the filtering step

3. Weight functions for clique removal

4. Experiments



Stages of the filtering step

I Stages of the filtering step:
I singleton removal: remove useless rows and columns;

I clique removal: use the excess to reduce the size of the matrix;

I merge: beginning of a Gaussian elimination.

I Assume no duplicate in relations (easy to spot and remove)

I Weight: the weight of a row (resp. column) is the number of non-zero
coefficients in this row (resp. column). The total weight of the matrix is
the total number of non-zero coefficients.

I The singleton removal and clique removal stages reduce the size and the
total weight of the matrix.

I The merge stage reduces the size of the matrix but increases its total
weight.

6 / 26



Singleton removal

I A singleton is a column of weight 1.

I Removing a singleton is the removal of the column and of the row
corresponding to the non-zero coefficient.

I Rationale:
I Factorization: relations containing singletons cannot be used to produce

squares.

I DL: the logarithm of the singleton can be computed from the others
logarithms after the linear algebra step.

7 / 26



Singleton removal — Example

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1





8 / 26



Singleton removal — Example

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1





8 / 26



Singleton removal — Example

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1





8 / 26



Singleton removal — Example

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1





8 / 26



Singleton removal — Example

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1





8 / 26



Singleton removal — Remarks

I During the singleton removal stage, rows and columns are removed, so
the size and the total weight of the matrix decrease.

I Removing a singleton can create other singletons.

I Excess can only increase.

I Implementation:
I Only need to know if coefficients are non-zero or not, not the actual

values. Same code can be used for factorization and DL.

I In the DL case, the deleted rows must be saved.

9 / 26



Clique removal

I While the excess is larger that what is needed, it is possible to remove
some rows.

I Rationale:
I Factorization: too much information, can loose some to reduce the size of

the matrix.

I DL: more equations than unknows, can remove some equations.

I If a row containing a column of weight 2 is removed, this column
becomes a singleton and can be removed.

I A clique is a connected component of the graph where the nodes are the
rows and the edges are the columns of weight 2.

I Not a clique in the sense of graph theory. . .

10 / 26



Clique removal — Example

1 1 0 0
1 0 0 1
0 1 0 1
0 0 1 0
0 0 1 1
0 0 0 1





r1 r2

r3 r4 r5

r6
c1

c2

c3

11 / 26



Clique removal — Remarks

I During the clique removal stage, rows and columns are removed, so the
size and the total weight of the matrix decrease.

I Each deleted clique reduces the excess by 1.

I Removing a clique can connect other remaining cliques.

I Implementation:
I Only need to know if coefficients are non-zero or not, not the actual

values. Same code can be used for factorization and DL.

I In the DL case, the deleted rows must be saved.

12 / 26



Merge

I Merge: combinations of rows to create singletons that are then removed.

I Rationale:
I Factorization: pre-combination of rows to help the linear algebra step.

I DL: beginning of a Gaussian elimination.

I Let k ≥ 2 be a positive integer, C be a column of weight k and
r1, . . . , rk be the k rows corresponding to these k non-zero coefficients.

I A k-merge is a way of performing successive rows additions of the form
ri ← ci ri + cj rj , with distinct i , j , such that the column C becomes a
singleton that is deleted.

13 / 26



Merge — Examples

1 1 0 1 0
1 0 1 0 1
1 1 1 0 0
0 1 1 1 0
1 1 0 1 1
1 1 1 1 0




The last column have weight 2.

14 / 26



Merge — Examples

1 1 0 1 0
1 0 1 0 1
1 1 1 0 0
0 1 1 1 0
1 1 0 1 1
1 1 1 1 0




The last column have weight 2.

14 / 26



Merge — Examples

1 1 0 1 0
0 1 1 1 0
1 1 1 0 0
0 1 1 1 0
1 1 0 1 1
1 1 1 1 0




The two corresponding rows are added, creating a singleton.

14 / 26



Merge — Examples

1 1 0 1 0
0 1 1 1 0
1 1 1 0 0
0 1 1 1 0
1 1 0 1 1
1 1 1 1 0




Then the singleton is deleted. This is a 2-merge.

14 / 26



Merge — Examples

1 1 0 1 0
0 1 1 1 0
1 1 1 0 0
0 1 1 1 0
1 1 0 1 1
1 1 1 1 0




The first column have weight 3. It exists 3 ways of combining these 3 rows.

14 / 26



Merge — Examples

1 1 0 1 0
0 1 1 1 0
0 0 1 1 0
0 1 1 1 0
1 1 0 1 1
0 0 1 0 0




For example, adding the first row to the other two. It creates a singleton.

14 / 26



Merge — Examples

1 1 0 1 0
0 1 1 1 0
0 0 1 1 0
0 1 1 1 0
1 1 0 1 1
0 0 1 0 0




Then the singleton is deleted. This is a 3-merge.

14 / 26



Merge — Examples

I For a k-merge with k ≥ 3, there is a choice on how to combine the k
rows. Use minimal spanning tree to minimize the increase of total
weight.

I Example of a 6-merge:

0 1 1 0 1 1
1 1 0 1 0 1
0 0 1 1 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 0 1





r0 r2 r4 r5 r7 r8

r1 4 2 4 2 3
r2 4 2 4 3
r4 2 2 1
r5 2 1
r7 1

r1 r2

r4 r5

r7 r8

15 / 26



Merge — Remarks

I A k-merge removes 1 row and 1 column, but increases the total weight
of the matrix (except for a 2-merge).

I Merge is performed until a given average weight per row is reached.

I In merge, the values of the non-zero coefficients matter:
I Factorization: coefficients are in GF(2), easy.

I DL: coefficients are small (in practice, 99% in [−10, 10]), so no modular
reduction, consider them in Z.

I Merge is the last stage of the filtering step. The matrix returned by
merge should be as sparse and as small as possible.

16 / 26



Outline of the presentation

1. Introduction

2. Description of the filtering step

3. Weight functions for clique removal

4. Experiments



Choice of cliques in clique removal

I During clique removal, one can choose which cliques are removed.

I How to choose? What choice of cliques, done during clique removal,
produces the smallest and sparsest matrix at the end of merge?

I Used weight function to compare the cliques and removed the heaviest
ones.

I The number of rows of the matrix is denoted by N, its total weight by
W . The weight of a column C is denoted by w(C ).

I To a first approximation, the time spent in the linear algebra step is
proportional to the product N ×W for the final matrix.

17 / 26



What do we want in a weight function ?

I Remove cliques containing lots of rows:
I It does not cost more to remove large cliques: removing 1 clique reduces

the excess by 1 whatever the number of rows in the cliques.

I The size of the matrix is reduced by the number of rows in the deleted
clique.

I So the weight functions should have a term taking into account the
number of rows in the cliques.

I Reduce the weight of columns to have more columns of weight
2, 3, 4, . . .

I New columns of weight 2 will create larger cliques.

I New columns of weight 3, 4, . . . will reduce the fill-in in the following
merge stage.

I So the weight functions should have a term taking into account the
weight of the columns appearing in the rows of a clique.

18 / 26



Weight functions used in software

I Msieve uses Cavallar’s weight function:

∑
row∈clique

1 +
∑

col∈row,w(col)≥3

1
2w(col)−2


I GGNFS uses the following weight function:

∑
row∈clique

1 +
∑

col∈row,w(col)≥3

1


I The default weight function of cado-nfs 1.1 was∑

row∈clique

1

I cado-nfs 2.0 uses a new weight function identified during this work.
19 / 26



New weight functions

I Proposed 27 new weight functions. Most of these new weight function
have the following form:

∑
row∈clique

? +
∑

col∈row,w(col)≥3

f (w(col))



I In total, 31 weight functions were compared (27 new ones, 1 from
Msieve, 1 from GGNFS and 2 from cado-nfs 1.1)

20 / 26



Outline of the presentation

1. Introduction

2. Description of the filtering step

3. Weight functions for clique removal

4. Experiments



Experiments

I To have a fair comparison between the 31 weight functions, they were all
implemented in cado-nfs .

I All the weight functions were benchmarked on 8 data sets:
I 3 from factorization computations with NFS: RSA-155, B200 and

RSA-704;

I 2 from DL computations with NFS-DL: in two prime fields of size 155
digits and 180 digits;

I 3 from DL computations with FFS: in GF(2619), GF(2809) and GF(21039).

I Input: set of unique relations, the target excess and the target average
number of non-zero coefficients per row.

I Output: the matrix after merge.

I How to compare the final matrices? Compare the product N ×W of the
final matrices.

21 / 26



Settings for two experiments

GF(p180) GF(21039)

Beginning
Number of rows 175M 1306M
Number of columns 78M 986M

Number of rows 171M 1080M
After singleton Number of columns 78M 746M

removal Excess 93M 334M
Relative excess 119% 44.7%

After clique removal Excess 5 0

After merge
k-merge for k from 2 to 30 2 to 30
W /N 150 100

22 / 26



Partial results for GF(p180) and GF(21039)

GF(p180)
After clique removal At the end of the filtering step

N N N ×W

new 1 21 468 306 7 288 100 7.97× 1015

new 2 21 546 475 7 400 557 8.22× 1015 +3.11%
Msieve 20 395 070 7 866 604 9.28× 1015 +16.51%
GGNFS 25 676 095 9 163 369 1.26× 1016 +58.08%
cado-nfs 1.1 28 940 807 10 769 526 1.74× 1016 +118.36%

GF(21039) After clique removal At the end of the filtering step

N N N ×W

new 2 188 580 425 65 138 845 4.24× 1017

new 1 188 302 437 65 800 281 4.33× 1017 +2.04%
Msieve 182 939 672 67 603 362 4.57× 1017 +7.71%
GGNFS 197 703 703 74 570 015 5.56× 1017 +31.05%
cado-nfs 1.1 203 255 785 78 239 129 6.12× 1017 +44.27%

23 / 26



Some remarks

I Found two new weight functions that outperformed the others in all
experiments.

I The best weight functions after clique removal are not the best at the
end of the filtering step.

I The best weight functions are the ones that have few or no contribution
from the number of rows in the clique.

I The larger the initial excess, the larger the differences between the
weight functions.

24 / 26



Excess — RSA-155

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

75 100 125 150 175 200 225
0

25

50

75

100

125

150

fin
al

N
×
W

(×
10

15
)

R
el
at
iv
e
ex
ce
ss

(%
)

Number of unique relations (×106)

Relative excess
new 1

Msieve
cado-nfs

GGNFS
new 2

Ω62

25 / 26



Conclusion

I Unified description of the filtering step for integer factorization and
discrete logarithm computation.

I First publicly available implementation (in cado-nfs) of the filtering
step for discrete logarithm.

I Proposed new weight functions for the clique removal stage.

I Compared them on data sets coming from actual computations and
found two new weight functions that perform better.

26 / 26



Thanks you for your attention.

Questions ?

26 / 26


	Introduction
	Description of the filtering step
	Weight functions for clique removal
	Experiments

