
POST-SIEVING ON GPUS

1

Andrea Miele1,
Joppe W. Bos2,

Thorsten Kleinjung1,
Arjen K. Lenstra1

1LACAL, EPFL, Lausanne, Switzerland
2NXP Semiconductors, Leuven, Belgium

GPU COMPUTING HISTORY

• 90s: parallel devices for graphics pipeline, transforming 3D
scene description (triangles) into 2D pixel frame to put on
screen

• Many cores, each specialized for particular pipeline stage. 
Became more and more programmable across the years…

• 2006: full programmability plus general purpose
programming models (CUDA, OpenCL): GPGPU

2

OUR STUDY
• We investigated the use of NVIDIA GPUs supporting

CUDA as accelerators for the number field sieve

• We targeted FERMI GPUs (5 years old now…)

• Applies to massive parallel PKC apps based on modular arith

• GPU integer performance has been dropping dramatically,  
but I talked with NVIDIA people and there may be hope…

3

NUMBER FIELD SIEVE (NFS)
• NFS: asymptotically fastest known factoring algorithm

• RSA 768-bit modulus factored with NFS (2010)

• Idea: to factor an odd composite n, find integer solutions  
x, y to x2 ≣ y2 mod n such that x ≠ ± y mod n

• Two main steps: 
Relation collection: find smooth integers, ≈90% of total time  
Linear algebra step: find solutions (x,y), ≈10% of total time

4

NFS RELATIONS

• Two positive integer smoothness bounds: Bra, Bal

• Irreducible fra(X), fal(X) of degree1and d small (d=6)

• Relation: (a,b) with a,b co-prime integers (b>0) such that

1. b.fra(a/b) is Bra-smooth except at most 3 primes in (Bra,BL]

2. bd.fal(a/b) is Bal-smooth except at most 4 primes in (Bal,BL]

5

COLLECT RELATIONS

• SIEVING find pairs (a,b) such that: 
b.fra(a/b)=cg (rational side) 
bd.fal(a/b)=eh (algebraic side) 
where c is Bra-smooth, e is Bal-smooth and g ≤ BL

3, h ≤ BL
4 (“cofactors”)

• POST-SIEVING:  
1 Compute b.fra(a/b) and bd.fal(a/b)  
2 Factor b.fra(a/b) and bd.fal(a/b) to check if prime divisors are at most BL  
EMBARRASSINGLY PARALLEL!

6

GOAL: FASTER NFS WITH GPUS?
• SIEVING: done on CPUs

• IDEA: offload all post-sieving to GPUs

7

SIEVING

2 CPUs + 1 GPU

...

TIME

PS SIEVING PS SIEVING PS
SIEVING PS SIEVING PS SIEVING PS

2 CPUs

... ...SIEVING
PS

SIEVING
SIEVING

PS

SIEVING
SIEVING

SIEVING
SIEVING

...

PS PS

TIME

SIEVING

GPUS, NOT ONLY GAMING…
• Massively parallel 32-bit many-core. Thousands of cores

• One int or float instruction/clock cycle per thread/core

8

CORE% CORE% CORE% CORE%

CORE% CORE% CORE% CORE%

CORE% CORE% CORE% CORE%

64%KB%Shared%Memory%/%L1%Cache%

Register%File%(32Abit)%

64%KB%Uniform%Cache%

InstrucIon%Cache%

Warp%Sched%

Dispatch%Unit%

.%

.%

.%

Streaming%mulIprocessor%(SM)%

L2%Cache%

...%

HOST%IF%

SCHED%

DRAM%

SM%

SM% SM%

SM%

SM%

SM%

...%

LD/ST%

LD/ST%

SFU%

SFU%

LD/ST% SFU%

Warp%Sched%Warp%Sched%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

.%

...%

...%

DRAM%

DRAM%

DRAM%

.%

.%

.%
.%
.%
.%

DRAM%

DRAM%

Thread Warp
(32 threads) !

Kernel Function

Dispatch%Unit% Dispatch%Unit%

INTEGER ARITHMETIC

9

Fermi (GTX 500 family) Kepler (GTX 700 family) Maxwell (GTX 900 family)

Cores Up to 512 Up to 2880 Up to 3072

SMs Up to 16 Up to 15 Up to 24

Frequency Up to 1544 Mhz Up to 1100 Mhz (Max boost) Up to 1200 Mhz (Max boost)

DRAM Up to 3GB (192 GB/s) Up to 6GB (336 GB/s) Up to 12GB (336 GB/s)

Integer
mul

1/2 clock cycles 1/6 clock cycles Multiple instructions…

CUDA GPUS (NVIDIA)
• Tens of thousands of threads execute a GPU kernel

• Threads are grouped in blocks (at most 1024 threads). 
A block “goes” to a single SM and “resides” in it for whole execution

• Warp: batches of 32 threads within a block execute in lockstep on
32 cores

• Thread in a warp should not diverge and use coalesced memory
access to get good performance…

10

POST-SIEVING ON GPUS
• Input: the set of pairs (a,b) output by the sieve, the coefficients of the

two polynomials

• Output: Indices of pairs (a,b) that are relations (optionally found factors)

• Two CUDA kernels run sequentially:

1. Rational side: check bfr(a/b) for BL-smoothness (discard bad)

2. Algebraic side: check bdfa(a/b) for BL-smoothness (output relations)

11

DESIGN STRATEGY

• Each thread processes one or more pairs (a,b) (task parallelism!)

• Each thread runs fixed sequence of steps to determine if value is Br

(Ba)-smooth except at most 3 (4) primes less than BL

 
+ No thread synchronization, high computing/mem access ratio
- High register usage (and memory spilling…), high latency

12

ARITHMETIC DESIGN

13

• Sequential Radix 232 Montgomery arithmetic

• PTX level optimized code (heavy use of MAD instructions!)

…

32-bit unsigned integer:
Multi-precision integer: …

…

X0

Y0
…

…

X1

Y1
…

…

…

…

XM-1

YM-1

… … … …
Z0 Z1 ZM-1

Thread0 Thread1 ThreadM-1

Zi=OP(Xi ,Yi)

COALESCED ACCESS

14

KERNEL DETAILS
• Rational side first (discard bad), then algebraic side (output relations)

15

A. Get pair (a,b) and evaluate polynomial b.fra(a/b) (or bd.fal(a/b))

B. Remove small factors: trial division, from now work on records: (value, index)

Repeat:

1. Group records in “buckets” according to value size

2. Factoring attempt: Pollard p-1 or ECM, if factor found, divide out

3. Test compositeness, discard prime values > BL, put aside values ≤ BL

16

KERNEL WORKFLOW

160-bit
Poly eval

+!
TD

64-bit !
Bucket

96-bit!
Bucket

128-bit!
Bucket

160-bit!
Bucket

GOOD!
Bucket

(a,b)

96-bit P-1

Group

 96-bit ECM

 64-bit ECM

 128-bit ECM

 160-bit ECM

 128-bit P-1

 160-bit P-1

Group

STEPS

Group

1

…

ALGORITHMS
• Bivariate polynomial evaluation:  

naive, no Horner

• Trial Division:  
prime table in CMEM, divisibility test (Horner/Montgomery), exact div

• Pseudo primality test (Montgomery arithmetic):  
Selfridge-Rabin-Miller

• Pollard P-1 (Montgomery arithmetic):  
left-to-right modular exponentiation for stage 1, optimized BSGS for stage 2

• ECM (Montgomery arithmetic):  
Twisted Edwards curves, add chains for stage 1, optimized BSGS for stage 2

17

INTEGRATION WITH RSA-768
SOFTWARE

Finding good parameters for GPU kernels is hard!

• Preliminary experiments: rule out bad configurations

• We have run many experiments on RSA-768 datasets

What to optimize for?

• We have fixed the yield, and looked for fastest configurations

• Focus on two cases: 95% and 99% yield

18

Runs Bounds (vals < 2256 , BL = 237)

Trial Division 0-1 B≅210

Pollard p-1 1 B1≅210, B2≅214

ECM 8-20 B1=[28, 210], B2=[212, 215]

RSA-768: CPU VS GPU
CPU: INTEL I7-3770K 4 cores 3.5 GHz 16GB RAM

19

GPU: NVIDIA GTX 580 512 CORES 1544 MHz 1.5 GB RAM

Large primes Input pairs Tot time Sieve time PS-cof
time

Relations found

≤ 3 ≈ 5x105 29.6s 25.6s 4.0s 125 (31.3 rels/sec)

≤ 4 ≈ 106 32.0s 25.9s 6.1s 137 (22.5 rels/sec)

Large primes Input pairs Desired yield CPU/GPU
Ratio

Time Relations found

≤ 3 ≈ 5x105
95% 9.8 2.6s 132 (50.8 rels/sec)

99% 6.9 3.7s 136 (36.8 rels/sec)

≤ 4 ≈ 106 95% 4.0 6.5s 159 (24.5 rels/sec)

99% 2.7 9.6s 165 (17.2 rels/sec)

RSA-768:1CPU VS 1CPU +1GPU

• Large primes ≤ 3: 24% GAIN

• Large primes ≤ 4: 45% GAIN

20

Large primes # Input pairs Setting Total time # Relations
found

Relations/sec

≤ 3 ≈ 5x107
No GPU 2961s 12523 4.23

With GPU 2564s 13761 5.37

≤ 4 ≈ 5x107
No GPU 1602s 6855 4.28

With GPU 1300s 8302 6.39

CONCLUSION

• GPUs are (were?) good accelerators for post
sieving

• Their use can reduce overall NFS factoring time

• But taking into account power consumption,
programming cost and reliability things get uglier…

21

THANKS FOR YOUR
ATTENTION!

22

