
Rigorous evidence of freedom from concurrency
faults in industrial control software

Richard Bonichon1, Géraud Canet1, Löıc Correnson1, Eric Goubault1,
Emmanuel Haucourt1, Michel Hirschowitz1, Sébastien Labbé2 and

Samuel Mimram1

1 CEA, LIST,
Gif-sur-Yvette, F-91191, France

{richard.bonichon, emmanuel.haucourt}@cea.fr
2 EDF Research & Development

6 quai Watier, Chatou, F-78401, France
Corresponding author: sebastien.labbe@edf.fr
Tel. +33 1 30 87 79 42 Fax. +33 1 30 87 82 61

Abstract. In the power generation industry, digital control systems may
play an important role in plant safety. Thus, these systems are the ob-
ject of rigorous analyzes and safety assessments. In particular, the qual-
ity, correctness and dependability of control systems software need to be
justified. This paper reports on the development of a tool-based method-
ology to address the demonstration of freedom from intrinsic software
faults related to concurrency and synchronization, and its practical ap-
plication to an industrial control software case study. We describe the
underlying theoretical foundations, the main mechanisms involved in the
tools and the main results and lessons learned from this work. An im-
portant conclusion of the paper is that the used verification techniques
and tools scale efficiently and accurately to industrial control system
software, which is a major requirement for real-life safety assessments.
Keywords: Digital control systems; software dependability; formal veri-
fication; concurrency; deadlock.

All necessary clearances for the publication of this paper have been obtained.
If accepted, the author will prepare the final manuscript in time for inclusion in
the conference proceedings and will present the paper at the conference.

1 Introduction — Intrinsic software faults

Dependability assessment of digital control systems require elements from con-
trol systems designers in order to establish the excellence of production; e.g. evi-
dence of systematic, fully documented and reviewable engineering process, qual-
ity assurance, test and simulation at different stages of development, operational
experience and demonstration of conformity to applicable standards.

Complementary measures may be taken in order to demonstrate properties,
and provide rigorous evidence of the freedom from postulated categories of faults.

Considered faults include intrinsic software faults, i.e. faults in a software design
that can be identified independently of functional specifications.

Technical studies and surveys performed in recent years have led to consider
three main categories of software intrinsic faults as relevant to this domain, i.e.
intrinsic faults that might be postulated in software important to availability.
The taxonomy we rely on [24] is intended comprehensive, though exhaustivity
could generally not be claimed. It has been established in taking account of:

– Experience gained in software formal verification at EDF (e.g. [28] and in-
ternal technical reports) and other institutions or companies sharing similar
interest in such methods [1, 15,25];

– Community lists of software faults, like CWE [12];
– Lists of addressed faults published by software analysis tool vendors.

The mentioned categories of faults are the following:

– faults in concurrency and synchronization (detailed below);
– faults in dynamic handling of memory, namely: memory leaks, segmentation

faults and other memory-related undesirable behaviors;
– and “basic” faults such as divisions by zero, out-of-bounds array access, use

of non-initialized variables, other numeric manipulation errors, etc.

Depending on the importance to safety of a system software, some of the above
categories of faults can be ruled out by design. For instance in critical software,
dynamic management of the memory is usually not allowed by design rules.
In this paper, only the concurrency aspects are developed; specifically when
considering these aspects, it is of interest to demonstrate the absence of the
following intrinsic faults:

– Resource starvation such as deadlocks and livelocks, e.g. points where no
further progress is possible for a given program run;

– Non-determinism or race condition, e.g. points where a program may be-
have differently given the same inputs (because side effects depend upon
synchronization);

– Incorrect protection of shared resources, e.g. concurrent and non protected
accesses to a shared variable;

– Incorrect handling of priorities;
– Unexpectedly unreachable program states, e.g. no path may lead to a given

state while it was supposed to be reachable.

In some cases, intrinsic faults are unlikely to be detected via classical V&V
methods3, for instance faults that might be triggered in specific configurations of
variables (e.g. division by zero, arithmetic overflow), or after long runs (e.g. over-
run in a very large buffer, out-of-memory error due to a small leak), etc.

Tool-based analytic approaches to systematically identify intrinsic faults prefer-
ably rely on formal verification techniques. Gained confidence could then be used
3 Functional correctness still needs to be addressed with appropriate approaches, e.g.

functional testing, theorem proving or simulation.

in higher level assessments, e.g. to support claims about I&C software contri-
bution to the reliability of a safety function, or to alleviate concerns regarding
digital Common Cause Failures.

2 Tool-based methodology — Outline

This paper reports on the development of a tool-based methodology to demon-
strate the freedom from intrinsic software faults related to concurrency in in-
dustrial control software. The following two related projects are involved (both
projects have eponymous tools):

– MIEL: Interactive model extraction from software — Analyze software written
in C language in order to facilitate code understanding and extract represen-
tative models to be analyzed by third-party tools;

– ALCOOL: Analysis of coordination in concurrent software — Develop a theory,
algorithms and a static analysis tool with the ability to verify synchronization
properties (particularly, freedom from intrinsic faults) in complex software.

The tool-based methodology developed in these two projects aims at analyzing
software that can be found in digital control systems either safety related, or
important to availability, in power plants. Compared to the most critical software
parts, the use of complex programming mechanisms may be more freely used,
e.g. concurrent interactions and synchronization.

On the other hand, the dependability requirements for such systems are high;
then the system lifecycle must (at least partly) establish required properties,
e.g. predictability. In particular, design measures are generally applied, that ef-
fectively reduce the complexity and restrict the set of potential vulnerabilities.
Memory allocation, task and synchronization resources creation are indeed to
be performed only during a dedicated initialization phase. Then, the behavior in
normal operation is intended mostly cyclic and steady. For instance, an iteration
of a loop is expected to know as little as possible from previous iterations. Also,
communication and synchronization are expected to be restricted to the nec-
essary. The presented tool-based methodology is intended to take advantage of
those characteristics, to provide rigorous verification tools with high efficiency.

The rest of the paper is structured as follows. The tools MIEL and ALCOOL,
together with their theoretical foundations are described in section 3. An indus-
trial software case study and practical experiments are described in section 4.
Some related works are presented in section 5. Finally, the main results, lessons
learned and perspectives to this work are synthesized in section 6.

3 Theoretical framework and tools

3.1 Static analysis for model extraction and the MIEL tool

The MIEL tool is a model extractor for C programs. It runs as a plug-in of the
Frama-C static analysis platform [11, 17], which is dedicated to the analysis of
software source code written in the C programming language.

f u n c t i o n pthread create
of type th r ead c r e a t i o n
has arg 3 of type

f u n c t i o n name

f u n c t i o n pthread mutex unlock of type r e l e a s e
has arg 1 of type semaphore

f u n c t i o n pthread mutex lock of type l o c k
has arg 1 of type semaphore

Fig. 1. Excerpts of MIEL description file: POSIX thread creation (left), locks (right).

The main requirement for models extracted by MIEL is to be conservatively
representative with respect to the specified point of interest, i.e. behaviors re-
lated to a specific aspect of interest in the original program must be included in
the behaviors denoted by the corresponding model. Various intrinsic aspects of
software can be of interest, including calls to memory management, concurrency,
synchronization or communication primitives.

Accordingly extracted sets of information may then be provided as models to
dedicated external tools, with the purpose of demonstrating or refuting proper-
ties. The MIEL tool is primarily geared toward extracting models from concurrent
programs; its algorithm applies also to sequential programs.

Model extraction is based on a description file, which indicates the points
of interests in the program: a list of functions, together with a signature (using
types known by MIEL).4 Only arguments of interest should be specified in a
signature. For example, when interested in threads or processes created in a
program using POSIX primitives, users might write a description according to
Figure 1: this tells the analyzer, firstly every occurrence of thread creation must
appear in the model, and secondly the starting functions of threads are given
in the third argument of pthread create. Now, considering synchronization faults,
e.g. deadlocks, the model must also encompass all events where locks are taken
and released. Figure 1 (right) suggests a suitable description.

The MIEL tool implements a syntactic model extraction algorithm, which is
sound for a specific class of software where the interesting function identifiers
are syntactically reachable. That is to say, the functions of interest must not be
aliased, and resource requests of interest must be syntactically distinct. We will
see in the following how these soundness requirements are consistent with the
characteristics of the targeted systems software.

Considering the typical design features of the targeted classes of software
(safety related or important to availability, cf. section 2), it is expected that
synchronization or memory management primitives can be easily identified (no
aliases on these function names). It is also expected that loop unrolling is suf-
ficient to make sure accesses to different synchronization or memory resources
(threads, mutexes, semaphores, memory cells, etc.) can be syntactically distin-
guished. This can be achieved through code annotation within Frama-C. Detailed
examples of the annotations needed for the presented case study are given in sec-
tion 4.2.

4 The types used to classify functions include: thread creation, process creation, lock,
release, delay, priority, interrupt handler, ...

p

P
(a

)

V
(a

)

P (a)

V (a)

P
(a

)

V
(a

)

P (a)

V (a)

P
(a

)

V
(a

)

P (a)

V (a)

Fig. 2. The forbidden square

3.2 Geometric semantics for concurrency analysis, ALCOOL tool

The ALCOOL tool is based on the directed algebraic topology of cubical areas.
Roughly speaking, a cubical area of dimension n ∈ N is a finite union of hyper-
rectangles of dimension n ∈ N (i.e. finite products of n non empty intervals of the
real line R). As mathematical objects, the cubical areas enjoy a structure which
is implemented as a library used by the ALCOOL tool. Basically it takes as input
a program written in a specific input language (in practical cases, models are
preferably automatically generated by MIEL) and produces a geometric model
which is a cubical area. From this model, ALCOOL then can identify forbidden
states, deadlocks, unreachable states, critical sections. Using an algorithm which
performs the “prime” decomposition of a cubical area [3], ALCOOL can also find
the subgroups of processes which actually run independently from each others.

The PV language was introduced by E.W. Dijkstra to illustrate the problems
which may arise when designing parallel programs [13]. In the original version,
P and V respectively stand for the dutch words “pakken” (take) and “vrijlaten”
(release). The processes indeed share a pool of resources, and each of them may
request the authorization to access a resource a by executing the instruction
P (a). If a is available, then it is granted to the process until it releases it by
executing the instruction V (a). Otherwise, the process stops and waits until the
resource is dropped by the previous holder.

On the practical side, the development of the ALCOOL tool was originally
driven by the need for dealing with industrial C programs. The ALCOOL input
language (called PV in the following), therefore contains a broader set of concur-
rency primitives, including POSIX and VxWorks.

We now illustrate the abilities of ALCOOL through some examples. Consider
the sequential process π := P (a).V (a), where a is a resource that can be held by a
single process at a time (a mutex). Then run two copies of π simultaneously: π|π
(cf. Figure 2). Generally, each running process is associated with a dimension,
therefore the geometric model is here 2-dimensional. The point p represents
a state in which both instruction pointers, which are the projections of p, lie
between P (a) and V (a). That is, in this state both copies of the process π hold
the resource a, which is by definition forbidden (not feasible). The geometric
model is thus R2\[1, 2[2: all the points in the gray square are forbidden.

The fact intervals are open or closed depends whether an instruction is exe-
cuted exactly when it is reached by the instruction pointer. In this framework,

Fa
P(a)

V(a)

P
(a

)

V
(a

)

Fb

P(b)

V(b)

P
(b

)

V
(b

)

F

P(b)

P(a)

V(a)

V(b)

P
(a

)

P
(b

)

V
(b

)

V
(a

)

P(b)

P(a)

V(a)

V(b)

P
(a

)

P
(b

)

V
(b

)

V
(a

)

deadlock zone

Fig. 3. Deadlock examples: The Swiss flag (left), The 3 dining philosophers (right)

the program execution traces correspond to increasing continuous paths in the
geometric model (cf. Figure 2). The library dealing with cubical areas allows
ALCOOL to identify these, all represented by the same cubical area.

For the next example in Figure 3 (left), we consider two processes π0 :=
P (a).P (b).V (b).V (a) and π1 := P (b).P (a).V (a).V (b) running concurrently. We
have two resources a and b each of which generates a forbidden rectangle. In this
example we have a potential deadlock: if the first process takes the resource a
while the second one takes b, then both won’t be able to progress further.

The 3-dimensional models arise from the study of programs made of 3 pro-
cesses, such as the well-known 3 dining philosophers, cf. Figure 3 (right). In this
picture, the central (red) cube represents the deadlock zone.

As we shall see, ALCOOL can also perform the factorization of a PV pro-
gram from its geometric model. In the next example we introduce counting
semaphores: resources that can be shared by more than 2 processes. We suppose
a and b are mutexes and c is a 3-semaphore, meaning c can be held by 2 processes
at a time but not 3. Then we consider the following processes:

πa := P (a).P (c).V (c).V (a)
πb := P (b).P (c).V (c).V (b)

Then we consider the PV program πa|πb|πa|πb. A handmade analysis reveals
that the semaphore c is in fact useless. The program can indeed be split into
two groups of processes {1, 3} and {2, 4}. Each group cannot hold more than
one occurrence of the c resource, so it cannot run out of stock. The ALCOOL tool
detects this situation by performing an algebraic factorization, proving that the

geometric model of the program can be written as a 2-fold Cartesian product:(
[0, 1[×[0,∞[∪ [4,∞[×[0,∞[∪ [0,∞[×[0, 1[∪ [0,∞[×[4,∞[

)2

From a theoretical point of view, a cubical area can be written as a Cartesian
product in a unique way (compare with natural numbers and prime numbers).
This feature is extremely important since it allows, when the decomposition of
the geometric model is not trivial, to split the analysis of a program into the
analysis of several simpler subprograms.

The cubical area library lies upon some facts we now state. In the sequel, a
cubical area should be understood as a finite union of hyperrectangles.

– The intersection of finitely many cubical areas of dimension n is a cubical
area of dimension n.

– The complement (in Rn) of a cubical area of dimension n is a cubical area
of dimension n.

– Any cubical area has a “normal form” given by the collection of all its max-
imal sub-hyperrectangles. A hyperrectangle contained in a cubical area X
is said to be maximal (in X) when any strictly bigger hyperrectangle is not
contained in X.

– The previous assertions over the n dimensional cubical areas are compatible
with the action of the symmetric group Sn (in other words the permutation
of coordinates in a “coherent” way).

– There is a notion of directed homotopy so that each equivalence class of
directed path over a cubical area is characterized by a cubical area X. Indeed,
a path γ is in the class EX if and only if its image {γ(t) | t ∈ [0, 1]} is
contained in X.

More details about the way theoretical facts are exploited by ALCOOL may
be found in [19]. The cubical areas are special cases of pospaces, they are intro-
duced in [26] without any mention to their directed homotopy aspects. Gentle
introductions to the latter can be found in [18] and [16]. An abstract treatment
of Directed Algebraic Topology can be found in [20].

4 Case study

This section reports on a practical application of the verification approach pre-
sented in section 3. Section 4.1 briefly describes a real-world software unit, which
is embedded in a programmable logic controller. Then, we explain in section 4.2
how the verification framework and tools support rigorous evidence of freedom
from synchronization faults in this software.

4.1 Industrial control system software

Software under analysis in the present case study is a processing unit of an indus-
trial programmable logic controller (PLC) used in digital control systems.The

source code is written in C language; its size is approximately 85 kloc, where 1
kloc = 1 000 lines of code (107 kloc including specific header files and 135 kloc
including all header files).

This software is involved in processing inputs and outputs (interfacing con-
trol systems with sensors and actuators, including local processing of I/O data),
handling network communications, self-monitoring and maintenance functions.
For other low-level internal resource management and processing, the software
relies on a commercial real-time kernel threads API: for scheduling, handling of
priority and interruption, creation and management of threads and communica-
tion resources such as semaphores and queues.

The following is a succinct description of the software architecture and nom-
inal dynamic behavior. After kernel initialization, the main thread configures
interruptions, connects interruption routines, and creates all the needed threads
and communications resources (there are about 10 of each item created). Each
thread is created with one of the following purposes: handling process inputs,
screening and detecting state changes in I/O boards; handling time-controlled
inputs and outputs and network communications; PLC configuration; update
of redundant processing unit, self-checking, etc. These threads run concurrently
until the end of the main thread. Shared data include queues, semaphores (some
of which are gathered in arrays), some events and configuration values.

4.2 Verification of synchronization properties

Model extraction As explained in section 3.1, users of MIEL need to check
that each call to a function of interest in the source file can be syntactically seen
as such in the source files. Concerning our case study, code inspection indicates
that some parts need annotations for the abstracted model to be correct. As
argued earlier, two conditions might invalidate that correction: aliases for syn-
chronization primitives names, and calls to synchronization primitives nested
within loops. In the former case, we have seen in section 2 that relying on design
considerations, it is expected that there is no alias on synchronization primitives
names (we have also confirmed this assumption by code inspection). In the latter
case, we rely on loop unrolling to extract a correct model.

More precisely, where semaphores are locked then unlocked, the encompass-
ing loop has to be syntactically expanded by Frama-C before the analysis by
MIEL, as in Figure 4. Actually, every part of the original code that is both a
remote parent of a call to a function of interest, and located within a loop will
need to have its loop unrolled in this way. With the additional use of semantic
constant folding (done by a Frama-C plug-in) the semaphores of Figure 4 can be
identified in the model without ambiguity (because syntactically different after
constant folding).

After the initial phases of specifying the aspects of interest in the program
— in this case: primitives related to semaphores, threads and message queues —
and inserting the appropriate annotations, MIEL performs an automatic analysis.
Figure 4 shows the whole description file needed for the case study. Finally, no
code modification nor additional annotation is needed.

f u n c t i o n semTake of type l o c k
has arg 2 of type d e l a y

arg 1 of type semaphore

f u n c t i o n semGive of type r e l e a s e
has arg 1 of type semaphore

f u n c t i o n taskSpawn
of type th r ead c r e a t i o n
has arg 5 of type f u n c t i o n name

f u n c t i o n msgQSend of type send
has arg 5 of type pr io r i ty

arg 4 of type d e l a y
arg 1 of type queue

f u n c t i o n msgQReceive of type r e c e i v e
has arg 4 of type d e l a y

arg 1 of type queue

/∗@loop pragma UNROLL 10; ∗/
f o r (i = 0 ; i < 10 ; i ++) {

i f (message[i]) {
i f (semTake(sem array[i],

NOWAIT))
{

...
message[i] = 0;
new frame[i] = ... ;
semGive(sem array[i]);

}

Fig. 4. Inputs: MIEL description file for the case study (left), Frama-C annotation for
loop expansion (right).

exec loop =
(((P(sem array 0).V(sem array 0))

+ ...) + ...).
(((P(sem array 1).V(sem array 1))

+ ...) + ...).
...
(((P(sem array 9).V(sem array 9))

+ ...) + ...).

Geometric Model (forbidden area):

[0, +∞[2×[1, +∞[×[0, +∞[10

∪ [0, +∞[3×[1, +∞[×[0, +∞[9

∪ [0, +∞[7×[1, +∞[×[0, +∞[5

∪ [0, +∞[9×[1, +∞[×[0, +∞[3

∪ [0, +∞[10×[1, +∞[×[0, +∞[2

∪ [0, +∞[11×[1, +∞[2

Deadlock Attractor: ∅
Cr i t i ca l sect ions : No con f l i c t .
Unreachable area: ∅

Fig. 5. Outputs: Part of the PV model for the code of Figure 4 (left), ALCOOL output
on the case study (right)

Given the code snippet of Figure 4 (right), MIEL yields a model sketched
in Figure 5. During the analysis, the entry points of threads are automatically
found. Launching MIEL analysis of the case study files takes a few seconds on a
recent Linux workstation. It yields a quite large model file: ≈ 2000 lines in the
PV language (fifty times smaller than the original C code).

Verification Whether programs are concurrent or not, the analysis of programs
with loops is a problem known to be undecidable. Hence, ALCOOL analyzes are
parametrized by the number of synchronization steps to be unrolled to find pos-
sible intrinsic faults in concurrency. During the analysis, ALCOOL priorly chooses
branches of “if then else” on which resource primitives appear. The idea is to
focus the verification effort on scenarios that might lead to a synchronization
fault. The results are displayed as in Figure 5. Here, the geometric model has
dimension 13 (no graphical representation available). Back to the definition of in-

Fig. 6. ALCOOL: Computation time versus depth of analysis

trinsic faults related to synchronization and concurrency in section 1, the results
displayed by ALCOOL give evidence of freedom from deadlocks (item “Deadlock
attractor”), incorrect protection of shared resources (item “Critical sections”),
and unexpectedly unreachable program states (item “Unreachable area”). Non-
determinism and priorities are currently not supported.

When the depth of analysis varies, the qualitative results remain the same
as in Figure 5. As shown in Figure 6, the computation time grows non-linearly
with the depth of analysis. The analysis takes less than one hour at depth 106,
and less than one minute at depth 105. Depth 5×106 can be practically reached
(around 17 hours; computation times obtained on a Z600 Linux workstation).

We recall that depth of analysis is here expressed in terms of calls to synchro-
nization primitives; the associated concrete traces in the original program are
consequently far longer, referring to the 1 : 50 ratio between model and source
code in section 4.2.

As we have seen, analyzes with ALCOOL can be practically performed at a
significant depth. The significance is consolidated under the assumption that
loop iterations have limited memory from previous iterations (cf. section 2).
More generally, these results confirm the considerations in section 2 about how
the characteristics of the addressed classes of programs can be helpful when
designing or using formal analysis methods. Code inspection in this software
case study indeed shows that synchronization primitives are moderately used
(few occurrences of resource requirements, limited interactions between tasks...).
The resulting concurrent model is quite simple, given the size of the software,
and compared to what absolute concurrency may allow.

In cases where ALCOOL finds a synchronization fault, the variables behaviors
have to be thoroughly studied in order to check whether the execution traces
that lead to the fault are in fact feasible or not.

No intrinsic fault related to concurrency has been found in the original source
code; this outcome is likely when considering high integrity software. In the
remainder of this section, we will see how voluntarily inserted faults can be
detected by the tools (the instance presented is a deadlock).

vo i d Ph1(vo i d) {
semTake(mutex a, WAITFOREVER) ;
semTake(mutex b, WAITFOREVER) ;
semGive(mutex a) ;
semGive(mutex b) ;

}
vo i d Ph2(vo i d) {

semTake(mutex b, WAITFOREVER) ;
semTake(mutex c, WAITFOREVER) ;
semGive(mutex b) ;
semGive(mutex c) ;

}
vo i d Ph3(vo i d) {

semTake(mutex c, WAITFOREVER) ;
semTake(mutex a, WAITFOREVER) ;
semGive(mutex c) ;
semGive(mutex a) ;

}

s t a t i c vo i d create tasks (vo i d) {
mutex a = semBCreate() ;
mutex b = semBCreate() ;
mutex c = semBCreate();

taskSpawn("Russell" ,90,
VX NO STACK FILL,1000,Ph1,
0,0,0,0,0,0,0,0,0,0);

taskSpawn("Goedel" ,90,
VX NO STACK FILL,1000,Ph2,
0,0,0,0,0,0,0,0,0,0);

taskSpawn("Hilbert" ,90,
VX NO STACK FILL,1000,Ph3,
0,0,0,0,0,0,0,0,0,0);

/∗Rest of the in it ia l code ∗/

do Ph1 =
(P(mutex a).P(mutex b)
.V(mutex a).V(mutex b))

do Ph2 =
(P(mutex b).P(mutex c)
.V(mutex b).V(mutex c))

do Ph3 =
(P(mutex c).P(mutex a)
.V(mutex c).V(mutex a))

....

i n i t : do Task1 | do Task2
| do Task3 | do Task4
| do Task5 | do Task6
| do Task7 | do Task8
| do Task9 | do Task10
| do Task11 | do Task12
| do Task13 | do Ph3
| do Ph2 | do Ph1

Fig. 7. Inserting philosophers in the original source code (left), Philosophers in the PV

model (right)

Voluntary insertion of a deadlock This short presentation is meant as an
example; the fault detection ability of the tools is based on the framework in
section 3 and is validated elsewhere (against sets of sample codes). We actually
insert three threads in the original annotated code of the case study. Figure 7
(left) shows the additional code accordingly. These additional threads implement
three dining philosophers in a configuration known to lead the philosophers to
starvation. Figure 7 (right) shows a snippet of the PV model generated by MIEL,
focused on the additional threads. Figure 8 shows that ALCOOL indeed finds the
deadlock induced by the three additional threads.

5 Related work

Tools implementing model checking techniques [2,9] usually work on a represen-
tative model of the program to be analyzed, e.g. SPIN [21], FAST [5], UPPAAL [6].
While SPIN addresses general concurrent systems and their synchronization is-
sues, UPPAAL is dedicated to real-time systems and is thus more focused on to
timing issues, e.g. delays. The FAST tool is dedicated to the analysis of infinite

Geometric Model (forbidden area):

[0, +∞[2×[1, +∞[×[0, +∞[13 ∪ [0, +∞[3×[1, +∞[×[0, +∞[12

∪ [0, +∞[9×[1, +∞[×[0, +∞[6 ∪ [0, +∞[11×[1, +∞[2×[0, +∞[3

∪ [0, +∞[13×[1, 3[×[2, 4[×[0, +∞[∪ [0, +∞[13×[2, 4[×[0, +∞[×[1, 3[

∪ [0, +∞[14×[1, 3[×[2, 4[

Local Deadlock Attractor: [0, +∞[13×[1, 2[3

Fig. 8. ALCOOL output on the modified case study

systems. It mainly aims at computing the exact (infinite) set of configurations
reachable from a given set of initial configurations. In some cases, the verification
models can be generated by auxiliary tools, e.g. the MODEX tool for SPIN [22];
the TOPICS tool for FAST [23]. As seen in sections 3 and 4, the ALCOOL tool can
similarly be used in conjunction with the MIEL automatic model extractor.

Automata theory is a widely used framework for the theoretical foundations
of model checking tools; for instance SPIN, FAST and UPPAAL respectively work
on Büchi automata, counter automata and timed automata.

In contrast, the ALCOOL tool is based on the topological notion of directed
spaces. Generally speaking, the parallel composition operator is modeled by the
Cartesian product in a well-suited category: JA|BK = JAK× JBK

An automaton is a directed graph endowed with some extra structure. Di-
rected graphs form a category in which any Cartesian product exists though
they do not fit to concurrency theory. Our claim is that using directed spaces is
natural since the Cartesian product in the category of topological spaces behave
as concurrency theory expects.

Other existing approaches include predicate abstraction and refinement (ARMC
[27], BLAST [7], SLAM [4]), symbolic model checking (NuSMW [8]), or combining
model checking and theorem proving (SLAB [14]).

6 Conclusion

This paper has reported on the development of a tool-based methodology to
demonstrate the freedom from certain types of software faults, and its practical
application to an industrial control software case study. Two main phases are
involved: automatically extract a correct and representative model from C code,
and then check for properties in the model.

Lessons learned The methodology presented in this paper aims at analyzing
software that can be found in systems either safety related, or important to avail-
ability, in power plants. Experience in assessments of control systems has lead us
to identify generic characteristics for such software (cf. section 2). For instance,
memory allocation, task and synchronization resources creation are usually per-
formed only during a dedicated initialization phase. We have also relied on a
taxonomy of synchronization faults that might be postulated in control systems

software, established in previous works (cf. section 1), and discussed how the
tools can give rigorous evidence against a part of it. Finally, section 4 shows
that the tools scale up efficiently to analyze a real-world control system software
unit. Also, voluntarily inserted faults have been identified.

An important learning is that generic characteristics of targeted classes of
software can be taken in account in order to provide rigorous verification tools
with high efficiency.

The soundness of this approach depends on the following requirements. The
main requirement (R1) is that there is no dynamic creation of threads nor syn-
chronization resources. The other requirements hold only for model extraction
with MIEL: (R2) the programming language must be C, (R3) there must be no
aliases on the names of the functions of interest, and (R4) calls to functions of in-
terest must be syntactically distinct. An important claim regarding applicability
of the methodology is that these requirements are compatible with the generic
characteristics of the targeted class of software. Under these assumptions, the
methodology should widely apply within the considered class.

Let us examine the following cases. If one wants to analyze software where:

– only (R1) holds, then ALCOOL can be applied to a model extracted by other
means than MIEL (e.g. expert knowledge or another tool);

– only (R1) to (R3) hold: the required user manipulation for having a sound
model extraction with MIEL should remain fairly reasonable and practicable,
i.e. unrolling loop so that each access to synchronization resources becomes
syntactically noticeable and distinct for MIEL, as in section 4.2. If user inter-
vention is thought too demanding, one would consider the case below.

– only (R1) and (R2) hold: we are currently working on extending the method-
ology with a enhanced model extractor, to deal with this case; cf. section 6.

Ongoing work We are currently experimenting the use of semantic analyzes
using Frama-C’s value analysis [10] to provide a sound value analysis for con-
current programs in order to formally and accurately identify synchronization
variables and threads, and use this information to refine model extraction.

The ALCOOL tool is based on a mathematical library which allows it to deal
with geometric models drawn on a higher dimensional torus. However the rep-
resentation of a finite directed graph on a hypertorus, which is known to be
theoretically possible, has not been implemented yet. Roughly speaking, ALCOOL
is meant to provide any concurrent program with a mathematical structure which
generalizes the notion of control flow graph. Once this structure is determined,
standard methods from static analysis can be applied. The tool-based approach
should then provide a more fine-grained analysis of message passing mechanisms.

References

1. Aiken, A., Foster, J.S., Kodumal, J., Terauchi, T.: Checking and inferring local
non-aliasing. In: PLDI. pp. 128–140 (2003)

2. Baier, Ch., Katoen, J.P.: Principles of Model-Checking. MIT Press (2008)
3. Balabonski, T., Haucourt, E.: A geometric approach to the problem of unique

decomposition of processes. In: CONCUR. pp. 132–146 (2010)
4. Ball, T., Rajamani, S.K.: The slam project: debugging system software via static

analysis. In: POPL. pp. 1–3 (2002)
5. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to

practice. STTT 10(5), 401–424 (2008)
6. Behrmann, G., A, D., Larsen, P.K.: A tutorial on uppaal. In: SFM. pp. 200–236

(2004)
7. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker

blast. STTT 9(5-6), 505–525 (2007)
8. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: Nusmv: A new symbolic

model checker. STTT 2(4), 410–425 (2000)
9. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

10. Cuoq, P., Prevosto, V.: Frama-c’s value analysis plug-in. CEA LIST Technical
Report (2010), http://frama-c.com/download/frama-c-value-analysis.pdf

11. Cuoq, P., Signoles, J., Baudin, P., Bonichon, R., Canet, G., Correnson, L., Monate,
B., Prevosto, V., Puccetti, A.: Experience report: OCaml for an industrial-strength
static analysis framework. In: ICFP. pp. 281–286 (2009)

12. CWE Common Weakness Enumeration — http://cwe.mitre.org/
13. Dijkstra, E.W.: Cooperating sequential processes. In: Programming Languages:

NATO Advanced Study Institute. pp. 43–112. Academic Press (1968)
14. Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: Slab: A certifying

model checker for infinite-state concurrent systems. In: TACAS. pp. 271–274 (2010)
15. Emanuelsson, P., Nilsson, U.: A Comparative Study of Industrial Static Analysis

Tools. Linkpink University Technical Report (2008)
16. Fajstrup, L., Goubault, E., Raußen, M.: Algebraic topology and concurrency. The-

oretical Computer Science 357, 241–278 (2006)
17. Frama-c Software Analyzers — http://frama-c.com/
18. Goubault, E.: Geometry and concurrency: a user’s guide. Mathematical Structures

in Computer Science 10(4), 411–425 (2000)
19. Goubault, E., Haucourt, E.: A practical application of geometric semantics to static

analysis of concurrent programs. In: CONCUR. pp. 503–517 (2005)
20. Grandis, M.: Directed Algebraic Topology. New Mathematical Monographs, Cam-

bridge University Press (2009)
21. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-

Wesley Professional (2003)
22. Holzmann, G.J., Ruys, T.C.: Effective bug hunting with spin and modex. In: SPIN.

p. 24 (2005)
23. Labbé, S., Sangnier, A.: Formal verification of industrial software with dynamic

memory management. In: IEEE PRDC. pp. 77–84 (2010)
24. Labbé, S., Thuy, N.: Formal verification of freedom from intrinsic software faults

in digital control systems. In: ANS NPIC&HMIT. pp. 2191–2201 (2010)
25. Larochelle, D., Evans, D.: Statically detecting likely buffer overflow vulnerabilities.

In: USENIX Security Symposium. pp. 177–190 (2001)
26. Nachbin, L.: Topology and Order, Mathematical Studies, vol. 4. Van Nostrand

(Princeton) (1965)
27. Podelski, A., Rybalchenko, A.: Armc: The logical choice for software model check-

ing with abstraction refinement. In: PADL. pp. 245–259 (2007)
28. Thuy, N., Ourghanlian, A.: Dependability assessment of safety-critical system soft-

ware by static analysis methods. In: DSN. pp. 75–79 (2003)

	Rigorous evidence of freedom from concurrency faults in industrial control software

