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Abstract. Numerical static program analyses by abstract interpretation, e.g., the
problem of inferring bounds for the values of numerical program variables, are
faced with the problem that the abstract domains often contain infinite ascend-
ing chains. In oder to nevertheless enforce termination one traditionally applies a
widening/narrowing approach that buys the guarantee for termination for loss of
precision. However, recently, several interesting alternative approaches for com-
puting numerical invariants by abstract interpretation were developed that aim at
higher precision. One interesting research direction in this context is the study
of strategy improvement algorithms. Such algorithms are successfully applied for
solving two-players zero-sum games. In the present paper we discuss and com-
pare max-strategy and min-strategy improvement algorithms that in particular can
be utilized for computing numerical invariants by abstract interpretation. Our goal
is to provide the intuitions behind these approaches by focussing on a particular
application, namely template-based numerical analysis.

1 Introduction

Mathematical optimization aims at finding a value within an area of feasible values
which maximizes (resp. minimizes) a given objective function. Quite efficient tech-
niques have been developed for particular cases that are important in practice, e.g., when
the objective function is linear and the area of feasible values a convex polytope (lin-
ear programming, see e.g. Schrijver [21]) or even an intersection of a convex polytope
with the positive semi-definite cone (semi-definite programming, see e.g. Todd [22]) or
a convex set that is defined through convex constraints (convex optimization, see e.g.
Boyd and Vandenberghe [5], Nemirovski [16]). In a certain sense, also numerical static
program analysis based on abstract interpretation can often be cast as an optimization
problem as follows: Assume that we are given a complete lattice of potential program
invariants at program points, i.e., an abstract domain. Then, the abstract semantics of
each control-flow edge from a program point u to a program point v induces constraints

? This work was partially funded by the ANR project ASOPT.
?? VERIMAG is a joint laboratory of CNRS, Université Joseph Fourier and Grenoble INP.



on the invariants for u and v. These constraints describe the feasible area. The objective
of the analysis is to minimize all invariants for the program points.

In general, it is not clear how this insight may lead to better algorithms. In this pa-
per, however, we show that in case of template-based analysis of relational numerical
properties, techniques from mathematical optimization allow to construct novel pro-
gram analysis algorithms. The templates we consider are (multivariate) polynomials in
the program variables such as 2x2

1 + 3x2
2 + 2x1x2, where x1 an x2 are program vari-

ables. The goal of the analysis is to determine, for every program point v, a safe upper
bound to each template when reaching that program point v. In order to be as precise
as possible, this upper bound should be as small as possible. Different templates may
serve different purposes. If the analysis is only meant to infer (decently small) inter-
vals for the values of the program variables x1, . . . , xn, templates of the form xi and
−xi suffice. If the analysis additionally should infer bounds on the differences between
certain variables, templates of the form xi − xj should be used.

Templates consisting of arbitrary linear combinations have been introduced and
studied by Sankaranarayanan et al. [19]. In some cases, e.g., when trying to prove that
certain linear filters do not lead to floating-point overflows, linear templates are not
sufficient (see e.g. Feron and Alegre [8]). However, these cases can be treated by using
quadratic templates (see e.g. Adjé et al. [2], Feron and Alegre [7]).

Instead of directly performing the template based analysis, we reduce the analysis
problem to the problem of computing least solutions for systems of in-equations of the
form

xi ≥ f(x1, . . . ,xn) (1)

where the unknowns of the system now may take values in R := R ∪ {−∞,∞} and
the right-hand sides f are monotone and concave operators on R. The unknowns are
the upper bounds to the templates at the different program points. For the problem of
solving system (1), we present two strategy improvement approaches:

The Min-Strategy Iteration Approach The min-strategy iteration approach as advo-
cated by Adjé et al. [2] is, for the particular case we are studying in the present
paper, similar to Newton’s method. It starts with some solution of (1) and con-
structs a decreasing sequence of solutions. For any solution x, the next solution is
constructed by over-approximating each concave right-hand side f in (1) with a
linear function Tf,x satisfying Tf,x(x) = f(x). The improved next solution x′ of
(1) then is obtained as the least solution of the resulting linear constraint system

xi ≥ Tf,x(x1, . . . ,xn) (2)

which can be computed by means of linear programming. The crucial step here
is to determine, for a monotone and concave function f and a given vector x, the
linear function Tf,x with Tf,x(x) = f(x). If f is a point-wise minimum of finitely
many affine functions, then Tf,x can be chosen as one of the affine functions oc-
curring in the minimum. In this paper, we are in particular interested in the more
challenging cases where f is not simply the point-wise minimum of finitely many
affine functions. In the cases of interest f is defined by means of a parametrized
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convex optimization problem. Then, Tf,x can be computed by solving a convex op-
timization problem that basically consists of the duals of the parametrized convex
optimization problems. If the parametrized convex optimization problem that de-
scribes f is a linear programming problem, then we can use linear programming for
determining Tf,x. If the parametrized convex optimization problem that describes
f is a semi-definite programming problem, then we can use semi-definite program-
ming for determining Tf,x.

The Max-Strategy Iteration Approach The max-strategy iteration approach of
Gawlitza and Seidl [13] considers the constraint system (1) as a system of equa-
tions

xi = fi1(x1, . . . ,xn) ∨ . . . ∨ fimi
(x1, . . . ,xn) , i = 1, . . . , n (3)

where the right-hand side of each unknown xi is the finite maximum of concave
functions fij (here, ∨ denotes the maximum operator, i.e., x∨y = max {x, y}). In
order to compute the least solution of (3), Gawlitza and Seidl suggest max-strategy
iteration. A max-strategy can be considered as a function that selects, for each un-
known xi, one monotone and concave fij from the right-hand side of xi. Gawlitza
and Seidl present an algorithm which precisely computes the least solution of (1)
by iterating over max-strategies. In order to evaluate and improve a max-strategy,
this algorithm requires a black box algorithm for computing greatest finite solutions
of systems of in-equations of the form xi ≤ f(x1, . . . ,xn) where f is monotone
and concave. How this black box algorithm can be realized depends on the class of
operators the operators occurring in the right-hand sides of (1) are from.

If the operators occurring in (1) can be implemented through parametrized
linear programs, the whole max-strategy improvement step can be implemented
by linear programming. Likewise, if the operators can be implemented through
parametrized semi-definite programs, the max-strategy improvement step can be
implemented by semi-definite programming.

In the linear case, the above strategy iteration techniques can be applied to compute
invariants for template domains where all templates are linear combinations of program
variables. In the simple case of intervals, these approaches allow to perform interval
analysis without widening [6, 11]. In case of more complex linear combinations, arbi-
trary template polyhedra domains [19] such as the octagon domain [15] can be handled
[9, 10]. For quadratic templates, the above strategy iteration approaches can be utilized
for computing (resp. approximating) a semi-definite relaxation of the abstract semantics
(cf. Adjé et al. [2], Gawlitza and Seidl [13]).

The present paper is structured as follows: In Section 2 we discuss a simple ex-
ample, where one is not able to infer non-trivial invariants through an analysis that is
based on liner templates. However, non-trivial invariants can be obtained with quadratic
templates and a semi-definite relaxation of the resulting abstract semantics. In Section
3 we discuss how we should relax an abstract semantics such that the resulting relaxed
semantic equations fit in our framework, i.e., can be translated into a system of in-
equations of the form x ≥ f(x1, . . . ,xn), where f is a monotone and concave operator
on R. After introducing some notations in Section 4, we explain the min-strategy ap-
proach and the max-strategy approach in Sections 5 and 6, respectively. Here, we don’t
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aim at completeness. Instead, we omit most of the things that are not directly connected
to our application. Section 7 is dedicated for a comparison of the two approaches and a
conclusion.

2 Motivation and Running Example

In this subsection we are going to have a look at a small example: the harmonic os-
cillator example of Adjé et al. [2]. The program consists only of the following simple
loop:

f l o a t x 1 , x 2 , tmp ;
x 1 = r a n ( ) ;
x 2 = r a n ( ) ;
whi le ( TRUE ) {

p r i n t f ( ”%f , %f \n ” , x 1 , x 2 ) ;
tmp = 1 . ∗ x 1 + 0 . 0 1 ∗ x 2 ;
x 2 = −0.01 ∗ x 1 + 0 . 9 9 ∗ x 2 ;
x 1 = tmp ;

}

Here, we assume that ran () returns a random float value between 0 and 1, where 0 and
1 are included. Figure 1 shows the control-flow graph of the program. The program

st

„
x1

x2

«
:=

„
1 0.01

−0.01 0.99

«„
x1

x2

«
(x1, x2) ∈ [0, 1]× [0, 1]

Fig. 1. The Harmonic Oscillator

implements an Euler explicit scheme with a small step h = 0.01, i.e., it simulates the
linear system (

x1

x2

)
←
(

1 h
−h 1− h

)(
x1

x2

)
.

The invariant found with our strategy improvement methods (we are going to explain
these methods in Section 5 and Section 6) is shown in Figure 2. For finding this invari-
ant, we aimed at computing upper bounds b1, . . . , b5 ∈ R = R ∪ {−∞,∞} that are
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Fig. 1. An harmonic oscillator, its Euler integration scheme and the loop invariant
found at control point 2

x = [ 0 , 1 ] ;
v : = [ 0 , 1 ] ;
h = 0 . 0 1 ;
whi l e ( t rue ) { [ 2 ]

w = v ;
v = v∗(1−h)−h∗x ;
x = x+h∗w; [ 3 ] } {−1.8708 ≤ x ≤ 1.8708, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

these quantities. This means that we consider the linear templates based on
{x,−x, v,−v}, i.e. intervals for each variable of the program, together with the
non-linear template 2x2 + 3v2 + 2xv. The last template comes from the Lya-
punov function that the designer of the algorithm may have considered to prove
the stability of his scheme, before it has been implemented. In view of proving
the implementation correct, one is naturally led to considering such templates1.
Last but not least, it is to be noted that the loop invariant using intervals, zones,
octagons or even polyhedra (hence with any linear template) is the very disap-
pointing invariant h = 0.01 (the variables v and x cannot be bounded.) However,
the main interest of the present method is to carry over to the non-linear set-
ting. For instance, we include in our benchmarks a computation of invariants (of
the same quality) for an implementation of the Arrow-Hurwicz algorithm, which
is essentially an harmonic oscillator limited by a non-linear saturation term (a
projection on the positive cone), or a highly degenerate example (a symplec-
tic integration scheme, for which alternative methods fail due to the absence of
stability margin).

Contributions of the paper We describe the lattice theoretical operations in terms
of Galois connections and generalized convexity in Section 2. We also show that
in the case of a basis of quadratic functions, good over-approximations FR of ab-
stractions F ! of semantic functionals can be computed in polynomial time (Sec-
tion 3). Such over-approximations are obtained using Shor’s relaxation, which is
based on semi-definite programming. Moreover, we show in Subsection 4.3 that
the multipliers produced by this relaxation are naturally “policies”, in a policy
iteration technique for finding the fixpoints of FR, precisely over-approximating
the fixpoints of F !. Finally, we illustrate on examples (linear recursive filters, nu-
merical integration schemes) that policy iteration on such quadratic templates is
extremely efficient and precise in practice, compared with Kleene iteration with
widenings/narrowings. The fact that quadratic templates are efficient on such
algorithms is generally due to the existence of (quadratic) Lyapunov functions
that prove their stability. The method has been implemented as a set of Matlab
programs.

1 Of course, as for the templates of [SSM05,SCSM06], we can be interested in automat-
ically finding or refining the set of templates considered to achieve a good precision
of the abstract analysis, but this is outside the scope of this article.

−1.8708 ≤ x1 ≤ 1.8708 and −1.5275 ≤ x2 ≤ 1.5275 and 2x2
1 + 3x2

2 + 2x1x2 ≤ 7

Fig. 2. Invariants for the Harmonic Oscillator

as small as possible and fulfill the following inequations for all possible values of the
program variables x1 and x2 at program point st:

−x1 ≤ b1 x1 ≤ b2 −x2 ≤ b3 x2 ≤ b4 2x2
1 + 3x2

2 + 2x1x2 ≤ b5

This means, we consider a domain where we are looking for upper bounds for the linear
polynomials −x1, x1,−x2, x2 (i.e., intervals for the values of the program variables)
and the non-linear polynomial 2x2

1 + 3x2
2 + 2x1x2. The last polynomial comes from

the Lyapunov function that the designer of the algorithm may have considered to prove
the stability of his scheme, before it has been implemented. In view of proving the
implementation correct, one is naturally led to considering such polynomial templates6.
Last but not least, it is to be noted that the loop invariant obtained when using intervals,
zones, octagons or even polyhedra (hence with any set of linear templates) is the very
disappointing invariant > (the value of the program variables x1 and x2 cannot be
bounded). However, the main interest of our methods is to carry over to the non-linear
setting. The benchmarks of Adjé et al. [2] and Gawlitza and Seidl [13], for instance,
include a computation of invariants (of the same quality) for an implementation of the
Arrow-Hurwicz algorithm, which is essentially an harmonic oscillator limited by a non-
linear saturation term (a projection on the positive cone). They also include a symplectic
integration scheme, wich is a highly degenerated example for which alternative methods
fail due to the absence of stability margins.

3 Abstract Interpretation and Monotone Fixpoint Equations

In this section we reduce template based numerical static analysis by abstract interpre-
tation to solving systems of in-equations of the form x ≥ e over R = R ∪ {−∞,∞},
where the right-hand sides e are monotonic and concave.

3.1 Notations

The set of real numbers (resp. the set of rational numbers) is denoted by R (resp. Q).
The complete linear ordered set R ∪ {−∞,∞} is denoted by R. Additionally, we set
Q := Q ∪ {−∞,∞}. For f : X → Rm with X ⊆ Rn, we set

dom(f) := {x ∈ X | f(x) ∈ Rm} and fdom(f) := dom(f) ∩ Rn.
6 Of course, as for the linear templates of Sankaranarayanan et al. [19, 20], we can be interested

in automatically finding or refining the set of polynomial templates considered to achieve good
precision of the abstract analysis. However, this is outside the scope of the present article.
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We denote the i-th row (resp. j-th column) of a matrix A by Ai· (resp. A·j). Accord-
ingly, Ai·j denotes the component in the i-th row and the j-th column. We also use this
notation for vectors and functions f : X → Y k, i.e., fi·(x) = (f(x))i· for all x ∈ X
and all i ∈ {1, . . . , k}.

For x, y ∈ Rn, we write x ≤ y iff xi· ≤ yi· for all i ∈ {1, . . . , n}. Rn is partially
ordered by≤. We write x < y iff x ≤ y and x 6= y. Finally, we write xC y iff xi· < yi·
for all i ∈ {1, . . . , n}. x and y are called comparable iff x ≤ y or y ≤ x.

Let D be a partially ordered set. We denote the least upper bound and the greatest
lower bound of a set X ⊆ D by

∨
X and

∧
X , respectively, provided that they exist.

The existence is in particular guaranteed if D is a complete lattice. The least element∨ ∅ (resp. the greatest element
∧ ∅) is denoted by ⊥ (resp. >), provided that it exists.

Accordingly, we define the binary operators ∨ and ∧ by

x ∨ y :=
∨
{x, y} and x ∧ y :=

∧
{x, y}

for all x, y ∈ D, respectively. If D is a linearly ordered set (for instance R or R), then
∨ is the maximum operator and ∧ the minimum operator. For � ∈ {∨,∧}, we will also
consider x1 � · · · � xk as the application of a k-ary operator. This will cause no
problems, since the binary operators ∨ and ∧ are associative and commutative.

A function f : D1 → D2, where D1 and D2 are partially ordered sets, is called
monotone iff x ≤ y =⇒ f(x) ≤ f(y) for all x, y ∈ D1.

3.2 Convex and Concave Functions

A set X ⊆ Rn is called convex iff λx + (1 − λ)y ∈ X holds for all x, y ∈ X and
all λ ∈ [0, 1]. A mapping f : X → Rm with X ⊆ Rn convex is called convex (resp.
concave) iff

f(λx+ (1− λ)y) ≤ (resp. ≥) λf(x) + (1− λ)f(y)

holds for all x, y ∈ X and all λ ∈ [0, 1] (cf. e.g. Ortega and Rheinboldt [18]). Note
that f is concave iff −f is convex. Note also that f is convex (resp. concave) iff fi· is
convex (resp. concave) for all i = 1, . . . ,m.

We extend the notion of convexity/concavity from Rn → Rm to Rn → Rm as
follows: Let f : Rn → Rm, and I : {1, . . . , n} → {−∞, id,∞}. Here, −∞ denotes
the function that assigns −∞ to every argument, id denotes the identity function, and
∞ denotes the function that assigns∞ to every argument. We define the mapping f (I) :
Rn → Rm by f (I)(x1, . . . , xn) := f(I(1)(x1), . . . , I(n)(xn)) for all x1, . . . , xn ∈ R.
A mapping f : Rn → Rm is called concave iff fi· is continuous on {x ∈ Rn |
fi·(x) > −∞} for all i ∈ {1, . . . ,m}, and the following conditions are fulfilled for all
I : {1, . . . , n} → {−∞, id,∞}:

1. fdom(f (I)) is convex.
2. f (I)|fdom(f(I)) is concave.
3. For all i ∈ {1, . . . ,m} the following holds: If there exists some y ∈ Rn such that
f

(I)
i· (y) ∈ R, then f (I)

i· (x) <∞ for all x ∈ Rn.
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A mapping f : Rn → Rm is called convex iff −f is concave. In the following we are
only concerned with mappings f : Rn → Rm that are monotone and concave. Figure 3
shows the graph of a function f : R2 → R that is monotone and concave.
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Fig. 3. Plot of a monotone and concave function f : R2 → R.
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Fig. 4. Examples of concave functions

Lemma 1. Every affine function7 is concave and convex. The operator ∨ is convex, but
not concave. The operator ∧ is concave, but not convex (see Figure 4). ut

3.3 Collecting Semantics

In our programming model, we consider statements of the form

g(x) ≤ 0;x := p(x)

7 A function f : Rn → Rm is called affine iff there exist some A ∈ Rm×n and some b ∈ Rm

such that f(x) = Ax+ b for all x ∈ Rn. Here, we use the convention that −∞+∞ = −∞.
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where x = (x1, . . . , xn)> ∈ Rn denotes the vector of program variables, and g ∈
Rk[x1, . . . , xn] and p ∈ Rn[x1, . . . , xn] are multivariate polynomials with coefficients
from Rk and Rn, respectively. Here, 0 also denotes the zero vector. An example is

x2
1 + x2

2 − 16 ≤ 0;
(
x1

x2

)
:=

5
4

(
x2

x1

)
.

It assigns 5
4 of the value of the program variable xi to the program variable x3−i for

i = 1, 2, provided that x2
1 +x2

2−16 ≤ 0 holds. A statement combines a guard followed
by an assignment. The set of statements is denoted by Stmt. Statements of the form
g(x) ≤ 0, i.e., p is the identity function, are called guards. Statements of the form
x := p(x), i.e., k = 0, are called assignments. A statement g(x) ≤ 0;x := p(x) is
called affine (resp. quadratic, resp. of order d) iff the functions g and p are affine (resp.
quadratic, resp. of order d).

As usual in static program analysis by abstract interpretation we refer to the pro-
gram’s collecting semantics, which safely over-approximates the concrete semantics.
The collecting semantics JsK : 2Rn → 2Rn

of a statement s ∈ Stmt assigns a set JsKX
of states after the execution of s to each set X of states before the execution of s. Here,
a state of a program is modeled as a vector x = (x1, . . . , xn)> ∈ Rn. The collecting
semantics of statements is defined by

Jg(x) ≤ 0;x := p(x)KX := {p(x) | x ∈ X, g(x) ≤ 0} for all X ⊆ Rn.

We represent programs by their control-flow graphs, i.e., a program G is a triple (N,E,
st), where N is a finite set of program points, E ⊆ N × Stmt × N is a finite set
of control-flow edges, and st ∈ N is the start program point. As usual, the collecting
semantics V of a program G = (N,E, st) w.r.t. a set I ⊆ Rn of initial states is the
least solution of the following constraint system:

V[st] ⊇ I V[v] ⊇ JsK(V[u]) for all (u, s, v) ∈ E

Here, the variables V[v], v ∈ N take values in 2Rn

. The components of the collecting
semantics V are denoted by V [v] for all v ∈ N .

3.4 Polynomial Templates

We are now going to define the abstract domain we are going to use thru-out the present
paper. Following the lines of Adjé et al. [2], we assume that we have given a fixed set

P ⊆ R[x1, . . . , xn]

of polynomial templates with coefficients from R. P is called linear (resp. quadratic,
resp. of order d) iff all polynomials p ∈ P are linear (resp. quadratic, resp. of order d).
Usually, P will consist of finitely many templates, only.

Example 1 (Adjé et al. [2]). The set P = {p1, p2, p3, p4, p5} with

p1(x1, x2) = −x1 p2(x1, x2) = x1

8



p3(x1, x2) = −x2 p4(x1, x2) = x2

p5(x1, x2) = 2x2
1 + 3x2

2 + 2x1x2

is a set of polynomial templates. More precisely, it is a finite set of quadratic templates.
This set of quadratic templates is used for analyzing the harmonic oscillator introduced
in Section 2. ut

Within the present paper, an abstract value is a mapping v : P → R that assigns an
upper bound v(q) to every polynomial q ∈ P . The abstract value v represents the set of
all program states x ∈ Rn such that q(x) ≤ v(q) holds for all q ∈ P . This means, we
define a Galois-connection that consists of the abstraction α : 2Rn → P → R and the
concretization γ : (P → R)→ 2Rn

as follows:

γ(v) := {x ∈ Rn | ∀p ∈ P . p(x) ≤ v(p)} for all v : P → R

α(X) :=
∧
{v : P → R | γ(v) ⊇ X} for all X ⊆ Rn

As shown by Adjé et al. [2], α and γ form a Galois-connection. The elements from
γ(P → R) and the elements from α(2Rn

) are called closed. α(γ(v)) is called the
closure of the abstract value v : P → R. Accordingly, γ(α(X)) is called the closure
of the set X ⊆ Rn of states. It is the minimal set of states that subsumes X and can be
represented by an abstract value v.

Before we go further, we discuss some aspects of the closure operation α ◦ γ. For
all abstract values v : P → R and all polynomial templates r ∈ P , we have

α(γ(v))(r) = sup {r(x) | x ∈ γ(v)}
= sup {r(x) | x ∈ Rn and ∀q ∈ P . q(x) ≤ v(q)}
= inf {−r(x) | x ∈ Rn and ∀q ∈ P . q(x) ≤ v(q)} (4)

The above equalities (cf. Adjé et al. [2]) lead to the following remarks:

Remark 1. If P is finite and all polynomial templates p′ ∈ P with v(p′) < ∞ (i.e.,
all polynomial templates that are bounded) are linear and r is quadratic (not necessar-
ily concave), then α(γ(v))(r) can be computed by solving a quadratic optimization
problem (cf. (4)). Solving quadratic optimization problems is NP-complete (see e.g.
Vavasis [23]). Vice versa, solving quadratic optimization problems is polynomial-time
reducible to computing closures. Thus, computing closures is NP-hard.

Remark 2. If P is finite and linear, then closures can be computed by solving linear
programming problems, i.e., in polynomial time.

Remark 3. If P is finite and all polynomial templates p′ ∈ P with v(p′) < ∞ (i.e., all
polynomial templates that are bounded) are convex and r is concave (i.e.−r is convex),
then α(γ(v))(r) can be computed by solving a convex optimization problem (cf. (4)).
If all polynomial templates p′ ∈ P with v(p′) < ∞ and p are additionally quadratic,
then α(γ(v))(r) can be computed by solving a convex quadratic optimization prob-
lem. Convex quadratic optimization problems can be computed through semi-definite
programming (see e.g. Todd [22]).
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Example 2 (Adjé et al. [2]). We continue Example 1. Let

v = {p1 7→ 0, p2 7→ 1, p3 7→ 0, p4 7→ 1, p5 7→ ∞}.

Then γ(v) = [0, 1]× [0, 1]. The closure of v is

α(γ(v)) = {p1 7→ 0, p2 7→ 1, p3 7→ 0, p4 7→ 1, p5 7→ 7},

because α(γ(v))(p5) = sup {p5(x1, x2) | (x1, x2)> ∈ γ(v)} = 7. ut

3.5 Abstract Semantics

As usual in static analysis by abstract interpretation, we abstract the collecting se-
mantics using the abstraction introduced in Subsection 3.4: The abstract semantics
JsK] : (P → R) → P → R of a statement s is defined by JsK] := α ◦ JsK ◦ γ. As
usual, the abstract semantics V ] of a program G = (N,E, st) w.r.t. to a set I ⊆ Rn of
initial states is the least solution of the following constraint system:

V][st] ≥ α(I) V][v] ≥ JsK](V][u]) for all (u, s, v) ∈ E

Here, the variables V][v], v ∈ N take values in P → R. The components of the abstract
semantics V ] are denoted by V ][v] for all v ∈ N . The abstract semantics safely over-
approximates the collecting semantics:

Lemma 2. V [v] ⊆ γ(V ][v]) and α(V [v]) ≤ V ][v] hold for all program points v. ut
In the present paper we aim at using convex optimization for approximating abstract
semantics as precisely as possible. However, for that, as we will see later, it would
be preferable when JsK] was concave (i.e., −JsK] was convex) for every statement s.
Unfortunately, this property is not always fulfilled as the following example shows:

Example 3. Assume that P = {p1, p2, p3} ⊆ R[x1] with

p1(x1) = x1 p2(x1) = −x1 p3(x1) = x2
1

for all x1 ∈ R. We consider the statement s = x1 := x1, i.e., the statement s does not
modify the state. Then, for all vx = {p1 7→ x, p2 7→ 0, p3 7→ ∞} with x ∈ R, we have

(JsK]vx)(p3) = sup {p3(x1) | x1 ∈ γ(vx)}
= sup {x2

1 | x1 ∈ R and 0 ≤ x1 ≤ x}

=

{
x2 if x ≥ 0
−∞ if x < 0

Hence, we get

(JsK](
1
2
v0 +

1
2
v2))(p3) = (JsK](v1)(p3) = 1

6≥ 2 =
1
2
0 +

1
2
4 =

1
2
(JsK]v0)(p3) +

1
2
(JsK]v2)(p3)

This implies that JsK] is not concave. ut
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However, there are cases, where JsK] is indeed concave. One important case is when
all polynomials q ∈ P are affine, and the statement s is affine. This case is studied by
Costan et al. [6] and by Gawlitza and Seidl [10].

The pathbreaking idea of Adjé et al. [2] is to use a convex relaxation of−JsK] (resp.
concave relaxation of JsK]) instead of −JsK] (resp. JsK]). By doing so, an intractable
NP-hard problem is approximated by a convex optimization problem. This is a big ad-
vantage, since a wide class of convex optimization problems can be solved efficiently.
In the remainder of the present paper we will be in particular faced with semi-definite
programming problems which are special convex optimization problems for which ef-
ficient interior point methods exist.

3.6 Relaxed Abstract Semantics

Adjé et al. [2] proposed to use convex relaxation schemas in order to approximate the
abstract semantics. They approximate the abstract semantics JsK] of a statement s by a
relaxed abstract semantics JsKR that fulfills the following properties:

1. JsKR ≥ JsK], i.e., the relaxed abstract semantics JsKR of s safely over-approximates
the abstract semantics JsK] of s.

2. JsKR is monotone and concave.

The relaxed abstract semantics V R of a program G = (N,E, st) with initial states I
is then defined as the least solution of the following constraint system over P → R:

VR[st] ≥ α(I) VR[v] ≥ JsKR(VR[u]) for all (u, s, v) ∈ E (5)

Here, the variables VR[v], v ∈ N take values in P → R. The components of the
relaxed abstract semantics V R are denoted by V R[v] for all v ∈ N . The relaxed ab-
stract semantics safely over-approximates the abstract semantics, and thus finally the
collecting semantics and the concrete semantics:

Lemma 3. V ][v] ≤ V R[v] for all program points v. ut

We want to emphasize that the set of all solutions of the constraints system (5) which
defines the relaxed abstract semantics V R is not always convex, although the relaxed
abstract semantics JsKR is concave for each statement s. In consequence it is not possi-
ble to compute V R through convex optimization.

3.7 Obtaining a Relaxed Abstract Semantics through Semi-definite Relaxation

In this subsection we briefly discuss the relaxed abstract semantics introduced by Adjé
et al. [2]. This relaxed abstract semantics is based on Shor’s semi-definite relaxation
schema. This subsection is slightly more technical then the rest of the present paper.
However, it is not essential for the understanding of the rest of the paper. The purpose
of this subsection is to demonstrate that a non-trivial relaxed abstract semantics exists
that fulfills the requirements mentioned in Subsection 3.6.
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Semi-Definite Programming SRn×n (resp. SRn×n+ , resp. SRn×n++ ) denotes the set
of symmetric matrices (resp. the set of positive semi-definite matrices, resp. the set of
positive definite matrices). � denotes the Löwner ordering of symmetric matrices, i.e.,
A � B iff B −A ∈ SRn×n+ . We write A ≺ B iff B −A ∈ SRn×n++ . Tr(A) denotes the
trace of a square matrix A ∈ Rn×n, i.e., Tr(A) =

∑n
i=1Ai·i. The inner product of two

matricesA andB is denoted byA•B, i.e.,A•B = Tr(A>B). ForA = (A1, . . . , Am)
with Ai ∈ Rn×n for all i = 1, . . . ,m, we denote the vector (A1 • X, . . . , Am • X)>

by A(X). We consider semi-definite programming problems (SDP problems for short)
of the form

z∗ = sup {C •X | X ∈ SRn×n+ ,A(X) = a,B(X) ≤ b},

where A = (A1, . . . , Am), a ∈ Rm, A1, . . . , Am ∈ SRn×n, B = (B1, . . . , Bk),
B1, . . . , Bk ∈ SRn×n, b ∈ Rk, and C ∈ SRn×n. The value z∗ ∈ R is called the
optimal value. The set

{X ∈ SRn×n+ | A(X) = a,B(X) ≤ b}

is called the feasible space. An element of the feasible space, is called feasible solution.
The problem is called infeasible iff the feasible space is empty, i.e., z∗ = −∞. It is
called unbounded iff z∗ = ∞. A feasible solution X∗ is called optimal solution iff
C •X∗ = z∗.

The Relaxation For the remainder of this subsection we assume that P is finite, all
templates p ∈ P are quadratic (but not necessarily convex), and all statements are of
the form g(x) ≤ 0;x := p(x), where g is quadratic and p is affine. The goal is to define
a relaxed abstract semantics which satisfies the properties described in Subsection 3.6.
For that, we use Shor’s semi-definite relaxation schema.

Let s = g(x) ≤ 0;x := p(x) be a statement. Recall that the abstract semantics
JsK] of s is given by

(JsK]v)(r) = sup {r(p(x)) | x ∈ Rn and g(x) ≤ 0 and ∀q ∈ P . q(x) ≤ v(q)}

for all abstract values v : P → R and all templates r ∈ P . Because g is quadratic and p
is affine, we had to solve a non-linear optimization problem for computing (JsK]v)(r).
Unfortunately, this non-linear optimization problem is not necessarily convex. Using
(the dual version of) Shor’s semi-definite relaxation schema, we relax the abstract se-
mantics JsK] of s as follows. W.l.o.g., we assume:

1. For every polynomial q ∈ R[x1, . . . , xn] with coefficients from R, there are some
Aq ∈ SRn×n, some bq ∈ Rn, and some cq ∈ R such that

q(x) = x>Aqx+ 2bq>x+ cq.

2. p(x) = Ax+ b with A ∈ Rn×n and b ∈ Rn.

12



For all v : P → R, and all r ∈ P , we then get

(JsK]v)(r) = sup {r(p(x)) | x ∈ Rn, g(x) ≤ 0, ∀q ∈ P . q(x) ≤ v(q)}
= sup {r(Ax+ b) | x ∈ Rn,
∀i ∈ {1, . . . , k} . x>Agi·x+ 2b>gi·

x+ cgi· ≤ 0,

∀q ∈ P . x>Aqx+ 2b>q x+ cq ≤ v(q)}
= sup {x>A>ArAx+ 2b>ArAx+ 2b>r Ax+ b>Arb+ 2b>r b+ cr |
x ∈ Rn,
∀i ∈ {1, . . . , k} . x>Agi·x+ 2b>gi·

x+ cgi· ≤ 0,

∀q ∈ P . x>Aqx+ 2b>q x+ cq ≤ v(q)}

= sup {(1, x>)
(
b>Arb+ 2b>r b+ cr b>ArA+ b>r A
(b>ArA+ b>r A)> A>ArA

)(
1
x

)
|

x ∈ Rn,

∀i ∈ {1, . . . , k} . (1, x>)
(
cgi· b>gi·

bgi· Agi·

)(
1
x

)
≤ 0,

∀q ∈ P . (1, x>)
(
cq bq

>

bq Aq

)(
1
x

)
≤ v(q)}

= sup {
(
b>Arb+ 2b>r b+ cr b>ArA+ b>r A
(b>ArA+ b>r A)> A>ArA

)
•
(

1
x

)
(1, x>) |

x ∈ Rn,

∀i ∈ {1, . . . , k} .
(
cgi· b>gi·

bgi· Agi·

)
•
(

1
x

)
(1, x>) ≤ 0,

∀q ∈ P .

(
cq bq

>

bq Aq

)
•
(

1
x

)
(1, x>) ≤ v(q)}

≤ sup {
(
b>Arb+ 2b>r b+ cr b>ArA+ b>r A
(b>ArA+ b>r A)> A>ArA

)
•X |

X � 0, X1·1 = 1

∀i ∈ {1, . . . , k} .
(
cgi· b>gi·

bgi· Agi·

)
•X ≤ 0,

∀q ∈ P .

(
cq bq

>

bq Aq

)
•X ≤ v(q)}.

The last inequality holds, because X � 0 and X1·1 = 1 hold for all X and all x with

X =
(

1
x

)
(1, x>).

Because of the above inequality, we define the relaxed abstract semantics JsKR of s by

(JsKRv)(r) := sup {
(
b>Arb+ 2b>r b+ cr b>ArA+ b>r A
(b>ArA+ b>r A)> A>ArA

)
•X |
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X � 0, X1·1 = 1 (6)

∀i ∈ {1, . . . , k} .
(
cgi· b>gi·

bgi· Agi·

)
•X ≤ 0,

∀q ∈ P .

(
cq bq

>

bq Aq

)
•X ≤ v(q)}.

We collect the important properties of the relaxed abstract semantics JsKR in the fol-
lowing lemma:

Lemma 4 (Adjé et al. [2], Gawlitza and Seidl [13]). Let s = g(x) ≤ 0;x := p(x) be
a statement, where g is quadratic and p is affine. Assume that P is finite and all q ∈ P
are quadratic. For the relaxed abstract semantics JsKR of s as defined in (6) we have:

1. JsKR ≥ JsK].
2. JsKR is monotone and concave.
3. (JsKRv)(r) = (JsK]v)(r), whenever r is concave, g is convex, and all polynomial

templates q ∈ P with v(q) <∞ are convex. This in particular implies that JsKR =
JsK]v, whenever s is affine and all polynomial templates q ∈ P are affine. ut

The methods we are developing in the present paper are, because of the last statement
of the above lemma, a generalization of the methods developed by Gaubert et al. [9]
and Gawlitza and Seidl [10].

3.8 Systems of Inequations over R

We want to reduce the problem of computing the relaxed abstract semantics V R of a
programGw.r.t. a set I ⊆ Rn of initial states to solving a system C(G, I) of inequations
of the form x ≥ e over R, where each right-hand side e is monotone and concave. We
set up this system C(G, I) as follows:

xst,p ≥ α(I)(p) for all p ∈ P
xv,p ≥ (JsKR{q 7→ xu,q | q ∈ P})(p) for all (u, s, v) ∈ E, and all p ∈ P

The system C(G, I) of inequations uses the set of variables

X = {xv,p | v ∈ N and p ∈ P}.

The variable xv,p receives the value for the upper bound for p ∈ P at program point v.
The relaxed abstract semantics of G w.r.t. to the set I of initial states can finally be read
off the least solution of the system C(G, I) of inequations over R:

Lemma 5. Let ρ∗ : X→ R denote the least solution of C(G, I). Then

V R[v](p) = ρ∗(xv,p)

for all v ∈ N and all p ∈ P . ut

Because of the above lemma, it remains to develop methods for approximating or com-
puting the least solution of C(G, I). This will be the topic of the next sections.
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Example 4. We continue our running example from Section 2. The set P = {p1, . . . ,
p5} ⊆ R[x1, x2] of quadratic templates we consider for this example is given by

p1(x1, x2) = −x1 p2(x1, x2) = x1 p3(x1, x2) = −x2

p4(x1, x2) = x2 p5(x1, x2) = 2x2
1 + 3x2

2 + 2x1x2

for all x1, x2 ∈ R. By Lemma 5, the relaxed abstract semantics is given by the least
solution of the following system of inequations:

xst,p1 ≥ 0 xst,p1 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p1)

xst,p2 ≥ 1 xst,p2 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p2)

xst,p3 ≥ 0 xst,p3 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p3)

xst,p4 ≥ 1 xst,p4 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p4)

xst,p5 ≥ 7 xst,p5 ≥ (JsKR{p 7→ xst,p | p ∈ P})(p5)

Here,

s =
(
x1

x2

)
:=
(

1 0.01
−0.01 0.99

)(
x1

x2

)
and, according to equality (6),

(JsKR{p 7→ xst,p | p ∈ P})(pi)
= sup {Ci •X | X � 0, X1·1 = 1, B1 •X ≤ xst,p1 , · · · , B5 •X ≤ xst,p5}

for all i ∈ {1, . . . , 5}, where

B1 =

 0 −0.5 0
−0.5 0 0

0 0 0

 B2 =

 0 0.5 0
0.5 0 0
0 0 0


B3 =

 0 0 −0.5
0 0 0
−0.5 0 0

 B4 =

 0 0 0.5
0 0 0

0.5 0 0


B5 =

0 0 0
0 2 1
0 1 3



C1 =

 0 −0.5 −0.005
−0.5 0 0
−0.005 0 0

 C2 =

 0 0.5 0.005
0.5 0 0

0.005 0 0


C3 =

 0 0.005 −0.495
0.005 0 0
−0.495 0 0

 C4 =

 0 −0.005 0.495
−0.005 0 0
0.495 0 0


15



C5 =

0 0 0
0 1.9803 0.9802
0 0.9802 2.9603


The above system of inequations has the same least solution as the following system of
equations:

xst,p1 = 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p1)

xst,p2 = 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p2)

xst,p3 = 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p3) (7)

xst,p4 = 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p4)

xst,p5 = 7 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p5)

In Section 5 we will explain how to solve the above equation system through the ∧-
strategy iteration approach of Adjé et al. [1, 2], Costan et al. [6], Gaubert et al. [9]. In
Section 6 we will do this using the ∨-strategy iteration approach of Gawlitza and Seidl
[10, 11, 13, 14]. ut

4 Systems of Concave Equations

This section is dedicated to introduce the main object of our studies, namely systems of
concave equations. How these equation systems can be solved through strategy iteration
will be explained in the following sections.

Assume that a fixed set X of variables and a domain D is given. We consider equa-
tions of the form x = e, where x ∈ X is a variable and e is an expression over D. A
system E of equations is a finite set

E = {x1 = e1, . . . ,xn = en}

of equations, where x1, . . . ,xn are pairwise distinct variables. We denote the set {x1,
. . . ,xn} of variables occurring in E by XE . We drop the subscript, whenever it is clear
from the context.

For a variable assignment ρ : X→ D, an expression e is mapped to a value JeKρ by
setting

JxKρ := ρ(x), and Jf(e1, . . . , ek)Kρ := f(Je1Kρ, . . . , JekKρ),

where x ∈ X, f is a k-ary operator (k = 0 is possible; then f is a constant), for instance
+, and e1, . . . , ek are expressions. Let E be a system of equations. We define the unary
operator JEK on X → D by setting (JEKρ)(x) := JeKρ for all x = e ∈ E . A solution
is a variable assignment ρ such that ρ = JEKρ holds. The set of solutions is denoted by
Sol(E).

Assume in the following that D is a complete lattice. An expression e (resp. an
equation x = e) is called monotone iff all operators occurring in e are monotone.

The set X→ D of all variable assignments is a complete lattice. For ρ, ρ′ : X→ D,
we write ρCρ′ (resp. ρBρ′) iff ρ(x) < ρ′(x) (resp. ρ(x) > ρ′(x)) holds for all x ∈ X.
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For d ∈ D, d denotes the variable assignment {x 7→ d | x ∈ X}. A variable assignment
ρ with ⊥ C ρ C > is called finite. A pre-solution (resp. post-solution) is a variable
assignment ρ such that ρ ≤ JEKρ (resp. ρ ≥ JEKρ) holds. The set of pre-solutions
(resp. the set of post-solutions) is denoted by PreSol(E) (resp. PostSol(E)). The
least fixpoint (resp. the greatest fixpoint) of an operator f : D → D is denoted by µf
(resp. νf ), provided that it exists. Thus, the least solution (resp. the greatest solution)
of a system E of equations is denoted by µJEK (resp. νJEK), provided that it exists. For
a pre-solution ρ (resp. for a post-solution ρ), µ≥ρJEK (resp. ν≤ρJEK) denotes the least
solution that is greater than or equal to ρ (resp. the greatest solution that is less than or
equal to ρ). In our setting, Knaster-Tarski’s fixpoint theorem can be stated as follows:

Every system E of monotone equations over a complete lattice has a least solution
µJEK and a greatest solution νJEK. Furthermore, µJEK =

∧
PostSol(E) and νJEK =∨

PreSol(E).

Definition 1 (Concave Equations). An expression e (resp. equation x = e) over R
is called basic concave expression (resp. basic concave equation) iff JeK is monotone
and concave. An expression e (resp. equation x = e) over R is called concave iff
e = e1 ∨ · · · ∨ ek, where e1, . . . , ek are basic concave expressions. ut

Note that by Lemma 1 the class of systems of concave equations strictly subsumes the
class of systems of rational equations and even the class of systems of rational LP-
equations as introduced by Gawlitza and Seidl [10, 14].

Example 5. The operator
√· : R→ R (defined by

√
x = sup {y ∈ R | y2 ≤ x} for all

x ∈ R) is monotone and concave. The least solution of the system E = {x = 1
2 ∨
√

x}
of concave equations is µJEK = 1. ut

5 The Min-Strategy Iteration Approach

In this section we briefly present the ∧-strategy iteration approach of Costan et al. [6].
The general framework will be explained in Subsection 5.1. After that we start special-
izing the general ∧-strategy iteration algorithm to an algorithm for solving systems of
concave equations as introduced in Section 4. For that, we first show how to compute
least solutions of systems of in-equations of the form xk ≥ f(x1, . . . ,xn), where f is
an affine operator on R. This algorithm will later be used for evaluating ∧-strategies.
Then, in Subsection 5.3, we answer the question how the set of ∧-strategies that is de-
fined by a system of concave equations looks like. In Subsection 5.4 we finally show
how convex optimization can be utilized for computing an improvement of a ∧-strategy.
In Subsection 5.5 we apply the developed ∧-strategy improvement algorithm to the har-
monic oscillator introduced in Section 2.

5.1 The General Framework

Costan et al. [6] introduced a∧-strategy iteration approach for finding small solutions of
monotone fixpoint equation systems over complete lattices. Monotone fixpoint equation
systems for instance arise when performing static analysis by abstract interpretation (cf.
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Section 3). However, before we specialize the ∧-strategy iteration approach of Costan
et al. [6] to an algorithm that can be applied to the case described in Section 3, we
briefly describe the framework in an abstract way. For details and proofs we refer to
Adjé et al. [2], Costan et al. [6], Gaubert et al. [9].

Let D be a complete lattice. We are interested in computing a small fixpoint of a
monotone self-map f : D → D, where we assume that f(x) = min {π(x) | π ∈ Π}
for all x ∈ D, whereΠ is a family of “simpler” self-maps on D. This in particular means
that the family Π admits lower selections (cf. e.g. [1]): Observe that, for all x ∈ D,
f(x) = min {π(x) | π ∈ Π} iff f(x) =

∧{π(x) | π ∈ Π} and there exists a π ∈ Π
such that f(x) = π(x). The latter π is the lower selection for x. The term “simpler”
in practice means that we assume that we are capable of computing the least fixpoint
µπ of π for any π ∈ Π efficiently. The self-maps π ∈ Π are the ∧-strategies for f .
∨-strategies can be defined dually. Then we assume that f(x) = max {σ(x) | σ ∈ Σ}
for all x ∈ D, where Σ is a family of “simpler” self-maps on D, i.e., we assume that Σ
admits upper selections.

Example 6. Consider the following system of concave equations:

x = 0 ∨
(

1
2
· x + 1 ∧ 10

)
Let f(x) denote the right-hand side, i.e., f : R → R is defined by f(x) = 0 ∨(

1
2 · x+ 1 ∧ 10

)
for all x ∈ R. Observe that f(x) = min {π1(x), π2(x)} for all x ∈ R,

where

π1(x) = 0 ∨ 1
2
· x+ 1 and π2(x) = 0 ∨ 10 = 10 for all x ∈ R.

Hence, π1 and π2 are the ∧-strategies for f .
Moreover, observe that f(x) = max {σ1(x), σ2(x)} for all x ∈ R, where

σ1(x) = 0 and σ2(x) =
1
2
· x+ 1 ∧ 10 for all x ∈ R.

Hence, σ1 and σ2 are the ∨-strategies for f . ut

Since f(x) = min {π(x) | π ∈ Π} for all x ∈ D, we get

µf = min {µπ | π ∈ Π} (8)

using Knaster-Tarski’s fixpoint theorem (recall that µf denotes the least fixpoint of f ).
This in particular implies that there exists a ∧-strategy π ∈ Π such that µf = µπ.

However, if f(x) = max {σ(x) | σ ∈ Σ} for all x ∈ D, then we can only conclude
that νf = max {νσ | σ ∈ Σ}. This is the dual of (8). We are not able to conclude
µf = max {µσ | σ ∈ Σ}, since this statement is simply not always true:

Example 7. We continue Example 6. We have

µf = 2 = min {2, 10} = min {µπ1, µπ2}
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On the other hand we have

µf = 2 > 0 = max {0,−∞} = max {µσ1, µσ2}
Hence, if we are able to compute the least fixpoints of the “simpler” self-maps π1 and
π2, then we can compute the least fixpoint of the self-map f . However, the ability of
computing the least fixpoints of the “simpler” self-maps σ1 and σ2 does not give us the
ability of computing the least fixpoint of f . ut
If we assume that Π is finite and we can compute µπ for every π ∈ Π , we immediately
obtain a method for computing µf . However, this does not necessarily lead to a practical
algorithm, since the cardinality of Π is usually large, for instance, exponential in the
size of the input. For tackling this problem, the idea is to start with an arbitrary ∧-
strategy π0 and improve this ∧-strategy iteratively utilizing the assumption that f(x) =
min{π(x) | π ∈ Π} holds for all x. This idea can be formalized as follows:

Algorithm 1 The ∧-Strategy Improvement Algorithm
1. Initialization. Set k = 0 and select any ∧-strategy π(0) ∈ Π .
2. Value determination. Compute the least fixpoint x(k) := µπ(k) of π(k).
3. If x(k) = f(x(k)), then return x(k).
4. ∧-Strategy Improvement. Take π(k+1) ∈ Π such that f(x(k)) = π(k+1)(x(k)). Increment k

by 1 and goto Step 2.

Using Knaster-Tarski’s fixpoint theorem, we can prove the following statements:

1. (x(i))i∈N is a decreasing sequence of post-fixpoints of f (i.e., x(i) ≥ f(x(i)) for all
i ∈ N) that is strictly decreasing until it is stable.

2. If it is stable, then we have found a solution, i.e., a fixpoint of f .
3. x(i) is greater than or equal to the least solution for all i ∈ N, i.e., x(i) ≥ µf for all
i ∈ N.

4. The sequence (x(i))i is bounded from above by the sequence obtained by Kleene
iteration, i.e., x(i) ≤ f i(x(0)) for all i ∈ N.

5. If the set Π of all ∧-strategies is finite, then termination is guaranteed after at most
|Π| steps.

Example 8. We again continue Example 6. Assume that π(0) = π2. Then we get x(0) =
µπ(0) = µπ2 = 10. We observe that x(0) is not a solution of f , because x(0) = 10 >
6 = f(10) = f(x(0)). Hence, we improve the current ∧-strategy. For that we observe
that

π1(x(0)) = π1(10) = 6 = f(x(0)) < 10 = π2(10) = π2(x(0)).

Hence, the algorithm chooses π(1) = π1 as the next ∧-strategy. Thus, we get x(1) =
µπ(1) = µπ1 = 2. As we will see in the following, in this case we can use linear
programming in order to compute µπ1. Since f(x(1)) = f(2) = 2 = x(1) holds, we
have found a fixpoint of f . Hence, the algorithm terminates. In this case we have even
found the least fixpoint µf of f . ut
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In the above example, we have found the least fixpoint µf of f . However, algorithm 1
stops whenever some fixpoint x(k) is reached, not necessarily the least one. We give a
simple example for this phenomenon:

x

x

rhs

Fig. 5. The graphs of x and (0.25 ∨ 2 · x− 1) ∧ 2

Example 9. Consider the following system of concave equations:

x = (0.25 ∨ 2 · x− 1) ∧ 2

The graph of the left hand-side x and the graph of the right-hand side (0.25∨2·x−1)∧2
are drawn in Figure 5. The least solution of the above system of concave equations is
x = 0.25. The set Π = {π1, π2} of ∧-strategies for the right-hand side is given by
π1(x) = (0.25 ∨ 2 · x − 1) and π2(x) = 2. If we initiliaze the ∧-strategy iteration
with the ∧-strategy π(0) = π2, the algorithm returns 2, since the ∧-strategy π2 cannot
be improved further, since π1(2) = 3 > 2 = µπ2. Unfortunately, 2 is not the least
solution. The problem here stems from the fact that the function π1 is not non-expansive
in the sup-norm, i.e., it does not hold ‖f(x)− f(y)‖∞ ≤ ‖x− y‖∞ for all x, y ∈ R
(cf. Adjé et al. [1]). ut
Although minimality of the obtained solution cannot be guaranteed in the general case,
there are indeed important cases where minimality can be guaranteed by an enhanced
∧-strategy improvement step. Adjé et al. [1] describe how to guarantee minimality for
the case that all mappings are non-expansive.

One notable advantage of the ∧-strategy method is that it can be stopped at anytime
with a safe over-approximation of the least fixpoint. It thus can give us save results,
even if the set of ∧-strategies is infinite.

In the following we specialize our ∧-strategy improvement algorithm to an algo-
rithm for solving systems of concave equations as introduced in Section 4. The chal-
lenge here is to identify the set of ∧-strategies.

5.2 Least Fixpoints for Max-Affine Self-Maps

In this subsection, we briefly explain how to compute the least solution of a system C of
in-equations of the form xi ≥ f(x1, . . . ,xn), where x1, . . . ,xn are distinct variables
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and f : Rn → R is monotone and affine. A function f : Rn → R is monotone
and affine iff there exist c0 ∈ R and c1, . . . , cn ∈ R≥0 such that f(x1, . . . , xn) =
c0 + c1 · x1 + · · · + cn · xn for all x1, . . . , xn ∈ R. Here, we use the convention
−∞+∞ = −∞.

For simplicity we assume that the least solution ρ∗ of C maps every variable to a
value that is strictly greater than −∞, i.e., ρ∗(x) > −∞ for all variable x. We can
do so w.o.l.g., since we can determine the variables that are −∞ in the least solution
by performing n Kleene iteration steps. Then we can remove these variables and the
corresponding in-equations from the system of in-equations.

Let X denote the set of variables, and G = (X,→) be the variable dependency
graph of the system C of in-equations, i.e., the nodes of G are the variables of E and
we write xi → xj iff xi = ∞ implies xj = ∞, i.e., if there exists an in-equation
xj ≥ f(x1, . . . ,xn) with f(x1, . . . , xn) = c0 +c1 ·x1 + · · ·+cn ·xn, where c0 > −∞
and ci > 0. If G is strongly connected, then the least solution of E can be determined
by solving the following linear programming problem:

min
n∑
i=1

xi y ≥ f(x1, . . . ,xn) for all in-equations y ≥ f(x1, . . . ,xn) ∈ C

The above linear program aims at minimizing the sum of all variables x ∈ X. The
feasible space is simply the set of all solutions of the system C of in-equations. If this
linear program is infeasible, then ρ∗(x) = ∞ holds for all variables x ∈ X. If this
linear program is feasible, then ρ∗ is the uniquely determined optimal solution:

Lemma 6. If the variable dependency graph of C is strongly connected, then the least
solution of C can be computed by solving a linear programming problem that can be
constructed in linear time.

For computing the least solution in case that the variable dependency graph of C is not
strongly connected we divide the system of in-equations into strongly connected com-
ponents. We start with an arbitrary non-trivial strongly connected component without
incomming edges. Thus, according to Lemma 6, we can compute the least solution of
the induced system of in-equations by solving a linear programming problem that can
be constructed in linear time. After we have determined the values for this strongly con-
nected component, we can replace these variables with their values. We can repeat the
above procedure until all strongly connected components are solved. Since the num-
ber of strongly connected components is bounded by the number of variables, we have
shown the following:

Theorem 1 (Gaubert et al. [9]). The least solution of a system of in-equations of the
form xi ≥ f(x1, . . . ,xn), where f is a monotone and affine operator, can be com-
puted by solving linearly many linear programming problems, each of which can be
constructed in linear time. Thus, it can be computed in polynomial time. ut

Example 10. We consider the following system of in-equations:

x1 ≥ −10 x1 ≥
1
4
· x2 + 1 x2 ≥ 2 · x1 x3 ≥ x3 + x1 − 1 x3 ≥ 0
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Our goal is to compute the least solution using the method presented in this subsection.
The strongly connected components of the variable dependency graph are {x1,x2} and
{x3}. The variables x1 and x2 do not depend on the variable x3. Thus, in the first step
we have to compute the uniquely determined optimal solution of the following linear
programming problem:

min x1 + x2 x1 ≥ −10 x1 ≥
1
4
· x2 + 1 x2 ≥ 2 · x1

The uniquely determined optimal solution gives us x1 = 2 and x2 = 4. After substitut-
ing the variables x1 and x2 with their values, it remains to compute the least solution
of the following system of in-equations:

x3 ≥ x3 + 2− 1 ∨ 0

Thus, we have to determine the uniquely determined optimal solution of the following
linear programming problem:

min x3 x3 ≥ x3 + 1 x3 ≥ 0

This linear programming problem is infeasible. Thus, we get x3 =∞. Hence, the least
solution of the original system of in-equations is x1 = 2, x2 = 4, and x3 =∞. ut

When we use interior point methods for solving the linear programming problems, we
obtain a polynomial-time algorithm. However, the number of arithmetic operations and
memory accesses then depends on the sizes of the occurring numbers. Thus, the algo-
rithm is not uniform. A uniform polynomial-time algorithm is not known.

5.3 ∧-Strategies for Systems of Concave Equations

We aim at specializing our ∧-strategy improvement algorithm to an algorithm for solv-
ing systems of concave equations as introduced in Section 4. For that, let us consider
the following system of concave equations:

x1 = f1,1(x1, . . . ,xn) ∨ · · · ∨ f1,k1(x1, . . . ,xn)
...

xn = fn,1(x1, . . . ,xn) ∨ · · · ∨ f1,kn
(x1, . . . ,xn)

Firstly, we have to define an adequate set Π of ∧-strategies for the function

f =

f1,1 ∨ · · · ∨ f1,k1
...

fn,1 ∨ · · · ∨ fn,kn

 : Rn → Rn,

where we expect that we can compute the least fixpoint µπ for every ∧-strategy π ∈ Π
efficiently. We proceed as follows: We define the set Tk,1 as the smallest set that contains
the following functions:
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1. All monotone and affine functions f : Rk → R, i.e. functions of the form f(x) =
a>x+ b with a ∈ Rk≥0 and b ∈ R.

2. For all y ∈ Rk, the function fy : Rk → R that is defined by

fy(x) =

{
−∞ if x ≤ y
∞ if x > y

for all x ∈ Rk.

The set T ∨k,1 is then defined by T ∨k,1 := {f1 ∨ · · · ∨ fl | f1, . . . , fl ∈ Tk,1}. The set T ∨k,m
is finally defined by T ∨k,m := {(f1, . . . , fm)> | f1, . . . , fm ∈ T ∨k,1}.

Let f = (f1, . . . , fn)>, where f1, . . . , fn : Rn → R are monotone and concave.
The set Π of ∧-strategies for f is defined as follows:

Π = {π : T ∨n,n | π ≥ f}.

Each ∧-strategy π ∈ Π is a finite maximum of affine functions. It is thus in particular
convex. As we have seen in Section 5.2, the least fixpoint µπ of a ∧-strategy π can be
computed through linear programming (cf. Gaubert et al. [9]). Because f ≤ π holds for
all π ∈ Π , it follows µf ≤ µπ for all π ∈ Π . Moreover, because each component of f
is a maximum of finitely many concave functions, it follows that there indeed exists a π
with µπ = µf . Hence, Π admits lower selections. We have µf = min {µπ | π ∈ Π}
as desired.

Note that Π can be indeed infinite. However, in some cases there exists a finite
subset Π ′ of Π such that f(x) = min {π(x) | π ∈ Π ′} for all x ∈ Rn (cf. Gaubert
et al. [9]). Then we can restrict our considerations to this finite subset.

5.4 Improving ∧-Strategies

In order to use Algorithm 1, it remains to explain how we can realize the ∧-strategy
improvement step (Step 4). We assume that we have given a post-fixpoint x of f , i.e.,
x ≥ f(x). Our goal is to compute a ∧-strategy π ∈ Π such that π(x) = f(x), i.e., π is
locally optimal at x. In other words: we have to find a lower selection.

For that, we assume that for any monotone and concave function f : Rk → R and
any x ∈ (R ∪ {∞})k with −∞ < f(x) <∞, Tf,x : Rk → R denotes a monotone and
affine function such that

Tf,x ≥ f, and Tf,x(x) = f(x).

The function Tf,x must exist due to the monotonicity and concavity of f . For the sake

of simplicity of the presentation we omit the case that x /∈ (R∪{∞})k. For all x ∈ Rk

with f(x) = ∞, we additionally set Tf,x(y) = ∞ for all y ∈ Rk, and for all x ∈ Rk

with f(x) = −∞, we set

Tf,x(y) =

{
−∞ if y ≤ x
∞ if y > x
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For f = f1 ∨ · · · ∨ fk with f1, ..., fk : Rk → R monotone and concave, we set

Tf,x := Tf1,x ∨ · · · ∨ Tfk,x for all x ∈ Rk.

Moreover, for f = (f1, . . . , fn)T with f1, . . . , fn : Rk → R we set

Tf,x = (Tf1,x, . . . , Tfn,x)
>

Then, we have:

Lemma 7. Tf,x ≥ f and Tf,x(x) = f(x) for all x ∈ Rn. ut

Therefore, Tf,x is a ∧-strategy for f that is locally optimal at x. However, it remains to
answer the question how Tf,x can be computed.

Let f : Rn → R be concave, and x ∈ Rn with−∞ < f(x) <∞. For simplicity we
assume that x ∈ Rn. We can do so w.l.o.g., since we can remove the other components
and treat them separately. Our goal is to compute an affine function Tf,x : Rn → R
such that Tf,x(x) = f(x) and Tf,x ≥ f . Hence,

Tf,x(y) = f(x) + d>(y − x) for all y ∈ Rn

Hence, we are searching for a d ∈ Rn such that

g(d) := sup {g(d, y) | y ∈ Rn} ≤ f(x)

holds, where g(d, y) := f(y) − d>(y − x). The function g is convex, since it is the
supremum of a set of affine functions. For computing the value g(d) for a given d ∈
Rn, we have to solve an unconstraint convex optimization problem, because g(d, ·) is
concave and thus−g(d, ·) is convex. However, this does not lead to an practical method
for our application mentioned in Section 3.

For our application described in Section 3, we have to consider the case that f :
Rn → R is given by

f(x) = sup {C •X | X � 0,A(X) = a,B(X) ≤ x},

i.e., f(x) is given by the optimal value of the following SDP problem:

max
X

C •X A(X) = a B(X) ≤ x X � 0

Note that f is monotone. We moreover assume that −∞ < f(x) < ∞ holds. For
simplicity we again assume that x ∈ Rn. We can deal with the other cases by removing
constraints from the semi-definite programming problem. We aim at using the dual
problem in order to compute Tf,x. The dual problem (see e.g. Todd [22]) is given by:

min
λ,µ

x>λ+ a>µ Bλ+Aµ � C λ ≥ 0

Here, the column vectors λ and µ are the variables. Let d(x) denote the optimal value of
the dual problem. Weak duality gives us f(x) ≤ d(x). By assumption we in particular
have −∞ < d(x).
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Now we define a hyperplane Tf,x as follows. If d(x) =∞, i.e., if the dual is infea-
sible, then we set

Tf,x(z) =∞ for all z ∈ Rn

Finally, assume −∞ < d(x) < ∞. If the dual has an optimal solution (λ, µ), then we
define the hyperplane Tf,x by

Tf,x(z) = λ>z + µ>a for all z ∈ Rn

If the dual has no optimal solution, we in practice simply choose a good feasible solu-
tion. Weak duality gives us Tf,x ≥ f .

Observe that Tf,x is monotone, because λ ≥ 0. In order to conclude Tf,x(x) =
f(x), we however need stronger assumptions. For instance assumptions that imply
strong duality. One sufficient criterion for strong duality and the existence of an op-
timal solution for the dual problem is that all components ofA are linearly independent
and {X � 0 | A(X) = a, B(X)C x} 6= ∅ (cf. Todd [22]).

The result of the above discussion can be summarized as follows: we can compute
a self-map Tf,x that fulfills the statements of Lemma 7 (i.e., Tf,x ≥ f and Tf,x(x) =
f(x)) through semi-definite programming, whenever the above sufficient condition for
strong duality is fulfilled.

5.5 The Harmonic Oscillator

We continue Example 4 (page 15), i.e., in order to analyze the harmonic oscillator we
aim at solving the following systems of equations:

xst,p1 = 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p1)

xst,p2 = 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p2)

xst,p3 = 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p3)

xst,p4 = 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p4)

xst,p5 = 7 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p5)

We emphasize that the right-hand sides are finite maximums of monotone and concave
functions. It is easy to verify that xst,p1 = · · · = xst,p4 = ∞, xst,p5 = 7 is a post-
solution. In oder to simplify notations, let c1 = c3 = 0, c2 = c4 = 1, c5 = 7, and, for
all i ∈ {1, . . . , 5}, fi : Rn → R be defined by

fi((x1, . . . , x5)>) := ci ∨ (JsKR{pi 7→ xi | i ∈ {1, . . . , 5}})(pi)

Let moreover f = (f1, . . . , f5)>, i.e., f denotes the right-hand side of the above system
of equations. If we evaluate the right-hand sides, we get

f((∞,∞,∞,∞, 7)>) ' (2.0426, 2.0426, 1.6651, 1.6651, 7)>.
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For evaluating the right-hand sides, we can use semi-definite programming. The usual
implementations solve the primal and the dual problem at the same time. From a dual
optimal solution, we obtain our first ∧-strategy π(0) that is given as follows:

π(0) := Tf,(∞,∞,∞,∞,7)>((x1, . . . , x5)>) '


0 ∨ 0.14588 · x5 + 1.0214
1 ∨ 0.14588 · x5 + 1.0214
0 ∨ 0.11892 · x5 + 0.83263
1 ∨ 0.11892 · x5 + 0.83263

7 ∨ 0.99456 · x5


We are now going to explain how we have obtained the first component. According to
the findings from Example 4, we have

(JsKR{p1 7→ ∞, p2 7→ ∞, p3 7→ ∞, p4 7→ ∞, p5 7→ 7})(p1)
= sup {C1 •X | X � 0, X1·1 = 1, B5 •X ≤ 7}

= sup


 0 −0.5 −0.005
−0.5 0 0
−0.005 0 0

 •X | X � 0, X1·1 = 1,

0 0 0
0 2 1
0 1 3

 •X ≤ 7


=2.0426

We have seen in Subsection 5.4, that, in order to compute an affine over-approximation
of (JsKR{pi 7→ xi | i ∈ {1, . . . , 5}})(pi) that is exact at x1 = x2 = x3 = x4 =∞ and
x5 = 7, we can solve the dual problem that is given as follows:

inf

7λ+ µ | λ ≥ 0, µ ∈ R, λB5 + µ

1 0 0
0 0 0
0 0 0

 � C1


= inf {7λ+ µ | λ ≥ 0, µ ∈ R,

λ

0 0 0
0 2 1
0 1 3

+ µ

1 0 0
0 0 0
0 0 0

 �
 0 −0.5 −0.005
−0.5 0 0
−0.005 0 0


Running a solver may give us the result λ ' 0.14588 and µ ' 1.0214. This gives us
the first component of π(0). The remaining components can be computed in the same
way.

As described in Subsection 5.2 we can compute the least fixpoint of π(0) through
linear programming. We get

x(0) := µπ(0) = (2.0426, 2.0426, 1.6651, 1.6651, 7)>.

Then, by again solving semi-definite and linear programming problems, we get

π(1) := Tf,x(0)((x1, . . . , x5)>) '


0 ∨ 0.90541 · x1 + 0.01340 · x5 + 0.093820
1 ∨ 0.90541 · x2 + 0.01340 · x5 + 0.093819
0 ∨ 0.88297 · x3 + 0.01346 · x5 + 0.094205
1 ∨ 0.88297 · x4 + 0.01346 · x5 + 0.094205

7 ∨ 0.99456 · x5


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and

x(1) := µπ(1) ' (1.9838, 1.9838, 1.6098, 1.6098, 7.0000)>.

Continuing this process, we find:

x(2) := µπ(2) ' (1.8971, 1.8971, 1.5434, 1.5434, 7.0000)>

x(3) := µπ(3) ' (1.8718, 1.8718, 1.5280, 1.5280, 7.0000)>

x(4) := µπ(4) ' (1.8708, 1.8708, 1.5275, 1.5275, 7.0000)>

x(5) := µπ(5) ' (1.8708, 1.8708, 1.5275, 1.5275, 7.0000)>

{−2.0462 ≤ x ≤ 2.0426, −1.665 ≤ v ≤ 1.665, 2x2 + 3v2 + 2xv ≤ 7}
{−1.9838 ≤ x ≤ 1.9838, −1.6097 ≤ v ≤ 1.6097, 2x2 + 3v2 + 2xv ≤ 7}

{−1.8971 ≤ x ≤ 1.8971, −1.5435 ≤ v ≤ 1.5435, 2x2 + 3v2 + 2xv ≤ 7}
{−1.8718 ≤ x ≤ 1.8718, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

{−1.8708 ≤ x ≤ 1.8708, −1.5275 ≤ v ≤ 1.5275, 2x2 + 3v2 + 2xv ≤ 7}

Fig. 6. Visualization of a run of our ∧-strategy iteration algorithm for the harmonic oscillator
from Section 2

Our ∧-strategy iteration stabilizes after a few iterations. The run of our ∧-strategy im-
provement algorithm is visualized in Figure 6. As a result, we obtain

µf ≤ (1.8708, 1.8708, 1.5275, 1.5275, 7.0000)>.

As a result we finally obtain that the following invariants hold at program point st of
the harmonic oscillator (page 4):

−x1 ≤ 1.8708 x1 ≤ 1.8708 −x2 ≤ 1.5275

x2 ≤ 1.5275 2x2
1 + 3x2

2 + 2x1x2 ≤ 7
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6 The Max-Strategy Iteration Approach

Before giving a formal description of the max-strategy iteration approach in Subsec-
tion 6.2, we explain it by a simple example in Subsection 6.1. In Subsection 6.3 we
finally apply the max-strategy iteration approach to the harmonic oscillator introduced
in Section 2.

6.1 A Simple Example

Our goal is to compute the least solution of the following equation system:

x = 0.4 ∨
√

x ∨ 1 +
√

x− 1

Here,
√
x = sup {y ∈ R | y2 ≤ x}. Note that, for all x < 0,

√
x = sup ∅ = −∞. The

important property is that all right-hand sides are finite maximums of monotone and
concave functions. The graph of the left-hand side x and the graph of the right-hand
side 0.4 ∨ √x ∨ 1 +

√
x− 1 are drawn in Figure 7.(a). The least solution is the least

x-coordinate where the two graphs cross, i.e., it is given by 1.

x

x

rhs

x

x

rhs

rhs
x

x

rhs

rhs

(a) (b) (c)

Fig. 7. A run of the ∨-strategy improvement algorithm

We now use the ∨-strategy improvement algorithm of Gawlitza and Seidl [10, 11,
13, 14] for finding the least solution. We consider the computation of the least solu-
tion as a competition between a maximizer and a minimizer. The maximizer aims at
maximizing the least solution whereas the minimizer aims at minimizing it. The state
of the game is the current approximate to the least solution. The play starts with the
approximate that assigns −∞ to every variable. At some approximate the maximizer
is allowed to select an argument of the finite maximum 0.4 ∨ √x ∨ 1 +

√
x− 1, for

instance
√

x. Such a selection is called a ∨-strategy.
The play starts at the approximate −∞. This is the current state of the play at the

beginning. At this point, the most profitable ∨-strategy is the argument 0.4, since
√

x
and 1 +

√
x− 1 evaluate to −∞. The play proceeds by performing a least fixpoint
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iteration starting at −∞ using the current ∨-strategy, i.e., the next approximate is the
least solution of the equation system

x = 0.4

that exceeds −∞. Hence, the next approximate is 0.4 (cf. Figure 7.(b)). Note that 0.4
is not only the least solution of the equation system x = 0.4 that exceeds 0.4, but it is
also the greatest solution of the inequation x ≤ 0.4, i.e., the greatest point in the convex
area that is above the graph of the left hand-side and below the graph of the concave
right-handside (cf. Figure 7.(b)). This is not by accident. We will see that during a run
of our ∨-strategy improvement algorithm, the next approximate is always the greatest
point of such a convex area. This implies that it can be computed through algorithms
for solving convex optimization problems.

Now, we try to improve the current ∨-strategy locally at 0.4. Since
√

0.4 > 0.4
holds, we can improve the current ∨-strategy to the ∨-strategy that selects the argument√

x.8 This gives us a strict local improvement. Thus, the next approximate is the least
solution of the equation system

x =
√

x

that exceeds 0.4. Hence, the next approximate is 1 (cf. Figure 7.(c)). It is again the
greatest solution of the inequation system x ≤ √x. Thus, it is the uniquely determined
optimal solution of the following convex optimization problem:

max x x2 − x ≤ 0

In this case the unique optimal solution can for instance be computed through semi-
definite programming, because it is a convex quadratic optimization problem.

Now, our current approximate is 1 and our current ∨-strategy selects the argument√
x. We now again try to improve our current ∨-strategy, i.e., we search for a ∨-strategy

that is strictly more profitable at our current approximate 1 than our current ∨-strategy.
Since 0.4 < 1 = 1 +

√
1− 1 = 1 =

√
1 holds, there is no such ∨-strategy. In other

words: The current∨-strategy cannot be improved at the current approximate (cf. Figure
7.(c)). This means: We have found a solution of the equation system

x = 0.4 ∨
√

x ∨ 1 +
√

x− 1.

Since the sequence of approximates is monotonically increasing and bounded by the
least solution, we in fact have found the least solution. For short: The ∨-strategy im-
provement algorithm terminates and returns the least solution 1.

6.2 The Max-Strategy Improvement Algorithm

In this section we are going to compute least solutions of systems of concave equations
through the ∨-strategy improvement algorithm of Gawlitza and Seidl [10, 11, 12, 14].

8 Since 1 +
√

0.4− 1 = 1 +
√
−0.6 = 1 +−∞ = −∞ holds, a switch to the ∨-strategy that

selects the argument 1 +
√

x− 1 is not profitable at the approximate 0.4.
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Systems of concave equations are in particular systems of monotone equations over the
complete linearly ordered set R. For the sake of generality, we subsequently consider
an arbitrary complete linearly ordered set.

A ∨-strategy σ for a system E of monotone equations over a complete linearly
ordered set is a function that maps every expression e1 ∨ · · · ∨ ek occurring in E to
one of the immediate sub-expressions ej , j ∈ {1, . . . , k}. We denote the set of all ∨-
strategies for E by ΣE . We drop the subscript, whenever it is clear from the context.
Finally, we set

E(σ) := {x = σ(e) | x = e ∈ E}.

Example 11. For the system E = {x = 1
2 ∨
√

x} of concave equations and the ∨-
strategy σ = { 1

2 ∨
√

x 7→ 1
2}, we have E(σ) = {x = 1

2}. ut

Our ∨-strategy improvement algorithm iterates over ∨-strategies. It maintains a current
∨-strategy and a current approximate to the least solution. In each step, if possible,
the current ∨-strategy is improved w.r.t. the current approximate, and a new current
approximate is computed w.r.t. the new current ∨-strategy and the current approximate:

Definition 2 (Improvements). Let E be a system of monotone equations over a com-
plete linearly ordered set. Let σ, σ′ ∈ Σ be ∨-strategies for E and ρ be a pre-solution of
E(σ). The ∨-strategy σ′ is called improvement of σ w.r.t. ρ iff the following conditions
are fulfilled:

1. If ρ /∈ Sol(E), then JE(σ′)Kρ > ρ.

2. For all ∨-expressions e1 ∨ · · · ∨ ek occurring in E the following holds:

If σ′(e) 6= σ(e), then Jσ′(e)Kρ > Jσ(e)Kρ. ut

In many cases there exist several, different improvements of a ∨-strategy σ w.r.t. a pre-
solution ρ of E(σ). Under the assumption that the operator ∨ is only used in its binary
version, one is known as all profitable switches (see e.g. Björklund et al. [3, 4]). Carried
over to the case considered here, this means, that the ∨-strategy σ will be modified at
any ∨-expression e1 ∨ e2 with Je1 ∨ e2Kρ > Jσ(e1 ∨ e2)Kρ. According to definition 2
the selection at the other ∨-expressions must be preserved.

We can now formulate the ∨-strategy improvement algorithm for computing least
solutions of systems of monotone equations over complete linearly ordered sets. The
input is a system E of monotone equations over a complete linearly ordered set, a ∨-
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strategy σinit for E , and a pre-solution ρinit of E(σinit). In order to compute the least
and not just some solution, we additionally require that ρinit ≤ µJEK holds:

Algorithm 2 The ∨-Strategy Improvement Algorithm

Input :

8<:
- A system E of monotone equations over a complete linearly ordered set
- A ∨-strategy σinit for E
- A pre-solution ρinit of E(σinit) with ρinit ≤ µJEK

Output : The least solution µJEK of E
σ ← σinit;
ρ← ρinit;

while (ρ /∈ Sol(E)) {
σ ← improvement of σ w.r.t. ρ;
ρ← µ≥ρJE(σ)K;

}
return ρ;

Lemma 8. Let E be a system of monotone equations over a complete linearly ordered
set. For i ∈ N, let ρi be the value of the program variable ρ and σi be the value of the
program variable σ in the ∨-strategy improvement algorithm (Algorithm 2) after the
i-th evaluation of the loop-body. The following statements hold for all i ∈ N:

1. ρi ≤ µJEK.
2. ρi ∈ PreSol(E(σi+1)).
3. ρi+1 = µ≥ρi

JE(σi+1)K.
4. If ρi < µJEK, then ρi+1 > ρi.
5. If ρi = µJEK, then ρi+1 = ρi. ut

An immediate consequence of Lemma 8 is the following lemma:

Lemma 9. Whenever the ∨-strategy improvement algorithm terminates, it computes
the least solution µJEK of E . ut
In the following we are interested in solving systems of concave equations through
our ∨-strategy improvement algorithm. Hence, assume that E is a system of concave
equations. In this case our ∨-strategy improvement algorithm terminates and returns
the least solution at the latest after considering every ∨-strategy at most |X| times.

In order to start our ∨-strategy improvement algorithm in a feasible area (see Gawl-
itza and Seidl [13] for detailed explanations), we start the ∨-strategy improvement al-
gorithm with the system

E ∨ −∞ := {x = e ∨ −∞ | x = e ∈ E},

the ∨-strategy

σinit = {e ∨ −∞ 7→ −∞ | x = e ∈ E},

and the pre-solution −∞ of (E ∨ −∞)(σinit). For i ∈ N, let ρi be the value of the
program variable ρ and σi be the value of the program variable σ in the ∨-strategy
improvement algorithm (Algorithm 2) after the i-th evaluation of the loop-body. For all
i ∈ N, the value ρi+1 = µ≥ρi

JE(σi+1)K is determined as follows:
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Lemma 10. Let

X−∞ := {x ∈ X | x = e ∈ E(σi+1) and JeKρi = −∞}
X∞ := {x ∈ X | x = e ∈ E(σi+1) and JeKρi =∞}
X′ := X \ (X−∞ ∪X∞)

E ′ := {x = e ∈ E(σi+1) | x ∈ X′}[−∞/X−∞][∞/X∞].

Here, {x = e ∈ E(σi+1) | x ∈ X′}[−∞/X−∞][∞/X∞] denotes the system of basic
concave equations that is obtained from E(σi+1) by removing all equations x = e with
x /∈ X′ and then replacing all occurrences of variables from X−∞ in the right-hand
sides with the constant−∞ and all occurrences of variables from X∞ in the right-hand
sides with the constant∞. Then

ρi+1(x′) = µ≥ρi
JE(σi+1)K(x′)

= µ≥ρi|X′ JE
′K(x′)

= sup {ρ(x′) | ρ : X′ → R and ρ(x) ≤ JeKρ for all equations x = e ∈ E ′}

for all x′ ∈ X′. Moreover, ρi+1(x−∞) = µ≥ρi
JE(σi+1)K(x−∞) = −∞ for all x−∞ ∈

X−∞, and ρi+1(x∞) = µ≥ρi
JE(σi+1)K(x∞) =∞ for all x∞ ∈ X∞,

Hence, provided that E is a system of concave equations, ρi+1 can be computed by
solving |X| convex optimization problems. Moreover, it is important to note that ρi+1

is uniquely determined through the system E , the ∨-strategy σi+1 and the set X∞ of all
variables that are already known to be∞. ut
Since the sequence ((ρi, {x ∈ X | x = e ∈ E(σi+1) and JeKρi =∞}))i is strictly in-
creasing (ordered component-wise), Lemma 10 implies that the ∨-strategy improve-
ment algorithm considers each ∨-strategy at most |X| times. Thus, we have shown the
following theorem:

Theorem 2. Let E be a system of concave equations. Our ∨-strategy improvement al-
gorithm (Algorithm 2) computes the least solution µJEK of E and performs at most
(|Σ|+ |X|) · |X| ∨-strategy improvement steps. If E is a system of concave equations,
we have to solve |X| convex optimization problems for every ∨-strategy improvement
step. ut
Example 12. We consider the system

E =
{
x = −∞∨ 1

2 ∨
√

x ∨ 7
8 +

√
x− 47

64

}
of concave equations. We start with the uniquely determined ∨-strategy σ0 such that

E(σ0) = {x = −∞}

and with the solution ρ0 := {x 7→ −∞} of E(σ0). Since ρ0 /∈ Sol(E), we improve the
∨-strategy σ0 w.r.t. ρ0 to a ∨-strategy σ1 . Necessarily, we get

E(σ1) =
{
x =

1
2

}
.
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By Lemma 10, we get

ρ1(x) = µ≥ρ0JE(σ1)K(x) = sup
{
x | x ≤ 1

2

}
.

Thus, ρ1 = {x 7→ 1
2}. Since

√
1
2 > 1

2 and 7
8 +

√
1
2 − 47

64 < 1
2 hold, we necessarily

improve the ∨-strategy σ1 w.r.t. ρ1 to the uniquely determined ∨-strategy σ2 such that

E(σ2) =
{
x =
√

x
}
.

Again by Lemma 10, we get

ρ2(x) = µ≥ρ1JE(σ2)K(x) = sup
{
x | x ≤

√
x
}

= 1.

Thus, ρ2 = {x 7→ 1}. Since

7
8

+

√
1− 47

64
>

7
8

+

√
1− 60

64
=

9
8
> 1,

we get

E(σ3) =

{
x =

7
8

+

√
x− 47

64

}
.

Again by Lemma 10, we get

ρ3(x) = µ≥ρ2JE(σ3)K(x) = sup

{
x | x ≤ 7

8
+

√
x− 47

64

}
= 2.

Thus, we finally get ρ3 = {x 7→ 2}. The algorithm terminates, because ρ3 solves E .
Thus, ρ3 = µJEK. We have found the least solution.

In each step we had to solve convex optimization problems that can be solved
through semi-definite programming (c.f. Gawlitza and Seidl [13]). ut

6.3 The Harmonic Oscillator

We continue Example 4 on page 15. After introducing −∞ at the right-hand sides, we
obtain the following system of concave equations:

xst,p1 = −∞∨ 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p1)

xst,p2 = −∞∨ 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p2)

xst,p3 = −∞∨ 0 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p3) (9)

xst,p4 = −∞∨ 1 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p4)

xst,p5 = −∞∨ 7 ∨ (JsKR{p 7→ xst,p | p ∈ P})(p5)
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In this example we have 35 = 243 different ∨-strategies. It is clear that the algorithm
will switch to the ∨-strategy that is given by the finite constants in the first step. At each
equation, it then can switch to the non-constant expression, but then, because it con-
structs a strictly increasing sequence, it can never return to the constant. Summarizing,
because of the simple structure, it is clear that our ∨-strategy improvement algorithm
will perform at most 6 ∨-strategy improvement steps. In fact our prototypical imple-
mentation performs 4 ∨-strategy improvement steps when solving this example. The
last ∨-strategy that the algorithm considers leads to the system

xst,p1 = (JsKR{p 7→ xst,p | p ∈ P})(p1)

xst,p2 = (JsKR{p 7→ xst,p | p ∈ P})(p2)

xst,p3 = (JsKR{p 7→ xst,p | p ∈ P})(p3)

xst,p4 = (JsKR{p 7→ xst,p | p ∈ P})(p4)
xst,p5 = 7

of basic concave equations. The current approximate at this point of time does not
assign∞ to any variable. Because of Lemma 10, in order to determine the next value
for the variable xst,pk

(for k ∈ {1, . . . , 5}), we solve the following convex optimization
problem

sup {ρ(xst,pk
) | ρ : X→ R and

ρ(xst,pi) ≤ (JsKR{q 7→ ρ(xst,q) | q ∈ P})(pi), i ∈ {1, . . . , 4} and
xst,p5 ≤ 7}

For that, we solve the following semi-definite programming problem, that is obtained
from the above convex optimization problem through unfolding the definition of the
relaxed abstract semantics:

sup xst,pk

xst,p1 ≤ Ck •X(1) X(1) � 0 X
(1)
1·1 = 1

B1 •X(1) ≤ xst,p1 · · · B5 •X(1) ≤ xst,p5

xst,p2 ≤ Ck •X(2) X(2) � 0 X
(2)
1·1 = 1

B1 •X(2) ≤ xst,p1 · · · B5 •X(2) ≤ xst,p5

xst,p3 ≤ Ck •X(3) X(3) � 0 X
(3)
1·1 = 1

B1 •X(3) ≤ xst,p1 · · · B5 •X(3) ≤ xst,p5

xst,p4 ≤ Ck •X(4) X(4) � 0 X
(4)
1·1 = 1

B1 •X(4) ≤ xst,p1 · · · B5 •X(4) ≤ xst,p5

xst,p5 ≤ 7

The matrices B1, . . . , B5, C1, . . . , C5 are defined in Example 4 (page 15). Solving the
above semi-definite programming problem gives us the final values for the variables
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xst,p1 , . . . ,xst,p5 . We get

µJEK = {xst,p1 7→ 1.8708..,xst,p2 7→ 1.8708..,
xst,p3 7→ 1.5275..,xst,p4 7→ 1.5275..,xst,p5 7→ 7}

Hence, the following invariants hold at program point st of the harmonic oscillator (see
page 4):

−x1 ≤ 1.8708 x1 ≤ 1.8708 −x2 ≤ 1.5275

x2 ≤ 1.5275 2x2
1 + 3x2

2 + 2x1x2 ≤ 7

For this example the ∨-strategy improvement algorithm presented in this section finds
the same invariants as the ∧-strategy improvement algorithm presented in section 5 (cf.
Subsection 5.5).

7 Comparison and Conclusion

In this paper we discussed how we can use strategy iteration for solving systems of
concave equations. This class is a natural and strict generalization of systems of rational
equations (studied by Gawlitza and Seidl [10, 14]). In the context of static program
analysis, such equation systems are useful for approximating the abstract semantics of
programs w.r.t. quadratic templates through semi-definite relaxations. We discussed two
different approaches that can be specialized for solving systems of concave equations:

For the studied case, the ∧-strategy approach of Adjé et al. [2] successively approx-
imates the given equation system by systems of affine in-equations which can be effi-
ciently solved by linear programming. The resulting method works similar to Newton’s
method. For each approximate, an improved∧-strategy (a system of affine in-equations)
can be efficiently determined through semi-definite programming.

As an alternative approach, we discussed the ∨-strategy improvement approach of
Gawlitza and Seidl [10, 11]. From an algorithmic perspective these two approaches have
quite distinct characteristics. ∨-strategy iteration, when applied to quadratic zones, in
each iteration combines one constraint for each program point and program variable
into a global semi-definite programming problem which is jointly solved by SDP.

The advantage of the ∨-strategy iteration approach is that (given an ideal SDP
solver) the number of iterations is guaranteed to be finite and that it guarantees min-
imality of the obtained solution. The draw-back, however, is that only after termination,
a safe invariant is found. Intermediate approximates to the least solution are not safe.

The ∧-strategy iteration approach on the other hand, when applied to quadratic tem-
plates, relies on solving (dual) SDP problems locally for every constraint separately —
each of which typically involves just few unknowns of the analysis problem. The global
task of determining the next approximate for all program points and program variables
then is delegated to LP solving. The disadvantage of the ∧-strategy iteration approach is
that the iteration is not guaranteed to terminate but only to converge to a solution. More-
over, this solution is not necessarily minimal. On the other hand (again assuming ideal
solvers for SDP and LP), it produces a decreasing sequence of post-fixpoints. Thus,
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the iteration may any time be terminated with a valid program invariant. Moreover, the
speed of convergence is — as for Newton’s method — usually quite good. Another ad-
vantage of the ∧-strategy iteration approach is that LP solvers in general scale to larger
problems than SDP solvers. Therefore, we expect the ∧-strategy iteration approach to
be applicable not just to small, but also to medium sized input programs. A detailed
practical comparison w.r.t. efficiency and precision, however, remains for future work.
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