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Abstract

In previous work we designed an efficient procedure that finds an algebraic sam-

ple point for each connected component of a smooth real complete intersection

variety. This procedure exploits geometric properties of generic polar varieties

and its complexity is intrinsic with respect to the problem. In the present

paper we introduce a natural construction that allows to tackle the case of a

non–smooth real hypersurface by means of a reduction to a smooth complete

intersection.
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1 Introduction and main result

This paper is devoted to the complexity of root finding in real algebraic sets in the

particular case of a real singular hypersurface given by an equation F ∈ Z[X1, . . . , Xn]

of degree d in the variables X1, . . . , Xn . For the standard dense or sparse repre-

sentation of F by its coefficients it is possible to find algebraic sample points for

the connected components of VR := {x ∈ Rn | F (x) = 0} using (ndn)O(1) = dO(n)

arithmetic and ((nh)dn)O(1) = (hd)O(n) bit operations, where h measures the bit

length of the coefficients of F .

Here we suppose that all connected components of VR have dimension n− 1 (this

means that VR is a real hypersurface) and we work in an uniform deterministic

complexity model, codifying the coordinates of the output points by suitable sign

conditions on univariate polynomial equations over Z (Thom’s codification of real

algebraic points).

It is not too difficult to generalize this complexity result to arbitrary semi–algebraic

sets given by polynomial equations and inequalities (see e.g. the original papers

[9, 11, 7, 13]).

The complexity bounds above are almost optimal for the given encoding of the

input equation and the output points, but, unfortunately, they are out of reach for

practical implementations. Moreover, the underlying algorithms are not incremental

and do not take into account special, e.g. geometric, features of the equation F .

Therefore we replaced in [1] the classic dense or sparse representation of F by

the arithmetic circuit encoding and introduced a geometric invariant, namely the

maximal geometric degree δ of the entries of an arbitrary generic flag of classic

polar varieties of the complex variety V := {x ∈ Cn | F (x) = 0} . The outcome was

an efficient algorithm which solves the root finding problem under consideration in

time L(ndδ)O(1) = (nd)O(n) , where L is the size of the given circuit representation

of F . Here we suppose that the polynomial F is squarefree, the real variety VR

is smooth and compact and we work in a probabilistic uniform or deterministic

non–uniform algebraic complexity model over Q . The algorithm is incremental

and capable to distinguish geometrically between well and ill–conditioned real root
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finding problems. Moreover its complexity depends mainly on the geometric (i.e.,

semantic) invariant δ which is, by Bézout’s Theorem, in worst case of order dO(n) .

In this sense, the complexity of the algorithm is intrinsic.

In [2, 3, 4] we generalized this result to an arbitrary smooth real variety given by

reduced complete intersections of circuit represented polynomials. However, in the

non–compact case, the maximal degree of the entries of a generic flag of classic

polar varieties has to be replaced by its dual counterpart (see [5] for the geometric

underpinning).

By means of appropriate deformations of the complex hypersurface V we obtain

certain smooth algebraic complete intersection varieties together with a canonical

atlas of them. The charts of such an atlas are closed smooth subvarieties of suitable

affine spaces. The generic dual polar varieties of these subvarieties are called bipolar

varieties of V and their maximal degree δ is the invariant we are looking for. In

these terms we are able to state the following complexity result.

Theorem 1

Let F ∈ Z[X1, . . . , Xn] be a squarefree polynomial of degree d ≥ 2 defining as

before complex and real hypersurfaces V and VR . Suppose that F is given by a

division–free arithmetic circuit of non–scalar size L . Then there exists a procedure

(in fact, we shall show later in this paper, many of them) that finds a finite set of real

algebraic sample points for the connected components of VR . The procedure may be

modeled alternatively as being uniform probabilistic or non–uniform deterministic.

The number of arithmetic operations in Q required by the procedure is linear in L

and polynomial in d, n and δ .

Following [8, 10] this asymptotic complexity bound is almost optimal and cannot be

improved by procedures based on standard program development techniques, even

if alternative data types and structures are used.

For an alternative approach relying on the so–called ”critical point method” for real

root finding in singular real hypersurfaces we refer to [15].

The concept of classic polar varieties goes back to F. Severi and J. A. Todd in the

1930’s and beyond that to the work of J.-V. Poncelet in the period of 1813–1829. The
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modern theory started in 1975 with essential contributions due to R. Piene (global

theory), B. Teissier and D. T. Lê , J. P. Henry and M. Merle (local theory), J. P.

Brasselet and others (see [16], [12] and [6] for a historical account and references).

The aim was a deeper understanding of singular (complex) varieties. On the other

hand, classic (and the at that time novel) dual polar varieties became about ten

years ago a fundamental tool for the design of efficient computer procedures with

intrinsic complexity for real root finding problems.

It is not clear how the Theorem 1 may be generalized to more general cases (as e.g.

arbitrary real complete intersection varieties). Nevertheless, the higher flexibility

gained by admitting hypersurfaces with singularities for our algorithmic treatment

transforms Theorem 1 in an usable and relevant tool for the resolution of more

ambitious real elimination problems. Finally, we mention that there exists a strong

relation between root finding in (singular) real varieties and the problem of sample

point finding for strict polynomial inequalities.

The rest of this paper is devoted to the geometric foundation of Theorem 1 and a

refinement of it, namely Theorem 3.

2 Geometry and complexity

Since VR is a real hypersurface and F is reduced, the gradient of F does not vanish

identically on any connected component of VR .

For any 1 ≤ i ≤ n−1 let a := ai = [ak,l] 1≤k≤n−i
1≤l≤n

be a complex ((n− i)×n) –matrix

of maximal rank rka = n − i . The (classic) i–th polar variety of V associated

with a is denoted by Pi(a) and consists of the closure of the set of all points of V ,

where the tangent space does not intersect transversally the kernel of a . When a

is generically chosen from C(n−i)×n , then Pi(a) becomes a classic polar variety in

the usual sense. In this case we shall say that Pi(a) is (fully) generic.

Suppose that the polar variety Pi(a) is generic and non–empty. Then Pi(a) is of

pure codimension i in V and normal and Cohen–Macaulay at any point which is

smooth in V . Moreover, there exist canonical equations of degree at most nd with

a circuit representation of size O(L + n3) that describe Pi(a) locally as transversal
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(and hence as reduced, complete ) intersection outside of a subvariety at least of

codimension one.

If VR is smooth and compact and a is real matrix, then the real trace Pi(a) ∩ Rn

of Pi(a) contains an algebraic sample point for every connected component of VR .

This may happen to be wrong in case that VR is not smooth anymore, even when

VR is compact.

Let J(F ) := ( ∂F
∂X1

, . . . , ∂F
∂Xn

) be the gradient of the polynomial F and J(F )T its

transposition.

In the spirit of the canonic Room–Kempf desingularization of determinantal varieties

we consider the incidence variety Hi consisting of the solutions (x, a, λ, µ) ∈ Cn ×

C(n−i)×n × C1 × Cn−i of the equation system

(∗) F (x) = 0, J(F )T (x) λ + aT · µ = 0

which satisfy the open conditions rka = n− i and µ 6= 0 .

In the special case i := n− 1 , the matrix a = an−1 is a n–tuple, and if abelongs

to Rn , then the real trace of Hi describes the extremal points and the Lagrange

multipliers of the real valued function induced by a on VR .

Moreover, the image of Hi under its canonical projection into Cn is exactly the set

of non–singular points of V . It is not difficult to show that Hi is a locally closed and

smooth algebraic subvariety of the affine ambient space Cn×C(n−i)×n×C1×Cn−i .

Furthermore Hi is of pure dimension (n− i)(n+1) and the equations (∗) intersect

transversally at any point of Hi .

We consider now the configuration space

Ei := {(x, a, λ, µ) ∈ Cn × C(n−i)×n × C1 × Cn−i | rk a = n− i, µ 6= 0}.

Ei is an open subset of Cn × C(n−i)×n × C1 × Cn−i and hence a smooth algebraic

variety.

The algebraic group Gi := GL(n−i)×GL(1) acts in the following way from the right
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on Ei : For g := (b, t) ∈ Gi and e := (x, a, λ, µ) ∈ Ei let e·g := (x, bT a, tb, tb−1 ·µ) .

We denote by E∗i the (topological) orbit space of Ei with respect to Gi . Since

the algebraic group Gi is linearly reductive, E∗i owns a natural structure of an

algebraic variety. It turns out that E∗i is smooth and equidimensional of dimension

ri := n + i(n − i) . Observe that Hi is a subvariety of Ei and that the action

of Gi on Ei leaves Hi invariant. The manifold E∗i owns a canonical atlas of

Ni :=
(

n
n−i

)
(n − i) open charts Uk, 1 ≤ k ≤ Ni which are all isomorphic to Ari .

Let ϕi : Ei → E∗i be the morphism of algebraic varieties which maps each point of

Ei onto its Gi –orbit. Then ϕi is a smooth morphism of analytic manifolds. Let

Si := ϕi(Hi) and Si,k := Si ∩ Uk for 1 ≤ k ≤ Ni . The geometric main issue is the

following result.

Lemma 2

Let 1 ≤ k ≤ Ni . Then, identifying Uk with Ari , the constructible set Si,k becomes

a smooth closed subvariety of the affine space Ari . Moreover, Si,k is equidimensional

of dimension Di := i(n − i) − 1 and given as a transversal intersection of n + 1

equations of degree d which have a circuit representation of size O(L+n+ i(n− i)) .

In particular, Si is a smooth subvariety of E∗i and the varieties Si,k, 1 ≤ k ≤ Ni

form an open atlas of Si .

We may now apply the algorithmic procedure designed in [3] and [4] or [15] in order

to find for each connected component of the real trace of Si,k a sample point. The

complexity of this procedure is dominated by the geometric degree of the dual polar

varieties Bi,j,k, 1 ≤ j ≤ Di of Si,k which we call bipolar varieties of V . The

maximal geometric degree of the bipolar varieties of V is an invariant of V . For

fixed i and k the bipolar varieties of V are organized by decreasing codimension

j in strictly ascending chains as follows:

Bi,Di,k ⊂ · · · ⊂ Bi,j,k ⊂ · · · ⊂ Bi,1,k ⊂ Bi,0,k = Si,k

Finally with i running from n − 1 to 1 , we obtain a three–dimensional lattice of

bipolar varieties. A walk in this lattice is a path, which starts with some n–tuple

of zero–dimensional bipolar varieties (Bi1,Di1
,k)1≤k≤n and ends with some orbit
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variety Si2 . At each step, the index i or the codimension j decreases and the

bipolar varieties visited along the walk, modulo suitable sections and identifications,

form an ascending chain of algebraic varieties of dimension increasing exactly by

one. Their real trace is dense. Running through a given walk in the reverse mode,

we obtain an algorithmic strategy, which as soon that it finds smooth real points on

the bipolar varieties, projects them onto smooth real points of V .

This argumentation explains fairly well the geometric ideas behind our approach to

point finding in singular real hypersurfaces.

For given 1 ≤ i ≤ n−1 , an algorithmic walk which follows textually our explanations

would involve computations with polynomials in O(n + (n − i)2) variables. This

woul lead to a worst case complexity estimation of dO(n+(n−i)2) whereas the expected

worst case complexity is dO(n) . There are two ways out of this dilemma. One way

is to choose the index i, 1 ≤ i ≤ n − 1 close to n − 1 and the other consists in

remodeling the deformation of J(F ) used in the equation system (∗) in the spirit of

the concept of sufficiently generic varieties introduced in [5]. If we choose i := n−1

we obtain an intrinsic variant of the so called ”critical point” method, which is

often used in a geometrically unstructured way with extrinsic complexity bounds.

Summarizing we have the following complexity result which implies Theorem 1.

Theorem 3

Let F (X1, . . . , Xn) be a polynomial of degree d ≥ 2 defining as before complex

and real hypersurfaces V and VR . Suppose that F is given by a straight–line

program of size L . Then each walk W yields a procedure RW that finds at least

one algebraic sample point for each connected component of VR . The sequential

time complexity of the procedure RW is linear in L and polynomial in d , n and

a suitable geometric quantity δW . The quantity δW is the maximal degree of the

bipolar varieties of V visited during the walk and is therefore an intrinsic invariant

of V and W . It bounds also the number and the algebraic degree of the sample

points produced by RW .
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