
A Gröbner Free Alternative

for Polynomial System Solving

Marc GIUSTI1, Grégoire LECERF1 and Bruno SALVY2

1UMS MEDICIS, Laboratoire GAGE, École polytechnique,

F-91128 Palaiseau Cedex, France

2Projet ALGO, INRIA Rocquencourt,

F-78153 Le Chesnay Cedex, France

January 18, 2000

Abstract

Given a system of polynomial equations and inequations with coeffi-
cients in the field of rational numbers, we show how to compute a geomet-
ric resolution of the set of common roots of the system over the field of
complex numbers. A geometric resolution consists of a primitive element
of the algebraic extension defined by the set of roots, its minimal polyno-
mial and the parametrizations of the coordinates. Such a representation
of the solutions has a long history which goes back to Leopold Kronecker
and has been revisited many times in computer algebra.

We introduce a new generation of probabilistic algorithms where all
the computations use only univariate or bivariate polynomials. We give a
new codification of the set of solutions of a positive dimensional algebraic
variety relying on a new global version of Newton’s iterator. Roughly
speaking the complexity of our algorithm is polynomial in some kind of
degree of the system, in its height, and linear in the complexity of evalu-
ation of the system.

We present our implementation in the Magma system which is called
Kronecker in homage to his method for solving systems of polynomial
equations. We show that the theoretical complexity of our algorithm is
well reflected in practice and we exhibit some cases for which our program
is more efficient than the other available software.

Keywords. Polynomial system solving, elimination, geometric resolution.

1

Contents

1 Introduction 3

2 Description of the Algorithm 8
2.1 Outlook of the Probabilistic Aspects 8
2.2 Description of the Computations 9

2.2.1 The Lifting Step . 9
2.2.2 The Intersection Step . 11
2.2.3 The Cleaning Step . 11

3 Definitions and Basic Statements 12
3.1 Noether Position, Primitive Element 12
3.2 Geometric Resolutions . 14
3.3 Generic Primitive Elements . 15
3.4 Lifting Fibers . 16
3.5 Complexity Notations . 18

4 Global Newton Lifting 18
4.1 Local Newton Iterator . 19
4.2 From Local to Global Lifting . 19
4.3 Description of the Global Newton Algorithm 20
4.4 Recovering a Geometric Resolution 23
4.5 Lifted Curves . 23
4.6 Lifting the Integers . 25

5 Changing a Lifting Fiber 27
5.1 Changing the Free Variables . 27
5.2 Changing the Lifting Point . 27
5.3 Changing the Primitive Element 29

6 Computation of an Intersection 30
6.1 Characteristic Polynomials . 31
6.2 Liouville’s Substitution . 33
6.3 Computing the Parametrization 34
6.4 Lifting a First Order Genericity 35
6.5 Removing the Multiplicities . 36
6.6 Removing the Extraneous Components 38
6.7 Summary of the Intersection . 39

7 The Resolution Algorithm 40
7.1 Incremental Step . 41
7.2 Parameters of the Algorithm . 42
7.3 Special Case of the Integers . 43

8 Practical Results 44
8.1 Relevance of the Comparisons . 44
8.2 Systems of Polynomials of Degree 2 44
8.3 Camera Calibration (Kruppa) . 45
8.4 Products of Linear Forms . 45

2

1 Introduction

We are interested in solving systems of polynomial equations, possibly including
inequations. Let f1, . . . , fn and g be polynomials in Q[x1, . . . , xn] such that the
system f1 = · · · = fn = 0 with g 6= 0 has only a finite set of solutions over the
field C of complex numbers. We show how to compute a representation of this
set in the form

q(T) = 0,

x1 = v1(T),

...
xn = vn(T),

(1)

where q is a univariate polynomial with coefficients in Q and the vi, 1 ≤ i ≤ n,
are univariate rational functions with coefficients in Q.

Let us sketch our algorithm, which is incremental in the number of equations
to be solved. At step i we have a resolution

q(T) = 0,

xn−i+1 = vn−i+1(T),

...
xn = vn(T),

(2)

of the solution set of

f1 = · · · = fi = 0, g 6= 0, x1 = a1, . . . , xn−i = an−i,

where q is a univariate polynomial over Q, the vj are univariate rational func-
tions over Q and the aj are chosen generic enough in Q. The variable T rep-
resents a linear form separating the solutions of the system: the linear form
takes different values when evaluated on two different points that are solution
of the system. From there, two elementary steps are performed. The first step
is a Newton-Hensel lifting of the variable xn−i in order to obtain a geometric
resolution

Q(xn−i, T) = 0,

xn−i+1 = Vn−i+1(xn−i, T),

...
xn = Vn(xn−i, T),

(3)

of the 1-dimensional solution set of

f1 = · · · = fi = 0, g 6= 0, x1 = a1, . . . , xn−i−1 = an−i−1,

where Q is polynomial in T and rational in xn−i and the Vj are bivariate rational
functions over Q. The second step is the intersection of this 1-dimensional set
with the solution set of the next equation fi+1 = 0, which leads to a geometric
resolution like (2) for step i+ 1.

At step i the system f1, . . . , fi defines a positive dimensional variety, the
new codification of its resolution we propose here consists of a specialization
of some variables and a resolution of the zero-dimensional specialized system.
This representation makes the link between the positive and zero dimensions
and relies on two main ideas: the Noether position and the lifting fiber (see §3).

3

History

The representation of a variety in the form of (1) above has a long history. To
the best of our knowledge the oldest trace of this representation is to be found
in Kronecker’s work at the end of the 19th century [51] and a few years later in
König’s [48]. Their representation is naturally defined for positive dimensional
algebraic varieties, for instance for a variety of codimension i it has the form:

q(x1, . . . , xn−i, T) = 0,

∂q
∂T xn−i+1 = wn−i+1(x1, . . . , xn−i, T),

...
∂q
∂T xn = wn(x1, . . . , xn−i, T),

(4)

where q, wn−i+1, . . . , wn are polynomials in x1, . . . , xn−i and T with coefficients
in Q and such that q is square free. A good summary of their work can be found
in Macaulay’s book [58].

This representation has been used in computer algebra as a tool to obtain
complexity results by many authors, in the particular zero-dimensional case:
Chistov, Grigoriev [19], Canny [17], Gianni, Mora [32], Kobayashi, Fujise, Fu-
rukawa [47], Heintz, Roy, Solerno [46], Lakshman, Lazard [54], Renegar [65],
Giusti, Heintz [34], Alonso, Becker, Roy, Wörman [6] and many others. From
a practical point of view, the computation of such a representation is always
relying on Gröbner basis computations [84], either with a pure lexicographical
elimination order, or with an algorithm of change of basis [28, 20] or from any
basis using a generalization of Newton’s formulæ by Rouillier [66, 67].

In 1995, Giusti, Heintz, Morais and Pardo [36, 64] rediscovered Kronecker’s
approach without any prior knowledge of it and improved the space complexity
but not the running time complexity. A first breakthrough was obtained by
Giusti, Hägele, Heintz, Montaña, Morais, Morgenstern and Pardo [33, 35]: there
exists an algorithm with a complexity roughly speaking polynomial in the degree
of the system, in its height and in the number of the variables. Then, in [37], it
is announced that the height of the integers does not appear in the complexity
if the integers are represented by straight-line programs. For exact definitions
and elementary properties of the notion of straight-line programs we refer to
[77, 82, 76, 44]. A good historical presentation of all these works can be found
in [18] and a didactic presentation of the algorithm is in [62]. We recall the
main statement of these works:

Theorem [37] Let g and f1, . . . , fn be polynomials in Q[x1, . . . , xn]. Suppose
that f1, . . . , fn define a reduced regular sequence in the open subset {g 6= 0}
of Cn and are of degree at most d, coded by straight-line programs of size at
most L and height at most h. There is a bounded error Turing machine that
outputs a geometric resolution of V(f1, . . . , fn)\V(g). The time complexity of
the execution is in L(ndδh)O(1) if we represent the integers of the output by
straight-line programs.

The reduced and regular hypothesis means that each variety

Vi = V(f1, . . . , fi)\V(g), 1 ≤ i ≤ n,

has dimension n− i and for each 1 ≤ i ≤ n− 1 the localized quotient(
Q[x1, . . . , xn]/(f1, . . . , fi)

)
g

4

is reduced. Using the Jacobian criterion, this is equivalent to the situation when
the Jacobian matrix of f1, . . . , fi has full rank at each generic point of Vi. This
condition is not really restrictive since we can perform a generic linear combi-
nation of the equations to recover this situation, as showed in [49, Proposition
37]. The number δ is defined as max(deg(V1), . . . ,deg(Vn−1)), it is bounded by
dn, by Bézout’s theorem [43] (see also [81] and [30]). A precise definition of
geometric resolutions is given in §3.2.

The geometric resolution returned by the algorithm underlying the above
theorem has its integers represented by means of straight-line programs, the
manipulation of such a representation has been studied in [41] and [40]. The
size of the integers of the intermediate computations is bounded by the one of
the output. In [18, Theorem 20] this result has been refined, showing how to
compute efficiently only the solutions of height bounded by a given value.

Contributions

We have transformed this algorithm in order to obtain a new and simpler one, as
above, without using straight-line programs anymore, neither for multivariate
polynomials nor for integer numbers. We give a new estimate of the exponents
of the complexity of Theorem [37] above improving the results of [45].

One main step of this transformation is obtained by a technique reminiscent
of the deforestation [83], that we had already used in [39] to replace straight-
line programs by an efficient use of specialization. We only need polynomials
in at most two variables. From a geometrical point of view our algorithm only
needs to compute the intersection of two curves. This improvement has been
independently discovered in [45, Remark 13].

The second step is the use of Kronecker’s form (4) to represent geometric res-
olutions, leading to a lower total degree complexity in the positive dimensional
case. In [66, 67], this representation has also been used and its good behavior
in practice in the zero dimensional case has been observed.

The third step is the use of a global Newton iterator presented in §2.2.1
and §4. This improves the original algorithm of [62, §4.2.1] by avoiding to
compute a geometric resolution of each Vi from a lifting fiber (see §3.4) by
means of primitive elements computations in two variables [62, Lema 54].

The fourth simplifying step is the use of a simple technique to intersect a
variety by a hypersurface, which was already present in Kronecker’s method
presented in §2.2.2 and §6. This improves [45, §4.2] by avoiding the use of
primitive elements computations in two variables which is used twice in [62].
This technique first appeared in [34] and developed in [50].

The last step is the intensive use of modular arithmetic: the resolution is
computed modulo a small prime number, the integers are lifted at the end by
our global Newton iterator. Hence the cost of integer manipulations is quite
optimal: we never use integers more than twice as large as the ones contained
in the output.

Results

We present three new results: the first one gives a new arithmetic complexity
in terms of number of operations in the base field Q, the second one is more

5

realistic and takes care of the bit length of the integers and the third one consists
in an implementation of our algorithm which demonstrates its tractability and
efficiency.

For our complexity measurement we use the class of functions M defined by
M(n) = O(n log2(n) log log(n)). As recalled in §3.5, if R is any unitary ring, it
represents the complexity of the arithmetic operations in R[T] for polynomials of
degree at most n in terms of operations in R: addition, multiplication, division,
resultant (if R is integral), greatest common divisor and interpolation (if R is a
field). It is also the bit complexity of the arithmetic operations of the integers of
bit-size at most n: addition, multiplication, division, greatest common divisor.
The class O(nΩ) represents the complexity of the arithmetic operations of the
matrix with coefficients in R of size n× n in terms of arithmetic operations in
R: addition, multiplication, determinant and adjoint. We know that Ω is less
than 4.

Theorem 1 Let k be a field of characteristic zero, let f1, . . . , fn, g be polyno-
mials in k[x1, . . . , xn] of degree at most d and given by a straight-line program
of size at most L, such that f1, . . . , fn defines a reduced regular sequence in the
open subset {g 6= 0}. The geometric resolution of the variety V(f1, . . . , fn)\V(g)
can be computed with O

(
n(nL+nΩ)(M(dδ))2

)
arithmetic operations in k, where

δ = max(deg(V1), . . . ,deg(Vn−1)). There is a probabilistic algorithm performing
this computation. Its probability of returning correct results relies on choices of
elements of k. Choices for which the result is not correct are enclosed in strict
algebraic subsets.

The fact that bad choices are enclosed in strict algebraic subsets implies that
almost all random choices lead to a correct computation. In this sense we can say
that our probabilistic algorithm has a low probability of failure. Our algorithm
is not Las Vegas, but it satisfies a weaker property: one can check that the
geometric resolution it returns satisfies the input equations; if it does some of
the solutions have been found but not necessarily all of them. In the special case
when the output contains deg(f1) deg(f2) · · ·deg(fn) solutions Bézout’s theorem
implies that all of them have been found.

In order to compare the complexity of our algorithm to Gröbner bases com-
putations we apply our complexity theorem to the case of systems of polynomials
f1, . . . , fn given by their dense representation:

Corollary 1 Let f1, . . . , fn be a reduced regular sequence of polynomials of
k[x1, . . . , xn] of degree at most d. Assume that d is at least n, then the geomet-
ric resolution of V(f1, . . . , fn) can be computed with O(d3(n+O(1))) arithmetic
operations in k with the probabilistic algorithm of Theorem 1.

Proof By Bézout’s inequality dδ is at most dn, so M(dδ) is in dn+O(1). And L
is at most n

(
d+n
n

)
, which is in dn+O(1). �

Our algorithm does not improve drastically the worst case complexity in case
of dense input systems; its efficiency fully begins when either the complexity of
evaluation of the input system is small or when the hypersurface g = 0 contains
several components of each Vi, i.e. δ is small with respect to dn.

These results are proved for a field of characteristic 0 and are not valid for
fields of positive characteristic. However, when k is equal to Q, it is tempting
to compute resolutions in Z/pZ for some prime numbers p. We have a result in

6

this direction: from a resolution computed modulo a lucky prime number p we
can deduce the resolution in Q, and p can be chosen small with respect to the
integers of the output.

Theorem 2 Assume that k is Q, V = V(f1, . . . , fn)\V(g) is zero-dimensional
and

(
Q[x1, . . . , xn]/(f1, . . . , fn)

)
g

is reduced.
Let u be a primitive element of the extension Q −→ Q[V], q(T) its monic

minimal polynomial in Q[T]. Let D be the degree of q, D is equal to deg(V).
Let wi(T), 1 ≤ i ≤ n, be polynomials of Q[T] of degree strictly less than D such
that q′(u)xi − wi(u) is equal to zero in Q[V].
If we are given

• η the bit-size of the integers of the polynomials q and wi;

• a prime number p not dividing any denominator appearing in q and the
wi and such that log(p) < η;

• qp and w1,p, . . . , wn,p polynomials in Z/pZ[T], images of q and w1, . . . , wn,

such that

• q′p is invertible modulo qp;

• for each i, 1 ≤ i ≤ n, fi(w1,p/q
′
p, . . . , wn,p/q

′
p) ≡ 0 [qp];

• the Jacobian matrix J of the fi is invertible: det(J(w1,p/q
′
p, . . . , wn,p/q

′
p))

is invertible modulo qp,

then the polynomials q and the wi can be reconstructed in the bit-complexity

O
(
(nL+ nΩ)M(D)M(η)

)
.

From a practical point of view we combine the algorithms related to Theorems 1
and 2 in the following way: first choose at random a small prime number,
compute a geometric resolution of the input system modulo p and then lift the
integers to get the geometric resolution in Q.

The problem of choosing a prime number for which this algorithm leads
to a correct result is similar to the problem of computing the greatest common
divisor of two univariate polynomials over Q by means of modular computations
and Hensel’s lifting (for example see [23, §4.1.1] or [31, §7.4]). The description
of the probability of choosing a lucky p is out of the scope of this work but such
considerations are as in [40, 41, 42].

The probability of failure of the algorithm given in [45] has been studied using
Zippel-Schwartz’s zero test [85, 72] for multivariate polynomials. We could use
the same analysis here to quantify the probability mentioned in Theorem 1,
but this has no practical interest without the quantification of the probability
of choosing a lucky prime number p. These probabilities will be studied in
forthcoming works.

7

Implementation: the Kronecker Package

One aim of this article is to demonstrate that our algorithm has a practical
interest and is competitive with the other methods. We have implemented our
algorithm within the computer algebra system Magma [1, 16, 12], the package
has been called Kronecker [55] and is available with its documentation at
http://www.gage.polytechnique.fr/~lecerf/software/kronecker/.

We compare our implementation to Gröbner bases computations for total
degree orders and algorithms of change of bases. Given a Gröbner basis of a zero-
dimensional polynomial equation system one can deduce a Rational Univariate
Representation of the zeros via the algorithm proposed in [66, 67]. We also
compare our implementation to the one of [66].

This article is organized as follows. The next section is devoted to an in-
formal presentation of the whole algorithm reflecting the actual computations
performed in a generic situation. We then give definitions and introduce our
encoding of the solutions. The next three sections are devoted to the formal
presentation and proofs of our Newton iterator and the intersection algorithm.
Section 7 presents the whole algorithm and specifies the random choices. The
last part provides some practical aspects of our implementation in the Magma
system and comparisons with other methods for solving systems of polynomial
equations.

Acknowledgment: We greatly thank L. M. Pardo who has exhumed Kro-
necker’s work and brought us very useful comments, J. Cannon and all the
Magma team for their very efficient support, and É. Schost for having been the
first user of Kronecker.

2 Description of the Algorithm

We first give an informal presentation of the probabilistic aspects of our algo-
rithm. Then we show the actual computations that are performed in a generic
case, forgetting the modular computational aspects for the moment. All these
points are detailed in the next sections.

2.1 Outlook of the Probabilistic Aspects

Let k be a field of characteristic zero, and f1, . . . , fn, g be polynomials in the
ring k[x1, . . . , xn] under the hypotheses of Theorem 1. The system

S = {f1 = · · · = fn = 0, g 6= 0}

has only a finite set of solutions in the n-affine space over an algebraic closure of
k. Our algorithm is parametrized by three parameters N , L, C, called respec-
tively the Noether points, lifting points and Cayley points: they are functions
returning tuples of integers (see §7.2). Once the parameters are fixed this speci-
fies a deterministic algorithm AN ,L,C for the resolution of S. For a proper choice
of these parameters, the algorithm AN ,L,C computes a resolution of the set of

8

solutions of the system in the form:

q(T) = 0,

x1 = v1(T),

...
xn = vn(T),

(5)

where q, v1, . . . , vn ∈ k[T] and T represents a k-linear form in the xi.
The time complexity of the execution of AN ,L,C for such a proper choice is

L(ndhδ)O(1). It has been shown in [33] that the choices of the parameters can
be done using Correct Test Sequences of size polynomial in the sequential com-
plexity of the algorithm. In [45, Theorem 5] it is shown using Zippel-Schwartz’s
equality test [85, 72] that the choices can be done at random in a set of inte-
gers of size polynomial in the sequential complexity of AN ,L,C with a uniformly
bounded probability of failure less than 1/2.

In the case of our algorithm, we precise these parameters in §7 and we show
that we can choose them in a Zariski open subset of the space of choices. In
particular this means that any random choice suits the input system.

We say that our algorithm is semi-numerical since it is parametrized by
some initial choices in the same way as some numerical algorithms are. Our
advantage over numerical algorithms is the certification of the result. In [18]
a comparison is made between our method and the numerical approach using
homotopy and the approximate zero theory introduced by Smale [74, 75].

2.2 Description of the Computations

We present now the actual computations performed by our algorithm in a generic
case. Our algorithm is incremental in the number of equations to be solved. Let
Si be the system of polynomial equations

x1 = · · · = xn−i = f1 = · · · = fi = 0, g 6= 0.

The algorithm solves S1, . . . ,Sn in sequence. We enter step i with a solution of
Si in the form

q(T) = 0,

xn−i+1 = T,
xn−i+2 = vn−i+2(T),

...
xn = vn(T),

(6)

with the property that xn−i+1 separates the points of Si. We want to compute
such a solution for Si+1. The computation divides into three main parts: the
lifting, the intersection and the cleaning steps.

2.2.1 The Lifting Step

Starting from (6), we compute a solution of the system S ′i

x1 = · · · = xn−i−1 = f1 = · · · = fi = 0, g 6= 0,

9

in the form

Q(xn−i, T) = 0,

xn−i+1 = T,
∂Q
∂T (xn−i, T)xn−i+2 = Wn−i+2(xn−i, T),

...
∂Q
∂T (xn−i, T)xn = Wn(xn−i, T),

(7)

such that the Wj and Q are polynomials in xn−i and T . The solution v =
(T, vn−i+2(T), . . . , vn(T)) from (6) can be seen as an approximated solution of
S ′i at precision O(xn−i). We now show how it can be lifted to a solution at
precision O(x2

n−i).
We first compute, with the classical Newton method, Vn−i+1(xn−i, T)

...
Vn(xn−i, T)

 = vt − J(0, . . . , 0, xn−i,v)−1

 f1(0, . . . , 0, xn−i,v)
...

fi(0, . . . , 0, xn−i,v)

 ,

modulo q(T) and at precision O(x2
n−i), where J is the Jacobian matrix of

f1, . . . , fi with respect to xn−i+1, . . . , xn. The parametrization

q(T) = 0,

xn−i+1 = Vn−i+1(xn−i, T),

...
xn = Vn(xn−i, T),

(8)

is a solution of S ′i at precision O(x2
n−i). The expression Vn−i+1 can also be

written
Vn−i+1(xn−i, T) = T + xn−i∆(T) +O(x2

n−i).

Hence
T = xn−i+1 − xn−i∆(xn−i+1) +O(x2

n−i).

Substituting the right-hand side for T in q and the Vj we get:

q(xn−i+1)− xn−i(q′(xn−i+1)∆(xn−i+1) mod q(xn−i+1)) +O(x2
n−i) = 0

and

xj = Vj(xn−i, xn−i+1)− xn−i(
∂Vj
∂T

∆(xn−i+1) mod q(xn−i+1)) +O(x2
n−i),

for n − i + 1 ≤ j ≤ n, which is an approximated solution of S ′i at precision
O(x2

n−i). We continue this process up to a certain precision. At the end, multi-
plying both sides of the parametrization of the coordinates by the derivative of
q with respect to T and reducing the right-hand side with respect to q, we get
the resolution (7) exactly. Section 4 gives the full description of this method.

Compared to the original algorithm in [62], this method shortcuts the recon-
struction of the whole geometric resolution from a fiber by means of primitive
element computations in two variables. Compared to [45], we only need to per-
form the lifting at precision the degree of the current variety. This method also
applies for integers to lift a geometric resolution known modulo a prime number
p, see §4.6.

10

2.2.2 The Intersection Step

To the solution (7) of S ′i we add the new equation fi+1 = 0. Let X be a new
variable, we first perform the following change of variables in the power series
ring k[[t]]:

xn−i = X − txn−i+1 +O(t2).

This leads to a new parametrization in the form

Qt(X,T) = 0,

xn−i+1 = T,
xn−i+2 = Vt,n−i+2(X,T),

...
xn = Vt,n(X,T),

(9)

where Qt is a polynomial in X and T and the Vt,j are polynomial in T and
rational in X with coefficients in k[[t]] at precision O(t2). Then we compute

A(X) = ResultantT (Qt(X,T),
fi+1(0, . . . , 0, X − tT, T, Vt,n−i+2(X,T), . . . , Vt,n(X,T))).

The resultant A(X) is indeed in k[X][[t]] and replacing X by xn−i + txn−i+1 in

A(X) = a0(X) + ta1(X) +O(t2) = 0,

we get:
a0(xn−i) = 0, a′0(xn−i)xn−i+1 + a1(xn−i) = 0,

which gives the desired resolution of Si∪{fi+1 = 0}. If a0 is not relatively prime
with its first derivative a′0, we replace a0 by its square free part as and let am =
a0/as, am divides a′0 and a1. The parametrization becomes: a′0/amxn−i+1 +
a1/am = 0. Then a′0/am is relatively prime with a0. These computations are
described in more detail in §6.

This method simplifies considerably the ones given in the original algorithm
[62] and [45] relying on primitive element computations in two variables.

2.2.3 The Cleaning Step

We now have a resolution of Si ∪ {fi+1 = 0} in the form

q(T) = 0,

xn−i = T,
xn−i+1 = vn−i+1(T),
xn−i+2 = vn−i+2(T),

...
xn = vn(T),

(10)

where q and the vj are new polynomials in T . To get a resolution of Si+1 we
must remove the points contained in the hypersurface g = 0. To do this, we
compute the greatest common divisor:

c(T) = gcdT (q, g(0, . . . , 0, T, vn−i+1, . . . , vn)).

Then we just have to replace q by q/c and reduce the parametrizations vj by
the new polynomial q. This algorithm relies on Proposition 8: it simplifies [62,
§4.3.1].

The rest of this article is devoted to the justifications of these computations
and to the comparison of practical results with some other methods.

11

3 Definitions and Basic Statements

One key feature of our algorithm is an effective use of the Noether Normalization
Lemma also seen geometrically as a Noether Position. It allows us to represent
a positive dimensional variety as a zero-dimensional one.

3.1 Noether Position, Primitive Element

Let k be a field of characteristic 0. Let x1, . . . , xn be indeterminates over k. Let
V be a r-dimensional k-variety in k

n
, where k is the algebraic closure of k and

I = I(V) the annihilating ideal of V.
We say that a subset of variables Z = {xi1 , . . . , xik} is free when I ∩

k[xi1 , . . . , xik] = (0). A variable is dependent or integral with respect to a
subset of variables Z if there exists in I(V) a monic polynomial annihilating it
and whose coefficients are polynomial in the variables of Z only.

A Noether normalization of V consists of a k-linear change of variables,
transforming the variables x1, . . . , xn into new ones, y1, . . . , yn, such that the
linear map from k

n
to k

r
(r ≤ n) defined by the forms y1, . . . , yr induces a finite

surjective morphism of affine varieties π : V −→ k
r
. This is equivalent to

the fact that the variables y1, . . . , yr are free and yr+1, . . . , yn dependent with
respect to the first ones. In this situation we say that y1, . . . , yn are in Noether
position.

If B is the coordinate ring k[V], then a Noether normalization induces an
integral ring extension R := k[y1, . . . , yr] −→ B. Let K be the field of fractions
of R and B′ be K ⊗R B, B′ is a finite-dimensional K-vector space.

Example 1 Consider f = x1x2 in Q[x1, x2], f defines a hypersur-
face in the affine space of dimension two over the complex numbers.
The variable x1 is free but x2 is not integral over x1. This hypersur-
face is composed of two irreducible components x1 = 0 and x2 = 0.
When specializing the variable x1 to any value p1 in k∗, f(p1, x2)
has one irreducible factor only. Let us take y1 = x1−x2 and y2 = x2

then f becomes (y1 + y2)y2 = y2
2 + y1y2. The variable y2 is integral

over y1: we have a Noether position of this hypersurface; we can
specialize y1 to 0 in f , there remains two irreducible components.

Example 2 Consider the hypersurface given by the equation x2 −
x2

1 = 0. The variables x1, x2 are in Noether position but when
specializing x1 to a point of k, for instance 0, the fiber contains only
one point while the hypersurface has degree 2. The vector space B′

is k(x1)[x2]/(x2 − x2
1) and has dimension one only.

The degeneration of the dimension of B′ in the last example does not occur
when working with projective varieties, so if we want to avoid it in affine spaces
we need a kind of stronger Noether position.

We say that the variables y1, . . . , yn are in projective Noether position if
they define a Noether position for the projective algebraic closure of V. More
precisely, let x0 be a new variable, to any polynomial f of k[x1, . . . , xn], we write

12

fh(x0, . . . , xn) the homogenization of f with respect to x0, Ih denotes the ideal
of the homogenized polynomial of I and Vh the variety associated to Ih, which
corresponds to the projective closure of V. We say that the variables y1, . . . , yn
are in projective Noether position with respect to V when x0, y1, . . . , yn are in
Noether position with respect to Vh.

In the rest of the paper we only use projective Noether positions, so we only
say Noether position. We write I′ for the extension of I in K[yr+1, . . . , yn]. I′

is a zero-dimensional radical ideal. We are interested in some particular bases
of B′:

Definition 1 A k-linear form u = λr+1yr+1 + · · · + λnyn such that the pow-
ers 1, u, . . . , udeg(V)−1 form a basis of the vector space B′ is called a primitive
element of the variety V.

In general we do not know any efficient way to compute in B. Even when it is a
free module we do not know bases of small size [5]. The next two propositions
give some properties of computations in B′.

Proposition 1 With the above notations, assume that V is r-equidimensional.
If the variables x1, . . . , xn are in projective Noether position with respect to V
then the dimension of B′ is the degree of V.

We recall a result [68, Proposition 1], itself a continuation of [15, Remark 9]:

Proposition 2 Let I be a radical ideal of k[x1, . . . , xn] such that V = V(I) is
r-equidimensional and the variables x1, . . . , xn are in Noether position. Let f
be an element of k[x1, . . . , xn] and f its class in the quotient ring B. Let T be
a new variable, then there exists a monic polynomial F ∈ R[T] which satisfies
F (f) = 0 and whose total degree is bounded by deg(V) deg(f).

An alternative proof of this proposition is given in [62, Corolario 21]. The next
corollary expresses that minimal and characteristic polynomials in B′ have their
coefficients in R.

Corollary 2 Let I be a radical ideal of k[x1, . . . , xn] such that I is r-equidimen-
sional and the variables x1, . . . , xn are in Noether position. Let f be a polynomial
in k[x1, . . . , xn]. Then the characteristic polynomial χ of the endomorphism of
multiplication by f in B′ belongs to k[x1, . . . , xr][T]. Its coefficient of degree i
in T has degree at most (δ − i) deg(f), where δ = dim(B′). In the case when
f = u is a primitive element of V we have χ(u) = 0.

Proof Let F be an integral dependence relation of f modulo the ideal I of
degree bounded by deg(V) deg(f) from Proposition 2, Mf be the endomorphism
of multiplication by f in B′ and µ its minimal polynomial. First we note that
F (Mf) = 0, thus µ divides F . The polynomials µ and F being monic we deduce
using Gauss lemma that µ is in R[T] and so is χ. If f = u, degT (µ) = degT (V)
and thus µ = F .

Let us now prove the bound on the degrees, to do this we homogenize the sit-
uation: let x0 be a new variable and fh denotes the homogenized polynomial of
f , Ih the homogenized ideal of I. Let now B′ be k(x0, . . . , xr)[xr+1, . . . , xn]/Ih

and χ(T) the characteristic polynomial of the endomorphism of multiplication
by fh in B′. It is sufficient to prove that the coefficient of degree i in T of χ is
homogeneous of degree (δ− i) deg(f). To do this let K be the algebraic closure

13

of k(x0, . . . , xr) and Z1, . . . , Zδ be the zeroes of Ih in K. The following formula
holds:

χ(x0, . . . , xr, T) =
δ∏
i=1

(T − fh(x0, . . . , xr, Zi)).

Hence, if t is a new variable we have

χ(tx0, . . . , txr, T) =
δ∏
i=1

(T − fh(tx0, . . . , txr, tZi))

=
δ∏
i=1

(T − tdeg(f)fh(x0, . . . , xr, Zi)).

Expanding this last expression, we get the claimed bound on the degrees of the
coefficients in T of χ, this concludes the proof. �

3.2 Geometric Resolutions

Let V be a r-equidimensional algebraic variety and I its annihilator ideal in the
ring k[x1, . . . , xn]. A geometric resolution of V is given by:

• an invertible n× n square matrix M with entries in k such that the new
coordinates y = M−1x are in Noether position with respect to V;

• a primitive element u = λr+1yr+1 + · · ·+ λnyn of V;

• the minimal polynomial q(T) ∈ R[T] of u in B′, monic in T , and

• the parametrization of V by the zeros of q, given by polynomials

vr+1(y1, . . . , yr, T), . . . , vn(y1, . . . , yr, T) ∈ K[T],

such that yj − vj(y1, . . . , yr, u) ∈ I′ for r + 1 ≤ j ≤ n, where I′ is the
extension of I in k(y1, . . . , yr)[yr+1, . . . , yn] and degT (vj) < degT (q).

Given a primitive element u, its minimal polynomial q is uniquely determined
up to a scalar factor. The parametrization can be expressed in several ways.
In the definition of geometric resolutions the parametrization of the algebraic
coordinates has the form

yj = vj(T), r + 1 ≤ j ≤ n.

However, given any polynomial p(T) ∈ K[T] relatively prime with q(T) another
parametrization is given by:

p(T)yj = vj(T)p(T), r + 1 ≤ j ≤ n.

One interesting choice is to express the parametrization in the following way:

∂q

∂T
(T)yj = wj(T), r + 1 ≤ j ≤ n, (11)

with degT wj < degT q.

14

Definition 2 We call a parametrization in the form of Equation (11) a Kro-
necker parametrization.

Proposition 3 The polynomial q has its coefficients in R and in a Kronecker
parametrization such as (11) the polynomials wi have also their coefficients in R
instead of K. The total degree of q and the wi is bounded by degT (q). Moreover
q(u) and ∂q

∂T (u)xj − wj(u) belong to I, for r + 1 ≤ j ≤ n.

In particular the discriminant of q with respect to T is a multiple of any de-
nominator appearing in any kind of parametrization.

Example 3 Let f1 = x2
3+x1x2+1 and f2 = x2

2+x1x3, the variables
x1, x2, x3 are in Noether position, x2 is a primitive element and we
have the following Kronecker parametrization

x4
2 + x3

1x2 + x2
1 = 0,

(4x3
2 + x3

1)x3 = 4x1x2 + 3x2
1x

2
2.

The following is a fundamental result.

Proposition 4 Given a Noether position and a primitive element, any r-equidi-
mensional algebraic variety V admits a unique geometric resolution.

The proofs of the last two propositions are given in the next section.

Example 4 Here is an example of an ideal which is not Cohen-
Macaulay: in k[x1, x2, x3, x4], consider

I = (x2x4, x2x3, x1x4, x1x3).

I is radical 2-equidimensional. A Noether position is given by x1 =
y3 − y1, x2 = y4 − y2, x3 = y3, x4 = y4. The generating equations
become y2

4−y2y4, y3y4−y2y3, y3y4−y1y4, y
2
3−y1y3. For any λ3, λ4 ∈

k and u = λ3y3 + λ4y4 we have u2 − λ4y2u− λ3y1u ∈ I.

3.3 Generic Primitive Elements

Assume that I is radical and equidimensional of dimension r and the variables
x1, . . . , xn are in Noether position. The minimal polynomial of a generic primi-
tive element is of great importance in algebraic geometry and computer algebra.
It was already used by Kronecker as an effective way to compute geometric res-
olutions.

Let Λi be new variables, i = r + 1, . . . , n, kΛ = k(Λr+1, . . . ,Λn), and
RΛ = kΛ[x1, . . . , xr]. Let IΛ be the extension of I in kΛ[x1, . . . , xn]. Let
uΛ = Λr+1xr+1 + · · ·+ Λnxn. The objects indexed with Λ are related to objects
defined over kΛ. The generic linear form uΛ is a primitive element of IΛ, let
UΛ be its characteristic polynomial in B′Λ := kΛ(x1, . . . , xr)[xr+1, . . . , xn]/IΛ.
From Corollary 2, the polynomial UΛ(x1, . . . , xr, T) is square free, monic in T ,

15

of total degree equal to the degree of the variety corresponding to I, has its
coefficients in RΛ and we have

UΛ(x1, . . . , xr, uΛ) ∈ IΛ.

Differentiating UΛ with respect to Λr+1, . . . ,Λn, we deduce the following geo-
metric resolution of IΛ:

UΛ(x1, . . . , xr, T) = 0,
∂UΛ
∂T (x1, . . . , xr, T)xr+1 = − ∂UΛ

∂Λr+1
(x1, . . . , xr, T),

...
∂UΛ
∂T (x1, . . . , xr, T)xn = −∂UΛ

∂Λn
(x1, . . . , xr, T).

(12)

This proves Propositions 3 and 4.

Example 5 In the previous example with λ3λ4 6= 0, we deduce the
parameterization

u2 − λ4y2u− λ3y1u = 0,
{

(2u− λ4y2 − λ3y1)y3 = y1u,
(2u− λ4y2 − λ3y1)y4 = y2u.

3.4 Lifting Fibers

Instead of processing the representation of univariate polynomials over the free
variables we make an intensive use of specialization. Thanks to our lifting
process presented in §4 we do not lose anything.

From now on we assume that V is an r-equidimensional variety which is
a sub-variety of V(f1, . . . , fn−r), where f1, . . . , fn−r define a reduced regular
sequence of polynomials at each generic point of V. We call such a sequence of
polynomials a lifting system of V. Let y1, . . . , yn be new coordinates bringing
V into a Noether position. We recall that π represents the finite projection
morphism onto the free variables.

Definition 3 A point p = (p1, . . . , pr) in kr is called a lifting point of V with
respect to the lifting system f1, . . . , fn−r if the Jacobian matrix of f1, . . . , fn−r
with respect to the dependent variables yr+1, . . . , yn is invertible at each point of
π−1(p).

Our encoding of the geometric resolution is given by a specialization of the
geometric resolution at a lifting point.

Definition 4 A lifting fiber of V is given by:

• a lifting system f = (f1, . . . , fn−r) of V;

• an invertible n × n square matrix M with entries in k such that the new
coordinates y = M−1x are in Noether position with respect to V;

• a lifting point p = (p1, . . . , pr) for V and the lifting system;

16

• a primitive element u = λr+1yr+1 + · · ·+ λnyn of Vp = π−1(p);

• the minimal polynomial q(T) ∈ k[T] annihilating u over the points of Vp;

• n − r polynomials v = (vr+1, . . . , vn) of k[T], of degree strictly less than
degT (q), giving the parametrization of Vp by the zeros of q: yj−vj(u) = 0
for all r + 1 ≤ j ≤ n and all roots u of q.

We have the following relations between the components of the lifting fiber:

u(vr+1(T), . . . , vn(T)) = T,

f ◦M(p1, . . . , pr, vr+1(T), . . . , vn(T)) ≡ 0 mod q(T).

The following proposition explains the one to one correspondence between
geometric resolutions and lifting fibers. The specialization of the free variables at
a lifting point constitutes the main improvement of complexity of our algorithm:
compared to rewriting techniques such as Gröbner bases computations, we do
not have to store multivariate polynomials, but only univariate ones.

Proposition 5 For any lifting fiber encoding a variety V there exists a unique
geometric resolution of V for the same Noether position and primitive element.
The specialization of the minimal polynomial and the parametrization of this
geometric resolution on the lifting point gives exactly the minimal polynomial
and the parametrization of the lifting fiber. We have deg(Vp) = deg(V).

Proof First, the equality deg(Vp) = deg(V) is a direct consequence of the
definition of the degree and the choice of p.

Suppose now that the primitive element u for Vp is not primitive for V. We
can choose a primitive element u′ of V which is also a primitive element for Vp.
The specialization of the corresponding Kronecker parametrization of V with
respect to u′ gives a parametrization of Vp. Using the powers of u′ as a basis
of B′, we can compute the minimal polynomial of u, of degree strictly less than
δ. Its denominators do not vanish at p, hence its specialization at p gives an
annihilating polynomial of u for Vp of degree strictly less than δ. This leads to
a contradiction. This concludes the proof. �

We now show that lifting points and primitive elements can be chosen at
random with a low probability of failure in practice.

Lemma 1 With the above notations and assumptions, the points

(p1, . . . , pr, λr+1, . . . , λn) ∈ kn

such that (p1, . . . , pr) is not a lifting point or u = λr+1yr+1 + · · ·+λnyn is not a
primitive element for Vp are enclosed in a strict subset of kn which is algebraic.

Proof Let J be the Jacobian matrix of f1, . . . , fn−r with respect to the variables
yr+1, . . . , yn and F (T) be an integral dependency relation of det(J) modulo V.
By hypothesis det(J) is not a zero divisor in B. Hence the constant coefficient
A(y1, . . . , yr) of F is not zero and satisfies A ∈ I + (det(J)). Each point p such
that A(p) 6= 0 is a lifting point.

Now fix a lifting point p and consider UΛ of §3.3 for Vp, then any point
Λr+1 = λr+1, . . . ,Λn = λn such that the discriminant of UΛ does not vanish is
a primitive element of Vp. �

17

Notations for the Pseudo-Code: For the pseudo-code of the algorithms
we use the following notations. If F denotes the lifting fiber: FChangeOfVariables

is M , FPrimitiveElement is u, FLiftingPoint is p, FMinimalPolynomial is q,
FParametrization is v and FEquations is f . We assume we have the following
functions on F :

Dimension: Lifting Fiber−→ Integers: F 7→ r and
Degree: Lifting Fiber−→ Integers: F 7→ degT (FMinimalPolynomial).

3.5 Complexity Notations

We now discuss the complexity of integer and polynomial arithmetic. In the
whole paper M(n) denotes O(n log2(n) log log(n)) and represents the bit-comp-
lexity of the arithmetic operations (addition, multiplication, quotient, remainder
and gcd) of the integers of bit-size n and the complexity of the arithmetic
operations of the polynomials of degree n in terms of number of operations in
the base ring. Many authors have contributed to these topics. Some very good
historical presentations can be found in the books of Aho, Hopcroft, Ullman [4],
Bürgisser, Clausen, Shokrolahi [14], Bini, Pan [10] among others.

Let R be a unitary commutative ring, the Schönhage-Strassen polynomial
multiplication [71, 70, 63] of two polynomials of R[T] of degree at most n can
be performed in O(n log(n) log log(n)) arithmetic operations in R. The division
of polynomials has the same complexity as the multiplication [11, 78]. The
greatest common divisor of two polynomials of degree at most n over a field
K can be computed in M(n) arithmetic operations in K [61]. The resultant,
the sub-resultants and the interpolation can also be computed within the same
complexity [57, 29].

The Schönhage-Strassen algorithm [71] for multiplying two integers of bit-
size at most n has a bit-complexity in O(n log(n) log log(n)). The division has
the same complexity as the multiplication [73]. The greatest common divisor
has complexity M(n) [69].

Let R be a unitary ring, the multiplication of two n × n matrices can be
done in O(nω) arithmetic operations in R. The exponent ω can be taken less
than 2.39 [21]. If R is a field, Bunch and Hopcroft showed that matrix inversion
is not harder than the multiplication [13]. According to [13], the converse fact
is due to Winograd.

In our case, R is a k-algebra k[T]/q(T), where q is a square-free monic
polynomial of k[T], so we can not apply the results of [13] to compute the
inverse of a matrix. In the whole paper O(nΩ) denotes the complexity of the
elementary operations on n×n matrices over any commutative ring R in terms
of arithmetic operations in R: addition, multiplication, determinant and adjoint
matrix. In fact, Ω can be taken less than 4 [3, 9, 22, 56], see also [79, 59].

4 Global Newton Lifting

In this section we present the new global Newton-Hensel iterator. First, through
an example, we recall the Newton-Hensel method in its local form and show the
slight modification we make in order to globalize it. Then we give a formal
description and proof of the method. We apply it in the case of lifting fibers
in order to compute lifted curves. In the case k = Q, we present a method

18

to compute a geometric resolution in Q, knowing one over Z/pZ, for a prime
integer p.

4.1 Local Newton Iterator

We recall here the classical Newton iterator, along with an example. Let{
f1(x1, x2, t) = (x1 − 1)2 + (x2 − 1)2 − 4− t− t2,
f2(x1, x2, t) = (x1 + 1)2 + (x2 + 1)2 − 4− t.

Suppose that we have solved the zero-dimensional system obtained by specializ-
ing t to 0. The variable x1 is a primitive element and we thus have the geometric
resolution

T 2 − 1 = 0,
{
x1 = T,
x2 = −T. (13)

Let Q[a] be the extension Q[T]/(T 2−1) of Q. In Q[a] the point X0 = (a,−a)
is a solution of the system f1 = f2 = 0 for t = 0. Hence in the formal power
series ring Q[a][[t]], it is a solution of the system at precision O(t). If the
Jacobian matrix of f1 and f2 with respect to the variables x1 and x2 evaluated
at X0 is invertible, the classical Newton method lifts the solution to a solution
at an arbitrary precision by computing the sequence Xn given by

Xn+1 := Xn − J(Xn)−1f(Xn), n ≥ 0.

Then Xn is the solution of the system at the precisionO(t2
n

). In our example
we have

X2 :=

 a+ 1
4 at+

(
− 1

8 + 3
32 a

)
t2 − 3

128 at
3 +O

(
t4
)

−a− 1
4 at−

(
1
8 + 3

32 a
)
t2 + 3

128 at
3 +O

(
t4
)
 .

4.2 From Local to Global Lifting

The above method allows a local study of the positive dimensional variety in the
neighborhood of t = 0 but does not lead to a finite representation of a solution
of the input system, since the parametrization is given by infinite series over an
algebraic extension of Q. The variety V(f1, f2) has the resolution

T 2 − 1− 1
2
t+
(

1
4
T − 1

4

)
t2 +

1
32
t4 = 0,

{
x1 = T,
x2 = −T − 1

4 t
2.

(14)

We now show how we perform the lifting on this example. We lift our resolu-
tion (13) when t = 0 step by step to get (14).

After the first step of Newton’s iterator, when T 2−1 = 0, X1 is (T (1+ t/4+
O(t2)),−T (1 + t/4 +O(t2))). We deduce that T = x1(1− t/4 +O(t2)) and thus

x2
1 − 1− 1

2
t+O(t2) = 0 and x2 = −x1 +O(t2),

which is the approximation of (14) at precision O(t2).
We repeat this technique with the new resolution

q(T) = T 2 − 1− 1
2
t = 0,

{
x1 = T,
x2 = −T.

19

We perform another step of Newton’s iterator over Q[[t]][T]/q(T) at the point
(T,−T) at precision O(t4). We get the following refinement of the parametriza-
tion {

x1 = T +
(

1
8T −

1
8

)
t2 − 1

16 t
3T +O(t4)

x2 = −T +
(
− 1

8T −
1
8

)
t2 + 1

16 t
3T +O(t4)

Thus

T = x1 +
(

1
8
− 1

8
x1

)
t2 +

1
16
x1t

3 +O(t4)

and we deduce:

T 2 − 1− 1
2
t+
(

1
4
T − 1

4

)
t2 +O(t4) = 0,

{
x1 = T,
x2 = −T − 1

4 t
2 +O(t4).

Finally, the next step leads to the resolution

T 2 − 1− 1
2
t+
(

1
4
T − 1

4

)
t2 +

1
32
t4 +O(t8) = 0,{

x1 = T,
x2 = −T − 1

4 t
2 +O(t8),

which is the desired resolution, we can remove the O(t8). In general, to decide
when the lifting is finished, there are two solutions: either we know the required
precision in advance, this is the case in §4.5, or no a priori bound is known,
this the case in §4.6. In the last case, the only way to decide if the resolution is
correct is to check whether the lifting equations vanish on the resolution or not.

4.3 Description of the Global Newton Algorithm

Let R be a commutative integral ring, I an ideal of R. We now give a formal
presentation of our lifting process passing from a resolution known at precision
I to one at precision I2.

The lifting algorithm takes as input:

(I1) f = (f1, . . . , fn), n polynomials in R[x1, . . . , xn];

(I2) u = λ1x1 + · · ·+ λnxn a linear form in the xi, with λi in R;

(I3) q(T) a monic polynomial of degree δ ≥ 1 in R[T];

(I4) v = (v1(T), . . . , vn(T)), n polynomials of degrees strictly less than δ in
R[T].

Let J be the Jacobian matrix of f1, . . . , fn with respect to the variables
x1, . . . , xn:

J(i,j) =
∂fi
∂xj

.

In (R/I)[T]/(q(T)), we make the following assumptions:

(H1) f(v) ≡ 0;

(H2) T ≡ u(v);

20

Algorithm 1: Global Newton Iterator

procedure GlobalNewton(f ,x, u, q,v,StopCriterion)

x is the list of variables,
f , u, q,v are the ones of (I1), (I2), (I3), (I4) and
satisfy (H1), (H2) and (H3).
StopCriterion is a function returning a boolean.
Its arguments are taken from the local variables f ,
x, u, Q, V and k below.
It returns whether the lifted parametrization
Q(u) = 0, x = V at precision k is sufficient of not.

The procedure returns Q a polynomial and V as in (O1)
and (O2), giving a solution of f modulo Iκ, where
κ is implicitely fixed by StopCriterion.

J ← JacobianMatrix(f ,x);
k ← 1; Q ← q; V ← v;
while not StopCriterion(f ,x, u,Q,V, k) do

k ← 2k;
V ← V − J(V)−1f(V) mod Q;
∆ ← u(V)− T ;
V ← V − (∂V

∂T ∆ mod Q);
Q ← Q− (∂Q∂T ∆ mod Q);

od;
return(Q,V);

end;

(H3) J(v) is invertible.

Then the following objects exist and we give formulæ to compute them:

(O1) Q, a monic polynomial of degree δ, such that Q ≡ q mod R[T]I;

(O2) V = (V1, . . . , Vn), n polynomials in R[T] of degrees strictly less than δ
such that for all i, 1 ≤ i ≤ n, we have Vi ≡ vi mod R[T]I, and verifying

f(V) ≡ 0 and T ≡ u(V) in (R/I2)[T]/(Q(T)).

The coefficients of Q and V are uniquely determined by the above conditions
modulo I2.

Proof This process is summarized in Algorithm 1, the notations being the
ones of the end of §3.4. The proof divides into two parts and is just the formal-
ization of the computations of §4.2.

First we perform a classical Newton step to compute the vector of n poly-
nomials w = (w1, . . . , wn), of degrees strictly less than δ in R[T] such that:

21

(C) w ≡ v mod R[T]I and f(w) ≡ 0 in (R/I2)[T]/(q(T)).

We recall that this can be done by writing the first order Taylor expansion of f
between the points v and w. The condition (C) implies that:

f(w) ≡ f(v) + J(v) · (w − v) in (R/I2)[T]/(q(T)).

According to hypothesis (H3), we deduce the existence and uniqueness of w
modulo R[T]I:

w ≡ v − J(v)−1 · f(v) in (R/I2)[T]/(q(T)).

According to hypothesis (H2) we can write u(w) as

u(w) = T + ∆(T),

where ∆(T) is a polynomial in R[T] of degree strictly less than δ, with all its
coefficients in I.

The second part is a consequence of the following equality between ideals in
R/I2[T,U, x1, . . . , xn] :

(q(T), U − T −∆(T), x1 − w1(T), . . . , xn − wn(T))
= (Q(U), T − U + ∆(U), x1 − V1(U), . . . , xn − Vn(U)),

where

Q(U) = q(U)− (q′(U)∆(U) mod q(U)),
Vi(U) = wi(U)− (w′i(U)∆(U) mod q(U)), i = 1, . . . , n.

�
We now turn to the evaluation of the complexity of Algorithm 1. Let a(h)

be the cost of the arithmetic operations in R/Ih, where h is a positive integer.
Recall that M is the complexity of the arithmetic operations in R[T] in terms
of operations in the base ring R, where R denotes here any commutative ring.
Let L be the number of operations required to evaluate f1, . . . , fn. Using the
notations of §3.5, we have the following complexity estimate:

Lemma 2 According to the above notations and assumptions, the complexity
of Algorithm 1 returning a solution of f1, . . . , fn at precision Iκ (where κ is a
power of 2) is in

O
(
(nL+ nΩ)M(δ)

log2(κ)∑
j=0

a(2j)
)
.

Proof Thanks to [8], we only need at most 5L operations to evaluate the gradi-
ent of a straight-line program of size L. Thus the evaluation of the polynomials
f and the Jacobian matrix J of Algorithm 1 has complexity O(nL). Then, the
core of the loop requires O(nΩ) operations to compute the inverse of the Jaco-
bian matrix and O(n2) other operations to update Q and V, so at step k of the
loop O(nL+ nΩ) arithmetic operations are done in R/Ik[T] modulo Q. �

In practice there are many possible improvements. An important one con-
sists in taking better care of the precision, for instance to compute the solution

22

at precision 2k, we just need to know the value of the Jacobian matrix at preci-
sion k, since the value of f1, . . . , fn has valuation at least k. Another one can be
obtained by inverting the value of the Jacobian matrix by means of a Newton
iterator: let Jk be the value of the Jabobian matrix at step k and J−1

k be its
inverse then we have J−1

2k = J−1
k + J−1

k (Idn − J2kJ
−1
k). These techniques are

described in [86].

4.4 Recovering a Geometric Resolution

Our iterator allows to compute a whole geometric resolution from a lifting fiber.
In the frame of §3.4, taking R = k[y1 − p1, . . . , yr − pr] and I = (y1 −

p1, . . . , yr− pr) we can apply our iterator with a lifting fiber, in order to lift the
parametrization using the lifting equations. But in this case by Propositions 3
and 5 we know that there exists a parametrization of the variety with total
degree bounded by δ = deg(V), in the form

q(T) = 0,

∂q
∂T yr+1 = wr+1(T),

...
∂q
∂T yn = wn(T).

(15)

We can compute q and the wi in the following way: first we apply our iterator
until precision δ + 1 is reached and get a resolution in the form

Q(T) +O(Iδ+1) = 0,

yr+1 = Vr+1(T) +O(Iδ+1),

...
yn = Vn(T) +O(Iδ+1).

Then let
Wi = Vi(T)

∂Q

∂T
mod Q(T), r + 1 ≤ i ≤ n,

the unicity of the geometric resolution lying over the lifting fiber implies that
Q− q,Wr+1 − wr+1, . . . ,Wn − wn ∈ Iδ+1, whence we deduce q and the wi.

In practice we are not interested in the lifting of a lifting fiber to its corre-
sponding geometric resolution since it would imply storing multivariate polyno-
mials. Indeed we do not need to lift the fiber over the whole space of the free
variables but just over one line containing the lifting point.

4.5 Lifted Curves

Let F be a lifting fiber of the variety V as in §3.4, δ its degree and p′ ∈ kr a
point different from p. We are interested in computing the geometric resolution
of π−1(D), where D denotes the line (pp′).

First we notice that the variety VD = π−1(D) is 1-equidimensional of degree
δ = deg(V). The restriction πD : VD → D is a finite surjective morphism of
degree δ, smooth for t = 0.

Definition 5 The variety VD = π−1(D) is called a lifted curve of the lifting
fiber F .

23

Algorithm 2: Lift Curve

procedure LiftCurve(F ,p′)

F is a lifting fiber of dimension r,
p′ is a point in kr different from the lifting point of F .

The procedure returns the Kronecker parametrization
q,w of the geometric resolution of the lifted curve
for the line (pp′), as in §4.5.

r ← Dimension(F);
δ ← Degree(F);
g ← FEquations ◦ FChangeOfVariables ;
h ← g((p′1 − p1)t+ p1, . . . , (p′r − pr)t+ pr, yr+1, . . . , yn);
StopCriterion ←

(
(k) 7→ k > δ

)
Q,V:=GlobalNewton(h, [yr+1, ..., yn], FPrimitiveElement ,

FMinimalPolynomial , FParametrization ,StopCriterion);
W ← [z ∂Q∂T mod Q : z ∈ V];
q ← Truncate(Q, tδ+1);
w ← [Truncate(z, tδ+1) : z ∈W];
return(q,w);

end;

Let g1, . . . , gn−r be the equations of F expressed in the Noether coordinates
yi:

gj = fj ◦M(y1, . . . , yn)t.

Let also h1, . . . , hn−r be the polynomials in k[t, yr+1, . . . , yn] defined by:

hi = gi((p′1 − p1)t+ p1, . . . , (p′r − pr)t+ pr, yr+1, . . . , yn).

From the lifting fiber F we deduce a lifting fiber of ID directly.

Proposition 6 The variables t, yr+1, . . . , yn are in Noether position for VD, the
polynomials hi define a lifting system for VD, t = 0 is a lifting point and the
primitive element of F is primitive for the fiber t = 0.

We can apply the method of the previous section and get the geometric resolu-
tion of VD in the form

q(t, T) = 0,

∂q
∂T yr+1 = wr+1(t, T),

...
∂q
∂T yn = wn(t, T).

(16)

This process is summarized in Algorithm 2.
In order to evaluate the complexity of this algorithm, let L be the number

of operations required to evaluate f1, . . . , fn and let the notations be as in §3.5.

24

For technical reasons we have to assume that there exists a constant C such
that CM(X) ≥ M(2X) ≥ 2M(X) for all X > 0 large enough; this is not really
restrictive since it is verified for M(X) = X log(X) log log(X); then we have the
following complexity estimate:

Lemma 3 Using the above notations and assumptions, the number of opera-
tions that Algorithm 2 performs on elements of R is in

O
(
(nL+ nΩ)M(δ)2

)
.

Proof We just apply Lemma 2 to the case a = M. We have to bound the sum:

log2(κ)∑
j=0

M(2j) ≤ M(κ)
log2(κ)∑
j=0

1/2j ∈ O(M(κ)).

The precision κ of the last step verifies δ < κ ≤ 2δ. Hence M(κ) ≤ M(2δ) ∈
O(M(δ)). �

Of course, in practice we take κ the biggest power of two less than δ + 1,
κ ≤ δ + 1 < 2κ, we lift C up to precision κ and the last step of the lifting is
performed at precision δ + 1 only.

4.6 Lifting the Integers

We assume here that k = Q. The lifting of the free variables of the previous
section can be used for integers as well. If we have a geometric resolution of
a zero dimensional variety computed modulo a prime number p we can lift it
to precision pk. If there exists a geometric resolution with rational coefficients
lying over the modular one, then the lifting process can stop and we can recover
the rational numbers of the geometric resolution.

Here we take R = Z and I = pZ where p is a prime number. We assume
that we have computed a geometric resolution of a zero dimensional Q-variety
in Z/pZ, that we have f1, . . . , fn, n polynomials in Q[x1, . . . , xn] such that their
Jacobian matrix is invertible over the modular resolution, and that the degree of
the modular resolution is δ, the degree of the Q-variety. In this case there exists
a unique rational geometric resolution lying over the modular one; the lifting
process gives the p-adic expansions of its rational coefficients at any required
precision.

In [24] Dixon gave a Padé approximant method for integers, see also [41]
and [40] for related results.

Proposition 7 [24] Let s, h > 1 be integers and suppose that there exist integers
f, g such that

gs ≡ f(mod h) and |f |, |g| ≤ λ
√
h,

where λ = 0.618 . . . is a root of λ2 + λ − 1 = 0. Let wi/vi (i = 1, 2, . . .) be the
convergents to the continued fraction of s/h and put ui = vis−wih. If k is the
least integer such that |uk| <

√
h, then f/g = uk/vk.

We assume we have a function called RationalReconstruction computing the
unique rational f/g for any s in Z/pkZ with bit complexity in O(M(k log(p))).
Such a complexity can obtained combining Dixon’s algorithm [24] and a fast

25

Algorithm 3: Lifting of Integers

procedure LiftIntegers(F)

F is a zero-dimensional geometric resolution over Z/pZ.

The procedure returns F ′, the geometric
resolution over Q lying over F , if it exists.

δ ← Degree(F);
f ← FEquations ◦ FChangeOfVariables ;
StopCriterion ←

(
(f ,x, u,Q,V, k) 7→

q ← RationalReconstruction(Q);
w ← RationalReconstruction([z ∂q∂T mod q : z ∈ V]);
if f(w/ ∂q∂T) mod q = 0 then

Q← q;V← w;
return true;

else return false;
fi;
)

q,w← GlobalNewton(f ,x, FPrimitiveElement ,
FMinimalPolynomial , FParametrization ,StopCriterion);

F ′ ← F ;
F ′MinimalPolynomial ← q;
F ′Parametrization ← w;
return(F ′);

end;

Gcd algorithm for integers as discussed in §3.5, see [10, p.247]. This function
returns an error if no such rational number exists. Thus we can stop the lifting
when the rational reconstruction of each coefficient of the current resolution
leads to a parametrization over Q of V satisfying all the equations fi. This
process is summarized in Algorithm 3.

Lemma 4 Assume that the geometric resolution lying over the modular one has
height at most η with log(p) ≤ η, then it can be computed in bit complexity

O((nL+ nΩ)M(δ)M(η)).

Proof We apply Lemma 2 with a(k) being the bit complexity of the arith-
metic in Z/pkZ: we can take a(k) = M(k log(p)). Choose κ a power of two,
such that 4η ≥ κ log(p) > 2η and apply Algorithm 1 until precision k = κ:
since

∑log2(κ)
j=0 M(log(p)2j) ∈ M(κ log2(p)), then the complexity is in O((nL +

nΩ)M(δ)M(η)). The rational reconstruction for each coefficient of the Kronecker
parametrization is in O(nδM(η)) �

Theorem 2 is a direct corollary of this lemma.

This result does not give the complexity of Algorithm 3 because it forgets the
verification that the rational reconstructed parametrization satisfies the equa-

26

tions. This verification could be done inQ[T]/q(T) but it would involve a growth
of the size of the integers in the intermediate computations. So, in practice, we
prefer to choose another prime number p′ 6= p and we perform this verification
in Z/p′Z. The study of the probability of success of this method is out of the
scope of this work (see [41] and [40] for results related to this question).

5 Changing a Lifting Fiber

From any given lifting fiber one can change it to another one, more precisely we
can make any linear change of the free variables, or compute a lifting fiber for
another lifting point or for another primitive element. These three operations
on lifting fibers are crucial for the algorithm since it may appear that a given
lifting fiber may not be generic enough for computing the intersection of its
corresponding variety by a given hypersurface. In this section we assume we are
given a lifting fiber with the same notations as in §3.4.

5.1 Changing the Free Variables

Let V be a r-equidimensional variety given by a lifting fiber and f be a given
polynomial in k[x1, . . . , xn]. We are interested in having a Noether position of
V ∩ V(f).

Lemma 5 Let V be a r-equidimensional variety of degree δ such that the vari-
ables x1, . . . , xn are in Noether position, and f a polynomial in k[x1, . . . , xn]
of total degree d such that V(f) intersects V regularly. For almost all choices
of (p1, . . . , pr−1) ∈ kr−1 the change of variables x1 = y1 + p1yr, . . . , xr−1 =
yr−1 +pr−1yr, xr = yr, . . . , xn = yn brings the new coordinates yi into a Noether
position with respect to V ∩ V(f).

Proof Let I = I(V), x0 be a new variable, the exponent h is related to the
homogenized objects as in §3.1. The ideal Ih is in Noether position, let F be an
integral dependence relation for fh given by Proposition 2. Its total degree is
bounded by δd and F (fh) belongs to Ih. Let A ∈ k[x0, . . . , xr] be the constant
coefficient of F , it belongs to Ih + (fh). Since f intersects V regularly, F can
be chosen such that A 6= 0. Let m be the valuation of A with respect to x0,
we define B by A/xm0 , B is in (Ih + (fh)) : x∞0 , which is the homogenized
ideal of I + (f). Let B0 be the constant coefficient of B with respect to x0,
it is homogeneous and not zero, we can choose a point p = (p1, . . . , pr−1) in
kr−1 such that B0(p1, . . . , pr−1, 1) is not zero. Then the change of variables
x1 = y1 +p1yr, . . . , xr−1 = yr−1 +pr−1yr, xr = yr, . . . , xn = yn, is such that the
new variable yr is integral over x0, y1, . . . , yr−1 for V ∩ V(f). We deduce that
the variables x0, y1 . . . , yn are in Noether position with respect to V ∩ V(f). �

The operations to perform such a change of variables are described in Algo-
rithm 4. Its complexity is in O(nΩ), the complexity of performing linear algebra
in dimension n, it is not significative in the whole algorithm.

5.2 Changing the Lifting Point

We are now interested in computing a lifting fiber F ′ on another given lifting
point p′, assuming that the primitive element of F remains primitive for F ′.

27

Algorithm 4: Change Free Variables

procedure ChangeFreeVariables(F, p)

F is a Lifting Fiber of dimension r
p is a point in kr−1

The procedure performs the linear change of the free variables of
F : y1 ← y1 + p1yr, . . . , yr−1← yr−1 + pr−1yr.

r ← Dimension(F);
N ← Idn ∈ SquareMatrix(n);
for i from 1 to r − 1 doN [i, r] ← pi; od;
FChangeOfVariables ← FChangeOfVariables ◦N ;
N ← SubMatrix(N, 1..r, 1..r);
FLiftingPoint ← N−1FLiftingPoint ;

end;

We use the method of §4.5 to compute the geometric resolution of the lifted
curve corresponding to the line (pp′) in the form of Equation (16). The spe-
cialization of this parametrization for t = 1 is the one of F ′. The method is
summarized in Algorithm 5. Its complexity is the same as in Lemma 3.

Algorithm 5: Change Lifting Point

procedure ChangeLiftingPoint(F ,p′)

F is a lifting fiber of dimension r,
p′ ∈ kr is a new lifting point, such that
FPrimitiveElement remains primitive over p′.

At the end F contains the lifting fiber for p′.

q,w ← LiftCurve(F, p′);
q,w ← subs(t = 1, q,w);
v ← [z/q′ mod q : z ∈ w];
FMinimalPolynomial ← q;
FParametrization ← v;
FLiftingPoint ← p′;

end;

28

Algorithm 6: Change Primitive Element

procedure ChangePrimitiveElement(F ,u′)

F is a lifting fiber of dimension r,
u′ is a lucky new primitive element.

At the end F contains the lifting fiber for u′.

q ← FMinimalPolynomial ;
v ← FParametrization ;
u ← FPrimitiveElement ;
Let t be a new variable the computations are in k[t]/(t2).
u′t ← u′ + tu;
U ′t ← ResultantT (q, S − u′t(v));
Q ← subs(t = 0, U ′t);
V ← −Coefficient(U ′t , t)/Q

′ mod Q;
V ← [z(V) mod Q : z ∈ v];
FMinimalPolynomial ← Q;
FParametrization ← V;
FPrimitiveElement ← u′;

end;

5.3 Changing the Primitive Element

We show how we compute a lifting fiber F ′ for another given primitive element
u′ = λ′r+1yr+1 + · · ·+ λ′nyn. The method is summarized in Algorithm 6.

Let t be a new variable, we extend the base field k to the rational function
field kt = k(t). Let u′t = u′+tu and It the extension of I in kt. We can compute
the characteristic polynomial U ′t of u′t such that U ′t(u

′
t) ∈ It and deduce the

Kronecker parametrization of It with respect to ut in the same way as in §3.3.
The characteristic polynomial can be computed by means of a resultant:

U ′t(S) = ResultantT (q(T), S − u′t(vr+1, . . . , vn)).

In order to get the new parametrization, we only need to know the first order
partial derivative with respect to t at the point t = 0. So the resultant can be
computed modulo t2. If we use a resultant algorithm performing no division on
its base ring, this specialization over the non-integral ring k[t]/(t2)[S] does not
create any problem.

A problem comes from the fact that we are interested in using resultant
algorithms for integral rings since they have better complexity. In order to
explain how this can work under some genericity conditions, we come back to
the notations of §3.3. Then we take u′ generic: uΛ = Λr+1xr+1 + · · · + Λnxn,
the Λi being new variables, we can compute

UΛ(S) = ResultantT (q(T), S − uΛ(vr+1, . . . , vn)),

29

in the integral ring k[Λr+1, . . . ,Λn][S]. Let Φ be the ring morphism of special-
ization:

Φ : k[Λr+1, . . . ,Λn][S] → k[t]/(t2)[S],
Λi 7→ λ′i + tλi

If u′ is chosen generic enough the specialization Φ commutes with the resultant
computation. The justification of this fact is based on the remark that the
specialization commutes when all the equality tests on elements of k[t]/(t2) can
be done on the coefficients of valuation 0 and give the same answer as the
corresponding test in k[Λr+1, . . . ,Λn]. The λ′i for which this condition does not
apply satisfy algebraic equations in k[Λr+1, . . . ,Λn]. A choice of u′ such that
the specialization Φ commutes with a given resultant algorithm is said to be
lucky for this computation. One can find in [31, §7.4] a systematic discussion
about this question.

In order to estimate the complexity of this method, recall that M(δ) is the
complexity of the resultant of two univariate polynomials of degrees at most δ
in terms of arithmetic operations in the base ring and also the complexity of
the arithmetic operations on univariate polynomials of degree δ, as in §3.5.

Lemma 6 Let u′ be a lucky primitive element for Algorithm 6, then the com-
plexity of Algorithm 6 is in O(nδM(δ)).

Proof In the resultant computation of U ′t the variable S if free thus its spe-
cialization commutes with the resultant. The degree of U ′t in S is δ. So we can
compute U ′t for δ + 1 distinct values of S and interpolate in k the polynomials
q′ and v′. The cost of interpolation in degree δ is in M(δ) [10, p. 25].

Then the computation of v′ requires to compute the powers v2, . . . , vδ−1

modulo q′, this involves a cost in O(δM(δ)). Finally we perform n linear combi-
nations of these powers, which takes O(nδ2) operations. �

6 Computation of an Intersection

We show in this section how we compute a lifting fiber of the intersection by a
hypersurface of a r-equidimensional variety given a lifting fiber. We use Kro-
necker’s method: when performing an elimination, the parametrization of the
coordinates are given at the same time as the eliminating polynomial. The
computational trick consists in a slight change of variables called Liouville’s
substitution [58, p.15] and the use of first order Taylor expansions.

Example 6 Suppose we want a geometric resolution of two equa-
tions f1 and f2, intersecting regularly, in k[x1, x2]. Let Λ1 and Λ2

be new variables and uΛ = Λ1x1 + Λ2x2. We can compute UΛ(T),
the eliminating polynomial of uΛ:

UΛ(T) = Resultantx1

(
f1(x1,

T − Λ1x1

Λ2
), f2(x1,

T − Λ1x1

Λ2
)
)
.

The expression UΛ(uΛ) belongs to the ideal (f1, f2), and f1, f2 have
a common root if and only if UΛ(uΛ) vanishes. Taking the first

30

derivatives in the Λi we deduce that

∂UΛ

∂T
x1 +

∂UΛ

∂Λ1
∈ (f1, f2),

and
∂UΛ

∂T
x2 +

∂UΛ

∂Λ2
∈ (f1, f2).

If UΛ is square free, then the common zeros of f1 and f2 are param-
eterized by

UΛ(T) = 0,

{
∂UΛ
∂T (T)x1 = −∂UΛ

∂Λ1
(T),

∂UΛ
∂T (T)x2 = −∂UΛ

∂Λ2
(T).

(17)

For almost all values λ1, λ2 in k of Λ1,Λ2, the specialization of (17)
gives a geometric resolution of f1, f2. So, letting Λi = λi + ti, in
order to get a geometric resolution we only need to know UΛ at
precision O((t1, t2)2).

Our aim is to generalize the method of this example for the intersection of
a lifted curve with an hypersurface.

Let I be a 1-equidimensional radical ideal in k[y, x1, . . . , xn] such that the
variables y, x1, . . . , xn are in Noether position and assume that we have a geo-
metric resolution in the form

q(y, T) = 0,

∂q
∂T (y, T)x1 = w1(y, T),

...
∂q
∂T (y, T)xn = wn(y, T).

(18)

The variable T represents the primitive element u. Let f be a given polyno-
mial in k[y, x1, . . . , xn] intersecting I regularly, which means that I + (f) is
0-dimensional. We want to compute a geometric resolution of I + (f).

6.1 Characteristic Polynomials

In the situation above one can easily compute an eliminating polynomial in
the variable y, using any elimination process. First we invert q′ modulo q
and compute vi(y, T) = wi(y, T)q′−1(y, T) mod q(y, T), for 1 ≤ i ≤ n. The
elimination process we use is given in the following:

Proposition 8 The characteristic polynomial of the endomorphism of multi-
plication by f in B′ = k(y)[x1, . . . , xn]/I belongs to k[y][T] and its constant
coefficient with respect to T is given by

A(y) = ResultantT (q, f(y, v1, . . . , vn)),

up to its sign. Moreover the set of roots of A(y) is exactly the set of values of
the projection on the coordinate y of the set of roots of I + (f).

31

Proof We already know from Corollary 2 that A belongs to k[y] and has degree
bounded by deg(f)δ, δ = deg(V). Let π be the finite projection onto the
coordinate y. Let y0 be a point of k and {Z1, . . . , Zs} = π−1(y0) of respective
multiplicity m1, . . . ,ms, s ≤ δ and m1 + · · · + ms = δ, where the multiplicity
of Zi is defined as mi = dimk(k[y, x1, . . . , xn]/(I + (y − y0))Zi). First we prove
that

A(y) ∈ I + (f), (19)

which implies that any root of I + (f) cancels A, and then the formula

A(y0) =
s∏
j=1

f(Zj)mj , (20)

which implies that when y0 annihilates A at least one point in the fiber annihi-
lates f .

The ideal I being 1-equidimensional and the variables being in Noether posi-
tion, the finite k[y]-module B = k[y, x1, . . . , xn]/I is free of rank δ (combine [53,
Example 2, p.187] and the proof of [38, Lemma 3.3.1] or [7, Lemma 5]). Since
any basis ofB induces a basis for B′ = k(y)⊗B, the characteristic polynomials of
the endomorphism of multiplication by f in B and B′ coincide, Cayley-Hamilton
theorem applied in B implies (19).

For the formula (20), let B0 = k[y, x1, . . . , xn]/(I + (y − y0)), B0 is a k-
vector space of dimension δ. Let e1, . . . , eδ be a basis of B, their specialization
for y = y0 leads to a set of generators of B0 of size δ thus it is a basis of B0. We
deduce that A(y0) is the constant coefficient of the characteristic polynomial of
the endomorphism of multiplication by f in B0, whence formula (20). �

From a computational point of view, the variable y belongs to k(y) and if
we take p ∈ k such that the denominators of the vi do not vanish at p we can
perform the computation of the resultant in k[[y − p]]/((y − p)δd+1), since A
has degree at most δd. This method works well if we use a resultant algorithm
performing no test and no division. So we are in the same situation as in §5.3,
we want to use an algorithm with tests and divisions in order to get a better
complexity, and this is possible if p is generic enough. The values of p for which
this computation gives the good result are said to be lucky. Unlucky p are
contained in a strict algebraic closed subset of k. In Algorithm 7 we suppose
that the last coordinate of the lifting point is lucky.

As in §3.5, M denotes respectively the complexity of univariate polynomial
arithmetic and the resultant computation.

Lemma 7 Let L be the complexity of evaluation of f , d the total degree of f and
δ the degree of q, then A(y) can be computed in O

(
(L+n2)M(δ)M(dδ)

)
arithmetic

operations in k.

Proof Let p ∈ k be generic enough, we perform the computation with y in
k[[y − p]] at precision O((y − p)dδ+1). First we have to compute each vi from
the wi, this is done by performing an extended GCD between q and ∂q

∂T . The
cost of the extended GCD is the same as M. Then we evaluate f modulo q, and
perform the resultant computation, whence the complexity. �

32

6.2 Liouville’s Substitution

We are now facing two questions: first the variable y is probably not a primitive
element of

√
I + (f), so we are looking for an eliminating polynomial of λy+ u

and secondly we want the parametrization of the coordinates with respect to
the linear form λy + u, for the same cost. Liouville’s substitution answers both
problems, for almost all λ ∈ k.

Let Y be a new variable, the substitution consists in replacing y by (Y −T)/λ
in both the parametrization and the polynomials of the ideal I. So we need some
more notations: let qY (Y, T) = q((Y − T)/λ, T), pY (Y, T) = q′((Y − T)/λ, T),
wY,i(Y, T) = wi((Y − T)/λ, T), 1 ≤ i ≤ n and IY = (e((Y − T)/λ, T), e ∈ I).
In order to apply Proposition 8, we must ensure that the parametrization of IY
we get is still valid. Indeed, this is true for almost all λ ∈ k.

Definition 6 A point λ is said to be a Liouville point with respect to the above
geometric resolution of I when it is not zero, and when qY is monic in T , of
the same degree as q in T , square-free and relatively prime with pY .

Lemma 8 With the above notations, if λ is a Liouville point then the variables
Y, x1, . . . , xn are in Noether position with respect to IY and

qY (Y, T) = 0,

pY (Y, T)x1 = wY,1(Y, T),

...
pY (Y, T)xn = wY,n(Y, T),

(21)

is a geometric resolution of IY for the primitive element u.

Proof First we prove that Y is free in IY . Let h ∈ k[Y] such that h(Y) ∈ IY .
This implies that q(y, T) divides h(λy+T) and so qY divides h(Y). Since qY is
monic in T this implies that h = 0.

Now we prove that the xi are dependent over Y . Let J = IY + (T − u) ⊂
k[Y, x1, . . . , xn, T] and h a bivariate polynomial such that h(y, xi) ∈ I is monic
in xi, of total degree bounded by degxi(h). We have h((Y − T)/λ, xi) ∈ J, and
since qY (Y, T) ∈ J has a total degree bounded by δ, there exists a polynomial
H such that H(Y, xi) ∈ J, monic in xi, of total degree bounded by its partial
degree in xi. We deduce that Y, x1, . . . , xn are in Noether position with respect
to IY .

The conditions that qY is square-free and relatively prime with pY imply
that u remains a primitive element and that we can invert pY modulo qY . The
parametrization of (21) is a geometric resolution of IY . �

Lemma 9 Almost all elements λ ∈ k are Liouville points.

Proof We write the proof replacing λ by 1/λ and then Y by λY , thus qY
becomes q(Y − λT, T). The discriminant of qY and the resultant of qY with pY
are now polynomials in λ and Y and do not vanish for λ = 0. Hence almost all
choices of λ satisfy the last two conditions of Definition 6. For the first one, let
us consider h(y, T), the homogeneous part of q of maximal degree δ, then the
coefficient of T δ in qY is h(−λ, 1), which does not vanish when λ = 0. �

Lemma 10 Let λ ∈ k\{0} and p be a polynomial in k[y, T] of total degree
bounded by δ and stored in a two dimensional array of size O(δ2). The poly-
nomial pY (Y, T) = p((Y − T)/λ, T) ∈ k[Y, T], can be computed in O(δM(δ))
arithmetic operations in k.

33

Proof We can write p = p0 + p1 + · · · + pδ, where each pi is homogeneous of
degree i. So we can suppose that p is homogeneous of degree i. To compute
pY (Y, T) = p((Y −T)/λ, T) we first note that since pY is homogeneous of degree
i we just compute pY (Y, 1) = p((Y −1)/λ, 1). But p(y, 1) is a polynomial in k[y]
in which we have to perform a linear transformation. We refer to [10, pp. 15–16]:
the cost of the linear substitution is M(i). Thus the sum of complexities for each
i is in O

(∑δ
i=0 M(i)

)
⊂ O(δM(δ)). �

6.3 Computing the Parametrization

Combining the two previous sections, we are now able to describe the core of
our intersection method, which is summarized in Algorithm 7.

Algorithm 7: Kronecker Intersection Algorithm

procedure KroneckerIntersect(C, λ, f)

C is a geometric resolution of I, 1-equidimensional,
with a first order generic parametrization.
λ is a Liouville point for C.
f is a polynomial.

The procedure returns the constant coefficient
of the characteristic polynomial of the endomorphism
of multiplication by f in k[y, x1, . . . , xn]/I.

q ← CMinimalPolynomial ;
w ← CParametrization ;
qY ← q((Y − T)/λ, T);
pY ← ∂q

∂T ((Y − T)/λ, T);
wY ← w((Y − T)/λ, T);
vY ← wY p

−1
Y mod qY ;

A ← ResultantT (qY , f((Y − T)/λ,vY));
return(A);

end;

Proposition 8 and Lemma 8 lead to:

Proposition 9 If λ is a Liouville point for the given geometric resolution of I,
then the polynomial A returned by Algorithm 7 applied on IY and fY satisfies

A(λy + u) ∈ I

and its set of roots is exactly the set of values of the linear form λy + u on the
points of I + (f).

Proof From Proposition 8 we have A(Y) ∈ IY + (fY) and over each root of A
lies a zero of IY + (fY). Replacing Y by λy + u leads to A(λy + u) ∈ I and a

34

zero (zY , z1, . . . , zn) of IY lying over zY , a root of A, induces a zero of I, namely
((zY − u(z1, . . . , zn))/λ, z1, . . . , zn). �

This is not sufficient to describe the points of I + (f): the parametrization
of the coordinates are still missing. Let ty, t1, . . . , tn be new variables and kt =
k(ty, t1, . . . , tn), let It be the extension of I in kt and ut = u+ t1x1 + · · ·+ tnxn,
we assume that we have the geometric resolution of It with respect to ut:

qt(y, T) = 0,

x1 = vt,1(y, T),

...
xn = vt,n(y, T).

(22)

If λ is a Liouville point for I then λ+ ty is a Liouville point for It. So we can
apply Algorithm 7 in this situation, we get a polynomial At ∈ kt[T] such that
At((λ+ ty)y + u) ∈ It and we can write

At = A+ tyAy + t1A1 + · · ·+ tnAn +O((ty, t1, . . . , tn)2),

where A, Ay and the Ai are polynomials over k. We deduce that

A(λy + u), A′(λy + u)y +Ay(λy + u), A′(λy + u)xi +Ai(λy + u),

1 ≤ i ≤ n, belong to I. The computation has to be handled only at precision
O((ty, t1, . . . , tn)2), so we are faced with the same problem as in §5.3: if we use
a resultant algorithm without division there is no difficulty, but if we want to
benefit from the better complexity of an algorithm for an integral ring we have
to make some genericity restriction on the choices of u and λ. We will also
speak about lucky choices for Algorithm 7. We call the parametrization (22) at
precision O((ty, t1, . . . , tn)2) the first order generic parametrization associated
to parametrization (18).

Lemma 11 With lucky u and λ, Algorithm 7 has complexity in

O
(
n(L+ n2)M(δ)M(dδ)

)
,

in terms of number of arithmetic operations in k.

Proof This is a direct consequence of Lemma 7 replacing k by
k[ty, t1, . . . , tn]/(ty, t1, . . . , tn)2. The n Liouville’s substitutions are insignificant.
�

In §6.5 we explain how to deduce a geometric resolution from A, Ay and
the Ai.

6.4 Lifting a First Order Genericity

Now, we have to explain how to compute the first order generic parametriza-
tion (22) from (18), that we use in the previous section.

The ideal I is given by the geometric resolution of equations (18). Let
Bt = kt⊗B, in Bt we have xi = vi(y, u) so ut = u+ t1v1(y, u)+ · · ·+ tnvn(y, u).
But at the first order in the ti we have ut = u+ t1v1(y, ut) + · · ·+ tnvn(y, ut) +
O((ty, t1, . . . , tn)2), we deduce that u = ut − (t1v1(y, ut) + · · · + tnvn(y, ut)) +

35

O((ty, t1, . . . , tn)2). We can replace u in the parametrization:

qt(y, T) = q(y, T)−
(∂q
∂T

(y, T)(t1v1(y, T) + · · ·+ tnvn(y, T)) mod q(y, T)
)

= q(y, T)−
(
t1w1(y, T) + · · ·+ tnwn(y, T)

)
+O((ty, t1, . . . , tn)2)

vt,i(y, T) = vi(y, T)− ∂vi
∂T

(y, T)(t1v1(y, T) + · · ·+ tnvn(y, T))

mod qt(y, T) +O((ty, t1, . . . , tn)2), 1 ≤ i ≤ n.

Computations are summarized in Algorithm 8. As in the previous subsection
we perform the computations in

ky,t = k[y, ty, t1, . . . , tn]/((y − p)dδ+1 + (ty, t1, . . . , tn)2),

with a lucky choice of p in order to inverse ∂q
∂T modulo q with an extended GCD

algorithm of complexity M(δ). In this situation we have the following complexity
estimate:

Lemma 12 Algorithm 8 has complexity in O
(
n2M(δ)M(dδ)

)
, in terms of number

of arithmetic operations in k.

Proof The arithmetic operations in ky = k[y]/(y−p)dδ+1 have cost in O(M(dδ))
in terms of arithmetic operations in k. The computation of v requires O(nM(δ))
in ky. Then the computation of vt requires O(n) operations in kt,y/(qt), this is
in O(n2M(dδ)M(δ)). �

6.5 Removing the Multiplicities

The output of Algorithm 7 is not yet a parametrization of the roots of I + (f):
it may happen that A0 has multiplicities. We give a simple method to remove
them and thus get a geometric resolution of

√
I + (f).

Assume now that I is 0-dimensional, that we have a primitive element u =
λ1x1 + · · ·+λnxn of V = V(I) and that at precision O((t1, . . . , tn)2) we have an
eliminating polynomial At of ut = u+t1x1+· · ·+tnxn, coming from Algorithm 7,
such that

At(ut) ∈ It +O((t1, . . . , tn)2),

and the roots of At are the values of ut over the points of V. Let Z1, . . . , Zδ be
the points of V, then for some integers mi > 0 we have

At(T) =
δ∏
j=1

(T − ut(Zj))mj +O((t1, . . . , tn)2).

Now if we write At = A0 + t1A1 + · · ·+ tnAn +O((t1, . . . , tn)2), with Ai poly-
nomials in k[T] we have:

A0(T) =
δ∏
j=1

(T − u(Zj))mj ,

Ai(T) = −
δ∑
i=1

(
xi(Zj)mi(T − u(Zi))mi−1

δ∏
j=1,j 6=i

(T − u(Zj))mj
)
, 1 ≤ i ≤ n.

We deduce the following proposition:

36

Algorithm 8: Lift First Order Genericity

procedure LiftFirstOrderGenericity(C)

C is a geometric resolution of I, one equidimensional.

The procedure returns a geometric resolution C ′ of It
for the primitive element ut = u+ t1x1 + · · · tnxn,
at precision O((t1, . . . , tn)2).

C ′ ← C;
q ← CMinimalPolynomial ;
w ← CParametrization ;
qt ← q − (t1w1 + · · ·+ tnwn);
v ← (∂q∂T)−1w mod q;
vt ← v − ∂v

∂T (t1v1 + · · ·+ tnvn) mod qt;
C ′MinimalPolynomial ← qt;
C ′Parametrization ← vt;
C ′PrimitiveElement ← CPrimitiveElement + t1x1 + · · ·+ tnxn;
return(C ′);

end;

Proposition 10 With the above notations, let M = gcd(A0, A
′
0) then M di-

vides A0, A′0 and the Ai. Let q = A0/M , p = A′0/M and wi = −Ai/M ,
1 ≤ i ≤ n, then

q(u) = 0,

p(u)x1 = w1(u),

...
p(u)xn = wn(u),

(23)

is a geometric resolution of V.

This process is summarized in Algorithm 9.

Lemma 13 Let δ be the degree of At in T then the complexity of Algorithm 9
is in

O(nM(δ)),

in terms of arithmetic operations in k.

Note that this method to remove the multiplicity does not work for any kind of
parametrization. For example, consider I = (x2

1, x
2
2), x1 is a primitive element

and we have x4
1 ∈ I and 4x3

1x2 − x2
1 ∈ I, but x3

1 does not divide x2
1.

37

Algorithm 9: Remove Multiplicity

procedure RemoveMultiplicity(At)

At is an annihilating polynomial of a primitive
element ut modulo I, coming from Algorithm 7.

The procedure returns q,v, a parametrization
of V(I) for the primitive element u.

We write At = A0 + t1A1 + · · ·+ tnAn +O((t1, . . . , tn)2).
M ← gcd(A0, A

′
0);

q ← A0/M ;
p ← A′0/M ;
w ← [−A1/M, . . . ,−Am/M];
v ← w/p mod q;
return(q,v);

end;

6.6 Removing the Extraneous Components

Let V be a 0-dimensional variety given by a geometric resolution:

q(u) = 0,

x1 = v1(u),

...
xn = vn(u).

(24)

Let g be a given polynomial in k[x1, . . . , xn], we are interested in computing
a geometric resolution of V\V(g). The computations are presented in Algo-
rithm 10.

Proposition 11 The parametrization

Q(u) = 0,

x1 = V1(u),

...
xn = Vn(u),

(25)

returned by Algorithm 10 is a geometric resolution of V\V(g).

Lemma 14 Let L be the complexity of evaluation of g, Algorithm 10 has a
complexity in

O((L+ n2)M(δ)),

in terms of arithmetic operations in k.

In order to apply this method in the situation of a lifting fiber we must ensure
that the choice of the lifting point is not too bad.

38

Algorithm 10: Cleaning Algorithm

procedure Clean(F, g)

F is a geometric resolution of dimension 0.
g is a polynomial.

At the end F contains a geometric resolution for the variety
composed of the points outside g = 0.

q ← FMinimalPolynomial ;
v ← FParametrization ;
e ← Gcd(q, g(v));
q ← q/e;
FMinimalPolynomial ← q;
FParametrization ← v mod q;

end;

Example 7 In k[x1, x2], V = V(x2) and g = x1, the choice of x1 = 0
as a lifting point is not a proper choice to compute V\V(g).

We now show that almost all choices are correct. Let V be a r-equidimen-
sional variety given by a lifting fiber, it is sufficient to take the lifting point p of
the fiber outside π(V\V(g) ∩ V(g)), since then

V\V(g) ∩ (x1 − p1, . . . , xr − pr) = V ∩ (x1 − p1, . . . , xr − pr)\V(g).

Definition 7 A lifting point is said to be a cleaning point with respect to the
polynomial g when p 6∈ π(V\V(g) ∩ V(g)).

Lemma 15 The lifting points that are not cleaning points are enclosed in an
algebraic closed set.

Proof The hypersurface g = 0 intersects regularly V\V(g). This intersection
has dimension r − 1, the closure of its projection is a strict algebraic subset of
kr. �

6.7 Summary of the Intersection

We are now able to put §6.3, §6.4, §6.5 and §6.6 together in order to com-
pute a geometric resolution of

√
I + (f). The whole process of intersection is

summarized in Algorithm 11.

Lemma 16 Let C be a geometric resolution of a 1-equidimensional ideal I, u
its primitive element, and λ ∈ k a Liouville point for C such that v = λy + u
is a primitive element of

√
I + (f). If u, λ and pr are lucky for Algorithm 11,

then it returns a geometric resolution of
√

I + (f). Its complexity is in

O
(
n(L+ n2)M(δ)M(dδ)

)
,

in terms of arithmetic operations in k.

39

Algorithm 11: One Dimensional Intersect

procedure OneDimensionalIntersect(C, f, λ, g)

C is a geometric resolution of I, 1-equidimensional
f is a polynomial intersecting C regularly,
λ is a Liouville point of C. Let u be the
primitive element of C, λy + u is a primitive
element of

√
I + (f),

g is a polynomial.

The procedure returns F , a geometric resolution of
V(I + (f))\V(g).

Ct ← LiftFirstOrderGenericity(C);
At ← KroneckerIntersect(Ct, f, λ);
q,v ← RemoveMultiplicity(At);
FChangeOfVariables ← CChangeOfVariables ;
FPrimitiveElement ← λy + CPrimitiveElement ;
FMinimalPolynomial ← q;
FParametrization ← v;
FEquations ← CEquations , f ;
Clean(F, g);
return(F);

end;

7 The Resolution Algorithm

In this section we present the whole resolution algorithm. Let f1, . . . , fn ∈
k[x1, . . . , xn] be a reduced regular sequence of polynomials outside the hyper-
surface defined by the polynomial g. That is, if we write Vi = V(f1, . . . , fi)\V(g)
we have the following situation: for 1 ≤ i ≤ n, Vi is (n − i)-equidimensional
and for 1 ≤ i ≤ n − 1, the quotient (k[x1, . . . , xn]/(f1, . . . , fi))g localized at g
is reduced, by the Jacobian criterion this means that the Jacobian matrix of
f1, . . . , fi has full rank at each generic point of Vi.

The algorithm is incremental in the number of equations: we solve V1,. . . ,
Vn in sequence. We encode each resolution by a lifting fiber. So we need to
choose at step i a Noether position for Vi, a lifting point and a primitive element.
These choices can be done at random with a low probability of failure, since bad
choices are enclosed in strict algebraic subsets.

First we explain the incremental step of the algorithm, then we summarize all
the conditions of genericity required by the geometry and the luckiness needed
when using an algorithm designed for an integral ring in a non integral one. In
§7.3 we discuss the special case when k is Q.

40

7.1 Incremental Step

Let Fi be a lifting fiber of Vi, in this section we present our method to compute
Fi+1 from Fi, if Fi is generic enough. If this is not the case, we use the techniques
of §5 to change the fiber.

We assume that we are given a lifting fiber F for an r-equidimensional
variety V, a polynomial f intersecting V regularly and a polynomial g. Let
I = I(V). We want to compute a lifting fiber for the (r − 1)-equidimensional
variety V ∩ V(f)\V(g). For the sake of simplicity we assume that the vari-
ables x1, . . . , xn are in Noether position for V, let p = (p1, . . . , pr) be a lift-
ing point of V, u a primitive element, q its minimal polynomial on the p-fiber,
xr+1 = vr+1(T), . . . , xn = vn(T) the parametrization of the dependent variables
and f1, . . . , fn−r the lifting equations.

In order to apply Algorithm 11 we need to show that the lifted curve in-
tersects regularly the hypersurface V(f). Let C be the lifted curve of F in
the direction of xr. Namely, let D be the line containing p with direction xr,
ID = I + (x1 − p1, . . . , xr−1 − pr−1) can be seen as a 1-equidimensional ideal
of k[xr, . . . , xn]. Thanks to the techniques of §4.5 we can compute a geometric
resolution C of ID from F .

If the variables x1, . . . , xn are in Noether position for V ∩ V(f) then there
exists a polynomial A ∈ k[x1, . . . , xr] monic in xr such that A ∈ I + (f).
This implies that A(p1, . . . , pr−1, xr) ∈ ID+(f(p1, . . . , pr−1, xr, . . . , xn)). Hence
f(p1, . . . , pr−1, xr, . . . , xn) intersects regularly the lifted curve, Algorithm 11
applies.

Algorithm 11 applied on C, f(p1, . . . , pr−1, xr, . . . , xn), λ ∈ k and
g(p1, . . . , pr−1, xr, . . . , xn) returns a lifting fiber of (V ∩ V(f))\V(g) for the lift-
ing point (p1, . . . , pr−1) and primitive element λxr+u, if the following conditions
hold:

• the Noether position of F is also a Noether position of V ∩ V(f);

• (p1, . . . , pr−1) is a lifting point for V ∩ V(f);

• λ is a Liouville point for C;

• λyr + u is a primitive element of V ∩ V(f);

• (p1, . . . , pr−1) is a cleaning point for V ∩ V(f)\V(g);

• pr is lucky for Algorithms 8 and 7;

• u and λr are lucky for Algorithm 7.

We have seen that each of the above conditions is generic. If one of them
were failing the techniques of §5 would recover a good situation.

Example 8 Here is an example where we need to change the prim-
itive element: in k[t, x1, x2], let V be given by the union of two
lines D1 and D2 parametrized as follows: (x1 = 1, x2 = t) and
(x1 = −1, x2 = −t). The variables t, x1, x2 are in Noether posi-
tion, t = 0 is a lifting point and x2 a primitive element for t = 0.
Intersecting V by the equation x2 = 0 the two points solution are
(t = 0, x1 = 1, x2 = 0) and (t = 0, x1 = −1, x2 = 0). For any value
of λ ∈ k the linear form λt+ x2 does not separate these two points.

41

7.2 Parameters of the Algorithm

We call the choices on which the algorithm depends its parameters. These are
functions determining the choices of the Noether positions, lifting points and
primitive elements of the fibers F1, . . . , Fn. In order to make the algorithm
compute a correct result, they have to satisfy a few requirements. We have
discussed them part by part, we now summarize them.

At step i of the algorithm we have a lifting fiber Fi of Vi, we want to compute
a lifting fiber for Vi+1. For this we need to choose:

• a Noether position of Vi+1, it is determined by a point N i+1 in kn−i−1

called the (i+ 1)th Noether point ;

• a lifting point Li+1 for Vi+1;

• a primitive element u = λn−iyn−i+ · · ·+λnyn for the corresponding fiber,
the point Ci+1 = (λn−i, . . . , λn) is called the (i+ 1)th Cayley point.

These three functions N , L, C constitute the parameters of the algorithm.
As seen in the previous subsection, the computations require some more re-
stricting conditions. We distinguish three kinds of restrictions: the first ones
are concerned with the geometry of the system, the second ones are also related
to the geometry but are specific to the algorithm and the third ones are related
with the luckiness of some specializations using algorithms designed for integral
rings in case of non integral ones. Namely, let r = n − i, we gather all the
conditions necessary for the execution and correctness of the whole algorithm:

• The pure geometric restrictions of the algorithm are:

– Assume that x1, . . . , xn are in Noether position for Vi, the change
of variables x1 = y1 + N i+1

1 yr, . . . , xr−1 = yr−1 + N i+1
r−1yr, xr =

yr, . . . , xn = yn brings the new coordinates yi into Noether position
for Vi ∩ V(fi+1);

– The lifting point Li+1 = (p1, . . . , pr) is chosen in kr instead of kr−1,
the r − 1 first coordinates are a lifting point of Vi ∩ V(fi+1) and a
cleaning point with respect to g;

– The Cayley point Ci+1 = (λr, . . . , λn) is such that the linear form
λryr + · · · + λnyn is primitive for Vi ∩ V(fi+1) for the lifting point
Li+1.

• The geometric restrictions specific to the algorithm are:

– Li+1 is a lifting point of Vi for the new coordinates y;

– u = λr+1yr+1 + · · ·+ λnyn is a primitive element of Vi for the lifting
point Li+1, and λr is a Liouville point for the lifted curve Vi ∩ (y1 −
p1, . . . , yr−1 − pr−1).

• The luckiness restrictions are:

– u is lucky for Algorithms 6 and 7;

– pr is lucky for Algorithm 7 and 8;

– λr is lucky for Algorithm 7.

42

Algorithm 12: Geometric Solve

procedure GeometricSolve(f , g)

f is a reduced regular system of n equations in n variables
g is a polynomial

The procedure returns a geometric resolution of the roots of
f = 0, g 6= 0

F ← Initialization;
for i from 1 to n do

ChangeFreeVariables(F,N i);
ChangeLiftingPoint(F,Li);
ChangePrimitiveElement(F, Ci);
C ← subs(t = yr,LiftCurve(F,Li + (0, . . . , 0, 1)));
Consider C as the geometric resolution of the
corresponding lifted curve to perform:
F ← OneDimensionalIntersect(C, fi, Ci, g);

od;
return(F);

end;

We have seen along the previous sections that all these restrictions are con-
tained in a Zariski open subset of the space they are lying in. This means that
any random choice of these parameters leads to a correct computation with a
high probability of success.

The complete algorithm is summarized in Algorithm 12. Let

δ = max(deg(V1), . . . ,deg(Vn−1))

, d be the maximum of the degrees of the fi, L the complexity of evaluating
f1, . . . , fn−r+1 and g; M as before. Combining Lemmas 3, 6 and 16 we get
Theorem 1.

The Initialization step of Algorithm 12 consists in initializing F as a lifting
fiber of the whole space. This particular case must be handled by each sub-
functions of the algorithm, for the sake of clarity we do not give more details
about this.

7.3 Special Case of the Integers

The complexity of our algorithm is measured in terms of number of arithmetic
operations in k. When k = Q this model does not reflect the real behavior of
the method. We now give a method which is efficient in practice, leading to a
good running time complexity.

Assume that the input polynomial system f1, . . . , fn is reduced over each
point of Vn. Choose now at random a prime number p large enough so that the

43

geometric resolution computed in Z/pZ by algorithm 12 is the modular trace of
the one computed over Q. It is clear that such prime numbers exist. Now we
can apply Algorithm 3 to recover the geometric resolution over Q.

In a future work, we plan to prove that p can be chosen small enough.

8 Practical Results

We have implemented our algorithm within the Magma computer algebra sys-
tem. The package has been called Kronecker [55] and is available with its
documentation at
http://www.gage.polytechnique.fr/~lecerf/software/kronecker.

Before presenting some data reporting performances of our method compared
to some other ones, we discuss the relevance of such comparisons.

8.1 Relevance of the Comparisons

In computer algebra the best softwares for polynomial solving are based on
rewriting techniques. These methods are all deterministic algorithms, so we have
to keep in mind that we compare these deterministic algorithms to our proba-
bilistic one. There is a special case when the final number of solutions of the
system is equal to the Bézout number of the system, namely deg(f1) · · ·deg(fn),
then we get a deterministic result and the comparison is fair.

We can compare our implementation to Gröbner bases computations and
algorithms of change of bases. To compute a Gröbner basis we have several
possible choices concerning the elimination order and the algorithm of change
of bases. We focus our attention to grevlex orders (graded reverse lexicograph-
ical order) and plex (pure lexicographical order). It is important to notice
that our result is stronger than a grevlex basis but weaker than a plex one.
One interesting comparison is with a RUR (Rational Univariate Representa-
tion) computation [66]: the RUR given in output corresponds exactly to a
Kronecker parametrization of the solutions. The software we have retained for
these comparisons is: Magma, Gb [25, 26] and RealSolving [66]. To the best of
our knowledge they are the best among the most commonly available software
for polynomial system solving.

8.2 Systems of Polynomials of Degree 2

We begin with systems composed of n equations in n variables of degree d = 2
for different heights h, representing the maximum number of decimal digits of
the coefficients of the equations. The number of solutions of the systems is the
Bézout number D = 2n.

The following table has be realized with a Compaq Alpha EV6, 500 Mhz,
128 Mb of MEDICIS [2]. The column Gb + Realsolving means that the com-
putations have been done using successively Gb for computing a Gröbner basis
for grevlex ordering and Real Solving for computing the RUR from the basis.
We have used the interface available within the Mupad computer algebra sys-
tem [80, 27]. Each entry of the column contains the respective times for each
part of the computation. The columns Magma grevlex and lex correspond re-

44

spectively to Gröbner bases computations for grevlex and lex ordering. Note
that Magma uses the Gröbner Walk algorithm in the lex case.

The notation > 128Mb means that the computation can not be performed
within 128Mb.

Kronecker Gb + Real Solving Magma Magma
n h grevlex grevlex lex
4 4 5.4 s 0.5s + 0.5s 0.3s 1.1s
4 8 6 s 1s + 1.3s 0.4s 2.2s
4 16 7.5s 2.5s + 3.7s 0.8s 6s
4 32 11.7s 7s + 9.3s 1.8s 20s
5 4 29.5s 5s + 18s 2s 44s
5 8 42.2s 17s + 57s 5s 155s
5 16 78s 65s + 180s 15s 563s
5 32 196s 244s + 592s 46s 2064s
6 4 186s 209s + > 128Mb 58s 3855s
6 8 335s 773s + > 128Mb 175s 14112s
6 16 875s 2999s + > 128Mb 552s 54703s
6 32 2312s 5652s + > 128Mb 1750s

This first comparison reveals that our method is faster that Gb+Realsolving,
but the more striking is that we are able to compute the same output as
Gb+Realsolving even faster than the computation of the grevlex Gröbner basis.
Moreover, in this case our result is deterministic since the number of solutions
found is equal to the Bézout number of the system.

8.3 Camera Calibration (Kruppa)

The original problem comes from [52] and has been introduced in computer
vision in [60]. It is composed of 5 equations in 5 variables. Each equation is a
difference of two products of two linear forms. The parameter h is the size of the
integers of the input system. The systems have 32 solutions. The comparisons
are as above, on the same machine.

Kronecker Gb + Realsolving Magma Magma
h grevlex grevlex lex
25 43s 18s + 36s 5s 118s
60 228s 195s + 716s 56s 2482s

8.4 Products of Linear Forms

The last example we give is not completely generic. We take 7 equations in 7
variables with integers coefficients of size 18, each equation is a product of two
linear forms minus a constant coefficient. The system has 128 solutions, the in-
tegers of the output have approximately 8064 decimal digits. The computations
have been done using a DEC Alpha EV56, 400 Mhz, 1024 Mb of MEDICIS.

Kronecker Gb grevlex Magma grevlex
5h ∞ 13.6h

It illustrates the good properties of the practical complexity of our approach.

45

References

[1] Magma. http://www.maths.usyd.edu.au:8000/u/magma/.

[2] Medicis. http://www.medicis.polytechnique.fr/.

[3] J. Abdeljaoued. Algorithmes rapides pour le Calcul du Polynôme Car-
actéristique. PhD thesis, Université de Franche-Comté, Besançon, France,
1997.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley, 1974.

[5] M. Almeida, L. D’Alfonso, and P. Solernó. On the degrees of bases of free
modules over a polynomial ring. Math. Zeitschrift, pages 1–24, 1998.

[6] M. E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. Zeroes, multi-
plicities and idempotents for zerodimensional systems. In Algorithms in
Algebraic Geometry and Applications. Proceedings of MEGA’94, volume
142 of Progress in Mathematics, pages 1–15. Birkhäuser, 1996.

[7] I. Armendáriz and P. Solernó. On the computation of the radical of poly-
nomial complete intersection ideals. In G. Cohen, M. Giusti, and T. Mora,
editors, Applied Algebra, Algebraic Algorithms and Error Correcting Codes.
Proceedings of AAECC-11, volume 948 of LNCS, pages 106–119. Springer,
1995.

[8] W. Baur and V. Strassen. The complexity of partial derivatives. Theoret.
Comp. Sci., 22:317–330, 1983.

[9] S. J. Berkowitz. On computing the determinant in small parallel time using
a small number of processors. Information Processing Letters, 18:147–150,
1984.

[10] D. Bini and V. Pan. Polynomial and matrix computations. Progress in
theoretical computer science. Birkhäuser Boston-Basel-Berlin, 1994.

[11] A. Borodin and J. Munro. The Computational Complexity of Algebraic and
Numeric Problems. Elsevier, 1972.

[12] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I:
The user language. J. Symbolic Computation, 24, 1997.

[13] J. Bunch and J. Hopcroft. Triangular factorization and inversion by fast
matrix multiplication. Math.Comp, (28):231–236, 1974.

[14] P. Bürgisser, M. Clausen, and M. A. Shokrolahi. Algebraic Complexity
Theory. Springer, 1997.

[15] L. Caniglia, A. Galligo, and J. Heintz. Borne simple exponentielle pour
les degrés dans le théorème des zéros sur un corps de caractéristique quel-
conque. C. R. Acad. Sci. Paris, 307:255–258, 1988.

[16] J. Cannon and C. Playoust. Magma: A new computer algebra system.
Euromath Bulletin, 2(1):113–144, 1996.

46

[17] J. Canny. Some algebraic and geometric problems in PSPACE. In Proceed-
ings 20 ACM STOC, pages 460–467, 1988.

[18] D. Castro, M. Giusti, J. Heintz, G. Matera, and L.M. Pardo. Data
structures and smooth interpolation procedures in elimination theory.
Manuscript of Facultad de Ciencias, Universitad Cantabria, Santander,
1999.

[19] A. L. Chistov and D. Y. Grigoriev. Polynomial-time factoring of multi-
variable polynomials over a global field. LOMI preprint E-5-82, Steklov
Institute, Leningrad, 1982.

[20] S. Collart, M. Kalkbrener, and D. Mall. Converting bases with the Gröbner
walk. Journal of Symbolic Computation, 24:465–469, 1997.

[21] D. Coppersmith and S. Winograd. Matrix multiplications via arithmetic
progression. In 19th ACM STOC, pages 1–6, 1987.

[22] L. Csanky. Fast parallel matrix inversion algorithms. SIAM Journal of
Computing, 5(4):618–623, 1976.

[23] J. Davenport, Y. Siret, and E. Tournier. Calcul formel. Systèmes et algo-
rithmes de manipulations algébriques. Masson, 1987.

[24] J. Dixon. Exact solution of linear equations using p-adic expansions. Nu-
mer. Math., 40:137–141, 1982.

[25] J.-C. Faugère. GB Reference Manual. LITP, 1995.
http://posso.ibp.fr/GB.html.

[26] J.-C. Faugère. GB: State of GB + tutorial. LITP, 1997.

[27] J.-C. Faugère and F. Rouillier. Mupad interface for gb/realsolving.
http://www.loria.fr/ rouillie/RSDoc/mupdoc/mupdoc.html, 1998.

[28] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329–344, 1993.

[29] C. M. Fiduccia. A rational view of the fast Fourier transform. In 25th
Allerton Conf. Comm., Control and Computing, 1987.

[30] W. Fulton. Intersection Theory. Number 3 in Ergebnisse der Mathematik.
Springer, second edition, 1984.

[31] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer
algebra. Kluwer Academic Publishers, 1994.

[32] P. Gianni and T. Mora. Algebraic solution of systems of polynomial equa-
tions using Gröbner bases. In Applied Algebra, Algebraic Algorithms and
Error Correcting Codes, Proceedings of AAECC-5, volume 356 of LNCS,
pages 247–257. Springer, 1989.

47

[33] M. Giusti, K. Hägele, J. Heintz, J. E. Morais, J. L. Montaña, and L. M.
Pardo. Lower bounds for Diophantine approximation. In Proceedings of
MEGA’96, number 117,118, pages 277–317. Journal of Pure and Applied
Algebra, 1997.

[34] M. Giusti and J. Heintz. La détermination des points isolés et de la di-
mension d’une variété algébrique peut se faire en temps polynomial. In
D. Eisenbud and L. Robbiano, editors, Computational Algebraic Geometry
and Commutative Algebra, volume XXXIV of Symposia Matematica, pages
216–256. Cambridge University Press, 1993.

[35] M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, and L. M. Pardo.
Straight-line programs in geometric elimination theory. J. of Pure and
App. Algebra, 124:101–146, 1998.

[36] M. Giusti, J. Heintz, J. E. Morais, and L. M. Pardo. When polynomial
equation systems can be solved fast ? In G. Cohen, M. Giusti, and T. Mora,
editors, Applied Algebra, Algebraic Algorithms and Error Correcting Codes,
Proceedings AAECC-11, volume 948 of LNCS, pages 205–231. Springer,
1995.

[37] M. Giusti, J. Heintz, J. E. Morais, and L. M. Pardo. Le rôle des struc-
tures de données dans les problèmes d’élimination. C. R. Acad. Sci. Paris,
325:1223–1228, 1997.

[38] M. Giusti, J. Heintz, and J. Sabia. On the efficiency of effective Nullstel-
lensätze. Computational Complexity, 3:56–95, 1993.

[39] Marc Giusti, Klemens Hägele, Grégoire Lecerf, Joël Marchand, and Bruno
Salvy. Computing the dimension of a projective variety: the projective
Noether Maple package. Journal of Symbolic Computation, 30(3):291–307,
September 2000.

[40] K. Hägele. Intrinsic height estimates for the Nullstellensatz. PhD thesis,
Universidad de Cantabria, Santander, 1998.

[41] K. Hägele and J. L. Montaña. Polynomial random test for the equivalence
problem of integers given by arithmetic circuits. Preprint 4/97 Depto.
Matemáticas, Universidad de Cantabria, Santander, Spain, January 1997.

[42] K. Hägele, J. E. Morais, L. M. Pardo, and M. Sombra. On the
intrinsic complexity of the arithmetic Nullstellensatz. In J. Heintz,
G. Matera, and R. Wachenschauzer, editors, Proceedings of TERA’97,
Córdoba, Argentina, September 1997. Universidad de Córdoba, Fa.M.A.F,
http://tera.medicis.polytechnique.fr/.

[43] J. Heintz. Definability and fast quantifier elimination in algebraically closed
fields. Theor. Comput. Sci., 24(3):239–277, 1983.

[44] J. Heintz. On the computational complexity of polynomials and bilinear
mappings. A survey. In Applied Algebra, Algebraic Algorithms and Error
Correcting Codes, Proceedings of AAECC-5, volume 356 of LNCS, pages
269–300. Springer, 1989.

48

[45] J. Heintz, G. Matera, and A. Waissbein. On the time-space complexity
of geometric elimination procedures. Manuscript of Universidad Favaloro,
Buenos Aires, Argentina, 1999.

[46] J. Heintz, M.-F. Roy, and P. Solernó. Sur la complexité du principe de
Tarski-Seidenberg. Bull. Soc. Math. de France, 118:101–126, 1990.

[47] H. Kobayashi, T. Fujise, and A. Furukawa. Solving systems of algebraic
equations by general elimination method. J. of Symb. Comp., 5:303–320,
1988.

[48] J. König. Einleitung in die allgemeine Theorie der algebraischen Gröszen.
Druck und Verlag von B. G. Teubner, Leipzig, 1903.

[49] T. Krick and L. M. Pardo. Une approche informatique pour l’approximation
diophantienne. C. R. Acad. Sci. Paris, 318(1):407–412, 1994.

[50] T. Krick and L. M. Pardo. A computational method for Diophantine ap-
proximation. In L. González-Vega and T. Recio, editors, Algorithms in
Algebraic Geometry and Applications. Proceedings of MEGA’94, volume
143 of Progress in Mathematics, pages 193–254. Birkhäuser Verlag, 1996.

[51] L. Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen
Grössen. J. reine angew. Math., 92:1–122, 1882.

[52] E. Kruppa. Zur Ermittlung eines Objektes aus zwei Perpesktiven mitin-
nerer Orientierung. Sitz.-Ber. Akad. Wiss., Wien. Math. Naturw. Kl., 1913.

[53] E. Kunz. Introduction to Commutative Algebra and Algebraic Geometry.
Birkhäuser Verlag, 1985.

[54] Y. N. Lakshman and D. Lazard. On the complexity of zero-dimensional
algebraic systems. In Effective methods in algebraic geometry, volume 94
of Progress in Mathematics, pages 217–225. Birkhäuser, 1991.

[55] G. Lecerf. Kronecker, a package for Magma for polynomial system solving.
UMS MEDICIS, Laboratoire GAGE,
http://www.gage.polytechnique.fr/˜lecerf/software/kronecker, 1999.

[56] U. J. J. Leverrier. Sur les variations séculaires des éléments elliptiques des
sept planètes principales: Mercure, Vénus, la terre, Mars, Jupiter, Saturne
et Uranus. J. Math. Pures Appli., 4:220–254, 1840.

[57] T. Lickteig and M.-F. Roy. Sylvester-Habicht sequences and fast Cauchy
index computation. In Calcolo 33, pages 337–371, 1996.

[58] F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge
University Press, 1916.

[59] G. Matera. Sobre la complejidad en espacio y tiempo de la eliminación
geométrica. PhD thesis, Universidad de Buenos Aires, Argentina, 1997.

[60] S. Maybank and O. Faugeras. A theory of self-calibration of a moving
camera. International Journal of Computer Vision, 8(2):123–151, 1992.

49

[61] R. Moenck and A. B. Borodin. Fast computation of GCD’s. In 5th Annual
ACM Symposium on Theory of Computing, pages 142–151, 1973.

[62] J. E. Morais. Resolución eficaz de sistemas de ecuaciones polinomiales.
PhD thesis, Universidad de Cantabria, Santander, Spain, 1997.

[63] H. J. Nussbaumer. Fast polynomial transform algorithms for digital con-
volutions. IEEE Transactions on Acoustic, Speech and Signal Processing,
28:205–215, 1980.

[64] L. M. Pardo. How lower and upper complexity bounds meet in elimination
theory. In G. Cohen, M. Giusti, and T. Mora, editors, Applied Algebra,
Algebraic Algorithms and Error Correcting Codes, Proceedings of AAECC-
5, volume 948 of Lecture Notes in Computer Science, pages 33–69. Springer,
Berlin, 1995.

[65] J. Renegar. On the computational complexity and geometry of the first-
order theory of the reals. Part I. Journal of Symbolic Computation,
13(3):255–299, March 1992.

[66] F. Rouillier. Algorithmes efficaces pour l’étude des zéros réels des systèmes
polynomiaux. PhD thesis, Université de Rennes I, may 1996.

[67] F. Rouillier. Solving zero-dimensional systems through the rational uni-
variate representation. Journal AAECC, 6:353–376, 1996.

[68] J. Sabia and P. Solernó. Bounds for traces in complete intersections and
degrees in the Nullstellensatz. Journal AAECC, 6:353–376, 1996.

[69] A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta
Informatica, (1):139–144, 1971.

[70] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2. Act. Inf, (7):395–398, 1977.

[71] A. Schönhage and V Strassen. Schnelle Multiplikation großer Zahlen. Com-
puting, (7):281–292, 1971.

[72] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM, 27(4):701–717, October 1980.

[73] M. Sieveking. An algorithm for division of power series. Computing, 10:153–
156, 1972.

[74] S. Smale. The fundamental theorem of algebra and complexity theory.
Bulletin of the Amer. Math. Soc., (4):1–36, 1981.

[75] S. Smale. Algorithms for solving equations. In Proceedings of the Inter-
national Congress of Mathematicians, pages 172–195, Berkeley, California,
USA, 1986.

[76] H.-J. Stoß. On the representation of rational functions of bounded com-
plexity. Theo. Comp. Sci.., 64:1–13, 1989.

[77] V. Strassen. Berechnung und Programm. I, II. Acta Informatica, 1(4):320–
355; ibid. 2(1), 64–79 (1973), 1972.

50

[78] V. Strassen. Die Berechnungskomplexität von elementarysymmetrischen
Funktionen un von Interpolationskoeffizienten. Num. Math., (20):238–251,
1973.

[79] TERA Development Group. A (hopefully) efficient polynomial equation
system solver. Manuscript 57 pages, gmatera@mate.dm.uba.ar, 1998.

[80] The MuPAD Group, Benno Fuchssteiner et al. MuPAD User’s Manual -
MuPAD Version 1.2.2. John Wiley and sons, Chichester, New York, first
edition, march 1996.

[81] W. Vogel. Results on Bézout’s Theorem. Tata Institute of Fundamental
Research. Springer, 1984.

[82] J. von zur Gathen. Parallel arithmetic computations: a survey. In
B. Rovan J. Gruska and J. Wiedermann, editors, Proceedings of the 12th
Symposium on Mathematical Foundations of Computer Science, volume 233
of LNCS, pages 93–112, Bratislava, Czechoslovakia, August 1986. Springer.

[83] P. Wadler. Deforestation: transforming programs to eliminate trees. Theo-
retical Computer Science, 73:231–248, 1990. Special issue of selected papers
from 2nd ESOP.

[84] V. Weispfenning and T. Becker. Groebner bases: a computational approach
to commutative algebra, volume 141 of Graduate Texts in Mathematics:
readings in mathematics. Springer, 1993.

[85] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings
EUROSAM’ 79, number 72 in LNCS, pages 216–226. Springer, 1979.

[86] R. Zippel. Effective Polynomial Computation. ECS 241. Kluwer Academic
Publishers, 1993.

51

