
E Iements 0P 
I earn grcarly honored to rexivc 
this award, bearing the name of Alan 
Turing. Perhaps Turing would be 
pleased that it should go to someone 
educated at his old college, King’s 
College at Cambridge. While there 
in 1956 I wrote my first computer 
program; it was on the EDSAC. Of 
course EDSAC made history. But I 
am ashamed to say it did not lure 
me into computing, and I ignored 
computers for four years. In 1960 
I thought that computers might 
be more peaceful to handle than 
schoolchildren-l was then a 
teacher-so I applied for a job at 
Ferranti in London, at the time of 
Pegasus. I was asked at the interview 
whether I would like to devote my life 
to computers. This daunting notion 
had never crossed my mind. Well, 
here I am still, and I have had the 
lucky chance to grow alongside corn- 
puter science. 

This award gives an unusual 
opportunity, and I hope a license, to 
reflect on a line of research from a 
personal point ofview. I thought I 
should seize the opportunity, because 
among my interests there is one 
thread which has preoccupied me 
for 20 years. Describing this kind of 
experience can surely yield insight, 
provided one remembers that it is 
a personal thread; science is woven 
from many such threads and is all the 
stronger when each thread is hard 
to trace in the finished fabric. 

The thread which I want to pick 
up is the semantic basis of concur- 
rent computation. I shall begin by 
explaining how I came to see that 
concurrency requires a fresh ap- 
proach, not merely an extension 
of the repertoire of entities and con- 

structions which explain sequential 
computing. Then I shall talk about 
my efforts to fmd basic construe- 
tions for concurrency, guided by 
experience with sequential seman- 
tics. This is the work whichled 
to a Calculus for Communicating 
Systems (CCS). At that point I 
shall briefly discuss the extent to 
which these constructions may be 
understood mathematically, in the 
way that sequential computing may 
be understood in terms offunctions. 
Finally, I shall outline a new basic 
calculus for concurrency; it gives 
prominence to the old idea of namzn~ 
or reference, which has hitherto been 
treated as a second-class citizen by 
theories ofcomputing. 

I make a disclaimer. I reject the 
idea that there can be a unique con- 
ceptual model, or one preferred for- 
malism, for all aspects of something 
as large as concurrent computation, 
which is in a sense the whole of our 
subject-containing sequential com- 
puting as awell-behaved special area. 
We need many leue.& ofexplanation. 
many different languages, calculi, 
and theories for the different spe- 
cialisms. The applications are 
various: the flow of information in an 
insurance company, network com- 
munications, the real-time com- 
munication among in-flight control 
computers, concurrency control in 
a database, the behavior of parallel 
object-oriented programs, the 
semantic analysis ofvariables in 
concurrent logic programming. 
We surely do not expect the terms 
of discussion and analysis to be 
the same for all of these. 

But there is a complementary claim 
to make, and it is this: Computer 

scientists, as all scientists, seek a COIII- 
mon framework in which to link and 
to organize many levels ofexpla- 
nation; moreover, this common 
framework must be semantic, since 
our explanations (including pro- 
grams) are typically in formal 
language--and often in a mixture 
of formalisms, to deal with the large 
heterogeneous systems which are our 
business. For the much smaller world 
of sequential computation, a com- 
mon semantic framework is founded 
on the central notion of a mathematical 

junction and is formally expressed 
in a functional calculus-ofwhich 
Alonzo Church’s ~-calculus is the 
famous prototype. Functions are 
an essential ingredient of the air we 
breathe, so to speak, when we discuss 
the semantics of sequential program- 
ming. But for concurrent program- 
ming and interactive systems 
in general, we have nothing 
comparable. 

So where do we find the semantic 
ingredients for concurrency, or how 
can we distill them? It is an ambitious 
goal because, as I said earlier, con- 
currency is ubiquitous. I believe that 
the right ideas to explain concurrent 
computing will only come from a 
dialectic between models from logic 
and mathematics and a proper distil- 
lation of a practical experience. 

I conduct a piece of the dialectic. 
I try to reconcile the antithesis-for 
it does seem to be one-between two 
things: on the one hand, the purity 
and simplicity exemplified by the 
calculus of functions and, on the 
other hand, some vay concrete ideas 
about concurrency and interaction 
suggested by programming and the 
realities ofcommunication. 
























