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Abstract. In the literature there are several CCS-like process calculi, or CCS variants, differing in the
constructs for the specification of infinite behavior and in the scoping rules w.r.t. channel names. In this
paper we study various representatives of these calculi based upon both their relative expressiveness
and the decidability of divergence (i.e., the existence of a divergent computation). We regard any two
calculi as being equally expressive iff for every process in each calculus, there exists a weakly bisimilar
process in the other.
By providing weak bisimilarity preserving mappings among the various variants, we show that in the
context of relabeling-free and finite summation calculi: (1) CCS with parameterless (or constant) defi-
nitions is equally expressive to the variant with parametric definitions. (2) The CCS variant with repli-
cation is equally expressive to that with recursive expressions and static scope. We also state that the
divergence problem is undecidable for the calculi in (1) but decidable for those in (2). We obtain this
from previous (un)decidability results and by showing the relevant mappings to be computable and to
preserve divergence and its negation. From (1) and the well-known fact that parametric definitions can
replace injective relabelings, we show that injective relabelings are redundant (i.e., derived) in CCS
(which has constant definitions only).

1 Introduction

The study of concurrency is often conducted with the aid of process calculi. Undoubtedly CCS
[8], a calculus for synchronous communication, remains as a standard representative. In fact, many
foundational ideas in the theory of concurrency have grown out of this calculus.

Nevertheless, there are several variants of CCS, or CCS-like calculi, in the literature. This is
reasonable as a variant may simplify the presentation of the calculus or be tailored to specific
applications. Given two variants, a legitimate question is whether they are equally expressive. To
answer this question one has to agree on what it means for one variant to be as expressive as the
other. A natural way of doing this in CCS is by comparing w.r.t. some standard process equivalence
such as (weak) bisimilarity: If for every process P in one variant there is a Q in the other variant
such that Q is (weakly) bisimilar to P then we say that the latter variant is at least as expressive
as the former. Another legitimate question, given a variant, is whether some fundamental property
such as divergence (i.e., the existence of divergent computations) becomes simpler or harder to
analyze.

In this paper, we study both the relative expressiveness w.r.t. weak bisimilarity and the decid-
ability of divergence for various CCS-like calculi. We shall focus upon two sources of variation
found in the CCS literature: The constructs used to express infinite behavior and the way in which
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scoping of channel (port) names is dealt with. As for the constructs for finite behavior, in all the
calculi we confine our attention to prefix, finite sums, restriction, and parallel composition. The
calculi here studied can be described as follows:

– CCSk: Infinite behavior is given by a finite set of constant (i.e., parameterless) definitions of
the form A

def= P. The calculus is essentially CCS [8] without neither relabeling nor infinite
summations.

– CCSp: Like CCSk but using parametric definitions of the form A(x1, . . . , xn) def= P. The
calculus is the variant in [9], Part I.

– CCS!: Infinite behavior given by replication of the form !P. This variant is presented in [3].
– CCSµ: Infinite behavior given by recursive expressions of the form µX.P as in [8]. However,
we adopt static scoping of channel names in the sense discussed in [5].

In particular, we show that (1) CCSk is exactly as expressive as CCSp while (2) CCSµ is
exactly as expressive as CCS!. We use recent work by Busi et al. [3] to also state that (3) the
divergence problem is undecidable for the calculi in (1) but decidable for those in (2). The results
(1-3) are summarized in Figure 1.

Also, as a consequence of (1), we prove that (4) injective relabelings, from the expressiveness
point of view, are redundant operators in CCS. More precisely, the behavior of any CCS process
involving relabelings (all of them being injective) can be expressed up to strong bisimilarity by
a CCSk process. Furthermore, we also illustrate that CCSk exhibits dynamic scoping of channel
names and that it does not satisfy α-conversion. By dynamic scoping we mean that, unlike the
static case, the occurrence of a name can get dynamically (i.e., during execution) captured under
a restriction.

Let us now elaborate on the significance and implications of the above results. A noteworthy
aspect of (1) is that any finite set of parametric (possibly mutually recursive) definitions can be
replaced by an also finite set of parameterless definitions using neither infinite summations nor
relabelings. This arises as a result of the restricted nature of communication in CCS (e.g., absence
of mobility). Related to this result is that of [8] which shows that, in the context of value-passing
CCS, a parametric definition can be encoded using an infinite set of constant definitions and infinite
sums.

Regarding (1) some readers may feel that given a process P with a parametric definition D,
one could simply create as many constant definitions as permutations of possible parameters w.r.t.
the finite set of names in P and D. This would not work for CCSp; an unfolding of D within
a restriction may need α-conversions to avoid name captures, thus generating new names (i.e.,
names not in P nor D) during execution.

The interesting point about (4) is that injective relabelings are perhaps the most used kind of
relabelings (e.g., injective relabelings are used in [8] to define linking operators, buffers, counters
and stacks). In fact, [8] points out that the CCS laws for equational reasoning with injective rela-
belings as side conditions can usually be applied as one mostly works with this kind of relabeling.
In the context of SCCS, another CCS variant where interaction is synchronous, idempotent rela-
belings are known to be redundant [7]. In fact, under some natural assumptions, the same holds
for general relabelings in SCCS.

Another noteworthy aspect of our results is the quality distinction between static and dynamic
name scoping for the calculi under consideration. Static scoping renders the calculus decidable
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CCSp CCSk

Undecidable

CCS! CCSµ

Decidable

Fig. 1. Classification of CCS variants. An arrow from X to Y indicates that Y is at least as expressive as X.
(Un)decidability is understood w.r.t. the existence of divergent computations

(w.r.t. the divergence problem) and as expressive as that with replication. In contrast, dynamic
scoping renders the calculus undecidable and as expressive as that with parametric definitions.
This is interesting, since as we shall see, the difference between the calculi with static or dynamic
scoping is very subtle. Using static scoping for recursive expressions was discussed in the context
of ECCS [5], an extension of CCS whose ideas lead to the design of the π-calculus [9].

It should be noticed that preservation of divergence is not a requirement for equality of expres-
siveness; weak bisimilarity does not preserve divergence. Hence, although the results in [3] prove
that divergence is decidable for CCS! (and undecidable for CCSp), it does not follow directly from
the arrows in Figure 1 that it is also decidable for CCSµ.

Finally, it is worth pointing out that, as exposed in [6], decidability of divergence does not
imply lack of Turing expressiveness. In fact the authors in [2] show that CCS! is Turing-complete.
But this does not imply that CCS! is equally expressive to CCSp either; the notions of expressive-
ness used in concurrency theory may not coincide with those in computability. For example, [10]
shows that under some reasonable assumptions the asynchronous version of the π-calculus, which
can certainly encode Turing Machines, is strictly less expressive than the synchronous one.

Overall, the general contribution of this paper is to provide and clarify some qualitative and
semantics distinctions among various CCS variants.

2 CCS-like Calculi

We shall classify CCS-like calculi that differ in their way of specifying infinite behavior and name
scope. Let us begin with their common finite fragment.

In CCS, processes can perform actions or synchronize on them. These actions can be either
offering port names for communication, or the so-called silent action τ.We presuppose a countable
set N of port names, ranged over by a, b, x, y . . . and their primed versions. We then introduce a
set of co-names N = {a | a ∈ N} disjoint from N . The set of labels, ranged over by l and l′, is
L = N ∪ N . The set of actions Act , ranged over by α and β, extends L with a new symbol τ.
Actions a and a are thought of as complementary, so we decree that a = a. We also decree that
τ = τ .

The processes specifying finite behavior are given by:

P,Q . . . ::=
∑

i∈I αi.Pi | P\a | P ‖ Q (1)

Intuitively
∑

i∈I αi.Pi, where I is a finite set of indexes, represents a process able to perform one–
but only one–of its αi’s actions and then behave as the corresponding Pi. We write the summation
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as 0 if |I| = 0, and drop the “
∑

i∈I” if |I| = 1. The restriction P\a behaves as P except that it
can offer neither a nor ā to its environment. The names a and ā in P are said to be bound in P\a.
The bound names of P , bn(P ), are those with a bound occurrence in P , and the free names of P ,
fn(P ), are those with a not bound occurrence in P . Finally, P ‖ Q represents parallelism; either
P or Q may perform an action, or they can also synchronize when performing complementary
actions.

The above description is made precise by the operational semantics in Table 1. A transition
P

α−→ Q says that P can perform α and evolve into Q.

SUM P
i∈I αi.Pi

αj−→ Pj

if j ∈ I RES
P

α−→ P ′

P\a α−→ P ′\a
if α $∈ {a, a}

PAR1
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

PAR2
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′ COM

P
l−→ P ′ Q

l−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

Table 1. An operational semantics for finite processes

In the literature there are at least four alternatives to extend the above syntax to express infinite
behavior. We describe them next.

2.1 Parametric Definitions: CCSp

A common way of specifying infinite behavior is by using parametric definitions [9]. In this case
we extend the syntax of finite processes (Equation 1) as follows:

P,Q, . . . := . . . | A(y1, . . . , yn) (2)

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We assume that every such
an identifier has a unique, possibly recursive, definition A(x1, . . . , xn) def= PA where the xi’s
are pairwise distinct, and the intuition is that A(y1, . . . , yn) behaves as its body PA with each yi

replacing the formal parameter xi. We denote by D the set of all definitions. We often use the
notation x as an abbreviation of x1, x2, . . . , xn.

Convention 1 (Finitary D) Similar to [12], we shall require any process to depend only on finitely
many definitions. Below we formalize this requirement.

Given A(x) def= PA and B(y) def= PB in D, we say that A (directly) depends on B, written
A ! B, if there is an invocation B(z) in PA. The above requirement can be then formalized by
requiring the strict order induced by !∗ (the reflexive and transitive closure of !)1 to be well
founded. We also stipulate the following requirement.

Convention 2 For each A(x1, . . . , xn) def= PA, we require fn(PA) ⊆ {x1, . . . , xn}.
1 The relation!∗ is a preorder. By induced strict order we mean the strict component of!∗ modulo the equivalence
relation obtained by taking the symmetric closure of!∗.
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We shall use CCSp to denote the calculus with parametric definitions with the above syntactic
restrictions. The rules for CCSp are those in Table 1 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn] α−→ P ′

A(y1, . . . , yn) α−→ P ′
if A(x1, . . . , xn) def= PA (3)

As usual P [y1 . . . yn/x1 . . . xn] results from syntactically replacing every free occurrence of xi
with yi renaming bound names, i.e., performing name α-conversion, wherever needed to avoid
capture. It follows from [9] that in CCSp we can identify process expressions obtained by re-
naming bound names (so P\a is the same as P [b/a]\b). We then say that CCSp satisfies name
α-equivalence .

2.2 Constant Definitions: CCSk

We now consider the alternative for infinite behavior given in CCS [8]. We refer to identifiers
with arity zero and their corresponding definitions as constant and constant (or parameterless)
definitions, respectively. We omit the “( )” in A( ).

Given A
def= P , requiring all names in fn(P ) to be formal parameters, as we did in CCSp

(Convention 2), would be too restrictive—P would not have visible actions. Consequently, let us
drop the requirement in Convention 2 to consider a fragment allowing only constant definitions
but with possible occurrence of free names in their bodies. The rules for this fragment, which we
call CCSk, are simply those of CCSp. In this case Rule CALL (which for CCSk we prefer to call
CONS) takes the form

CONS
PA

α−→ P ′

A
α−→ P ′

if A
def= PA (4)

i.e., no α-conversion involved; thus allowing name captures. As illustrated in the next section, this
causes scoping to be dynamic and α-equivalence not to hold.

Relabelings. The reader familiar with process algebras may have noticed that CCSk is basically
CCS except for the absence of relabeling. A relabeling f : Act → Act is the identity for all but
finitely many actions. Furthermore, f satisfies f(a) = f(a), f(a) '= τ and f(τ) = τ . For each
action α performed by P , the relabeled process P (f) executes f(α).More precisely:

REL P
α−→ P ′

P (f)
f(α)−→ P ′(f)

Remark 1. It is well known that the behavior specified by any process involving only injective
relabelings can be equivalently specified (up to strong bisimilarity) by a relabeling-free process
with the help of parametric definitions [11]. This is important since, as pointed out in [8], one
usually works with injective relabelings. ()
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2.3 Recursion Expressions: CCSµ

Hitherto we have seen process expressions whose recursive behaviors are specified by an under-
lying set of definitions. It is often convenient, however, to have expressions which can specify
recursive behavior on their own. Let us now extend our set of finite processes (Equation 1) with
such recursive expressions:

P,Q, . . . := . . . | X | µX.P (5)

Here µX.P binds the occurrences of the process variable X in P . As for bound and free
names, we define the bound variables of P , bv(P ) are those with a bound occurrence in P , and the
free variables of P , fv(P ) are those with a not bound occurrence in P . An expression generated
by the above syntax is said to be a process (expression) iff it is closed (i.e., it contains no free
variables). The process µX.P behaves as P with the free occurrences of X replaced by µX.P
applying variable α-conversions wherever necessary to avoid captures. The semantics µX.P is
given by the rule:

REC
P [µX.P/X] α−→ P ′

µX.P
α−→ P ′ (6)

We call CCSµ the resulting calculus. From [5] it follows that in CCSµ we can identify pro-
cesses up to name α-equivalence. Furthermore, we make a typical assumption on CCSµ process
variables; they need to be guarded. We say that an expression is guarded in P iff it lies within
some sub-expression of P of the form α.Q.

Convention 3 (Guarded Recursion) We shall confine ourselves to CCSµ processes where all
variables are guarded.

Static and Dynamic Scope. An interesting issue regarding expression P [µX.P/X] (cf. rule REC)
is whether bound names in P should be renamed to avoid captures (i.e., name α-conversion). Such
a requirement seems necessary should we want to identify processes up to α-equivalence. In fact,
the requirement gives CCSµ static scoping of names. Let us illustrate this with an example.

Example 1. Consider µX.P with P = (a ‖ (a.b ‖ X)\a). First, let us assume we perform name
α-conversions to avoid captures. So, [µX.P/X] in P renames the bound a by a fresh name, say c,
thus avoiding the capture of P′s free a in the replacement: I.e,

P [µX.P/X] = (a ‖ (c̄.b ‖ µX.P )\c) = (a ‖ (c̄.b ‖ µX.(a ‖ (a.b ‖ X)\a))\c)

The reader may care to verify (using the rules in Table 1 plus Rule REC) that b will not be per-
formed; i.e., there is no µX.P

α1−→ P1
α2−→ . . . s.t. αi = b.

Now let us assume that the substitution makes no name α-conversion. This causes a free oc-
currence of a in P (indicated by the dashed circle) to get bound, dynamically, in the scope of the
outermost restriction: I.e.,

P [µX.P/X] = (a ‖ (ā.b ‖ µX.P )\a) = (a ‖ (ā.b ‖ µX.( a ‖ (a.b ‖ X)\a))\a).
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The reader can verify that, in this case, b may eventually be performed. Such an execution of b
cannot be performed by µX.Q where Q is (a ‖ (c.b ‖ X)\c) i.e, P with the binding and bound
occurrence of a syntactically replaced with c. This shows that name α-equivalence does not hold
when dynamic scoping is used. ()

Remark 2. It should be pointed out that using recursive expressions with no name α-conversion is
in fact equivalent to using instead constant definitions as in the previous calculus CCSk. In fact, in
presenting CCS, [8] uses alternatively both kinds of constructions: using Rule REC, with no name
α-conversion, for one and Rule CONS for the other. For example, by taking A

def= P with P as in
Example 1 one can verify that, in CCSk, A exhibits exactly the same dynamic scoping behavior
illustrated by the above example. So, name α-equivalence does not hold in CCS (exposing yet
another semantic difference between CCS and the π-calculus as the latter uses static scoping and
satisfies α-equivalence). ()

2.4 Replication: CCS!
One simple way of expressing infinite behavior is by using replication. Although mostly found in
calculi for mobility, replication has also been studied in the context of CCS [3, 2]. In this case the
syntax of finite processes (Equation 1) is extended with:

P,Q, . . . := . . . | !P (7)

Intuitively !P behaves as P ‖ P ‖ . . . ‖ P ‖ !P ; as many copies of P as you wish. We call CCS!
the calculus that results from the above syntax. The operational rules for CCS! are those in Table
1 plus the following rule:

REP
P ‖ !P α−→ P ′

!P α−→ P ′ (8)

From [9] we know that CCS! processes can be identified under α-equivalence.

2.5 Summary of Calculi

We described several calculi based on the literature of CCS. We have CCSp the calculus with
parametric definitions and CCSk the calculus with constant (or parameterless) definitions. We also
have CCSµ, the statically scoped calculus with recursive expressions—the dynamically scoped
version instead coincides with CCSk. Finally, we have the calculus with replication, CCS!.

Convention 4 Henceforth, we useΣ to denote the signature {p,k, µ, !} of our calculi sub-indexes.
We shall use σ,σ′, . . . to range over Σ. In the following sections, we shall index sets and relations
with the appropriate symbol from Σ to make explicit the calculus under consideration. For ex-
ample, α−→σ represents a transition of CCSσ. Similarly, we shall use Procσ to denote the set of
CCSσ processes. However, we may omit the indexes when these are unimportant or clear from
the context.

3 Expressiveness and Classification Criteria

Here we introduce the means we shall use to compare and classify the various calculi.
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Comparing Calculi: Bisimilarity. We wish to compare the behavior of two given processes P
and Q w.r.t. the standard notion of (weak) bisimilarity [8]. However, P and Q may belong to two
different calculi, say CCSσ and CCSσ′ . We then find it convenient to state the standard notion as
below. First, recall that the converse of a binary relation S is S−1 = {(e′, e) | (e, e′) ∈ S}.

Definition 1 (Bisimilarity). A relation S ⊆ Procσ × Procσ′ , with σ,σ′ ∈ Σ, is said to be a
(strong) simulation iff for all (P,Q) ∈ S:

whenever P
α−→σ P ′ then, for some Q′, Q

α−→σ′ Q′ and (P ′, Q′) ∈ S.

The relation S is called a (strong) bisimulation if both S and its converse are simulations. Fur-
thermore, we say that P ∈ Procσ and Q ∈ Procσ′ are strongly bisimilar (w.r.t., σ and σ′), written
P ∼σ′

σ Q (or simply P ∼ Q), iff there exists a bisimulation S ⊆ Procσ × Procσ′ , such that
(P,Q) ∈ S . The relation ∼ is called (strong) bisimilarity. ()

Let us now recall the weaker notion of bisimilarity which abstracts away from silent (i.e., τ )
actions. We need some little notation. Define s=⇒,with s = α1.α2. . . . ∈ L∗, as ( τ−→)∗ α1−→ ( τ−→
)∗ . . . ( τ−→)∗ αn−→ ( τ−→)∗. The notions ofweak (bi)simulation and weak bisimilarity can be derived
from the strong versions by replacing in Definition 1 α−→ and ∼ with s=⇒ and ≈, respectively (cf.
[8, §7.1]). We can now make precise our criterion for expressiveness.

Definition 2. We say that CCSσ is as expressive as CCSσ′ iff for every P ∈ Procσ, there exists
Q ∈ Procσ′ such that P and Q are weakly bisimilar (w.r.t. σ and σ′). ()

To prove equivalence on expressiveness, we shall provide (weak) bisimulation preservingmap-
pings [[·]], which we call encodings, from the processes of one calculus into the processes of an-
other. Some encodings will be chosen to preserve one further property: divergence. It should be
noticed that unlike strong bisimulation, weak bisimulation identifies some divergent processes
with non-divergent ones. Let us formalize the notion of divergence.

Definition 3. We say that P is divergent (or that it diverges) iff P ( τ−→)ω , i.e., there exists an
infinite sequence P = P0

τ−→ P1
τ−→ . . .. ()

Classifying Calculi: Decidability of Divergence. We shall classify the various calculi according
to whether divergence is decidable for the calculus. By divergence being decidable for CCSσ, we
mean that there exists an algorithm which can fully determine, given P ∈ Procσ, whether P is
divergent.

4 Encodings

In this section we give the various encodings. Furthermore, in order to classify the calculi w.r.t.
to the decidability of divergence, we shall also prove the relevant encodings to be divergence-
preserving and computable.
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4.1 Encoding CCSp into CCSk

Here we give an encoding [[·]] : CCSp → CCSk. For the sake of presentation, we consider only
unary parametric definitions. The encoding can be easily generalized to the n-ary case by extend-
ing our concepts and definitions from names to vector of names.

First we need some notation and assumptions. For simplicity and w.l.o.g we assume there is a
definition of the form MP (x) def= P ∈ DP with MP not occurring in P and DP being the finite
set of definitions arising from the identifiers in P—think of MP as the “main” procedure of P .
Formally, DP is the set of definitions for the identifiers in the closure under ! of {MP } (See
Convention 1). For the time being, let P̂ be simply the process in CCSk that results from replacing
in P each occurrence of B(y) with By .

We shall simply define [[P ]] = M̂P (x). Of course we also need to specify the set [[DP ]] of
(constant) definitions induced by [[P ]]—i.e, D[[P ]].

Intuitively, [[DP ]] is the set computed fromDP as follows: Initially [[DP ]] is empty. (I) Start by
adding a constant definition MP

x
def= P̂ to [[DP ]]. Notice that P̂ may contain occurrences of some

By, which corresponds to someB(y),within P whereB(x) def= PB . Then (II) addBy
def= ̂PB [y/x]

to [[DP ]]. However, the substitution [y/x] may involve an α-conversion introducing some new
(or fresh) name, say z. Hence, there could also be some identifier Cz within ̂PB [y/x], where
C(x) def= PC . Similarly, there could also be identifiers C′

w, with C ′(x) def= PC′ , within ̂PB [y/x]
where w is a name already occurring in PB (i.e., unlike z, the name w does not result from α-
conversion). Hence, we need to go back to step (II) thus adding to [[DP ]] both Cz

def= P̂C [z/x] and
C ′

w
def= ̂PC′ [w/x]. We repeat (II) until no more new definitions can be added to [[DP ]]. Despite

the generation of identifiers of the form Cz with z fresh (i.e. resulting from α-conversion) we shall
show that such a set of definitions [[DP ]] can be computed.

For soundness and technical purposes, we want ·̂ to be invariant under name α-equivalence.
Consequently, we find it convenient to redefine ·̂ as below. The intuition of our approach, however,
remains the same.

Definition 4. The function ·̂ : CCSp → P(CCSk) is inductively defined over the structure of its
parameter:

P̂ =






{0} if P = 0
{α.Q | Q ∈ P̂ ′} if P = α.P ′

{Q1 ‖ Q2 | Qi ∈ P̂i , i = 1, 2} if P = P1 ‖ P2

{Σi∈Iαi.Qi | Qi ∈ P̂i , i ∈ I} if P = Σi∈Iαi.Pi

{Q\β | ∃P ′ ∈ Procp . P ≡α P ′\β ∧ Q ∈ P̂ ′} if P = P ′′\α
{Ay} if P = A(y).

Example 2. If P = a.b.0 + B(b) then P̂ is the singleton {a.b.0 + Bb}. ()

Example 3. If P = (z.x.0 ‖ x.0 ‖ A(z))\z then P̂ contains (among many others) the elements
(z.x.0 ‖ x.0 ‖ Az)\z and (y.x.0 ‖ x.0 ‖ Ay)\y. ()
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Remark 3. The definition of ·̂ is invariant under α-conversions. More generally, it can be shown
that P ≡α Q iff P̂ = Q̂. ()

We now define [[P ]] which requires specifying the set [[DP ]] of (constant) definitions induced
by [[P ]].

Definition 5. Given a process P ∈ CCSp with associated definition set DP , an encoding of P
in CCSk is defined as the CCSk constant MP

x (called [[P ]]) together with an underlying set of
definitions [[DP ]], satisfying the following two conditions:

(I) [[DP ]] contains a definition (MP
x

def= P0) for some P0 ∈ P̂ .
(II) If (Ay

def= QA) ∈ [[DP ]], Bz occurs in QA and (B(x) def= PB) ∈ DP , then there is QB ∈
̂PB [z/x] s.t. (Bz

def= QB) ∈ [[DP ]].

We understand a set of definitions to contain at most one definition per process constant. A set of
definitions satisfying conditions (I) and (II) is called an encoding set. ()

Observe that, according to the definition, there are (infinitely) many encodings for a given
process P . Not only can an encoding be extended with definitions and still remain an encoding,
but also condition (II) allows for many different definitions for constant Bz . If, say, QB, Q′

B ∈
̂PB [z/x], then an encoding [[DP ]] may contain either the definition Bz

def= QB or the definition
Bz

def= Q′
B (but not both).

The following lemma characterizes the shape of minimal encoding sets2.

Lemma 1. Given an encoding set [[DP ]], the set D = {(Ay
def= QA) ∈ [[DP ]] | QA ∈ P̂A[y/x]},

is an encoding set (included in [[DP ]]).

Proof. D contains all the definitions from [[DP ]] required by conditions (I) and (II). ()

Recall that DP contains finitely many definitions. We shall show that an encoding can be
effectively constructed (so that the resulting set of definitions [[DP ]] is also finite). First let us
illustrate the construction with the following example.

Example 4. Let P = A(x) with DP = {A(x) def= (z.x.0 ‖ x.0 ‖ A(z))\z}. We proceed to
define an encoding by constructing a set [[DP ]] so that it satisfies conditions (I) and (II). To satisfy
condition (I), letMP

x
def= (z.x.0 ‖ x.0 ‖ Az)\z ∈ [[DP ]]. Then, condition (II) requires a definition

such as: Az
def= (z1.z.0 ‖ z.0 ‖ Az1)\z1 ∈ [[DP ]]. Notice that due to α-conversion in equation Az

we have obtained a new name z1 and hence we have to give a new definition for Az1 . Of course
because of the α-conversion we could have chosen another fresh name z2, but that would only lead
to a different but equally useful encoding. Using condition (II) again: Az1

def= (z.z1.0 ‖ z1.0 ‖
Az)\z ∈ [[DP ]], and we are done; no other definition needs to be added to [[DP ]] . It is easy to
check that the resulting set satisfies conditions (I) and (II), and therefore constitutes an encoding
of P in CCSk. ()
2 See Corollary 3 in the Appendix for a proof of existence of minimal encoding sets.

10



We now show that for any P , one can compute an encoding set [[DP ]].

Theorem 1. For any P ∈ CCSp with a finite set DP of associated definitions, one can effectively
construct an encoding set [[DP ]].

Proof. Let Var(DP ) be the set of all the names occurring in DP . For each A(x) def= PA ∈ DP

and each y ∈ Var(DP ), choose a Py
A so that P

y
A ∈ ̂PA[y/x]. Define S = {Ay

def= P y
A | (A(x) def=

PA) ∈ DP ∧ y ∈ Var(DP )}. Notice that S is a finite set. Proceed by definingF = {z | ∃ constant
Bz. Bz occurs in S ∧ Bz is not defined in S}, and notice that F is a finite set too. Observe that,
for each definition A(x) def= PA ∈ DP and for each y ∈ F , the substitution PA[y/x] requires no
alpha-conversion. Consequently it is possible to choose Py

A ∈ ̂PA[y/x] so that for each constant
Bz occurring in Py

A, z ∈ (Var (DP )∪F). We have now a candidate ΣDP for the set of definitions
in the encoding of P . It is simply defined as ΣDP = {Ay

def= P y
A | (A(x) def= PA) ∈ DP ∧ y ∈

(Var(DP ) ∪ F)}. Since (MP
x

def= P0) ∈ S ⊆ ΣDP , with P0 ∈ P̂ , our candidate set satisfies
condition (I) in Def. 5. It remains to be shown that ΣDP also satisfies condition (II). Assume now
that (Ay

def= QA) ∈ ΣDP , that Bz occurs in QA and that (B(x) def= PB) ∈ DP . By construction,
z ∈ (Var (DP )∪F), and therefore (Bz

def= P z
B) ∈ ΣDP . This shows that ΣDP satisfies condition

(II). Therefore, our effectively constructed candidate ΣDP is indeed an encoding [[DP ]]. ()

We now state the correctness of the encoding up to (strong) bisimilarity. The theorem actually
says that parametric definitions are not more expressive than constant definitions.

Theorem 2. Given a process P ∈ CCSp with associated set of definitions DP , any encoding [[P ]]
with definition set [[DP ]] satisfies P ∼k

p [[P ]].

Proof. See the appendix. ()

Remark 4. It follows from Remark 1 and the above theorem that injective relabelings are redun-
dant in CCS (up to strong bisimilarity).

Now, [3] shows that divergence is undecidable for CCSp. Furthermore, we also showed that the
above encoding is computable. Since divergence is invariant under strong bisimilarity, we can then
conclude the following result.

Theorem 3. The divergence problem is undecidable for CCSk. ()

4.2 Encoding CCSk into CCSp

Intuitively, if the free names are treated dynamically, then they could equivalently be passed as
parameters. Thus, we can define the encoding as follows:

Definition 6. Given P ∈ CCSk with a set of associated constant definitions of the form A
def= PA

and given a strict total order over names, the encoding of P into CCSp is a process [[P ]] with
associated set of definitions

{
A(x1, . . . , xn) def= [[PA]] | (A def= PA) ∈ Dp ∧ fn(PA) = {x1, . . . , xn}

}
.
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The encoding function [[·]] : Prock → Procp, which is an homomorphism over all other operators,
satisfies [[A]] = A(x1, . . . , xn) where fn(PA) = {x1, . . . , xn}. Both in definitions and in invoca-
tions, all lists of argument names are assumed sorted. ()

(By homomorphism we mean that [[P ‖ Q]] = [[P ]] ‖ [[Q]] and similarly for the other operators.)
The following theorem states that constant definitions with dynamic scoping are not more

expressive than parametric definitions with static scoping.

Theorem 4. For every process P in CCSk, [[P ]] ∼p
k P .

Proof. By verifying that {(P, [[P ]]) | P ∈ Prock} is a strong bisimulation. ()

4.3 Encoding CCSµ into CCS!

The main idea behind this encoding is to associate a replicated process !x.P′ to each occurrence of
the recursion operator, µX.P . In the past a similar approach has been used to show that, in the π-
calculus, recursion can be expressed using replication [12]. While in [12] each π-calculus process
and its encoding happen to be strongly bisimilar, this is not the case for CCSµ. Although in general
a CCSµ process is only weakly bisimilar to its encoding, we show that divergence properties are
always preserved.

Our definition assumes that process variables are indexed by I , i.e. {Xi | i ∈ I}:

Definition 7. Let [[·]] : Procµ → Proc ! be the encoding function that is homomorphic over all
operators in the sub-calculus defining finite behavior and is otherwise defined as follows:

[[Xi]] = xi.0
[[µXi.P ]] = (!xi.[[P ]] ‖ xi.0)\xi

where the names {xi | i ∈ I} are fresh. ()

The freshness condition on the variables xi is meant to guarantee that every time we apply [[P ]], P
mentions none of them.

Remark 5. The above encoding would not work had we adopted dynamic scoping in the Rule
REC for CCSµ (see Remark 2). The µX.P in Example 1 actually gives us a counter-example. ()

The following example illustrates why a CCSµ process may not be strongly bisimilar to its encod-
ing.

Example 5. Consider the CCSµ process P = µX.a.X with corresponding encoding [[P ]] =
(!x.a.x̄ ‖ x̄)\x. They are clearly not strongly bisimilar, as P has the single trace

µX.a.X
a→µ µX.a.X

a→µ µX.a.X . . . (9)

while [[P ]] only produces

(!x.a.x̄ ‖ x̄)\x τ→µ (!x.a.x̄ ‖ a.x̄)\x a→µ (!x.a.x̄ ‖ x̄)\x τ→µ . . . (10)

Observe that each transition in (9) uses rule REC, and that every other step in (10) reflects explic-
itly, as an internal transition, each recursive call. ()
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In comparing CCSµ and CCS!, we find it convenient to consider yet another variant calculus,
as an intermediate step, which we call CCSτ : Its syntax agrees entirely with CCSµ’s (i.e. Procτ =
Procµ), and its semantics differs from CCSµ’s only by a replacement of REC with a rule in which
the unfolding performs a τ action—hence the name CCSτ :

REC’
µX.P

τ→τ P [µX.P/X]

Example 6. Consider process P as given in Example 5 but this time within CCSτ (which is pos-
sible thanks to Procτ = Procµ). The only trace exhibited by P is:

µX.a.X
τ→τ a.(µX.a.X) a→τ µX.a.X

τ→τ . . . (11)

and therefore P ∼!
τ [[P ]] . ()

In fact, the property illustrated by the previous example holds in general, as stated in the
following theorem. The proof is essentially an adaptation of the one given by Sangiorgi and Walker
in [12].

Theorem 5. If P ∈ CCSτ , then P ∼!
τ [[P ]]. ()

Because strong bisimilarity is known to preserve expressiveness and divergence, the above
theorem lets us reduce the problem of studying the encoding to investigating the relation between
CCSτ and CCSµ.

We start by comparing rules REC and REC’. Consider first a process of the form µX.P .
Using REC’, we derive µX.P

τ→τ P [µX.P/X]. Now, if P [µX.P/X] α→τ P ′ has a derivation
that does not use the rule REC’, then an identical derivation serves to prove P [µX.P/X] α→µ P ′.
Applying REC to the latter renders a derivation of µX.P

α→µ P ′. This is a simple result, but can
be generalized to all transitions of the form P

τ→τ Q which depend on rule REC’:

Lemma 2. For P ∈ Procτ , if P
τ→τ Q involves the application of rule REC’ and Q

α→µ Q′, then
either P

α→µ Q′ or there exists P ′ such that P
α→µ P ′ and P ′ τ→τ Q′ where the last transition

involves rule REC’.

Proof. See the appendix. ()

On the other hand, each→µ transition justified by REC may involve several recursive invoca-
tions, hence it could be mirrored by several transitions using REC’ in CCSτ .

To formalize this intuition define a binary relationR ∈ (Procµ×Procτ ) as follows: P RQ iff
there exist n ≥ 0 such that P = Q0

τ→τ Q1
τ→τ . . . Qn = Q, where each derivation Qi

τ→τ Qi+1

involves rule REC’.
We show that besides being a weak bisimulation relation, R also relates processes with equal

divergence properties. Both proofs are intertwined. As a first step, notice that each α→µ transi-
tion can be mimicked by R-related processes in CCSτ after possibly some τ transitions (which
corresponds to recursive invocations involving rule REC’).

Lemma 3. If P R Q and P
α→µ P ′ then there exists Q′ such that Q( τ→τ )∗

α→τ Q′ and P ′ R Q′.
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Proof. See the appendix. ()

Remark 6. Notice that we have restricted our attention to processes where all variables are guarded.
Without that assumption divergence would not be preserved by our encoding. For example, µX.X
diverges in CCSτ but deadlocks in CCSµ. ()

Instead, the guarded recursion assumption forces R to be almost a strong simulation of CCSτ
by CCSµ. The catch is that the simulation holds only for →τ transitions that are also →µ transi-
tions.

Lemma 4. If P R Q and Q
α→µ Q′, then there exists P ′ s.t. P α→µ P ′ and P ′ R Q′.

Proof. See the appendix. ()

Since, for derivations that do not use rule REC’, the transition relation→τ coincides with→µ,
we obtain:

Corollary 1. If P R Q and there is a derivation of Q α→τ Q′ which does not involve the applica-
tion of rule REC’, then there exists P′ s.t. P α→µ P ′ and P ′ R Q′. ()

By now, we have all the ingredients needed to show that two identical processes, interpreted
in CCSµ and CCSτ respectively, are weakly bisimilar. Recall the definition of weak bisimulation
(Section 3): One direction is provided by Lemma 3, the other follows by a combination of Corol-
lary 1 and the definition of R (to cover the case in which Q

α→τ Q′ does use rule REC’). The
result is summarized by our next theorem.

Theorem 6. Given a process P in CCSµ, P ≈τ
µ P . ()

Observe that this is still not enough to show thatR relates processes with the same divergence
properties. If P R Q and Q diverges, Corollary 1 is not even strong enough to show that P
may execute a single τ transition. However, it turns out that Q cannot diverge by executing only
recursive calls (again, a result of our assumptions on guarded summation and guarded recursion;
see Remark 6); see Lemma 7 in the Appendix. So, if after some finite execution trace, Q performs
a τ transition that does not involve REC’, we can apply Corollary 1 to deduce that P may also
perform a τ transition. Since this process can be repeated endlessly it must be concluded that
divergence in CCSτ forces divergence in CCSµ. The converse is an easy consequence of Lemma 3.
That is, we have shown:

Proposition 1. For P ∈ CCSµ, P ( τ→µ)ω iff P ( τ→τ )ω .

Proof. See the appendix. ()

Our journey from CCSµ to CCS! through CCSτ has rendered the following result.

Corollary 2. For P ∈ Procµ, P ≈!
µ [[P ]]. Moreover, P diverges iff [[P ]] diverges. ()

From the above corollary, the fact that the encoding is computable, and the result of [3] show-
ing that divergence is decidable for CCS! we conclude the following:

Theorem 7. The divergence problem is decidable for CCSµ. ()
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4.4 Encoding CCS! into CCSµ

Except for the syntax and our restriction to guarded recursion, this encoding is essentially that
given in [12] for the π-calculus.

Definition 8. Let [[·]] : Proc ! → Procµ be the encoding function that is homomorphic over all
operators in the sub-calculus defining finite behavior and is otherwise defined as follows: [[!P ]] =
µX.([[P ]] ‖ τ.X). ()

In fact, the proof of the following theorem is along the lines of that in [12].

Theorem 8. For P ∈ Proc!, P ≈µ
! [[P ]]. ()

Observe that, because of our restriction to guarded recursion, the encoding does not preserve
divergence. For instance, if P =!0 then P is deadlocked in CCS!; but

[[P ]] = µX.(0 ‖ τ.X) τ→µ 0 ‖ µX.(0 ‖ τ.X) τ→µ 0 ‖ 0 ‖ µX.(0 ‖ τ.X) τ→µ . . . .

5 Concluding Remarks

We studied the relative expressiveness (w.r.t. weak bisimilarity) and the decidability of divergence
for some CCS-like calculi. The calculi differ on the constructs used to express infinite behavior
and on the treatment of scoping of channel names; the finite core being the same. We showed that
parameters can be removed from recursive definitions without loss of expressiveness provided
dynamic name scoping is applied. We also showed that the expressiveness of recursive expression
with static scoping corresponds precisely to that of replication. We partitioned the calculi into two
groups: For one, divergence is undecidable (i.e., constant and parametric definitions), whereas it
is decidable for the other (i.e., replication and recursive expressions with static scoping). Figure 1,
in the Introduction, illustrates these results.

As a consequence of our results, we proved that a substantial family of relabelings, the injective
ones, is redundant in CCS (see Remark 4). We also showed that a slightly different interpretation
of Rule REC, namely performing also name α-conversions in substitutions, can render decidable
(w.r.t. divergence) an otherwise undecidable calculus (see Remark 2). We illustrated that CCS
exhibits dynamic name scoping and that it does not preserve α-equivalence.

Related Work. Most of the related work was already discussed in the Introduction. The most
closely related work is [3] which shows the (un)decidability of divergence for CCSp and CCS!.
Here we extend these results to the corresponding equally expressive calculi. The work on ECCS [5],
perhaps the most immediate predecessor of the π-calculus, advocates static scoping of names. In
contrast, the work on CHOCS [13] advocates dynamic name scoping in the context of higher-order
CCS. Furthermore, the CCS variant in [9] uses statically scoped parametric definitions while the
Edinburgh Concurrency Workbench tool [4] uses dynamic scoping for parametric definitions.

The work in [1] shows that that in CCS, non-injective relabelings lead to a sensible differ-
ent treatment of asynchrony w.r.t the injective ones. We believe that it would be interesting to
investigate more qualitative distinctions for these two kinds of relabelings.
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A Proofs

A.1 Lemmas and Theorems of Section 4.1

Even though encoding sets are in general not comparable, we can group them according to the
minimal encoding sets they contain. Minimality is here understood with respect to the set inclusion
order.

Lemma 5. If D,E ⊆ [[DP ]] are all encoding sets, then so is D ∩ E.

Proof. ThatD∩E satisfies condition (I) is trivial. For condition (II), notice that if (Bz
def= QB) ∈

D and (Bz
def= Q′

B) ∈ E, then QB = Q′
B for [[DP ]] can at most contain a single definition for

constant Bz . ()

Corollary 3. Every encoding set [[DP ]] contains a single minimal encoding set. ()

The following is a corollary of Lemma 1:

Corollary 4. The elements of every minimal encoding set are of the form Ay
def= QA for some

QA ∈ P̂A[y/x]. ()

This lemma is used in the proof of Theorem 2:

Lemma 6. Given processes P,P ′, Q ∈ CCSp such that P ≡α P ′, every derivation of P
α→ Q

can be transformed into a derivation of equal depth of P′ α→ Q′, for some Q′ ≡α Q. ()

Theorem 2. Given a process P ∈ CCSp with associated set of definitions DP , any encoding [[P ]]
with definition set [[DP ]] satisfies

P ∼k
p [[P ]] .

Proof. We assume w.l.o.g. that [[DP ]] is a minimal encoding set, and show that the following
relation S ⊆ CCSp × CCSk is indeed a bisimulation

S = {(T,U) | U ∈ T̂ ∧ def [[DP ]](U)}

Where def [[DP ]](R) means that all the constant identifiers occurring in R are defined in [[DP ]]. We
prove it as usual, by induction on the depth of the inference of T

α→p T ′ . We will only prove
here that S is a (strong) simulation, that is that whenever T S U , if T

α→p T ′ then U
α→k U ′ and

T ′ S U ′. Let T α→p T ′ be the conclusion of the last step in the inference. While most cases consist
of routine checks, we specially call the attention of the reader to the last two cases (corresponding
to the application of rule RES, resp. CALL).

– If T α→p T ′ has been introduced by PAR1, then T is of the form T1 ‖ T2 and T ′ = (T ′
1 ‖ T2);

so we know that T1
α→p T ′

1. By assumption we have that (T1 ‖ T2) S U . Therefore, U ∈
̂(T1 ‖ T2); and, by definition of ·̂, there exist U1 and U2 s.t. U = (U1 ‖ U2), where U1 ∈ T̂1
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and U2 ∈ T̂2. Notice that def[[DP ]](U1) and then T1 S U1. By I.H. we have that U1
α→k U ′

1 with
T ′

1 S U ′
1. Now, by PAR1 in CCSk we have that (U1 ‖ U2)

α→k (U ′
1 ‖ U2) and by definition

of ·̂ we have that (U ′
1 ‖ U2) ∈ T̂ ′

1 ‖ T2. Since def [[DP ]](U ′
1) and def[[DP ]](U2), we have that

def [[DP ]](U ′
1 ‖ U2). Hence, (T ′

1 ‖ T2) S (U ′
1 ‖ U2).

– If T α→p T ′ has been introduced by PAR2, the proof is similar to the previous case.
– If T

τ→p T ′ has been introduced by COM, then T is again of the form T1 ‖ T2, T ′ = T ′
1 ‖ T ′

2

and we know that T1
α→p T ′

1 and T2
ᾱ→p T ′

2. Since T S U we know that U ∈ T̂1 ‖ T2 so there
exist U1 and U2 s.t. U = (U1 ‖ U2), where Ui ∈ T̂i, for i = 1, 2. Notice that def[[DP ]](Ui)
and then Ti S Ui. By I.H. Ui

α→k U ′
i with T ′

i S U ′
i . By rule COM in CCSk we have that (U1 ‖

U2)
τ→k (U ′

1 ‖ U ′
2). By definition of ·̂ we have that (U ′

1 ‖ U ′
2) ∈ T̂1 ‖ T2. Since def [[DP ]](U ′

1)
and def [[DP ]](U ′

2), we have that def[[DP ]](U ′
1 ‖ U ′

2). Hence, (T ′
1 ‖ T ′

2) S (U ′
1 ‖ U ′

2).
– Suppose that T

α→p T ′ has been introduced by SUM: T is of the form Σi∈Iαi.Qi and then
T ′ = Qj and αj = α, for some j ∈ I . Since U ∈ ̂Σi∈Iαi.Qi, there exist Ui (for all i ∈ I) s.t.
U = Σi∈Iαi.Ui and Ui ∈ T̂i. Let U ′ = Uj , so that α.T ′ S α.U ′. Then, by I.H., T ′ S U ′, and
by rule SUM in CCSk, U

α→k U ′.
– Suppose now that T

α→p T ′ has been introduced by RES: Then T is of the form T1\b, with
b '= α, b '= α; and T ′ is of the form T ′

1\b satisfying T1
α→p T ′

1. By assumption T S U , and
therefore U = U1\c for some process U1 and name c.
By Lemma 6, we can assume that b = c (otherwise, we alpha-convert T into T2\c and work
with a derivation of T2\c

α→p T ′
2\c of the same depth, noting that T′

2\c ≡α T ′ and that the
composed relation ≡α S equals S).
Since U = U1\b and U ∈ T̂ , according to the definition of ·̂, there must be a V1 ∈ CCSp such
that U1 ∈ V̂1 and T1\b ≡α V1\b. From the latter, T1 ≡α V1; and, by Remark 3, U1 ∈ T̂1.
We conclude that T1 S U1. By I.H., there exists U ′

1 s.t. U1
α→k U ′

1 and T ′
1 S U ′

1. Hence,
U

α→k U ′
1\b (by rule RES in CCSk), and it is easy to check that T′ S U ′

1\b.
– Suppose that T

α→p T ′ has been introduced by rule CALL: In this case, T = A(y) α→p T ′

(where (A(x) def= PA) ∈ DP ). By assumption we have that A(y) S U . Then U ∈ Â(y). We
deduce that U = Ay and def[[DP ]](Ay). By Corollary 4, there is a definition (Ay

def= QA) ∈
[[DP ]] with QA ∈ P̂A[y/x]. In order to apply the inductive hypothesis, we need to check
that PA[y/x] S QA, i.e. we only need to show that def[[DP ]](QA). This follows easily from
condition (II) in Def. 5.
According to rule CONS, we have a derivation of PA[y/x] α→p T ′. By I.H., there exists U ′ s.t.
QA

α→k U ′ and T ′ S U ′. Finally, by rule CONS in CCSk we have that U = Ay
α→k U ′.

From all the above cases we conclude that S is a (strong) simulation. In a similar form we can
prove that S−1 is a simulation. To conclude, by condition (I) in Def. 5, [[DP ]] contains a definition
for MP

x . Since MP
x ∈ M̂P (x), MP (x) S MP

x . Noting that MP (x) = P and MP
x = [[P ]], this

means that P ∼ [[P ]] as wanted. ()
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A.2 Lemmas and Theorems of Section 4.3

Lemma 2. For P ∈ Procτ , if P
τ→τ Q involves the application of rule REC’ and Q

α→µ Q′, then
either P

α→µ Q′ or there exists P ′ such that P
α→µ P ′ and P ′ τ→τ Q′ where the last transition

involves rule REC’.

Proof. A simple induction on the depth of the derivation of Q
τ→τ Q′ where the only cases to

consider are derivations ending in an application of the rules REC’, PARi or RES. ()

Remark 7. Consider the binary relation R ∈ (Procµ × Procτ ) as defined on p. 13.

1. R includes the identity relation.
2. It is easy to show that for P = P ′\a, P R Q iff there is aQ′ such thatQ = Q′\a and P ′ R Q′.
3. Similarly, for P = P1 ‖ P2, P R Q iff there are Q1 and Q2 such that Q = Q1 ‖ Q2 and

Pi R Qi, i = 1, 2. ()

Lemma 3. If P R Q and P
α→µ P ′ then there exists Q′ such that Q( τ→τ )∗

α→τ Q′ and P ′ R Q′ .

Proof. Consider the trace P = Q0
τ→τ . . .

τ→τ Qn = Q that witnesses P R Q. The proof
proceeds by induction on the depth of the derivation of P α→µ P ′:

– REC: There is T such that P = µX.T and T [µX.T/X] α→µ P ′. Consider first the case n = 0
(i.e.P = Q): thenQ

τ→τ T [µX.T/X] (using REC’). By Remark 7.1, T [µX.T/X]R T [µX.T/X],
and by I.H. there is Q′ s.t. P ′ R Q′ and T [µX.T/X]( τ→τ )∗

α→τ Q′. Therefore, Q( τ→τ )∗ α→τ

Q′. If n > 0, note that Q1 = T [µX.T/X], and therefore T [µX.T/X] R Q. The property
follows directly from the inductive hypothesis.

– COM: There are Pi and P ′
i (i = 1, 2) such that P = P1 ‖ P2, P ′ = P ′

1 ‖ P ′
2, α = τ ,

P1
a→µ P ′

1 and P2
ā→µ P ′

2. By Remark 7.3, Q = Q1 ‖ Q2 with Pi R Qi. By the I.H. there
are Q′

1 and Q′
2 such that P ′

i R Q′
i, Q1(

τ→τ )∗
a→τ Q′

1 and Q2(
τ→τ )∗

ā→τ Q′
2. Using zero or

more applications of rules PARi, followed by an application of COM, it is easy to see that
Q( τ→τ )∗

τ→τ Q′
1 ‖ Q′

2. That Q′ = Q′
1 ‖ Q′

2 satisfies P ′ R Q′ is a simple consequence of
Remark 7.3.

The cases PARi and RES are analogous to the COM case, also relying on Remark 7. Finally, the
SUM case is simpler, for then it must be that P = Q. ()

Lemma 4. If P R Q and Q
α→µ Q′, then there exists P ′ s.t. P α→µ P ′ and P ′ R Q′.

Proof. By induction on the length n of the trace P = Q0
τ→τ . . .

τ→τ Qn = Q:

– When n = 0, P = Q. Then P
α→µ Q′, and Q′ R Q′ by a previous observation.

– If n > 0, consider Qn−1
τ→τ Q

α→µ Q′. By Lemma 2, either Qn−1
α→µ Q′ or Qn−1

α→µ

Q′′ τ→τ Q′ (for some Q′′ s.t. the derivation of Q′′ τ→τ Q′ involves the application of rule
REC’). Since P R Qn−1, the result follows from the inductive hypothesis. ()
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Lemma 7. If Q = Q0
τ→τ Q1

τ→τ . . . then, for some i, the derivation of Qi
τ→τ Qi+1 does not

involve rule REC’.

Proof. Consider the following measure functionM : Procτ → N

M(
∑

i∈I αi.Pi) = 0
M(P ‖ Q) = M(P ) + M(Q)
M(P\a) = M(P )
M(µX.P ) = 1 + M(P )

It is easy to prove, by induction on the structure of P ∈ Procτ , thatM(P [R/X]) = M(P ).
To prove this lemma, it suffices to show that each transition P

τ→τ P ′, which involves rule
REC’, induces an strict reduction in measure (i.e.M(P′) < M(P )).

The proof proceeds by induction on the depth of the derivation of P
τ→τ P ′. We need only

consider the cases in which the last step in the derivation corresponds to the application of rules
REC’, PARi, or RES.

– REC’: In this case, P = µX.R and P ′ = R[µX.R/X]. Then,

M(P ′) = M(R) < 1 + M(R) = M(P ) .

– PARi: Consider only the case of rule PAR1, the other being completely analogous. We can
assume that P = P1 ‖ P2, P ′ = P ′

1 ‖ P2, and P1
τ→τ P ′

1. Moreover, the derivation of the
latter transition must involve the rule REC’. By our inductive hypothesis,M(P′

1) < M(P1).
Then

M(P ′) = M(P ′
1) + M(P ′

2) < M(P1) + M(P2) = M(P ) .

– RES: Assume P = R\a, P ′ = R′ and R
τ→τ R′. By I.H.,M(R′) < M(R). Then

M(P ′) = M(R′) < M(R) = M(P ) .

()

Proposition 1. For P ∈ CCSµ, P ( τ→µ)ω iff P ( τ→τ )ω .

Proof. Notice first that, by Remark 7.1, P R P .

⇒: Assume the infinite trace P = P0
τ→µ P1

τ→µ . . . . Using Lemma 3 iteratively construct the
also infinite trace P = Q0(

τ→τ )∗
τ→τ Q1(

τ→τ )∗
τ→τ (where Pi R Qi, for all i ≥ 0).

⇐: Assume P = Q0
τ→τ Q1

τ→τ Q2
τ→τ . . .. By Lemma 7, there is a subsequence {ij}j∈N of the

natural numbers such that:

P = Qi0(
τ→τ )∗Qi1−1

τ→τ Qi1(
τ→τ )∗Qi2−1

τ→τ Qi2 . . .

where each derivation in the subtrace Qi(j−1)
( τ→τ )∗Qij−1 involves the application of rule

REC’, and each derivation Qij−1
τ→τ Qij does not use REC’.

To show that P ( τ→µ)ω we construct, in an inductive fashion, an infinite trace P = P0
τ→µ

P1
τ→µ . . . where Pj R Qij , for all j ∈ N:
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• Let P0 = P .
• For j > 0, assume Pj−1 R Qi(j−1)

and notice that Pj−1 R Qij−1 (by the definition ofR).
Then, apply Corollary 1 to choose Pj such that Pj−1

τ→µ Pj and Pj R Qij .
()
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