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Abstract

The ntcc process calculus is a timed concurrent constraint programming (ccp) model
equipped with a first-order linear-temporal logic (LTL) for expressing process speci-
fications. A typical behavioral observation in ccp is the strongest postcondition (sp).
The ntcc sp denotes the set of all infinite output sequences that a given process
can exhibit. The verification problem is then whether the sequences in the sp of a
given process satisfy a given ntcc LTL formula.

This paper presents new positive decidability results for timed ccp as well as
for LTL. In particular, we shall prove that the following problems are decidable:
(1) The sp equivalence for the so-called locally-independent ntcc fragment; unlike
other fragments for which similar results have been published, this fragment can
specify infinite-state systems. (2) Verification for locally-independent processes and
negation-free first-order formulae of the ntcc LTL. (3) Implication for such formu-
lae. (4) Satisfiability for a first-order fragment of Manna and Pnueli’s LTL. The
purpose of the last result is to illustrate the applicability of ccp to well-established
formalisms for concurrency.

Key words: Process Calculi, Timed Concurrent Constraint Programming,
Infinite-State Systems, Temporal Logic, First-Order LTL, Decidability.

1 Introduction

The notion of constraint is certainly not rare in concurrency. After all, concur-
rency is about the interaction of agents and such an interaction often involves
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constraints of some sort (e.g., synchronization constraints, access-control, ac-
tions that must eventually happen, actions that cannot happen, etc).

Saraswat’s concurrent constraint programming (ccp) [37] is a well-established
formalism for concurrency based upon the shared-variables communication
model where interaction arises via constraint-imposition over shared-variables.
In ccp, agents can interact by adding (or telling) partial information in a
medium, a so-called store. Partial information is represented by constraints
(i.e., first-order formulae such as > 42) on the shared variables of the system.
The other way in which agents can interact is by asking partial information to
the store. This provides the synchronization mechanism of the model; asking
agents are suspended until there is enough information in the store to answer
their query.

As other models of concurrency, ccp has been extended to capture aspects
such as mobility [9,30,12], stochastic behavior [13], and most prominently time
[33,5,35,14]. Timed ccp extends ccp by allowing agents to be constrained by
time requirements and it has been studied extensively as a model for reactive
systems [5,11,25-28,33,34,36,41]. A very distinctive feature of timed ccp is
that it combines in one framework an operational and algebraic view based
upon process calculi with a declarative view based upon temporal logic. So,
processes can be treated as computing agents, algebraic terms and temporal
formulae. At this point it is convenient to quote Robin Milner:

I make no claim that everything can be done by algebra ... It is perhaps
equally true that not everything can be done by logic; thus one of the
outstanding challenges in concurrency is to find the right marriage between
logic and behavioral approaches.

— Robin Milner, [20]

In this paper we shall see that the combination in one framework of the alter-
native views of processes mentioned above allows timed ccp to benefit from
the large body of techniques of well established theories used in the study of
concurrency. For instance, we shall work with finite-state automata representa-
tions; a classic technique used in temporal logic. Furthermore, the combination
may allow timed ccp to be used for proving new results for these theories. In
fact, by using results for timed ccp proved in this paper, we also prove new
decidability results for the standard linear-time temporal logic (LTL) [18].

1.1  Contributions.

The ntcc process calculus [26] is a generalization of the timed ccp model
tce [33]. The calculus can represent timed concepts such as unit delays, un-
bounded finite delays, time-outs, pre-emption, synchrony and asynchrony. Fur-



thermore, ntcc is equipped with an LTL to specify timed properties and with
an inference system for the verification problem (i.e., for proving whether a
given process fulfills a given LTL specification).

In this paper we shall present new decidability results for infinite-state ntcc
processes, the ntcc LTL (here called constraint LTL or CLTL for short),
and for the standard first-order LTL (here called LTL for short) described by
Manna and Pnueli in [18]. The description and relevance of these results are
outlined next:

e On the sp equivalence and verification problem. The strongest-postcondition
(sp) behavior of a given ntcc process P denotes the set of all infinite se-
quences of outputs that P can exhibit. Thus, P fulfills a given specification
(i.e., a CLTL formula) F iff each sequence in its sp satisfies F. In Section
4, we show that for a substantial fragment of ntcc and the negation-free
first-order fragment of CLTL : (1) the sp equivalence is decidable and (2)
the verification problem is decidable.

- A noteworthy aspect of these two results is that the ntcc fragment above
admits infinite-state processes. All other ntcc fragments for which similar
results have been published [25,27] are restricted to finite-state processes.

- Another noteworthy aspect is that CLTL is first-order. Most first-order
LTLs in computer science are not recursively axiomatizable let alone de-
cidable [1].

e On the ntcc LTL. In Section 4 we prove that: (3) the validity of implication
is decidable for the negation-free first-order fragment of CLTL.

- As for Hoare logic, the ntcc inference system [26] mentioned above has
the so-called consequence rule which queries an oracle about (CLTL )
implication. This causes the completeness of the system to be relative to
the capability of determining the validity of implication, thus making our
third result of relevance to ntcc.

- As a corollary of this result, we obtain the decidability of satisfiability for
the negation-free first-order fragment of CLTL. This is relevant for speci-
fication purposes since, as remarked in [44], a specification is “interesting”
only if it is satisfiable.

e On the standard first-order LTL. In Section 5 we prove that: (4) the satisfi-
ability problem in LTL is decidable for all negation-free first-order formulae
without rigid variables. This result is obtained from a reduction to CLTL
satisfiability.

- Since first-order LTL is not recursively axiomatizable [1], satisfiability
is undecidable for the full language of LTL . Recent work [17] and also
[19], however, have taken up the task of identifying first-order decidable
fragments of LTL . Our fourth result contributes to this task.

- The reduction from the standard LTL satisfiability to CLTL satisfiability
also contributes to the understanding of the relationship between (timed)
ccp and (temporal) classic logic.



In brief, this paper argues for timed ccp as a convenient framework for re-
active systems by providing positive decidability results for behavior, specifi-
cation and verification (1-3), and by illustrating its applicability to the well-
established theory of LTL (4). This paper is the extended and revised version
of [43].

1.2  Organization

The paper is organized as follows. Section 2 gives a brief introduction to the
basic principles and central developments of ccp and timed ccp. Section 3
describes in detail the timed ccp model nicc. Section 4 presents the decidability
results for ntcc. Finally, as an application of the results in Section 4, Section
5 shows the decidability result for LTL.

2 Background

2.1 Concurrent Constraint Programming

In his seminal PhD thesis [32], Saraswat proposed concurrent constraint pro-
gramming as a model of concurrency based on the shared-variables commu-
nication model and a few primitive ideas taking root in logic. As informally
described in the next section, the ccp model elegantly combines logic concepts
and concurrency mechanisms.

Concurrent constraint programming traces its origins back to Montanari’s pio-
neering work [23] leading to constraint programming and Shapiro’s concurrent
logic programming [38]. The ccp model has received a significant theoretical
and implementational attention: The works in [37] and [6] gave a fixed-point
denotational semantics to ccp, whilst [29] gave a (true-concurrent) Petri-Net
semantics (using the formalism of contextual nets); in [7] the authors devel-
oped an inference system for proving properties of ccp processes; Oz [40] as
well as AKL [16] programming languages are built upon ccp ideas.

The ccp model. A concurrent system is specified in the ccp model in terms
of constraints over the variables of the system. A constraint is a first-order
formula representing partial information about the values of variables. As
an example, for a system with variables  and y taking natural numbers as
values, the constraint x + y > 16 specifies possible values for z and y (those
satisfying the inequation). The ccp model is parameterized by a constraint



system, which specifies the constraints of relevance for the kind of system
under consideration, and an entailment relation = between constraints (e.g,
r+y>16 Exz+y>0).

During a ccp computation, the state of the system is specified by an entity
called the store in which information about the variables of the system resides.
The store is represented as a constraint, and thus it may provide only partial
information about the variables. This differs fundamentally from the tradi-
tional view of a store based on the Von Neumann memory model, in which
each variable is assigned a uniquely determined value (e.g., x = 16 and y = 7),
rather than a set of possible values.

The notion of store in ccp suggests a model of concurrency with a central
memory. This is, however, only an abstraction which simplifies the presenta-
tion of the model. The store may be distributed in several sites according to
the sharing of variables (see [32] for further discussions about this matter).
Conceptually, the store in ccp is the medium through which agents interact
with each other.

A ccp process can update the state of the system only by adding (or telling)
information to the store. This is represented as the (logical) conjunction of the
store representing the previous state and the constraint being added. Hence,
updating does not change the values of the variables as such, but constrains
further some of the previously possible values.

Furthermore, ccp processes can synchronize by querying (or asking) informa-
tion from the store. Asking is blocked until there is enough information in
the store to entail (i.e., answer positively) the query, i.e. the ask operation
determines whether the constraint representing the store entails the query.

A ccp computation terminates whenever it reaches a point, called a resting or
a quiescent point, in which no more information can be added to the store.
The output of the computation is defined to be the final store, also called the
quiescent store.

Example 2.1 Consider the simple ccp scenario illustrated in Figure 1. We
have four agents (or processes) wishing to interact through an initially empty
store. Let us name them, starting from the upper leftmost agent in a clockwise
fashion, Ai, Ay, A3 and Ay, respectively.

In this scenario, A1 may move first and tell the others through the store the
(partial) information that the temperature value is greater than 42 degrees.
This causes the addition of the item “temperature>42” to the previously empty
store.

Now Ay may ask whether the temperature is exactly 50 degrees, and if so it



temperature>42 temperature=50?.P

STORE

(MEDIUM)

temperature<70 O<temperature<100?.Q
Figure 1. A simple ccp scenario

wishes to erecute a process P. From the current information in the store,
however, the exact value of the temperature can not be entailed. Hence, the
agent Ag 1s blocked, and so is the agent Az since from the store it cannot be
determined either whether the temperature is between 0 and 100 degrees.

However, Ay may tell the information that the temperature is less than 70
degrees. The store becomes “temperature > 42 A temperature < 70”7, and now
process Az can execute (), since its query is entailed by the information in the
store . The 2 agent Ay is doomed to be blocked forever unless ) adds enough
information to the store to entail its query. O

In the spirit of process calculi, the language of processes in the ccp model is
given by a small number of primitive operators or combinators. A typical ccp
process language contains the following operators:

A tell operator, telling constraints (e.g., agent A; above).

e An ask operator, prefixing another process, its continuation (e.g. the agent
Ay above).

e Parallel composition, combining processes concurrently. For example the
scenario in Figure 1 can be specified as the parallel composition of A;, Ay,
Az and Ajy.

e Hiding (also called restriction or locality), introducing local variables, thus
restricting the interface through which a process can interact with others.

e Summation, expressing a nondeterministic combination of agents to allow
alternate courses of action.

e Recursion, defining infinite behavior.

It is worth pointing out that without summation, the ccp model is determi-
nistic, in the sense that the final store is always the same, independently of
the execution order (scheduling) of the parallel components [37].

2.2  Timed Concurrent Constraint Programming

The first timed ccp model was introduced in [33] as an extension of ccp aimed
at programming and modeling timed, reactive systems. This tcc model el-



egantly combines ccp with ideas from the paradigms of Synchronous Lan-
guages [2,15].

The tcc model takes the view of reactive computation as proceeding deter-
ministically in discrete time units (or time intervals). In other words, time is
conceptually divided into discrete intervals. In each time interval, a determi-
nistic ccp process receives a stimulus (i.e. a constraint) from the environment,
it executes with this stimulus as the initial store, and when it reaches its rest-
ing point, it responds to the environment with the final store. Furthermore,
the resting point determines a residual process, which is then executed in the
next time interval.

This view of reactive computation is particularly appropriate for program-
ming reactive systems such as robotic devices, micro-controllers, databases
and reservation systems. These systems typically operate in a cyclic fashion;
in each cycle they receive and input from the environment, compute on this
input, and then return the corresponding output to the environment.

The tcc model extends the standard ccp with fundamental operations for pro-
gramming reactive systems, e.g. delay and time-out operations. The delay
operation forces the execution of a process to be postponed to the next time
interval. The time-out (or weak pre-emption) operation waits during the cur-
rent time interval for a given piece of information to be present and if it is
not, triggers a process in the next time interval.

In spite of its simplicity, the tcc extension to ccp is far-reaching. Many in-
teresting temporal constructs can be expressed, see [33] for details, As an
example, tcc allows processes to be “clocked” by other processes. This pro-
vides meaningful pre-emption constructs and the ability of defining multiple
forms of time instead of only having a unique global clock.

The tcc model has attracted a lot of attention recently. Several extensions
have been introduced and studied in the literature. One example can be found
in [36], adding a notion of strong pre-emption: the time-out operations can
trigger activity in the current time interval. Other extensions of tcc have been
proposed in [14], in which processes can evolve continuously as well as dis-
cretely.

The tcep framework, introduced in [5] is a fundamental representative model of
nondeterministic timed ccp. In [5] the authors advocate the need of nondeter-
minism in the context of timed ccp. In fact, they use tccp to model interesting
applications involving nondeterministic timed systems (see [5]).

The ntcc process calculus [26] is a generalization of the tcc model. The calculus
is built upon few basic ideas but it captures several aspects of timed systems.
As tce, ntcc can model unit delays, time-outs, pre-emption and synchrony.



Additionally, it can model unbounded but finite delays, bounded eventuality,
asynchrony and nondeterminism. The applicability of the calculus has been
illustrated with several examples of discrete-time systems involving mutable
data structures, robotic devices, multi-agent systems [26] and music appli-
cations [31].

The major difference between the tccp model from [5] and ntcc is that the
former extends the original ccp while the latter extends the tcc model. More
precisely, in tccp the information about the store is carried through the time
units, thus the semantic setting is completely different. The notion of time
is also different; in tccp each time unit is identified with the time needed to
ask and tell information to the store. As for the constructs, unlike the ntcc
calculus, tcep provides for arbitrary recursion and does not have an operator
for specifying unbounded but finite delays.

In this paper we shall work with the generalization of tcc, the ntcc calculus
which is described in detail in the next section.

3 The ntcc Calculus: Syntax and Operational Semantics

In ntcc, time is conceptually divided into discrete intervals (or time units). In
a particular timed interval, a process P gets an input (an item of information
represented as a constraint) c¢ from the environment, it executes with this
input as the initial store, and when it reaches its resting point, it outputs the
resulting store d to the environment. The resting point determines a residual
process (), which is then executed in the next time interval. In the rest of this
section we shall recall ntcc concepts given in [26].

3.1 Constraint Systems

The ntcc processes are parametric in a constraint system. A constraint sys-
tem provides a signature from which syntactically denotable objects called
constraints can be constructed and an entailment relation = specifying inter-
dependencies between these constraints.

A constraint represents a piece of information (or partial information) upon
which processes may act. For instance, processes modeling temperature con-
trollers may have to deal with partial information such as 42 < tsensor < 100
expressing that the sensor registers an unknown (or not precisely determined)
temperature value between 42 and 100. The inter-dependency c¢ |= d expresses
that the information specified by d follows from the information specified by



¢, €.g., (42 < tsensor < 100) = (0 < tsensor < 120).

We can set up the notion of constraint system by using first-order logic. Let us
suppose that X is a signature (i.e., a set of constants, functions and predicate
symbols) and that A is a consistent first-order theory over ¥ (i.e., a set of
sentences over Y having at least one model). Constraints can be thought of as
first-order formulae over ¥. We can then decree that ¢ |= d if the implication
¢ = d is valid in A. This gives us a simple and general formalization of the
notion of constraint system as a pair (3, A).

Definition 3.1 (Constraint Systems) A constraint system is a pair (X, A)
where ¥ is a signature specifying constants, functions and predicate symbols,
and A is a consistent first-order theory over ¥ (i.e., a set of first-order sen-
tences over ¥ having at least one model).

Given a constraint system (X, A), let £ be the underlying first-order language
(3,V,8). Here V is a countable set of variables z,y, ..., and § is the set of
logic symbols —, A, V, =, 3,V, true and false which denote logical negation,
conjunction, disjunction, implication, existential and universal quantification,
and the always true and always false predicates, respectively. Constraints,
denoted by ¢, d, ..., are first-order formulae over £. We say that ¢ entails d in
A, written ¢ =x d iff the formula ¢ = d is true in all models of A. We write
= instead of =a when A is unimportant or can be inferred from the context.
For operational reasons, we shall require = to be decidable. We say that c is
equivalent to d, written c ~ d, iff c |=d and d = c.

Convention 3.2 Henceforth, C denotes the set of constraints modulo = under
consideration in the underlying constraint system. So, we write ¢ = d iff they
have the same representative in C.

The classical example of a constraint system is that of Herbrand (or finite
trees) [32]:

Example 3.3 (Herbrand) The Herbrand constraint system is such that:

e X is the set with infinitely many function symbols of each arity and equality

e A is given by Clark’s Equality Theory with the schemas
fl@y, o zn)=fW1, -y Yn) = 1= A ... ATy =Yp
fz1, . 20)=9Y1,...,yn) = false, if f,g are distinct symbols
z=f(...x...) = false.
The tmportance of the Herbrand constraint system is that it underlies conven-

tional logic programming and most first-order theorem provers. Its value lies
in the Herbrand Theorem, which reduces the problem of checking unsatisfiabil-



ity of a first-order formula to the unsatisfiability of a quantifier-free formula
interpreted over finite trees. O

3.2 Process Syntaz

The process constructions in the ntcc calculus are given by the following
syntax:

Definition 3.4 (Processes, Proc) Processes P, Q, ...€ Proc are built from
constraints ¢ € C and variables x € V in the underlying constraint system by:

P,Q,... := telllc) | whenc;do P, | P || @ | (localx)P
i€l
| mnextP | unlesscnextP | x P |!P | abort

Intuitively, tell(c) adds an item of information ¢ to the store in the current
time interval. The guarded-choice summation ) ;c; when ¢; do F;, where [
is a finite set of indexes, chooses in the current time interval one of the P;’s
whose ¢; is entailed by the store. If no choice is possible, the summation is
precluded from execution. We write when ¢;, do P, + ...+ when ¢;, do F;,
if I = {i1,...,i,} and, if no ambiguity arises, omit the “when ¢ do” when
¢ = true. So, Y ;c; P; denotes the blind-choice ) ;c; when true do F;,. We
omit the “Y;c;” if |I| = 1 and use skip for Y ;¢ B

The process P || Q represents the parallel execution of P and Q). The product
Mics P where T = {is, .., in}, denotes (P || Py) | - Pi_.) | Po-

The process (localz) P declares an x local to P, and thus we say that it binds
z in P. The bound variables bv(Q) (free variables fu(Q)) are those with a
bound (a not bound) occurrence in Q).

The unit-delay process next P executes P in the next time interval. The time-
out unless c next P is also a unit-delay, but P will be executed only if ¢ cannot
eventually be entailed by the store during the current time interval. Note that
next P is not the same as unless false next P since an inconsistent store
entails false. We use next™(P) for next(next(... (next P)...)), where next
is repeated n times.

The operator “x” represents an arbitrary (or unknown) but finite delay (as
“€” in SCCS [21]) and allows asynchronous behavior across the time intervals.
Intuitively, * P means P + next P + next?P + .., i.e., an unbounded finite
delay of P. The replication operator “!” is a delayed version of that of the 7-
calculus [22]: ! P means P || next P || next?P || ..., i.e., unboundedly many

10



copies of P but one at a time.

For technical and unification purposes we add to the syntax of ntcc in [26]
the tce process abort [33] which causes all interactions with the environment
to cease.

We conclude our informal description of processes with a simple example.
Example 3.5 The following process repeatedly checks the state of motory:
R = !when malfunction(motor;_status) do tell(motor;_speed = 0)

If a malfunction is reported, R tells that motor; must stop. Thus, in R ||
S, where S = xtell(malfunction(motor,_status)), motor; must eventually
stop. O

3.8  Structural Operational Semantics.

The structural operational semantics (SOS) of ntcc considers transitions be-
tween process-store configurations of the form (P, c) with stores represented
as constraints and processes quotiented by = below.

Intuitively, the relation = describes irrelevant syntactic aspects of processes.
Its definition basically states that (Proc/ =, ||, skip) is a commutative monoid.

Definition 3.6 (Structural Congruence) Let = be the smallest congru-
ence over processes satisfying the following axioms:

(1) P | skip=P
(2) PlQ=Q|P
(3) PI@QIR)=(PQ)IE

We extent = to configurations by decreeing that (P, c) = (Q,c) iff P = Q.

Convention 3.7 We extend the syntaz with a construct local (z,d)in P, to
represent the evolution of a process of the formlocal z in (), where d is the local
information (or store) produced during this evolution. Initially d is “empty”,
so we regard (localz) P as (localz, true) P.

The transitions of the SOS are given by the relations — and = defined in
Table 1. The internal transition (P,d) — (P’,d') should be read as “P with

store d reduces, in one internal step, to P’ with store d' ”. The observable

transition P % R should be read as “P on input ¢, reduces in one time

unit to R and outputs d”.

11



Table 1

Rules for internal reduction — (upper part) and observable reduction = (lower
part). The assertion y—— in OBS holds iff for no 7', v — «'. The relation = and
F are given in Definitions 3.6 and 3.8, respectively.

TELL SUM dEcjel
(tell(c),d) — (skip,d A c) <Eiel when ¢; do Pi,d> — (P}, d)
(Pyc) — (P, d) (Pyc AJgd) — (P',c' AN3zd)
PAR " LocC — 7
(P|| Q,¢) — (P']|| Q,d) ((localz,c) P,d) — ((localz,c’) P',d A 3z¢')
UNL ifdEc

(unless ¢ next P,d) —» (skip,d)

REP STAR ifn>0
(! P,d) — (P || next!P,d) (xP,d) — (next™P,d)
N
sTR 272 4 71 =7; and v2 =7 ABORT
M7 (abort,d) —» (abort, d)

g (PO —" Q)

OB
P (e,d) R

if R=F(Q)

Intuitively, the observable reduction is obtained from a sequence of internal
reductions starting in P with initial store ¢ and terminating in a process )
with final store d. The process R, which is the one to be executed in the
next time interval (or time unit), is obtained by removing from ) what was
meant to be executed only during the current time interval. The store d is not
automatically transferred to the next time interval. Information in d can only
be transfered to the next time unit by P itself.

We shall only describe some of the rules in Table 1 (see [26] for further de-
tails). As clarified below, the seemingly missing cases for “next” and “unless”
processes are given by OBS. The rule STAR specifies an arbitrary delay of
P. REP says that ! P creates a copy of P and then persists in the next time
unit. ABORT realizes the intuition of abort causing the interactions with the
environment to cease by generating infinite sequences of internal transitions.

Let us dwell a little upon the description of Rule LOC as it may seem some-
what complex. Let us consider the process

@ = (localz,c) P

in Rule LOC. The global store is d and the local store is c. We distinguish
between the erternal (corresponding to @) and the internal point of view
(corresponding to P). From the internal point of view, the information about
x, possibly appearing in the “global” store d, cannot be observed. Thus, before

12



reducing P we should first hide the information about z that () may have in d.
We can do this by existentially quantifying = in d. Similarly, from the external
point of view, the new observable information about x that the reduction of
internal agent P may produce (i.e., ¢') cannot be observed. Thus we hide
it by existentially quantifying x in ¢’ before adding it to the global store
corresponding to the evolution of ). Additionally, we should make ¢’ the new
private store of the evolution of the internal process for its future reductions.

Rule OBS says that an observable transition from P labeled with (c,d) is
obtained from a terminating sequence of internal transitions from (P, ¢) to
a (Q,d). The process R to be executed in the next time interval is equivalent
to F(Q) (the “future” of Q). The process F(Q) is obtained by removing from
(2 summations that did not trigger activity and any local information which
has been stored in @), and by “unfolding” the sub-terms within “next” and
“unless” expressions.

Definition 3.8 (Future Function) Let F': Proc — Proc be defined by

[ skip if @ = Sic; when ¢; do Q;

< F(Q) || F(Q2) if Q=01 Q2

(localz) F(R) if @Q = (localz,c) R

R if Q = next R or () = unless ¢ next R

\

Remark 3.9 The function F' need no to be total since whenever we need to
apply F to a Q (OBS in Table 1), every process of the form tell(c), abort,
* R and ! R in Q will occur within a “next” or “unless” expression.

We conclude this section by revisiting our previous process example to illus-
trate a sequence of observable transitions.

Example 3.10 Recall Example 3.5. We had ! when c¢ do tell(e) in paral-
lel with the process xtell(c) where ¢ = malfunction(motor,_status) and
e = (motor;_speed = 0). For any arbitrary m > 0, the following is a valid
sequence of observable transitions:

(e,ene)
——

*xtell(c) ||! when ¢ do tell(e) next "tell(c) ||! when ¢ do tell(e)

(true,true)

next ™~ 'tell(c) ||! when c do tell(e)

(true,true)
—

tell(c) ||! when ¢ do tell(e)
!when c do tell(e)

(true,cAe)
—

13



Intuitively, in the first time interval the environment tells ¢, and thus the
component ! when ¢ do tell(e) tells e. The output is then c A e. Furthermore,
the other component xtell(c) creates a process tell(c) which is to be triggered
in m~+ 1 times units, for some arbitrary m. In the following time units the
environment does not provide any input whatsoever. In the m + 1-th time unit
¢ is told ¢ and then !when c do tell(e) tells e again. O

3.4 Observable Behavior: The Strongest Postcondition.

We now recall the notions of observable behavior for ntcc introduced in [27],
in particular that of the strongest postcondition (sp), central to this paper.

Notation 3.11 Throughout this paper C* denotes the set of infinite (or w)
sequences of constraints in the underlying set of constraints C. We use a, o/, . ..
to range over C¥.

Let oo = ¢y.co.... and o =) .c,. .... Suppose that P exhibits the following in-

(e1,1) (c2,¢)

P >

finite sequence of observable transitions (or run): P = Py

.... Giwen this run of P, we shall use the notation P {o0)

IO and Output Behavior. Let o =c¢;.co.... and o = ¢.c,. ... be infinite

sequences of constraints. If P % @ it means that at the time unit 7,

the environment inputs ¢; to P; which then responds with an output . As
observers, we can see that on «, P responds with /. We refer to the set

of all (e, ') such that P 129, w a5 the input-output (i0) behavior of P.
Alternatively, if o = true“, we interpret the run as an interaction among the
parallel components in P without the influence of any (external) environment;
as observers what we see is that P produces « on its own. We refer to the set

(truev,a’)

of all ¢/ such that P ‘=== “ as the output behavior of P.

Quiescent Sequences and SP. Another observation we can make of a pro-
cess is its quiescent input sequences. These are sequences on input of which P
can run without adding any information; we observe whether a = o/ whenever
p (a,@") w
In [26] it is shown that the set of quiescent sequences of a given P can be
alternatively characterized as the set of infinite sequences that P can possibly
output under arbitrary environments; the strongest postcondition (sp) of P.
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Definition 3.12 (SP) The strongest postcondition of P, sp(P), is given by

sp(P) ={d/ | P L2 w for some a} and its induced observational equiva-

lence ~gy is given by P ~y, Q iff sp(P) = sp(Q).

The above-mentioned match between the set of quiescent sequences and the
SP is stated in the following theorem from [26].

(a,a)

Theorem 3.13 (Quiescent-SP Match, [26]) For every P, P === iff
P (Oé sQ ) w.

We conclude this section by illustrating the difference between the sp and
input-output observables with the following example:

Example 3.14 Let P = tell(true) +tell(c) and @ = tell(true). Notice that
they do not exhibit the same input-output (or ouput) behaviour: Unlike P,
process @ cannot ouput c. true” on input true“. Nevertheless, the reader can
verify that P and () have the same sp behavior. O

3.5 LTL Specification and Verification

We now look at the ntcc LTL [26]. This particular LTL expresses properties
over sequences of constraints and we shall refer to it as CLTL. We begin by
giving the syntax of LTL formulae and then interpret them with the CLTL
semantics.

Definition 3.15 (LTL Syntax) The formulae F,G,... € F are built from
constraints ¢ € C and variables x € V in the underlying constraint system by:

F,G,....= c| true | false | FAG|FVG| “F|3,F|oF |OF | OF

Here c is a constraint (i.e., a first-order formula in the underlying constraint
system) representing a state formula c. The symbols true, faise, A,V, 5,3
represent linear-temporal logic true, false, conjunction, disjunction, negation
and existential quantification. As clarified later, the dotted notation is needed
as in CLTL these operators may have slight differences with the symbols
true, false, A, V, 7, 3in the underlying constraint system. The symbols O, [,
and { denote the temporal operators nezt, always and sometime. Intuitively
O F, $ F and O F means that the property F' must hold next, eventually
and always, respectively. We use F'= G for 5 FV Q.

The standard interpretation structures of linear temporal logic are infinite
sequences of states [18]. In the case of ntcc , it is natural to replace states by
constraints, and consider therefore as interpretations the elements of C¥.
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The CLTL semantics of the ntcc logic is given in Definition 3.18. Following
[18] we introduce the notion of z-variant. But first we need some little notation.

Notation 3.16 Given a sequence o = cq.ca. ..., we use 3, to denote the
sequence 3,¢13,C . ... We shall use a(i) to denote the i-th element of a.

Definition 3.17 (z-variant) A constraint d is an x-variant of ¢ iff 3¢ =
d.d. Similarly o/ is an x-variant of « iff .o = Iz

Intuitively, d and o are z-variants of o and ¢, respectively, if they are the
same except for the information about x. For example, x = 1 Ay = 0 is an
x-variant of x =42 Ay = 0.

We can now give the CLTL semantics of our ntcc logic.

Definition 3.18 (CLTL Semantics) We say that o satisfies (or that it is
a model of) F in CLTL , written o =crr F, iff (o, 1) Ecur F, where:

a,l ):CLTL tfue

@,i) Fcur false

@, %) FcLrL ¢ iff ali) Ec

@,) Fourn 0 F iff  (a,i) Fcrr F

Ecrn FAG iff  (a,4) FEourL Foand {a,1) Ecorn G

(a,1)
(a,1)
(a,1)
(a,1)
(a,1)
(a,4) Ecrre FVG  iff (a,1) Ecrrn F oor {a,1) Ecrre G
(a,1)
(a,1)
(a,1)
(a,1)

(
a, (
(
a,i (a,i+ 1) Fourn F
Ferr OF iff  forallj>1 (o, 5) EcurL F
a, %) ForrL OF iff thereisaj>1i s.t {a,j) Fcurn F

a,1) EcrtL 3, F iff  there is an z-variant o/ of a s.t. (i) Ecrry F.

Q,l

Define [F]={a | a EcrrL F'}. We say that F is CLTL valid iff [F] = C¥,
and that F is CLTL satisfiable iff [F] # 0.

State formulae as Constraints. We ought to clarify the role of constraints
as state formulae in our logic to justify our dotted notation. A temporal for-
mula F' expresses properties over sequences of constraints. As a state formula,
c expresses a property which is satisfied only by those e.o/ such that e = ¢
holds. Therefore, the state formula false (and consequently (Jfalse) has at
least one sequence that satisfies it (e.g. false“). On the contrary the temporal
formula false has no models whatsoever.
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Similarly, the models of the temporal formula ¢V d are those e.o/ such that
either e = c or e = d holds. Therefore, the formula ¢V d and the state formula
(constraint) ¢ V d may have different models since e = ¢V d may hold while
neither e = ¢ nor e = d hold. Thus, in general [cV d] # [c V d]. The same
holds true for —c and = c.

Example 3.19 Let e = ¢V d with ¢ = (x = 42) and d = (z # 42). One can
verify that C¥ = [cVd] 2 e* ¢ [cV d] and also that [-c] > false® ¢ [-¢c]. O

In contrast, the formula ¢ A d and the atomic proposition ¢ A d have the same
models since e = (¢ A d) holds if and only if both e = ¢ and e = d hold.

The above discussion tells us that the operators of the constraint system should
not be confused with those of the temporal logic. In particular, the operators
V and V.

Process Verification.

Let us now recall what it means for a process P to satisfy a specification F'.

Definition 3.20 (Verification) We say that the process P satisfies the for-
mula F, written P Ecur F, iff sp(P) C [F].

The intended meaning of P =cpr, F' is that every sequence P can possibly
output on inputs from arbitrary environments satisfies the temporal formula
F.

Example 3.21 Recall Example 3.5. We had a process R which was repeatedly
checking the state of motor,. If a malfunction is reported, R would tell that
motor; must stop. We also had a process S stating that motor motor, was
doomed to malfunction. Intuitively, this means that the parallel execution of
R and S satisfies the specification )(motor;_speed = 0) stating that motor
must eventually stop. In other words,

R|| S Ecur. ¢(motor;_speed = 0)
O

Remark 3.22 Notice that P = tell(c) + tell(d) =crrL (¢ V d) as every cons-
traint e output by P entails either c or d. In contrast, Q = tell(cVd) % (cV d)
in general since QQ can oulpul a constraint e which certainly entails ¢V d and
still entails neither ¢ nor d — e.g. considere = (x =1Vzx =2),c= (x =1)
and d = (x = 2). Notice, however, that Q = (¢ V d). In other words the for-
mula ¢V d distinguishes P from Q while the (state) formula ¢V d does not.

17



The reader may now see why we distinguished the temporal formula ¢V d from
the state formula (i.e., constraint) ¢V d.

4 Decidability Results for ntcc

We first present our decidability result for the strongest-postcondition (sp)
equivalence. We then show, with the help of this first result, our decidability
result for the ntcc verification problem. Finally, we present the decidability
results for validity and satisfiability in CLTL.

The theory of Biichi FSA [3] is central to our results. These FSA are ordinary
automata with an acceptance condition for infinite (or w) sequences: an w
sequence is accepted iff the automaton can read it from left to right while
visiting a final state infinitely often. The language recognized by a Biichi
automaton A is denoted by L(A). Regular w-languages are those recognized
by Biichi FSA.

4.1 Previous Approaches

For a better exposition of our results, it is convenient to look first into previous
approaches to the decidability of the ntcc observational equivalences. First,
we need the following definition.

Definition 4.1 (Derivatives) Define P = Q iff P CLIN Q for some
c,d. A process () is a derivative of P iff P=P, — ... — P, = Q for
some Py,..., P,.

Restricted Nondeterminism: Finitely Many States. In [27] we show
the decidability of output equivalence for the restricted-nondeterministic frag-
ment of ntcc which only allows x-free processes whose summations are not
in the scope of local operators. First, the authors show that each process in
this fragment has a finite number of derivatives (up-to output equivalence).
Then, they show how to construct for any given restricted-nondeterministic
P a Biichi automaton that recognizes P’s output behavior as an w— lan-
guage. Since language equivalence for Biichi FSA is decidable [39] the decid-
ability of output equivalence follows. In his PhD dissertation [42] the author
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proved the decidability of the sp (and input-output) equivalence for restricted-
nondeterministic processes by a reduction to that of output equivalence.

More Liberal Nondeterminism: Infinitely Many States. The above-
mentioned FSA have states representing processes and transitions representing
observable reductions. The automata are generated by an algorithm that uses
the ntcc operational semantics to generate all possible observable reductions.
Hence, the finiteness of the set of derivatives is crucial to guarantee termi-
nation. In fact, the algorithm may diverge if we allow arbitrary * processes,
or summations within local operators because, as illustrated below, they can
have infinitely many derivatives each with different observable behavior.

Example 4.2 (1) Notice that xP has infinitely many derivatives of the form
next P and each of them may exhibit different observable behavior. (2) Let
R =!'P with P = when z = 1 do x tell(c). Notice that we could have
the following sequence R =——=!P |!P =P ||!P ||'P —— .... Now, for
any n > 0, let D, = II,!P ||'"P (i.e., the n-th derivative). One can verify
that on input (x = 1).true¥, Dy can tell ¢ at k + 1 different time units but
Dy_1 can only do it at k different units. (8) A similar situation occurs if
P = when z =1 do dtell(c) where 6Q denotes an arbitrary possibly infinite

delay of Q). This delay operator can be recursively defined as 0Q) o Q+next 6Q)
and such a kind of definitions can be derived in ntcc using replication together
with blind choice summations within local processes [26/. O

4.2 Decidability of SP Equivalence: The Approach

We shall show a Biichi FSA characterization of the sp for processes that, unlike
in previous approaches, can exhibit infinitely many, observationally different,
derivatives—of the kind illustrated in Example 4.2. Another difference with
the work previously mentioned is that, to get around the algorithmic problems
illustrated above, the characterizations will be guided by the sp denotational
semantics of ntcc [25] rather than its operational semantics.

SP Denotational Representation.

Table 2 shows a sp denotational semantics [-] : Proc — P(C*) of ntcc . In
fact, this is simply the semantics of ntcc given in [28] extended to take into
account the abort construct.

Nevertheless, from [7] we know that there cannot be a f : Proc — P(C¥),
compositionally defined, such that f(P) = sp(P) for all P. In [28], however,
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Table 2

A SP Denotation. Below .o’ is the concatenation of the finite sequence 8 followed
by . The sequence 3« results from applying 3, to each constraint in o. In DSUM
if I = (), the indexed union and intersection are taken to be () and S, respectively.

DABORT: [abort] = 0

DTELL: [tell(c)] = {d.a|d = c}

DSUM: [Yicrwhencido P ] = U{d.a|d[c; and d.a € [P]}
el
U

niel{d-a | d % ci}
DPAR: [PllQ = [PIN[Q]
DLOC: [(localz) P] = {« | there exists &' € [P] s.t. 3¢/ = pa}
DNEXT: [next P] = {d.a| a € [P]}
DUNL: [unless ¢ next P] = {d.a|d = c}
U
{d.a|d £ cand a € [P]}

DREP: ['P] = {a| forall 8,d s.t. a = .o/, we have o/ € [P]}

DSTAR: [*P] = {B.a|a€[P]}

we showed that [P] = sp(P) for all P in the so-called locally-independent frag-
ment. This fragment forbids non-unary summations (and “unless” processes)
whose guards depend on local variables.

Definition 4.3 (Locally-Independent Processes) A process P is said to
be locally-independent iff for every unless c next () and }_;,c; when ¢; do Q);
(\I| > 2) in P, neither c nor the ¢;’s contain an occurrence of a variable bound
by some local operator in P.
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Theorem 4.4 (Completeness) If P is locally-independent, [P] = sp(P).

Proof. By induction on structure of P. The case P = abort is straightfor-
ward. The other cases follow as in the proof of Completeness in [28]. O

Expressiveness. The locally-independent fragment allows x processes and
also blind-choice within local operators which may exhibit infinitely many
observationally different derivatives, as illustrated in Example 4.2. Further-
more, every summation whose guards are either all equivalent or mutually
exclusive can be encoded in this fragment [42]. The applicability of this frag-
ment is witnessed by the fact all the ntcc application the author is aware
of [26,27,42] can be model as locally-independent processes. Furthermore, the
(parameterless-recursion) tcc model [33] can be expressed in this fragment as,
from the expressiveness point of view, the local operator is redundant in tcc
with parameterless-recursion [25].

SP Biichi FSA Representation.

We shall give a Biichi characterization of sp(P) from its denotation [P]. We
then benefit from the simple set-theoretical and compositional nature of [-] as
well as the closure properties of regular w—languages.

A technical problem arises: There can be infinitely many ¢’s such that c.« is
in the sp of a given P since C may be infinite, but the alphabets of Biichi FSA
are finite. To overcome this problem we shall confine the sp of P (or P) to a
suitable finite set S Cg, C including the so-called relevant constraints of P.
The intuition is that for each input ¢ for P, we can find a constraint ¢’ in S
entailed by ¢ and build from the constraints in P, so that P behaves on ¢’ as
it behaves on c. We can then think of ¢’ as containing just the information of
c that is relevant to P.

Relevant Constraints. Before giving the actual definition of relevant con-
straints, let us give some more intuition about this notion with an example.

Example 4.5 Let us consider the process
P =telll0 <z Az <y) | when prime(z) do tell(z = 0)
where prime(x) holds iff x is a prime number. Note that P tells (0 < xAx < y)

no matter what, and on input prime(x), which occurs as a constraint in P, it
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tells z = 0. But P can also tell z = 0 on other inputs, e.g., y =4 orx = 7;
none of which appears in P.

Let ¢ be an arbitrary constraint on input of which P tells z = 0. From the
operational semantics, we conclude that (cAN0 < z Az < y) = prime(x) holds.
But such an assertion holds iff c = (0 < z Az < y) = prime(z).

Let us then declare ¢ = ((0 < x Az < y) = prime(x)). We notice that P
on ¢ can also tell z = 0. So, ¢’ is of relevance for P as it characterizes P on
every input ¢ causing z = 0 to be told. Furthermore, it can be obtained from
the constraints in P using implication.

Now, let Q = (localx) P. Notice, that like P, the process Q tells z = 0 on
inputs such as y = 4. But because x is a local variable, unlike P, () does not
tell z = 0 on inputs such as prime(z). For the same reason, Q) does not tell
z =0 on c above.

So, let us define e = V.. Now @ on input e tells z = 0. Notice that e
can be obtained from the constraints in () using implication and universal
quantification.

Furthermore, notice that tell(0 < z Az < y) and (localz)tell(z < z) are
equivalent to tell(0 < z) || tell(z < y) and tell(3,z < x), respectively. So, we
also need conjunction and existential quantification for obtaining the relevant
constraints of a given process. O

The above example illustrates how to obtain relevant constraints for processes
using implication, conjunction, and if local operators are involved, also uni-
versal and existential quantification. In the following we formalize the above
intuition.

Definition 4.6 (Relevant Constraints) Given S C C, let S be the closure
under conjunction and implication of S. Let C : Proc — P(C) be defined as:
C(skip) = {true}

C(tell(c)) = {c}
C(Xicr when ¢; do P) = U {ci} U C(F)
C(unless ¢ next P) = {c} UC(P)
CPl Q) =CcP)ul(Q)
C(!P)=C(xP)=C(next P) = C(P)
C(

(localz) P) = {d,¢,Y,c | c € C(P)} UC(P)
Define the relevant constraints of P as the set C(P) = C(P).

Clearly C(P) is finite. Moreover, in what follows we shall show that C(P)
provides the suitable finite set of constraints to characterize sp(P). First, we
need the following notation.
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Definition 4.7 (Relevant Constraint Information) Let S Cg, C. Deﬁne
c(S) as the conjunction of all e € S entailed by c, i.e., c(S) = Acesee €

Intuitively, ¢(S) contains the necessary information about ¢ wrt a finite res-
tricted universe of constraints S C C.

The next lemma states that to characterize the sp of P we can use any set that
containing at least its relevant constraints. Please recall that the sp of a given
process can be equivalently characterized by its set of quiescent sequences—see
Theorem 3.13.

Lemma 4.8 Assume that S is such that C(P) C S Cgy C. Then
P

P (C C) PI ZﬁP (6(5)76(‘5'))

Let us illustrate how the above lemma applies to the previous example.

Example 4.9 Let P be defined as in Example 4.5. Furthermore, suppose that
S=C(P)={0<zAz<y,prime(z),z=0} and thatcEd = (0 <z Az <
y) = prime(x)).

Consider the “if” direction of the Lemma 4.8. Assume that

p (c(5),¢(S)) P
It must then be the case that ¢(S) = (0 < Az <vy), thusc = (0 < zAz < y).
Then ¢ = prime(x) and since prime(z) € C(P) then also c(s) = prime(x). So,
on input c(s), process P must tell z = 0 and thus, from the assumption, c(s) E

z = 0. Therefore, c = z=0. All in all, c = (0 < xAz < y)Aprime(z) Az = 0.
It is then is easy to check that

p =« pr

The reader may care to apply the “only-if” direction of the lemma to our
particular P. O

Proof of Lemma 4.8 From Rule OBS in Table 1, it suffices to show that
for every P,

i (P,c) — ( c) iff (P, c(S )>—> (@, ¢(5)), and
i (P,c) /= iff (P,e(S)) /=

To simplify the presentation, we assume that P contains no nesting of local
operators. The most interesting case is the “only if” direction of (i).
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e The “only if” direction of (i). Assume the reduction sequence (P,c) —*
(@, ¢). The sequence can be represented as a sequence of the form

(Py,c) —* (Py,¢) — (P!, ¢) —* ... —* (P;,¢)
— (P!, ¢) —* (Piy1,¢) — <PZ-,+1,C> — . (1)

(with P = Py and @ = P,) satisfying the following: (1) The (zero or more)
reductions (P;,c¢) — (P], c) are obtained from derivations whose topmost
(or root) rule is either SUM or UNL—i.e. they represent the execution of
either a summation or an unless operator. (2) Each (P,,¢) —* (P;11,¢)
involves no application of SUM or UNL.

Now let g; be the guard of the summation whose branch was selected (or
the guard of the unless operator) when deriving (P;,¢) — (P}, ¢). From
Rules SUM, UNL and LOC we must have:

where Z; is vector of at most one variable and e; represents local information
possibly introduced by rule LOC (the vector can be empty and e; can be
true meaning that LOC was not applied; see Convention 3.7).

By manipulating the assertion in Equation 2 we obtain the following
transformation central to our proof:

e; N\ Hjic )= gi iff Eiic )= (6,‘ = gi)
iff 3@.0 ’: Vfl (ez- = g,-)
iff ¢ )= sz(e, = gi)
iff ¢ ’: ‘v’fl(ez = gi) (3)
Then, let d; = Vz(e; = g;). From Definition 4.6, g; € C(P) because g; is a
guard in P. Since e; represents local information, using Rule LOC we can
verify that it can be constructed via conjunction and existential quantifica-
tion out of the constraints in tell operators within the corresponding local
process. So, e; € C(P) and hence, from Definition 4.6, d; € C(P).
Let ¢’ = Aieqi,...,n} di- From Equation 3 ¢ |= ¢/. Moreover, ¢’ € C(P) since
each d; € C(P) and C(P) is closed under conjunction. Thus,

c(S)=¢ (4)

Claim 1 Given the P;’s and their primed versions in FEquation 1, one can
construct the sequence of the form

(P, c(s)) —* (Pr,c(s)y — (Pf,c(s)) —* ... —* (P, ¢(s))

— (Plels)) =" (P, els)) — (Pli,els)) —" -
satisfying conditions analogous that of Equation 1: Each (P;,c(S)) —
(P!, c(S)) is obtained from a derivation with topmost rule SUM or UNL,
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and each sequence {P;,c(S)) —* (Pi11,¢(S)) involves no application of
SUM or UNL. It then follows that (P, c(S)) —* (Q, c¢(S)) as wanted.

To prove the claim, let us first show that (P;, ¢(S)) — (P}, ¢(S)) for each
i > 1. Notice that ¢(S) = ¢ | Vg (e; = ¢;) for each i (Equation 4). So, just
like e; A 3z,¢ = ¢; (Equation 2), we get

ei A Jg,c(S) E e A Iz Vi (e = gi) e A Vg (ei = i) = gi. (5)

With the help of Equation 5, we conclude that (P;, ¢;(S)) can execute the
summation or unless operation executed by (P;, ¢;) . More precisely, we can
obtain a derivation of (P;,¢(S)) — (P/,¢(S)) by applying in the same
order the rules used in (P;, ¢;) — (P, ¢;) and the fact that e; AJz,c(S) = g
(Equation 5).

Furthermore, the conjunction of all constraints told during (P;,c) —
(Pi41,c) is entailed by ¢ and it must be in S, so it is entailed by ¢(S). From
this we verify that (P;, c(S)) —* (P11, ¢(S)) (by using in same order the
rules in (P;, ¢) —* (P;41,¢)), thus concluding the proof of the claim.

e The “if” direction of (i) is similar to the previous item; it uses the fact that
¢ = ¢(S).

e The ‘if” direction of (ii). By means of contradiction let us suppose we have
(P,c(S)) #— and (P,c) — (P', ). But then (P, c¢) — (P’, ') is obtained
by a derivation whose topmost rule is SUM or UNL (i.e., either a summation
or an unless is executed)—otherwise (P, ¢(S)) would reduce as well.

We now proceed as we did in the first item of this proof. Let g be the
guard of the summation whose branch was selected (or the guard of the
unless operator) when deriving (P, c¢) — (P, ¢'). We must then have

*

eNJzc =g

where Z is vector of at most one variable and e represents local information
possibly introduced by rule LOC. As in the first item we conclude that
¢ = d =Vz(e = g) (See Equation 3), and that d € S. Then, ¢(S) = d by
definition.

From the above it follows that e A 3z¢c(S) EeAJzd = e AVz(e = g) E
g. We can then show that (P, ¢(S)) can execute the summation or unless
operation executed by (P, c). Le., (P,¢(S)) — (P’,¢(S)) by using the fact
that e A 3z¢(S) = g and applying in the same order the rules for deriving
(P,c) — (P', ). This contradicts our initial assumption.

e The ‘only if” direction of (ii) is similar to the “if” direction but using the
fact that ¢ = ¢(S). O

Corollary 4.10 (Relevant SP) Assume that S is such that C(P) C S Cpy
C. Then

¢1.¢2. ... € sp(P) iff c1(5).ca(S). ... € sp(P)
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Proof. From Definition 3.12, ¢j.co.... € sp(P) iff for some P, P, ... we
have P = F, GEVIN P, (c2,02) P, Sl By case analysis on the
structure of @), it is easy to verify that if @ led) @', C(Q") C C(Q). Hence

C(P;) CC(P) C S for each i > 0. The result follows by applying Lemma 4.8
to each P;. O

Relevant-Constraints Denotational Representation. In the previous
section we proved that we can restrict the sp of a given process to a finite set
of constraints S. Therefore we can restrict as well its denotational semantics

[P] to S.

Consequently, we shall work with a function [-]° : Proc — P(S“) in Table 3
which is meant to capture sp(P) but restricted to a set of relevant constraints
S. The idea is to think that the underlying set of constraints C to be S. In
fact, we can re-state the theorem in [28] as follows:

Theorem 4.11 (Completeness Revisited) Let P be local independent and
S be such that C(P) C S Cpn C. Then [P]° = sp(P) N SY,

Proof. The proof proceeds as the proof of Theorem 4.4 but taking the un-
derlying set of constraints C to be S. O

Now we have all what we need to reduce sp equivalence to the denotational
equivalence over a finite set of constraints.

Theorem 4.12 (Relevant Characterization of SP Equivalence) Let P
and @Q be locally-independent and let S = C(P)UC(Q). Then

IIP]]S = I[Q]]S Zﬁ P ~sp Q

Proof. From Corollary 4.10 and Theorem 4.11. O

Biichi Constructions. Having identified our finite set of relevant con-
straints for the sp equivalence characterization, we now proceed to construct
for each P and S Cg, C, a Biichi automaton A% recognizing [P]°. Each A%
will be compositionally constructed in the sense that it will be built solely
from information about FSA of the form A% where () is a subprocess of P.
The most interesting case of this construction is replication, as described in
the proof of the lemma below.
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Table 3

The [-]° : Proc — P(S*) SP Denotation. Below S C C and .« is the concatenation
of the finite sequence 3 followed by . The sequence 3« results from applying 3,
to each constraint in . In DSUM if I = (3, the indexed union and intersection are
taken to be () and S¥, respectively.

DABORT: [abort]® = 0

DTELL: [tell(c)]® = {d.a€ S¥|d[c}

DSUM: [ Y,c;when¢ do P ]° = U{d.a|d[ ¢ and d.a € [P]%}
el
U

Nier{d-a € 8 [ d | ci}
DPAR: [P11QI° = [PI°N[QI°
DLOC: [(localz) P]® = {a € S¥ | there is o € [P]° s.t. I,/ = F,a}
DNEXT: [next P]° = {d.a € 8 | a € [P]°}
DUNL: [unless ¢ next P]® = {d.a € S¥ | d |=c}
U
{d.a € 8 |d |~ cand a € [P]°}

DREP: ['P]° = {a € 8% |forall B,d if a = B.o/, € [P]°}

DSTAR: [xP]® = {B.a € S¥|ac[P]°}

Lemma 4.13 Given P and S Cygyn C one can effectively construct a Biichi
automaton A% over the alphabet S such that L(A%) = [P]°.

Proof. Let us construct A3 by case analysis on P.

e Skip and Tell Automata. P = skip: A, has a single (initial, accepting)

state, and for each ¢ € S, there is a transition labeled with ¢ from this
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single state to itself. P = tell(c): Ag,y) has exactly two states: one is its

initial state and the other is its accepting one: the unique state of Af;..

The transitions of AtSell(c) are those of AS ., plus a transition from the initial
state to the state of A, labeled with d for each d € S such that d = c.

e Parallel Automaton. P = @ || R: From the theory of Biichi FSA we know
that given AP and A% one can construct an automaton for L(A$) N L(A7)
[4]. Take Ag”R to be such an automaton.

e Local Automaton. P = (localz)Q: The states of Afj,ca1z) are those of
AJ. Tts initial and final states are those of Ag. For each ¢ € S, Afjpcars)o
has a transition from p to ¢ labeled with c iff Ag has a transition from p to
q labelled with d for some d € S such that 4,d = d,e.

e Replication Automaton. P =!Q: We have « € [!Q]° iff every suffix of « is
in [Q]°. We then need to construct a A{} that accepts an infinite sequence
a iff every suffiz of it is accepted by Az. At first, such a construction may
seem somewhat complex to realize. Nevertheless, notice that the process Q)
is dual to %@ in the sense expressed in [28]:

[Q) =vx([QIN{d.a|ae X})  while [Q] = pux([QIU{d.alac X})

where v, uu are the greatest and least fixpoint (resp.) in the lattice (P(C¥), C).
In fact, a € [*Q]° iff there is a suffiz of o in [Q]°. So, given an automaton B
define xB as the automaton that accepts « iff there is a suffiz of o accepted
by B. The construction of xB is simple and similar to that of AfQ below.
Now, given A, one can construct the automaton A for the complement of
L(A) [39]. Hence, keeping duality in mind, we can take Ay, to be *A—g.

e Unbounded but Finite Delay Automaton. P = xQ: The states of A%, are
those of A% plus an additional state sy. Its final states are those of Ap). Its
initial states are those of Ag plus sg. The transitions are those of A% plus
transitions labelled with ¢, for each ¢ € S, from s( to itself and from sq to
each initial state of A%. The transitions “looping” into the initial state sg
model the “arbitrary but finite delay” of x(). Notice that any sequence to
be accepted for AfQ has to eventually leave the initial state sg.

The simple summation case is left for the reader. The correctness of A% and
its effective construction can be easily verified by induction on P. O

We can now prove our decidability result for sp equivalence:
Theorem 4.14 (Decidability of ~,,) Given the locally-independent proce-

sses P and Q, the question whether P ~, () is decidable.

Proof. From Theorem 4.12, Lemma 4.13 and the decidability of language
equivalence for Biichi FSA [39]. O
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4.8 Decidability Results for Verification and CLTL

Here we show the decidability results for the verification problem (i.e., given
P and F whether P =cpr, F, see Definition 3.20) as well as for CLTL
(Definition 3.18).

Recall the CLTL models of a given formula F' are in C¥. Thus, for our de-
cidability results we may attempt to give a Biichi characterization of CLTL
formulae facing therefore the problem pointed out in the previous section: C
may be infinite but Biichi FSA only have finite alphabets. One could try to
restrict [F] to its “relevant” constraints as we did for [P]. This appears to
be possible for negation-free formulae but we do not know yet how to achieve
this for the full language.

Nevertheless, for negation-free formulae there is an alternative to obtain the re-
sults by appealing to Theorem 4.14 and the correspondence between processes
and LTL formulae. More precisely, we show that one can construct a locally-
independent Ry whose sp corresponds to [F] if F' is a restricted-negation
formula in the following sense:

Definition 4.15 (Restricted-Negation LTL) A formula F is a restricted-
negation formula iff whenever =G appears in F' then G is a state formula (i.e.,
G = c for some c).

Recall that in CLTL ¢ and the state formula —¢ do not match (Exam-
ple 3.19). In fact, we need = ¢ should we want to express the minimal impli-
cation form ¢= D = Sc¢V D.

Lemma 4.16 Let F' be a restricted-negation formula. One can effectively con-
struct a locally-independent Rp such that [F] = sp(Rp).

Proof. Take Ry = h(F') where h is the map from restricted-negation formulae
to locally-independent processes given by

h(true) = skip h(false) = abort

h(c) = tell(c) h(-¢) = when ¢ do abort

hFAG)=h(F)| h(G) h(FVG)=when true do h(F)
+ when true do h(G)

h(3zF) = (localz) h(F) h(OF) = next h(QG)

h(OF) = ' h(F) h(OF) = *xh(F)
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Obviously, h(F') can be effectively constructed. One can verify that [F] =
[A(F)] by induction on the structure of F. From Theorem 4.4 we obtain
[F] = sp(h(F)). O

Notice that the map h above reveals the close connection between ntcc and
LTL. We can now state the decidability of the verification problem for ntcc.

Theorem 4.17 (Decidability of Verification) The question whether the
assertion P =crrL F' holds is decidable for any given restricted-negation for-
mula F' and locally-independent process P.

Proof. From Theorem 4.14 by using the following reduction to sp equiva-
lence:

P cum Fiff sp(P) C [F] (Definition 3.20)
iff sp(P) C [Rr] (Lemma 4.16)
ifft [P] € [RF] (Theorem 4.4)
ifft  [P] = [Re]N[P]
iff [P] = [Rr] P] (Definition of [])

iff P~y Rp || P (Theorem 4.12). O

We can reduce the validity of implication to the verification problem. There-
fore,

Theorem 4.18 (Decidability for Validity of Implication) Let F' and G
be restricted-negation formulae. The question of whether F = G is CLTL valid
is decidable.

Proof. F=G iff [F] = sp(Rp) C [G] by Definition 3.18 and Lemma 4.16.
Then F =G iff Rr =crrn G by Definition 3.20. The result follows from
Theorem 4.17. O

As an immediate consequence of the above theorem we obtain the following:
Corollary 4.19 Given any restricted-negation formula F, the questions of

whether F is CLTL wvalid and whether F' is CLTL satisfiable are both decid-
able.
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Proof. F is CLTL valid iff true=>F is CLTL valid, and F is CLTL
satisfiable iff F'= false is not CLTL valid. The result follows from Theo-
rem 4.18. O

5 Application: Manna and Pnueli’s LTL

We now apply the previous results on our ntcc LTL (CLTL) to standard first-
order LTL, henceforth called LTL, as presented by Manna and Pnueli in [18].
Namely, we obtain a new positive decidability result on the satisfiability of a
first-order fragment of LTL by a reduction to that of CLTL. The relevance of
our result is that LTL is not recursively axiomatizable [1] and, therefore, the
satisfiability problem is undecidable for the full language of LTL. We confine
ourselves to having O, [, and <) as modalities. This is sufficient for making a
recursive axiomatization impossible [19].

We shall recall briefly some LTL notions given in [18]. We presuppose an
underlying first-order language £ (including equality) with its (non-logical)
symbols interpreted over some concrete countable domains such as the natural
numbers. Furthermore, we assume that for each v in the interpreting domain,
L has a constant term ¥ whose interpretation is v. For instance, as in [18], for
the natural numbers we may have the constants 0,1, ... in the language.

States and Models. A state s is an interpretation that assigns to each
variable z in £ a value s[z] over the appropriate domain. The interpretation
is extended to £ expressions in the usual way. For example, if f is a function
symbol of arity 1, s[f(z)] = f(s[z]). We write s | ¢ iff ¢ is true wrt s in
the given interpretation of the £ symbols. For instance, if 4 is interpreted as
addition over the natural numbers and s[z] = 42 then s = 3,(r =y + y). We
say that c is state valid iff s |= ¢ for every state s.

A model is an infinite sequence of states. We shall use ¢ to range over models.
The variables of £ are partitioned into rigid and flexible variables. Each model
o must satisfy the rigidity condition: If z is rigid and s, s’ are two states in o
then s[z] = s'[z]. In other words flexible variables are those, that unlike the
rigid ones, can change their assignment from one state to another.

LTL Syntax and Semantics. The syntax of LTL is that of CLTL given in
Definition 3.15. In this case, x is a variable in £ and c represents a first-order
formula over L.
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The semantics of LTL is similar that of CLTL (Definition 3.18) except that
now the formulae are satisfied by sequences of states. We then need to extend
the notion of z-variant (Definition 3.17) to states: s is z-variant of s' iff s[y] =
s'[y] for every variable y in £ different from z.

Definition 5.1 (LTL Semantics) A model o satisfies F' in LTL, notation
o FEurL F, iff (0,1) Err F where {(0,i) =y F is obtained from Defini-
tion 3.18 by replacing o and =cprn, with o and EvrL, respectively. We say
that F is LTL satisfiable iff o =ir1, F for some o, and that F is LTL valid
iff o Evr F for all o.

5.1 LTL Decidability

In order to prove our decidability result, we assume that state validity (the
set of valid state formulae) is decidable. From [17] we know that even under
this assumption the LTL defined above is undecidable. In contrast, under the
assumption, LTL satisfiability is decidable for the fragment in which temporal
operators are not allowed within the scope of quantifiers as it can be reduced
to that of propositional LTL [1].

Example 5.2 Let us now illustrate the interaction between quantifiers, modal-
ites, flexible and rigid variables in LTL. The formula []Elu(x = uAOx =
u+1), where x is flexible and u is rigid, specifies sequences in which x increases
by 1 from each state to the next. This example also illustrates that existential
quantification over rigid variables provides for the specification of counter com-
putations, so we may expect their absence to be important in our decidability
result. In fact, we shall state the LTL decidability for the restricted-negation
fragment (Definition 4.15) with flexible variables only. O

Removing Existential Quantifiers. One might be tempted to think that,
without universal quantification and without rigid variables, one could remove
the existential quantifiers rather easily: Pull them into outermost position with
the appropriate a-conversions to get a prenex form, then remove them since
3, F is LTL satisfiable iff F is LTL satisfiable. But this procedure does not
quite work; it does not preserve satisfiability:

Example 5.3 Let F = (z = 42A0z # 42), G = 3,0F and H = O3, F
where x 1s flexible. One can verify that unlike H, OF and thus G are not LTL
satisfiable. Getting rid of existential quantifiers is not as obvious as it may
seem. 0O
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Relating CLTL and LTL Satisfiability. Let us give some intuition on
how to obtain a reduction from LTL satisfiability to CLTL satisfiability.
In what follows we confine ourselves to restricted-negation formulae without
rigid variables. One can verify that —c and = ¢ have the same LTL models.
So, in the reduction we can assume wlg that F' has no - symbols. Notice that
F = (z = 42V z # 42) is LTL valid but not CLTL valid (Example 3.19).
However, F' is satisfiable in both logics.

In the general case, it is easy to see that if a temporal formula F' is LTL
satisfiable then F'is CLTL satisfiable. The idea is that an assignment s[z] = v
can be represented by the constraint = v where the term v is interpreted as
v—recall that from the assumptions about £ such a ¥ must exist. The other
direction of the implication does not necessarily hold. For instance, { false
is not LTL satisfiable but it is CLTL satisfiable—recall from Section 3.5
that in CLTL false is not the same as false. For example, false* =crrL
{ false. Nevertheless, as shown in the next lemma, we can get around this
mismatch by using [0 false to exclude CLTL models containing false—
i.e., B.false.a Ecpr, O false for any 8 € C* and a € C¥.

Recall that (X,A) (Definition 3.1) denotes the underlying constraint system
and £ denotes the underlying first-order language of state formulae. Also recall
that both A and the set of valid state formulae are required to be decidable.
The next lemma reduces LTL satisfiability to that of CLTL.

Lemma 5.4 Assume that (X,A) has L as first-order language and A is the
set of valid state formulae. Then

F is LTL satisfiable iff F AO-+false is CLTL satisfiable,

if F'is a restricted-negation formula with no occurrences of = and with no
rigid variables.

Proof.

e “If” direction. Let & = c¢j.cy.... such that o Ecrr, FAO - false. By
using induction on F' one can verify that:

For every o = s1.55.... such that s; = ¢;, we have o =ppp, F.

We show the case F' = Elw F'; the others are easier. Let o0 = s1.85.... be
an arbitrary sequence such that s; = ¢; for each ¢ > 0.

By the definition of Fcprr, there must exist an z-variant o = ¢}.cj. ...
of v such that o EcrrL F'. So, for each i > 0, ¢; and ¢; must only differ in
the information about z; i.e. 3;¢; = 3,¢,. Thus, for each ¢ > 0, there must
be a s, = ¢, that differs from s; only in the assignment to z; i.e., s} is an
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x-variant of s;. But from the induction we know that for any ¢’ = s).s). . ..
such that s} = ¢} (i > 1), we must have ¢’ =ppy, F'. From the definition of
ErrL, it follows that o = F.

We still have to show that there must exist at least one 0 = s1.89. ... such
that s; = ¢; for each 7 > 0. To see this, notice that since o =cpr, O false
then ¢; # false for every ¢ > 0. Thus, each ¢; must have at least a satisfying
assignment. Hence, F' is LTL satisfiable as wanted.

e The “only if” direction. Suppose that 0 = s1.59... =L F. Let a = ¢;.¢9...
with each ¢; = (z1 = TIA. . Az, = Ty,) where 24, ..., x, are the free variables
of F, and s;[z1] = vy,..., si{zn] = v,. It is easy to verify that o Ecprn F
using induction on the structure of F. Furthermore, each ¢; is clearly not
equivalent to false, and hence, a F=cpyr, [0 false. Thus, FA - false
is satisfiable. O

We can now state the decidability result we claimed for first-order LTL.

Theorem 5.5 (Decidability of LTL Satisfaction) Let F' be a restricted-
negation formula without rigid variables. The question of whether F' is LTL
satisfiable is decidable.

Proof. From Lemma 5.4 and Corollary 4.19, and the fact that one can freely
replace = by — in F' and the resulting formula will have the same LTL models
than the original F. O

6 Concluding Remarks

We presented positive decidability results for the sp behavioral equivalence,
the ntcc verification problem, and the ntcc specification first-order temporal
logic CLTL . These results apply to infinite-state processes. A somewhat
interesting aspect is that for proving the results it turned out to be convenient
to work with the ntcc denotational semantics rather than with its operational
counterpart. Also the use of Biichi automata-theoretic techniques in these
results highlights the automata-like flavor of ntcc.

Furthermore, by using a reduction to CLTL satisfiability, we identified a first-
order fragment of the standard LTL [18] for which satisfiability is decidable.
The result contributes to the understanding of the relation between (timed)
ccp and (temporal) classic logic and also illustrates the applicability of timed
ccp to other theories of concurrency.
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6.1 Related Work

We already discussed previous related work in Section 4.1. The work in [25]
proves the decidability of the sp equivalence and other behavioral equivalen-
ces for several deterministic timed ccp languages. Another work [27] shows
that output equivalence is decidable for a restricted nondeterministic ntcc
fragment. The results in [25,27] are obtained by showing that the processes
in these languages are indeed finite-state. In contrast, in this paper we dealt
with infinite-state processes.

Saraswat et al [37] showed how to compile parameterless recursion tcc proce-
sses (basically finite-state deterministic ntcc processes) into FSA in a compo-
sitional way. Such FSA provide a simple and useful execution model for tcc but
not a direct way of verifying sp (or input-output) equivalence. In fact, unlike
our FSA constructions, the standard language equivalence between these FSA
does not necessarily imply sp equivalence (or input-output) of the processes
they represent.

Another interesting approach to timed ccp verification is that in [11]. The
authors show how to construct structures (models) of tcc processes which
then, by restricting the domains of variables to be finite, can be used for
model-checking. Notice that in our results we make no assumptions about the
domains of variables being finite.

The notion of constraint in other declarative formalisms such as Constraint
Logic Programming (CLP) and Constraint Programming (CP) has also been
used for the verification of infinite-state systems. The work in [8] shows how to
translate infinite-state systems into CLP programs to verify safety and liveness
properties. Esparza and Melzer [10] used CP in a semi-decision algorithm to
verify 1-safe Petri Nets.

Merz [19] and Hodkinson et al [17] identified interesting decidable first-order
fragments of LTL. These fragments are all monadic and without equality. A
difference with our work is that these fragments do not restrict the use of
negation or rigid variables, and our fragment is not restricted to be monadic
or equality-free.

6.2 Future Work

The results in this paper depend on the translation from formulae into pro-
cesses (which are then translated into FSA), hence our restriction on the oc-
currences of negation. Nevertheless, the author believes that we can dispense
with this restriction in our decidability results. An approach for proving this
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claim could be to find a finite representation of the infinitely many constraints
that may hold at any time unit for a given formula. If this can be done, we
can then translate formulae directly into FSA. If the claim is true, then the
inference system for ntcc [28] would be complete for locally-independent pro-
cesses (and not just relative complete). This is because we would be able to
determine the validity of arbitrary ntcc LTL implication as required by the
consequence rule. It will be, therefore, interesting to be able to prove this
claim.

Despite their theoretical interest, our Biichi constructions are very inefficient—
see the complementation construction for the replication automaton in Sec-
tion 4.2. For practical purposes, it is important to conduct studies to obtain
more efficient constructions. In particular, preliminary studies indicate that
by using alternating Biichi FSA [24] we can avoid complementation when
representing the sp of processes and obtain a much better complexity.
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