
Timed Concurrent Constraint Programming:
Decidability Results and their Application to LTL

Frank D. Valencia?

Dept. of Information Technology, Uppsala University
Box 337 SE-751 05 Uppsala, Sweden

Email: frankv@it.uu.se Fax: +46 18 511 925

Abstract Thentcc process calculus is a timedconcurrent constraint program-
ming (ccp) model equipped with a first-orderlinear-temporal logic(LTL) for
expressing process specifications. A typical behavioral observation in ccp is the
strongest postcondition (sp). Thentcc sp denotes the set of all infinite output se-
quences that a given process can exhibit. Theverification problemis then whether
the sequences in the sp of a given process satisfy a givenntcc LTL formula.
This paper presents new positive decidability results for timed ccp as well as
for LTL. In particular, we shall prove that the following problems are decidable:
(1) Thesp equivalencefor the so-calledlocally-independentntcc fragment; un-
like other fragments for which similar results have been published, this fragment
can specifyinfinite-state systems. (2) Verificationfor locally-independent proce-
sses and negation-freefirst-order formulae of thentcc LTL. (3) Implication for
such formulae. (4)Satisfiabilityfor a first-order fragment of Manna and Pnueli’s
LTL. The purpose of the last result is to illustrate the applicability of ccp to well-
established formalisms for concurrency.

1 Introduction

Concurrent constraint programming (ccp) [21] is a model of concurrency for systems
in which agents interact with one another by telling and asking information in a shared
medium, a so-calledstore. Timed ccp [18] extends ccp by allowing agents to be
constrained by time requirements. Its distinctive feature is that it combines in one
framework the operational and algebraic view based upon process calculi with a
declarative view based uponlinear-temporal logic(LTL). So, processes can be treated
as computing agents, algebraic terms and LTL formulae. This allows timed ccp to
benefit from the large body of techniques of well established theories used in the study
of concurrency and, in particular, reactive computations. In fact, timed ccp has been
studied extensively as a model for reactive systems [4, 8, 14–20,23].

Thentcc process calculus [15] is a generalization of thetimed ccp model tcc [18].
The calculus can represent timed concepts such as unit delays, unbounded finite delays,
time-outs, pre-emption, synchrony and asynchrony. Furthermore,ntcc is equipped
with an LTL to specify timed properties and with aninference systemfor the verification
problem (i.e., for proving whether a given process fulfills a given LTL specification).

? This work was supported by thePROFUNDIS Project.

This paper presents new decidability results for infinite-statentcc processes, the
ntcc LTL (here calledconstraintLTL or CLTL for short), and for the standard first-
order LTL (here calledLTL for short) described by Manna and Pnueli [10]. The de-
scription and relevance of these results are outlined next:

– On the sp equivalence and verification problem.The strongest-postcondition (sp)
behavior of a givenntcc processP denotes the set of all infinite sequences of
outputs thatP can exhibit. Thus,P fulfills a given specification (i.e., aCLTL
formula)F iff each sequence in its sp satisfiesF . In Section 3, we show that for a
substantial fragment ofntcc and the negation-free first-order fragment ofCLTL :
(1) the sp equivalence is decidable and (2) the verification problem is decidable.
� A noteworthy aspect of these two results is that thentcc fragment above ad-

mits infinite-state processes. All other ntcc fragments for which similar re-
sults has been published [14, 16] are restricted to finite-state processes.

� Another noteworthy aspect is thatCLTL is first-order. Most first-order LTLs
in computer science are not recursively axiomatizable let alone decidable [1].

– On thentcc LTL. In Section 3 we prove that: (3) the validity of implication is
decidable for the negation-free first-order fragment ofCLTL .
� As for Hoare logic, thentcc inference system [15] mentioned above has the

so-called consequence rule which queries an oracle about (CLTL) implication.
This causes the completeness of the system to be relative to the capability of
determining the validity of implication, thus making our third result of rele-
vance tontcc .

� As a corollary of this result, we obtain the decidability ofsatisfiabilityfor the
negation-free first-order fragment ofCLTL . This is relevant for specification
purposes since, as remarked in [25], a specification is “interesting” only if it is
satisfiable.

– On the standard first-order LTL.In Section 4 we prove that: (4) the satisfiability
problem inLTL is decidable for all negation-free first-order formulae without rigid
variables. This result is obtained from a reduction toCLTL satisfiability.
� Since first-orderLTL is not recursively axiomatizable [1], satisfiability is unde-

cidable for the full language ofLTL . Recent work [9] and also [11], however,
have taken up the task of identifying first-order decidable fragments ofLTL .
Our fourth result contributes to this task.

� The reduction from the standardLTL satisfiability toCLTL satisfiability also
contributes to the understanding of the relationship between (timed) ccp and
(temporal) classic logic.

In brief, this paper argues for timed ccp as a convenient framework for reactive systems
by providing positive decidability results for behavior, specification and verification
(1–3), and by illustrating its applicability to the well-established theory of LTL (4).

2 An Overview of ntcc

In ntcc , time is conceptually divided intodiscrete intervals (or time units). In a par-
ticular timed interval, a processP gets an input (an item of information represented as

aconstraint) c from the environment, it executes with this input as the initialstore, and
when it reaches its resting point, itoutputsthe resulting stored to the environment. The
resting point determines a residual processQ, which is then executed in the next time
interval. In the rest of this section we shall briefly recallntcc concepts given in [15].

Definition 1 (Constraint System).A constraint system (cs)is a pair (�;�) where�
is a signature of function and predicate symbols, and� is a decidable theory over�
(i.e., a decidable set of sentences over� with a least one model).

Given a cs(�;�), let (�;V ;S) be its underlying first-order language, whereV is
a set of variablesx; y; : : :, andS is the set of logic symbols:;^;_;); 9;8; true and
false . Constraintsc; d; : : : are formulae over this first-order language. We say thatc

entailsd in �, writtenc j= d, iff c) d is true in all models of�. The relationj=; which
is decidable by the definition of�; induces an equivalence� given byc � d iff c j= d

andd j= c. Henceforth,C denotesthe set of constraints under considerationmodulo�
in the underlying cs. Thus, we simply writec = d iff c � d:

Definition (Processes,Proc). ProcessesP , Q, . . .2 Proc are built from constraints
c 2 C and variablesx 2 V in the underlying cs by:

P;Q; : : : ::= tell(c) j
P
i2I

when ci do Pi j P k Q j (localx)P

j nextP j unless c nextP j ? P j !P j abort

Intuitively, tell(c) adds an item of informationc to the store in the current time inter-
val. Theguarded-choice summation

P
i2I when ci do Pi; whereI is a finite set of

indexes, chooses in the current time interval one of thePi’s whoseci is entailed by the
store. If no choice is possible, the summation is precluded from execution. We write
when ci1 do Pi1 + : : :+when cin do Pin if I = fi1; : : : ; ing and, if no ambiguity
arises, omit the “when c do” when c = true . So,

P
i2I Pi denotes theblind-choiceP

i2I when true do Pi: We omit the “
P

i2I ” if jI j = 1 and useskip for
P

i2; Pi.
The processP k Q represents theparallel executionof P andQ.

Q
i2I Pi, where

I = fi1; : : : ; ing, denotes((Pi1 k Pi2) k : : : Pin�1
) k Pin . The process(localx)P

declares anx local to P , and thus we say that itbindsx in P . Thebound variables
bv(Q) (free variablesfv(Q)) are those with a bound (a not bound) occurrence inQ.

Theunit-delayprocessnextP executesP in the next time interval. Thetime-out
unless c nextP is also a unit-delay, butP will be executed only ifc cannot eventually
be entailed by the store during the current time interval. Note thatnextP is not the
same asunless false nextP since an inconsistent store entailsfalse . We use
nextn(P) for next(next(: : : (nextP) : : :)), wherenext is repeatedn times.

The operator “?” represents anarbitrary (or unknown) but finite delay(as “�” in
SCCS [12]) and allows asynchronous behavior across the time intervals. Intuitively,
?P meansP + nextP + next2P + : : :, i.e., an unbounded finite delay ofP . The
replicationoperator “!” is a delayed version of that of the�-calculus [13]:!P means
P k nextP k next2P k : : :, i.e., unboundedly many copies ofP but one at a time.

For technical and unification purposes we add to the syntax ofntcc in [15] the tcc
processabort [18] which causes all interactions with the environment to cease.

SOS Semantics.The structural operational semantics (SOS) ofntcc considerstran-
sitionsbetween process-storeconfigurationsof the formhP; ci with stores represented
as constraints and processes quotiented by� below.

Definition 2 (Structural Congruence).Let� be the smallest congruence satisfying:
(1)P k skip � P , (2)P k Q � Q k P , and (3)P k (Q k R) � (P k Q) k R. Extend
� to configurations by decreeing thathP; ci � hQ; ci iff P � Q.

Following standard lines, we extend the syntax with a constructlocal (x; d) inP , to
represent the evolution of a process of the formlocalx inQ, whered is the local in-
formation (or store) produced during this evolution. Initiallyd is “empty”, so we regard
localx inP aslocal (x; true) in P .

The transitions of the SOS are given by the relations�! and=) defined in Table 1.
The internal transitionhP; di �! hP 0; d0i should be read as “P with stored reduces, in

one internal step, toP 0 with stored0 ”. The observable transitionP
(c;d)
====) R should

be read as “P on inputc, reduces in onetime unittoR and outputsd”. The observable
transitions are obtained from terminating sequences of internal transitions.

TELL
htell(c); di �! hskip; d ^ ci

SUM
d j= cj j 2 I

P
i2I

when ci do Pi; d
�
�! hPj ; di

PAR
hP; ci �!

P 0; d

�

hP k Q; ci �!

P 0 k Q; d

� LOC
hP; c ^ 9xdi �!

P 0; c0

�

h(localx; c)P; di �!

(localx; c0)P 0; d ^ 9xc

0
�

UNL
hunless c nextP; di �! hskip; di

if d j= c

REP
h!P; di �! hP k next !P; di

STAR
h?P; di �! hnext nP; di

if n � 0

STR

1 �!
2

01 �!
02

if
1 �
01 and
2 �
02 ABORT
habort; di �! habort; di

OBS
hP; ci �!� hQ; di 6�!

P
(c;d)
====) R

if R � F (Q)

Table1.Rules for internal reduction�! (upper part) and observable reduction=) (lower part).

 6�! in OBS holds iff for no
0;
 �!
0. � andF are given in Definitions 2 and 3.

We shall only describe some of the rules of in Table 1 due to space restrictions
(see [15] for further details). As clarified below, the seemingly missing cases for “next”
and “unless” processes are given byOBS. The ruleSTAR specifies an arbitrary delay
of P . REP says that!P creates a copy ofP and then persists in the next time unit.
ABORT realizes the intuition ofabort causing the interactions with the environment
to cease by generating infinite sequences of internal transitions. We shall dwell a little
upon the description of RuleLOC as it may seem somewhat complex. Let us consider

the process
Q = (localx; c)P

in RuleLOC. The global store isd and the local store isc. We distinguish between
theexternal(corresponding toQ) and theinternal point of view (corresponding toP).
From the internal point of view, the information aboutx, possibly appearing in the
“global” stored, cannot be observed. Thus, before reducingP we should first hide the
information aboutx thatQ may have ind. We can do this by existentially quantifying
x in d. Similarly, from the external point of view, the observable information about
x that the reduction of internal agentP may produce (i.e.,c0) cannot be observed.
Thus we hide it by existentially quantifyingx in c0 before adding it to the global store
corresponding to the evolution ofQ. Additionally, we should makec0 the new private
store of the evolution of the internal process for its future reductions.

RuleOBS says that an observable transition fromP labeled with(c; d) is obtained
from a terminating sequence of internal transitions fromhP; ci to ahQ; di. The process
R to be executed in the next time interval is equivalent toF (Q) (the “future” ofQ).
F (Q) is obtained by removing fromQ summations that did not trigger activity and any
local information which has been stored inQ, and by “unfolding” the sub-terms within
“next” and “unless” expressions.

Definition 3 (Future Function). LetF : Proc * Proc be defined by

F (Q) =

8>><
>>:

skip if Q =
P

i2I when ci do Qi

F (Q1) k F (Q2) if Q = Q1 k Q2

(localx)F (R) if Q = (localx; c)R
R if Q = nextR or Q = unless c nextR

Remark 1.F need no to be total since whenever we need to applyF to aQ (OBS in Table 1),
everytell(c), abort, ?R and !R in Q will occur within a “next” or “unless” expression.

2.1 Observable Behavior: The Strongest Postcondition.

We now recall the notions of observable behavior forntcc introduced in [16], in par-
ticular that of thestrongest postcondition(sp), central to this paper.

Notation 1 Throughout this paperC! denotes the set of infinite (or!) sequences of
constraints in the underlying set of constraintsC. We use�; �0; : : : to range overC!.

Let� = c1:c2: : : : and�0 = c01:c
0
2: : : :. Suppose thatP exhibits the following infinite

sequence of observable transitions (orrun): P = P1
(c1;c

0
1)

====) P2
(c2;c

0
2)

====) : : : : Given

this run ofP , we shall use the notationP
(�;�0)
====)!.

IO and Output Behavior.Observe the above run ofP . At the time uniti, the environ-
mentinputsci to Pi which then responds with an outputc0i. As observers, we can see

that on�, P responds with�0. We refer to the set of all(�; �0) such thatP
(�;�0)
====)!

as theinput-output (io) behaviorof P . Alternatively, if� = true !, we interpret the
run as an interaction among the parallel components inP without the influence of any
(external) environment; as observers what we see is thatP produces� on its own. We

refer to the set of all�0 such thatP
(true ! ;�0)
====) ! as theoutputbehavior ofP .

Quiescent Sequences and SP.Another observation we can make of a process is its
quiescent input sequences. These are sequences on input of whichP can run without

adding any information; we observe whether� = �0 wheneverP
(�;�0)
====)!.

In [15] it is shown that the set of quiescent sequences of a givenP can be alter-
natively characterized asthe set of infinite sequences thatP can possibly output under
arbitrary environments; the strongest postcondition (sp) ofP .

Definition (SP and SP-Equivalence).The strongest postconditionof P , sp(P), is

given bysp(P) =f� j P
(�0;�)
====)! for some�0g and its induced observational equi-

valence�sp is given byP �sp Q iff sp(P) = sp(Q):

2.2 LTL Specification and Verification

We now look at thentcc LTL [15]. This particular LTL expresses properties over
sequences of constraints and we shall refer to it asCLTL . We begin by giving the
syntax of LTL formulae and then interpret them with theCLTL semantics.

Definition 4 (LTL Syntax). The formulaeF;G; ::: 2 F are built from constraints
c 2 C and variablesx 2 V in the underlying cs by:

F;G; : : : := c j _true j _false j F _̂ G j F __G j _:F j _9x F j ÆF j �F j }F

The constraintc (i.e., a first-order formula in the cs) represents astate formula.
The dotted symbols represent the usual (temporal) boolean and existential operators.
As clarified later, the dotted notation is needed as inCLTL these operators do not al-
ways coincide with those in the cs. The symbolsÆ,�, and} denote the LTL modalities
next, alwaysandeventually. We useF _)G for _:F __G: Below we give the formulae
a CLTL semantics. We first introduce some notation and the notion ofx-variant. In-
tuitively, d is anx-variant ofc iff they are the same except for the information about
x.

Notation 2 Given a sequence� = c1:c2: : : :, we use9x� to denote the sequence
9xc19xc2 : : : : We shall use�(i) to denote thei� th element of�.

Definition 5 (x-variant). A constraintd is anx-variantof c iff 9xc = 9xd. Similarly
�0 is anx-variantof� iff 9x� = 9x�

0:

Definition 6 (CLTL Semantics). We say that� satisfies (or that it is a model of)F in
CLTL , written� j=CLTL F , iff h�; 1i j=CLTL F , where:

h�; ii j=CLTL _true h�; ii 6j=CLTL _false
h�; ii j=CLTL c iff �(i) j= c

h�; ii j=CLTL _:F iff h�; ii 6j=CLTL F

h�; ii j=CLTL F _̂ G iff h�; ii j=CLTL F andh�; ii j=CLTL G

h�; ii j=CLTL F __G iff h�; ii j=CLTL F or h�; ii j=CLTL G

h�; ii j=CLTL ÆF iff h�; i+ 1i j=CLTL F

h�; ii j=CLTL �F iff for all j � i h�; ji j=CLTL F

h�; ii j=CLTL }F iff there is aj � i such thath�; ji j=CLTL F

h�; ii j=CLTL
_9x F iff there is anx-variant�0 of� such thath�0; ii j=CLTL F:

Define[[F]]=f� j� j=CLTL Fg. F is CLTL valid iff [[F]] = C!; andCLTL satisfiableiff
[[F]] 6= ;:

Let us discuss a little about the difference between the boolean operators in the cs
and the temporal ones to justify our dotted notation. A state formulac is satisfied only
by thosee:�0 such thate j= c. So, the state formulafalse has at least one sequence
that satisfies it; e.g.false !. On the contrary the temporal formula _false has no
models whatsoever. Similarly,c __ d is satisfied by thosee:�0 such that eithere j= c or
e j= d holds. Thus, in general[[c __ d]] 6= [[c _ d]]: The same holds true for:c and _: c.

Example 1.Let e = c _ d with c = (x = 42) andd = (x 6= 42). One can verify that
C! = [[c _ d]] 3 e! =2 [[c __ d]] and also that[[:c]] 3 false ! =2 [[_: c]]: ut

From the above example, one may be tempted to think ofCLTL as being intuition-
istic. Notice, however, that statements like_:F __F and _: _:F _)F areCLTL valid.

Process Verification.Intuitively, P j=CLTL F iff every sequence thatP can possibly
output, on inputs from arbitrary environments, satisfiesF .

Definition 7 (Verification). P satisfiesF , writtenP j=CLTL F , iff sp(P) � [[F]].

For instance,? tell(c) j=CLTL }c as in every sequence output by? tell(c) there
must be ane entailingc. AlsoP = tell(c)+tell(d) j=CLTL c_d andP j=CLTL c __ d as
everye output byP entails eitherc or d. Notice, however, thatQ = tell(c _ d) j=CLTL

c _ d butQ 6j=CLTL (c __ d) in general, sinceQ can output ane which certainly entails
c _ d and still entails neitherc nord - takee; c andd as in Example 1. Therefore,c __ d
distinguishesP fromQ. The reader may now see why we wish to distinguishc __ d from
c _ d.

3 Decidability Results forntcc

We first present our decidability result for sp equivalence. We then show, with the help
of this first result, our decidability result for thentcc verification problem. Finally, we
present the decidability results for validity and satisfiability inCLTL:

The theory of Büchi FSA [2] is central to our results. These FSA are ordinary au-
tomata with an acceptance condition for infinite (or!) sequences: an! sequence is
accepted iff the automaton can read it from left to right while visiting a final state in-
finitely often. The language recognized by a Büchi automatonA is denoted byL(A).
Regular!-languages are those recognized by Büchi FSA.

For a better exposition of our results, it is convenient to look first into previous
approaches to the decidability of thentcc observational equivalences. First, we need
the following definition.

Definition (Derivatives).DefineP ==) Q iff P
(c;d)
====) Q for somec; d. A processQ

is aderivativeofP iff P = P1 ==) : : : ==) Pn = Q for someP1; : : : ; Pn:

Restricted Nondeterminism: Finitely Many States.Nielsen et al [16] show the de-
cidability of output equivalence for therestricted-nondeterministicfragment ofntcc
which only allows?-free processeswhosesummations are not in the scope of local op-
erators. First, the authors show that each process in this fragment has afinite number of
derivatives(up-to output equivalence). Then, they show how to construct for any given
restricted-nondeterministicP , a Büchi automaton that recognizesP ’s output behavior
as an!� language. Since language equivalence for Büchi FSA is decidable [22] the de-
cidability of output equivalence follows. In his PhD dissertation [24] the author proved
the decidability of the sp (and input-output) equivalence for restricted-nondeterministic
processes by a reduction to that of output equivalence.

More Liberal Nondeterminism: Infinitely Many States.The above-mentioned FSA
have states representing processes and transitions representing observable reductions.
The automata are generated by analgorithmthat uses thentcc operational semantics
to generate all possible observable reductions. Hence, the finiteness of the set of deriva-
tives is crucial to guarantee termination. In fact, the algorithm may diverge if we allow
arbitrary? processes, or summations within local operators because, as illustrated be-
low, they can haveinfinitely many derivativeseach with different observable behavior.

Example 2.(1) Notice that?P has infinitely many derivativesof the formnext nP

and each of them may exhibit different observable behavior. (2) AlsoR =!!P generates
a sequenceR ==) P k R ==) (P k P) k R ==) : : :. If P is not restricted-
nondeterministic, this sequence can give rise to infinitely many derivatives ofR each of
them giving different output sequences: E.g., takeP = ? tell(c) and note that

Q
k+1 P

can tellc atk + 1 different time units but
Q

k P can only do it atk different units. The
same occurs ifP = Ætell(c) whereÆQ denotes an arbitrarypossibly infinitedelay of

Q. This delay operator can be recursively defined asÆQ
def
= Q + next ÆQ and such a

kind of definitions can be derived inntcc using replication together withblind choice
summations within local processes[15]. ut

3.1 Decidability of SP Equivalence

We shall show a Büchi FSA characterization of the sp for processes that can exhibit
infinitely many, observationally different, derivatives—of the kind illustrated in Exam-
ple 2. One particular difference with the work previously mentioned is that, to get
around the algorithmic problems illustrated above, the characterizations will be guided
by thesp denotational semanticsof ntcc [14] rather than its operational semantics.

Thentcc denotational semantics[[�]] : Proc ! P(C!); given in Table 2 by taking
[[�]] = [[�]]C ; is meant to capture the sp. From [5], however, we know that there cannot
be af : Proc ! P(C!); compositionally defined, such thatf(P) = sp(P) for all
P . Nevertheless, Palamidessi et al [17] showed that[[P]] = sp(P) for all P in the
so-calledlocally-independentfragment. This fragment forbids non-unary summations
(and “unless” processes) whose guards depend on local variables.

Definition 8 (Locally-Independent Processes).P is locally-independentiff for every
unless c nextQ and

P
i2I when ci do Qi (jI j � 2) in P , neitherc nor theci’s

contain variables inbv(P) (i.e., the bound variables ofP).

Theorem 1 (Palamidessi et al [17]).If P is locally-independent then[[P]] = sp(P).

The locally-independent fragment allows? processes and also blind-choice within
local operators which may exhibit infinitely many observationally different derivatives,
as illustrated in Example 2. Furthermore, every summation whose guards are either all
equivalent or mutually exclusive can be encoded in this fragment [24]. The applicability
of this fragment is witnessed by the fact all thentcc application examples in [15, 16,
24] can be model as local-independent processes.

SP Büchi FSA. We shall give a Büchi characterization ofsp(P) from its denotation
[[P]]. We then benefit from the simple set-theoretical and compositional nature of[[�]]
as well as the closure properties of regular!�languages. A technical problem arises:
There can be infinitely manyc’s such thatc:� 2 [[P]] asC may be infinite, but the
alphabets of Büchi FSA are finite. It is therefore convenient to confine[[P]] to a suitable
finite setS ��n C including its so-calledrelevant constraints.

Definition (Relevant Constraints).GivenS � C, letS be the closure under conjunc-
tion and implication ofS. LetC : Proc ! P(C) be defined as:

C(skip) = ftrue g C(abort) = ftrue g

C(
P

i2I when ci do Pi) =
S
i2Ifcig [C(Pi) C(tell(c)) = fcg

C(P k Q) = C(P) [C(Q) C(nextP) = C(P)

C(!P) = C(P) C(?P) = C(P)

C((local x)P) = fc; 9xc; 8xc j c 2 C(P)g

Define therelevant constraintsfor P1; :::; Pn, written C(P1; : : : ; Pn), as the closure
under conjunction ofC(P1) [: : : [C(Pn).

The interested reader is referred to the author’s PhD dissertation [24] for the intu-
ition behind the notion of relevant constraints. Now, consider two locally-independent
processesP andQ. Clearly,C(P;Q) is finite. Moreover, it contains the constraints that
are indeed relevant for the sp equivalence ofP andQ.

Theorem 2 (Relevant SP Denotational Characterization).LetP andQ be locally-
independent. Then[[P]]C(P;Q) = [[Q]]C(P;Q) iff P �sp Q:

Proof. (Outline) LetS = C(P;Q): Verify by induction onP thatc1:c2: : : : 2 [[P]] iff
c1(S):c2(S): : : : 2 [[P]]S ; whereci(S) is the strongeste 2 S wrt j= such thatci j= e

(ci(S) is well-defined asS is closed under̂). By symmetry the same holds forQ: Then
conclude that[[P]]S = [[Q]]S iff [[P]] = [[Q]]: The result follows from Theorem 1 . ut

Büchi Constructions. Having identified our finite set of relevant constraints for the sp
equivalence characterization, we now proceed to construct for eachP andS ��n C, a
Büchi automatonAS

P recognizing[[P]]S . EachAS
P will be compositionallyconstructed

in the sense that it will be built solely from information about FSA of the formAS
Q

whereQ is a subprocess ofP: The most interesting case of this construction is replica-
tion, as described in the proof of the lemma below.

DABORT: [[abort]]S = ;

DTELL: [[tell(c)]]S = fd:� 2 S! j d j= cg

DSUM: [[
P

i2I
when ci do Pi]]

S =
S

i2I

fd:� 2 S! j d j= ci andd:� 2 [[Pi]]
Sg

[T
i2I

fd:� 2 S! j d 6j= cig

DPAR: [[P k Q]]S = [[P]]S \ [[Q]]S

DLOC: [[(localx)P]]S = f� 2 S! j there exists�0 2 [[P]]S such that9x�
0 = 9x�g

DNEXT: [[nextP]]S = fd:� 2 S! j � 2 [[P]]Sg

DUNL: [[unless c nextP]]S = fd:� 2 S! j d j= cg
[

fd:� j d 6j= c and� 2 [[P]]Sg

DREP: [[!P]]S = f� 2 S! j for all �; �0 such that� = �:�0; we have�0 2 [[P]]Sg

DSTAR: [[?P]]S = f�:� 2 S! j � 2 [[P]]Sg

Table2. SP Denotation. AboveS � C and�:�0 is the concatenation of the finite sequence�

followed by�0. The sequence9x� results from applying9x to each constraint in�. In DSUM if
I = ;, the indexed union and intersection are taken to be; andS!, respectively.

Lemma 1. GivenP andS �fin C one can effectively construct a Büchi automaton
AS
P over the alphabetS such thatL(AS

P) = [[P]]S :

Proof. We shall give the construction of eachAS
P by case analysis on the structure of

P . We only describe some of the cases. The others are similar or simpler.

Replication Automaton.P = !Q: We have� 2 [[!Q]]S iff every suffix of� is in [[Q]]S .
We then need to construct aAS

!P that accepts an infinite sequence� iff every suffixof it
is accepted byAS

Q: At first, such a construction may seem somewhat complex to realize.
Nevertheless, notice that the process!Q is dual to ?Q in the sense expressed in [17]:

[[!Q]] = �X([[Q]] \ fd:� j � 2 Xg) while [[?Q]] = �X([[Q]] [fd:� j � 2 Xg)

where�; � are the greatest and least fixpoint (resp.) in the complete lattice(P(C!);�).
In fact,� 2 [[?Q]]S iff there is a suffixof � in [[Q]]S . So, given an automatonB define?B
as the automaton that accepts� iff there is a suffixof � accepted byB. The construction
of ?B is simple and similar to that ofAS

?Q below. Now, givenA, one can construct the
automatonA for the complement ofL(A) [22]. Hence, keeping duality in mind, we can

takeAS
!Q to be?AS

Q.

Unbounded but Finite Delay Automaton.P = ?Q: The states ofAS
?Q are those ofAS

Q

plus an additional states0. Its final states are those ofAS
Q: Its initial states are those of

AS
Q pluss0. The transitions are those ofAS

Q plus transitions labelled withc, for each
c 2 S; from s0 to itself and froms0 to each initial state ofAS

Q: The transitions “looping”
into the initial states0 model the “arbitrary but finite delay” of?Q.

Local Automaton.P = (localx)Q: The states ofAS
(local x)Q

are those ofAS
Q. Its

initial and final states are those ofAQ. For eachc 2 S, AS
(localx)Q has a transition

from p to q labeled withc iff AS
Q has a transition fromp to q labelled withd for some

d 2 S such that9xd = 9xe.

Parallel Automaton.P = Q k R: The theory of Büchi FSA gives us a construction for
the intersection of! languages: GivenAS

Q andAS
R one can construct an automaton that

recognizesL(AS
Q) \ L(A

S
R) [3]. TakeAS

QkR to be such an automaton.

Skip and Tell Automata.P = skip: AS
skip has a single (initial, accepting) state, and

for eachc 2 S, there is a transition labeled withc from this single state to itself.
P = tell(c): AS

tell(c)
has exactly two states: one is its initial state and the other is its

accepting one: the unique state ofAS
skip. The transitions ofAS

tell(c)
are those ofAS

skip

plus a transition from the initial state to the state ofAS
skip labeled withd for eachd 2 S

such thatd j= c.

One can verify the correctness ofAS
P using induction on the structure ofP . It is easy

to see thatAS
P can be effectively constructed, thus concluding the proof. ut

We now state our first decidability result: The decidability of the sp equivalence.

Theorem 3 (Decidability of�sp). Given two locally-independent processP andQ,
the question of whetherP �sp Q is decidable.

Proof. From Theorem 2, Lemma 1 and the decidability of language equivalence for
Büchi FSA [22].

3.2 Decidability Results for Verification and CLTL

Here we show the decidability results for the verification problem (i.e., givenP andF
whetherP j=CLTL F , see Definition 7) as well as forCLTL (Definition 6).

Recall theCLTL models of a given formulaF are inC!. Thus, for our decidabil-
ity results we may attempt to give a Büchi characterization ofCLTL formulae facing
therefore the problem pointed out in the previous section:C may be infinite but Büchi
FSA only have finite alphabets. One could try to restrict[[F]] to its “relevant” constraints
as we did for[[P]]. This appears to be possible for negation-free formulae but we do not
know yet how to achieve this for the full language.

Nevertheless, for negation-free formulae there is an alternative to obtain the results
by appealing to Theorem 3 and the correspondence between processes and LTL formu-
lae. More precisely, we show that one can construct a locally-independentRF whose
sp corresponds to[[F]] if F is a restricted-negation formula in the following sense:

Definition 9 (Restricted-Negation LTL). F is a restricted-negation formulaiff when-
ever _:G appears inF thenG is a state formula (i.e.,G = c for somec).

Recall that inCLTL _: c and the state formula:c do not match (Example 1). In fact, we
need _: c should we want to express the minimal implication formc _)D = _: c __D:

Lemma 2. Let F be a restricted-negation formula. One can effectively construct a
locally-independentRF such that[[F]] = sp(RF):

Proof. TakeRF = h(F) whereh is the map from restricted-negation formulae to
locally-independent processes given by

h(_true) = skip h(_false) = abort

h(c) = tell(c) h(_: c) = when c do abort

h(F _̂ G) = h(F) k h(G) h(F __G) = h(F) + h(G)

h(_9xF) = (localx)h(F) h(ÆF) = nexth(G)
h(�F) = !h(F) h(}F) = ?h(F)

Obviously,h(F) can be effectively constructed. One can verify that[[F]] = [[h(F)]] by
induction on the structure ofF . From Theorem 1 we obtain[[F]] = sp(h(F)). ut

Notice that the maph above reveals the close connection betweenntcc and LTL.
We can now state the decidability of the verification problem forntcc .

Theorem 4 (Decidability of Verification). LetF be a restricted-negation formula. Let
P be locally-independent. The question of whetherP j=CLTL F is decidable.

Proof. From Theorem 3 by using the following reduction to sp equivalence:

P j=CLTL F iff sp(P) � [[F]] (Definition 7)
iff sp(P) � [[RF]] (Lemma 2)
iff [[P]] � [[RF]] (Theorem 1)
iff [[P]] = [[RF]] \ [[P]]
iff [[P]] = [[RF k P]] (Definition of [[�]])
iff P �sp RF k P (Theorem 2) ut

We can reduce the validity of implication to the verification problem. Therefore,

Theorem 5 (Decidability for Validity of Implication). Let F andG be restricted-
negation formulae. The question of whetherF _)G is CLTL valid is decidable.

Proof. F _)G iff [[F]] = sp(RF) � [[G]] by Definition 6 and Lemma 2. ThenF _)G

iff RF j=CLTL G by Definition 7. The result follows from Theorem 4. ut

As an immediate consequence of the above theorem we obtain the following:

Corollary 1 (Decidability of CLTL Satisfiability and Validity). Let F be an ar-
bitrary restricted-negation formula. The questions of whetherF is CLTL valid and
whetherF is CLTL satisfiable are both decidable.

Proof. F is CLTL valid iff _true _)F is CLTL valid, andF is CLTL satisfiable iff
F _) _false is notCLTL valid. The result follows from Theorem 5. ut

4 An Application to Manna and Pnueli’s LTL

We now apply the previous results on ourntcc LTL (CLTL) to standard first-order
LTL, henceforth calledLTL , as presented by Manna and Pnueli in [10]. Namely, we
obtain a new positive decidability result on the satisfiability of a first-order fragment
of LTL by a reduction to that ofCLTL . The relevance of our result is thatLTL is not
recursively axiomatizable [1] and, therefore, the satisfiability problem is undecidable
for the full language ofLTL . We confine ourselves to havingÆ,�, and} as modalities.
This is sufficient for making a recursive axiomatization impossible [11].

We shall recall briefly some LTL notions given in [10]. We presuppose an underly-
ing first-order languageL (including equality) with its (nonlogical) symbols interpreted
over some concrete domains such as the natural numbers.

A states is an interpretation that assigns to each variablex in L a values[x] over the
appropriate domain. The interpretation is extended toL expressions in the usual way.
For example, iff is a function symbol of arity 1,s[f(x)] = f(s[x]):We writes j= c iff c
is true wrts in the given interpretation of theL symbols. For instance, if+ is interpreted
as addition over the natural numbers ands[x] = 42 thens j= 9y(x = y + y): We say
thatc is state validiff s j= c for every states.

A model is an infinite sequence of states. We shall use� to range over models.
The variables ofL are partitioned intorigid andflexiblevariables. Each model� must
satisfy therigidity condition: Ifx is rigid ands; s0 are two states in� thens[x] = s0[x].

The syntax ofLTL is to that ofCLTL given in Definition 4. In this case, however,
x is a variable inL andc represents a first-order formula overL.

The semantics ofLTL is similar that ofCLTL (Definition 6) except that now the
formulae are satisfied by sequences of states. We then need to extend the notion ofx-
variant (Definition 5) to states:s is x-variant of s0 iff s[y] = s0[y] for every variabley
in L different fromx.

Definition (LTL Semantics). A model� satisfiesF in LTL , notation� j=LTL F , iff
h�; 1i j=LTL F whereh�; ii j=LTL F is obtained from Definition 6 by replacing� and
j=CLTL with � andj=LTL , respectively. We say thatF is LTL satisfiableiff � j=LTL F for
some�, and thatF is LTL valid iff � j=LTL F for all �.

In order to prove our decidability result,we assume that state validity (the set of
valid state formulae) is decidable. From [9] we know that even under this assumption
theLTL defined above is undecidable. In contrast, under the assumption,LTL satisfia-
bility is decidable for the fragment in which temporal operators are not allowed within
the scope of quantifiers as it can be reduced to that of propositional LTL [1].

Example 3.Let us now illustrate the interaction between quantifiers, modalities, flexi-
ble and rigid variables inLTL . The formula� _9u(x = u _̂ Æx = u + 1); wherex is
flexible andu is rigid, specifies sequences in whichx increases by 1 from each state to
the next. This example also illustrates that existential quantification over rigid variables
provides for the specification of counter computations, so we may expect their absence
to be important in our decidability result. In fact, we shall state theLTL decidability
for therestricted-negationfragment (Definition 9) with flexible variables only. ut

Removing Existential Quantifiers.One might be tempted to think that, without univer-
sal quantification and without rigid variables, one could remove the existential quanti-
fiers rather easily: Pull them into outermost position with the appropriate�-conversions
to get a prenex form, then remove them since_9x F is LTL satisfiable iffF is LTL sat-
isfiable. But this procedure does not quite work; it does not preserve satisfiability:

Example 4.Let F = (x = 42 _̂ Æx 6= 42), G = _9x�F andH = � _9x F wherex is
flexible. One can verify that unlikeH ,�F and thusG are notLTL satisfiable. Getting
rid of existential quantifiers is not as obvious as it may seem. ut

Relating CLTL and LTL Satisfiability. Let us give some intuition on how to obtain
a reductionfrom LTL satisfiability toCLTL satisfiability. In what follows we confine
ourselves to restricted-negation formulae without rigid variables. One can verify that
:c and _: c have the sameLTL models. So, in the reduction we can assume wlg thatF

has no _: symbols. Notice thatF = (x = 42 __x 6= 42) is LTL valid but notCLTL
valid (Example 1). However,F is satisfiable in both logics. In general, ifF is LTL
satisfiable thenF is CLTL satisfiable. The other direction does not necessarily hold.
} false is notLTL satisfiable but it isCLTL satisfiable—recall from Section 2.2 that
in CLTL false is not the same as _false . For example,false ! j=CLTL } false :

However, we can get around this mismatch by using� _: false to excludeCLTL
models containingfalse as shown in the lemma below.

Recall that(�;�) (Definition 1) denotes the underlying cs andL denotes the un-
derlying first-order language of state formulae. Also recall that both� and the set of
valid state formulae are required to be decidable.

Lemma 3. Assume that the cs(�;�) hasL as first-order language and� is the set of
valid state formulae. Then

F is LTL satisfiable iff F _̂ � _: false is CLTL satisfiable,

if F is a restricted-negation formula with no occurrences of_: and with no rigid vari-
ables.

Proof. (Outline) “If” direction: Verify that if � = c1:c2: : : : j=CLTL F _̂ � _: false
then for any� = s1:s2: : : : wheresi j= ci (i � 1), we have� j=LTL F . Conclude
the result by using the observation that if� j=CLTL F _̂ � _: false then� contains
no false . “Only if” direction: Verify that if � = s1:s2 : : : j=LTL F then there is an
� = c1:c2 : : : with si j= ci (i � 1) such that� j=CLTL F _̂ � _: false . Eachci can
be taken to be the strongest constraint (underj=) satisfied bysi in the closure under
conjunction of the constraints inF: ut

We can now state the decidability result we claimed for first-order LTL.

Theorem 6 (Decidability of LTL Satisfaction). Let F be a restricted-negation for-
mula without rigid variables. The question of whetherF is LTL satisfiable is decidable.

Proof. From Lemma 3 and Corollary 1, and the fact that one can freely replace_: by:
in F and the resulting formula will have the sameLTL models than the originalF . ut

5 Concluding Remarks

We presented positive decidability results for the sp behavioral equivalence, thentcc
verification problem, and thentcc specification first-order temporal logicCLTL .
These results apply toinfinite-stateprocesses. A somewhat interesting aspect is that for
proving the results it turned out to be convenient to work with thentcc denotational
semanticsrather than with its operational counterpart. Also the use of Büchi automata-
theoretic techniques in these results highlights the automata-like flavor ofntcc .

Furthermore, by using a reduction toCLTL satisfiability, we identified a first-order
fragment of the standard LTL [10] for which satisfiability is decidable. The result con-
tributes to the understanding of the relation between (timed) ccp and (temporal) classic
logic and also illustrates the applicability of timed ccp to other theories of concurrency.
Related Work. Nielsen et al [14] proved the decidability of the sp equivalence and
other behavioral equivalences for several deterministic timed ccp languages. In another
work Nielsen et al [16] showed that output equivalence is decidable for a restricted
nondeterministicntcc fragment. The results in [14, 16] are obtained by showing that
the processes in these languages are indeedfinite-state. Nielsen et al [14] also show that
the sp equivalence isundecidableif recursion is present in the language.

Saraswat et al [21] showed how to compile parameterless recursion tcc processes
(basically finite-state deterministicntcc processes) into FSA in a compositional way.
Such FSA provide a simple and useful execution model for tcc but not a direct way
of verifying sp (or input-output) equivalence. In fact, unlike our FSA constructions,
the standard language equivalence between these FSA does not necessarily imply sp
equivalence (or input-output) of the processes they represent.

Another interesting approach to timed ccp verification is that by Falaschi et al [8].
The authors show how to construct structures (models) of tcc processes which then, by
restricting the domains of variables to be finite, can be used for model-checking. Notice
that in our results we make no assumptions about the domains of variables being finite.

The notion of constraint in other declarative formalisms such as Constraint Logic
Programming (CLP) and Constraint Programming (CP) has also been used for the ver-
ification of infinite-state systems. Delzanno and Podelski [6] showed how to translate
infinite-state systems into CLP programs to verify safety and liveness properties. Es-
parza and Melzer [7] used CP in a semi-decision algorithm to verify 1-safe Petri Nets.

Merz [11] and Hodkinson et al [9] identified interesting decidable first-order frag-
ments of LTL. These fragments are all monadic and without equality. A difference with
our work is that these fragments do not restrict the use of negation or rigid variables,
and our fragment is not restricted to be monadic or equality-free.
Future Work. The author believes that we can dispense with the restriction on the
occurrences of negation in our results. If the claim is true, then the inference system for
ntcc [17] would be complete for locally-independent processes (and not just relative
complete). This is because we would be able to determine the validity of arbitraryntcc
LTL implication as required by the consequence rule. It will be, therefore, interesting
to be able to prove this claim.

In our Büchi FSA constructions we were not concerned with state space issues
(e.g., see the “double complementation” construction for the replication automaton in
Section 3.1). For verification purposes, it is important to look into these issues.

Acknowledgments.Many thanks to Catuscia Palamidessi, Mogens Nielsen, Joachim
Parrow, Jiri Srba, Igor Walukiewicz, Martin Abadi, Ian Hodkinson, Stephan Merz,
Richard Mayr, Gerardo Schneider and Martin Leucker for helpful comments.

References

1. M. Abadi. The power of temporal proofs.Theoretical Computer Science, 65:35–84, 1989.
2. J. R. Buchi. On a decision method in restricted second order arithmetic. InProc. Int. Conf.

on Logic, Methodology, and Philosophy of Science, pages 1–11, 1962.
3. Y. Choueka. Theories of automata on!-tapes: A simplified approach.Computer and System

Sciences, 10:19–35, 1974.
4. F. de Boer, M. Gabbrielli, and M. C. Meo. A timed concurrent constraint language.Infor-

mation and Computation, 161:45–83, 2000.
5. F. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving concurrent constraint

programs correct.ACM Transactions on Programming Languages and Systems, 19(5), 1997.
6. G. Delzanno and A. Podelski. Model checking in CLP.TACAS’99.LNCS 1579, 1999.
7. J. Esparza and S. Melzer. Model checking LTL using constraint programming. InProc. of

ICATPN’97.LNCS 1248, 1997.
8. M. Falaschi, A. Policriti, and A. Villanueva. Modelling timed concurrent systems in a tem-

poral concurrent constraint language - I. ENTCS 48, 2001.
9. I. Hodkinson, F. Wolter, and M. Zakharyasche. Decidable fragments of first-order temporal

logic. Ann. Pure. Appl. Logic, 106:85–134, 2000.
10. Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems, Specifi-

cation. Springer, 1991.
11. S. Merz. Decidability and incompleteness results for first-order temporal logics of linear

time. Journal of Applied Non-Classical Logic, 2(2), 1992.
12. R. Milner. A finite delay operator in synchronous ccs. TR CSR-116-82, Univ. of Edinburgh.
13. R. Milner.Communicating and Mobile Systems: the�-calculus. 1999.
14. M. Nielsen, C. Palamidessi, and F. Valencia. On the expressive power of concurrent constra-

int programming languages. InPPDP 2002, pages 156–167. ACM Press, October 2002.
15. M. Nielsen, C. Palamidessi, and F. Valencia. Temporal concurrent constraint programming:

Denotation, logic and applications.Nordic Journal of Computing, 9(2):145–188, 2002.
16. M. Nielsen and F. Valencia.Temporal Concurrent Constraint Programming: Applications

and Behavior.LNCS 2300:298–324, 2002.
17. C. Palamidessi and F. Valencia. A temporal concurrent constraint programming calculus. In

Proc. of CP’01. LNCS 2239, 2001.
18. V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent constraint pro-

gramming. InProc. of LICS’94, pages 71–80, 1994.
19. V. Saraswat, R. Jagadeesan, and V. Gupta. Programming in timed concurrent constraint

languages. InConstraint Programming: Proc. 1993, pages 361–410. Springer-Verlag, 1994.
20. V. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent constraint programming.

Journal of Symbolic Computation, 22:475–520, 1996.
21. V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of concurrent cons-

traint programming. InPOPL ’91, pages 333–352, 1991.
22. A. Sistla, M. Vardi, and P. Wolper. The complementation problem for buchi automata with

applications to temporal logic.Theoretical Computer Science, 49:217–237, 1987.
23. S. Tini. On the expressiveness of timed concurrent constraint programming. ENTCS 27,

1999.
24. F. Valencia.Temporal Concurrent Constraint Programming. PhD thesis, BRICS Univ. of

Aarhus, 2003. Available online via http://www.brics.dk/�fvalenci/publications.html.
25. M. Vardi. An automata-theoretic approach to linear temporal logic. LNCS 1043, 1996.

