Timed Concurrent Constraint Programming:
Decidability Results and their Application to LTL

Frank D. Valenci&

Dept. of Information Technology, Uppsala University
Box 337 SE-751 05 Uppsala, Sweden
Email: frankv@it.uu.se Fax: +46 18 511 925

Abstract Thentcc process calculus is a timegncurrent constraint program-
ming (ccp) model equipped with a first-ordénear-temporal logic(LTL) for
expressing process specifications. A typical behavioral observation in ccp is the
strongest postcondition (spfhentcc sp denotes the set of all infinite output se-
guences that a given process can exhibit. Vdréication problenis then whether

the sequences in the sp of a given process satisfy a gieen LTL formula.

This paper presents new positive decidability results for timed ccp as well as
for LTL. In particular, we shall prove that the following problems are decidable:
(1) Thesp equivalencéor the so-calledocally-independenntcc fragment; un-

like other fragments for which similar results have been published, this fragment
can specifyinfinite-state systemg§2) Verificationfor locally-independent proce-
sses and negation-fréiest-order formulae of thentcc LTL. (3) Implicationfor

such formulae. (4patisfiabilityfor a first-order fragment of Manna and Pnueli's
LTL. The purpose of the last result is to illustrate the applicability of ccp to well-
established formalisms for concurrency.

1 Introduction

Concurrent constraint programming (ccp) [21] is a model of concurrency for systems
in which agents interact with one another by telling and asking information in a shared
medium, a so-calledtore Timed ccp [18] extends ccp by allowing agents to be
constrained by time requirements. Its distinctive feature is that it combines in one
framework the operational and algebraic view based upon process calculi with a
declarative view based updinear-temporal logicLTL). So, processes can be treated

as computing agents, algebraic terms and LTL formulae. This allows timed ccp to
benefit from the large body of techniques of well established theories used in the study
of concurrency and, in particular, reactive computations. In fact, timed ccp has been
studied extensively as a model for reactive systems [4, 8, 14-20, 23].

Thentcc process calculus [15] is a generalization of thetimed ccp model tcc [18].
The calculus can represent timed concepts such as unit delays, unbounded finite delays,
time-outs, pre-emption, synchrony and asynchrony. Furtherrmbdce, is equipped
with an LTL to specify timed properties and with enfierence systeffor the verification
problem (i.e., for proving whether a given process fulfills a given LTL specification).

* This work was supported by tHRROFUNDIS Project.

This paper presents new decidability results for infinite-stéte processes, the
ntcc LTL (here calledconstraintLTL or CLTL for short), and for the standard first-
order LTL (here called.TL for short) described by Manna and Pnueli [10]. The de-
scription and relevance of these results are outlined next:

— On the sp equivalence and verification problérhe strongest-postcondition (sp)
behavior of a givemtcc processP denotes the set of all infinite sequences of
outputs thatP can exhibit. ThusP fulfills a given specification (i.e., <L
formula) F' iff each sequence in its sp satisfiesIn Section 3, we show that for a
substantial fragment oftcc and the negation-free first-order fragmenGafTL :

(1) the sp equivalence is decidable and (2) the verification problem is decidable.
¢ A noteworthy aspect of these two results is thatritex fragment above ad-
mits infinite-state processedll other ntcc fragments for which similar re-
sults has been published [14, 16] are restricted to finite-state processes.

¢ Another noteworthy aspect is th<L is first-order. Most first-order LTLs
in computer science are not recursively axiomatizable let alone decidable [1].

— On thentcc LTL. In Section 3 we prove that: (3) the validity of implication is
decidable for the negation-free first-order fragmentafL .

e As for Hoare logic, thentcc inference system [15] mentioned above has the
so-called consequence rule which queries an oracle aBbut () implication.
This causes the completeness of the system to be relative to the capability of
determining the validity of implication, thus making our third result of rele-
vance tontcc .

e As a corollary of this result, we obtain the decidabilitysaftisfiabilityfor the
negation-free first-order fragment GLTL . This is relevant for specification
purposes since, as remarked in [25], a specification is “interesting” only if it is
satisfiable.

— On the standard first-order LTUNn Section 4 we prove that: (4) the satisfiability
problem inLTL is decidable for all negation-free first-order formulae without rigid
variables. This result is obtained from a reductio€td’L satisfiability.

e Since first-ordeLTL is notrecursively axiomatizable [1], satisfiability is unde-
cidable for the full language d@fTL . Recent work [9] and also [11], however,
have taken up the task of identifying first-order decidable fragment3 bf.

Our fourth result contributes to this task.

e The reduction from the standakdL satisfiability toCLTL satisfiability also
contributes to the understanding of the relationship between (timed) ccp and
(temporal) classic logic.

In brief, this paper argues for timed ccp as a convenient framework for reactive systems
by providing positive decidability results for behavior, specification and verification
(1-3), and by illustrating its applicability to the well-established theory of LTL (4).

2 An Overview of ntcc

In ntcc , time is conceptually divided intdiscrete intervals (or time units)n a par-
ticular timed interval, a proceds gets an input (an item of information represented as

aconstrain) ¢ from the environment, it executes with this input as the ingtare and
when it reaches its resting pointgititputsthe resulting stord to the environment. The
resting point determines a residual proc€ssvhich is then executed in the next time
interval. In the rest of this section we shall briefly regalic concepts given in [15].

Definition 1 (Constraint System).A constraint system (c$3 a pair (¥, A) whereX
is a signature of function and predicate symbols, ahis a decidable theory over
(i.e., a decidable set of sentences o¥awith a least one model).

Givenacg X, A), let (¥, V,S) be its underlying first-order language, whétés
a set of variables, y, . . ., andS is the set of logic symbols, A, Vv, =3,V true and
false . Constraints,d, ... are formulae over this first-order language. We say ¢hat
entailsd in A, writtenc = d, iff ¢ = dis true in all models ofA. The relatior}=, which
is decidable by the definition afi, induces an equivalencee given byc = d iff ¢ = d
andd |= c. Henceforth(denoteghe set of constraints under consideratimodulos
in the underlying cs. Thus, we simply write= d iff ¢ ~ d.

Definition (ProcessesProc). Processed, @), ...€ Proc are built from constraints
¢ € C and variablest € V in the underlying cs by:

P,Q,... 2= tell(c) | > whenc;do P | P || Q | (localz) P
i€l
| nextP |unlesscnextP |+« P |!P | abort

Intuitively, tell(c) adds an item of informatioato the store in the current time inter-
val. Theguarded-choice summatioEieI when ¢; do P;, wherel is a finite set of
indexes, chooses in the current time interval one offfi®whosec; is entailed by the
store. If no choice is possible, the summation is precluded from execution. We write
when ¢;, do P, + ...+ whenc¢;, do P, if I = {iy,...,i,} and, if no ambiguity
arises, omit thewhen ¢ do” whenc = true . So,ziel P; denotes thélind-choice
> ic; When true do P;. We omitthe), ;" if |I| = 1 and useskip for), P;.

The proces$” || @ represents thparallel executiorof P andQ. [[,.; P;, where
I ={i,...,i,},denoteq(P;, || Pi,) || ---Bi,_,) || Pi,- The processglocalz) P
declares amx: local to P, and thus we say that indsz in P. Thebound variables
bv(Q) (free variablesfv(Q)) are those with a bound (a not bound) occurrendg.in

Theunit-delayprocessmext P executesP in the next time interval. Théme-out
unless ¢ next P is also a unit-delay, bu? will be executed only it: cannot eventually
be entailed by the store during the current time interval. Noterleat P is not the
same aqinless false next P since an inconsistent store entdéddse . We use
next”(P) for next(next(...(next P)...)), wherenext is repeated times.

The operator X" represents amrbitrary (or unknown) but finite delagas “€” in
SCCS [12]) and allows asynchronous behavior across the time intervals. Intuitively,
* P meansP + next P + next?P + ..., i.e., an unbounded finite delay &f. The
replication operator 1" is a delayed version of that of the-calculus [13]:! P means
P || next P || next?P || ..., i.e., unboundedly many copies Bfbut one at a time.

For technical and unification purposes we add to the syntaxcof in [15] the tcc
processaabort [18] which causes all interactions with the environment to cease.

SOS SemanticsThe structural operational semantics (SOShioc considerdran-
sitionsbetween process-stocenfigurationof the form (P, ¢) with stores represented
as constraints and processes quotientes glow.

Definition 2 (Structural Congruence). Let = be the smallest congruence satisfying:
DPskip=P,QP|Q=Q| P,and@)P || (Q || R) = (P || Q) || R. Extend
= to configurations by decreeing th@P, c) = (Q, ¢) iff P = Q.

Following standard lines, we extend the syntax with a constiweil (z, d) in P, to
represent the evolution of a process of the fdmmal x in @, whered is the local in-
formation (or store) produced during this evolution. Initiallis “empty”, so we regard
local zin P aslocal (z,true)in P.

The transitions of the SOS are given by the relatiersand—> defined in Table 1.

Theinternaltransition(P,d) — (P',d') should be read as” with stored reduces, in

one internal step, t®' with stored’ ”. The observable transitior® 9. R should

be read asP on inpute, reduces in onéme unitto R and outputs!”. The observable
transitions are obtained from terminating sequences of internal transitions.

TELL SUM dEcijel
(tell(c),d) — (skip,d A c) <ZiEIwhenci do P;,d) — (Pj,d)

(P,c)y — (P, d) (PyeAN3pd) — (P)
(Pl Q,¢) — (P' I Q,d> Loc ((localz,c) P,d) —> ((localw,c')P’,d/\Hzc’>

PAR

UNL ifd e
(unless c next P, d) — (skip, d)

REP STAR ifn>0
(!P,dy — (P || next!P,d) (x P,d) — (next™P,d)

—
STR™E "7 0 =+ andya =4, ABORT

V= Vh (abort,d) — (abort,d)

(Pyc) —" (Q,d) 7+~

o8BS
pLf. g

if R=F(Q)

Tablel.Rules for internal reductior— (upper part) and observable reducties- (lower part).
~— in OBS holds iff for no~y', v — +'. = and F are given in Definitions 2 and 3.

We shall only describe some of the rules of in Table 1 due to space restrictions
(see [15] for further details). As clarified below, the seemingly missing cases for “next”
and “unless” processes are given®S. The ruleSTAR specifies an arbitrary delay
of P. REP says that P creates a copy oP and then persists in the next time unit.
ABORT realizes the intuition odbort causing the interactions with the environment
to cease by generating infinite sequences of internal transitions. We shall dwell a little
upon the description of RuleOC as it may seem somewhat complex. Let us consider

the process
Q@ = (localz,c) P

in Rule LOC. The global store igl and the local store is. We distinguish between
the external(corresponding t@)) and theinternal point of view (corresponding t®).
From the internal point of view, the information abatit possibly appearing in the
“global” stored, cannot be observed. Thus, before redudihge should first hide the
information about: that@ may have ind. We can do this by existentially quantifying

x in d. Similarly, from the external point of view, the observable information about
z that the reduction of internal agef may produce (i.e.¢') cannot be observed.
Thus we hide it by existentially quantifyingin ¢’ before adding it to the global store
corresponding to the evolution ¢f. Additionally, we should make’ the new private
store of the evolution of the internal process for its future reductions.

Rule OBS says that an observable transition fréhiabeled with(c, d) is obtained
from a terminating sequence of internal transitions fidMmc) to a(@, d). The process
R to be executed in the next time interval is equivalenfY@)) (the “future” of Q).
F(Q) is obtained by removing fror summations that did not trigger activity and any
local information which has been stored(hn and by “unfolding” the sub-terms within
“next” and “unless” expressions.

Definition 3 (Future Function). Let F' : Proc — Proc be defined by

skip if Q=3 ;c;whenc; do Q;
Q) = d P I F(Q2) 1Q =011 Q.
") (localz) F(R) if Q= (localz,c)R
R if Q = next R or Q = unless c next R

Remark 1.F need no to be total since whenever we need to apgiy a @ (OBS in Table 1),
everytell(c), abort, « R and! R in @ will occur within a “next” or “unless” expression.

2.1 Observable Behavior: The Strongest Postcondition.

We now recall the notions of observable behaviorftc introduced in [16], in par-
ticular that of thestrongest postconditiofsp), central to this paper.

Notation 1 Throughout this pape€“ denotes the set of infinite (ar) sequences of
constraints in the underlying set of constraifitsWe usey, o, . . . to range ovelC*.

Leta = ¢j.ca....anda’ = ¢}.d. Suppose thal exhibits the following infinite

(e1,eh) (e2,ch)

sequence of observable transitionsian): P = P; P, Given

(aya”)

this run of P, we shall use the notatiah —=—="~.

10 and Output Behavior. Observe the above run éf. At the time unit;, the environ-
mentinputse; to P; which then responds with an outptjt As observers, we can see

(aya’)

that ona, P responds withy'. We refer to the set of alla, o') such thatr —=—=

as theinput-output (io) behavioof P. Alternatively, if « = true ¥, we interpret the

run as an interaction among the parallel componentf ithout the influence of any
(external) environments observers what we see is tliaproducesy on its own. We

(true “,a’

refer to the set of all’ such thatr ‘=% » a5 theoutputbehavior ofP.

Quiescent Sequences and SRnother observation we can make of a process is its
guiescent input sequences. These are sequences on input of Wiae run without

(a,a') o

adding any information; we observe whethes o’ whenevelPr ——=-.

In [15] it is shown that the set of quiescent sequences of a givean be alter-
natively characterized dke set of infinite sequences thiattan possibly output under
arbitrary environmentsthe strongest postcondition (sp) Bf

Definition (SP and SP-Equivalence).The strongest postconditioaf P, sp(P), is

(o' a)

given bysp(P) ={a | P —==* for somex'} and its induced observational equi-
valence~, is given byP ~, Q iff sp(P) = sp(Q).

2.2 LTL Specification and Verification

We now look at thentcc LTL [15]. This particular LTL expresses properties over
sequences of constraints and we shall refer to iICBEL . We begin by giving the
syntax of LTL formulae and then interpret them with BETL semantics.

Definition 4 (LTL Syntax). The formulaeF, G, ... € F are built from constraints
¢ € C and variablest € V in the underlying cs by:

F,G,...:=c| true |false |FAG|FVG|~F|3,F|0oF|OF|F

The constraint (i.e., a first-order formula in the cs) representstate formula
The dotted symbols represent the usual (temporal) boolean and existential operators.
As clarified later, the dotted notation is needed a€liffiL these operators do not al-
ways coincide with those in the cs. The symb®|€1, and{> denote the LTL modalities
next alwaysandeventually We useF = G for -~ F v G. Below we give the formulae
a CLTL semantics. We first introduce some notation and the notiasvriant. In-
tuitively, d is anz-variant of¢ iff they are the same except for the information about
Z.

Notation 2 Given a sequence = c;.cs...., We used,«a to denote the sequence
3130 We shall use(i) to denote the — th element ofv.

Definition 5 (z-variant). A constraintd is an z-variantof ¢ iff 3,¢ = 3,d. Similarly
o' is anz-variantof a iff 3, = 3,a’.

Definition 6 (CLTL Semantics). We say thaty satisfies (or that it is a model ofj in
CLTL , written« ':CLTL F, iff (a,].> ':CLTL F, where:

|:CLTL true <Oé, Z) b’éCLTL false
|:CLTL C iff Oé(Z) ': C
Eor - F iff (a,4) ol F
|:CLTL FAG iff <Oz,i> ':CLTL F and (a,i) ':CLTL G
|:CLTL FV@G iff <Oz,i> ':CLTL For <Oz,i> ':CLTL G
Fcurl OF iff (a,i+1) =curl F
o OF iff forall j > i («,j) el F
,1) Ecur OF iff thereisaj > i suchthafa,j) Fcir F
cim 3, F iff there is anz-varianta’ of a such that(/, i) =cim. F.

Define[F]={a |a [=cur. F}. Fis CLTL validiff [F] = C¥,andCLTL satisfiablgff
[F] # 0.

Let us discuss a little about the difference between the boolean operators in the cs
and the temporal ones to justify our dotted notation. A state formidaatisfied only
by thosee.a’ such thak = c. So, the state formulalse has at least one sequence
that satisfies it; e.gfalse “. On the contrary the temporal formulalse has no
models whatsoever. Similarly,v d is satisfied by those.a’ such that eithee |= ¢ or
e |= d holds. Thus, in generdt v d] # [c V d]. The same holds true fefc and- c.

Example 1.Lete = c Vv d with ¢ = (z = 42) andd = (z # 42). One can verify that
CY =[evd] 3 e“ ¢ [cVd] and also thaf—c] > false “ ¢ [¢]. 0

From the above example, one may be tempted to thikldlL as being intuition-
istic. Notice, however, that statements liké¢" vV F and- -~ F = F areCLTL valid.

Process Verification. Intuitively, P |=c.m. F iff every sequence tha®? can possibly
output, on inputs from arbitrary environments, satisfies

Definition 7 (Verification). P satisfiesF’, written P |=c.t. F, iff sp(P) C [F].

For instancex tell(c) |Ecitl ¢c as in every sequence output byell(c) there
must be ar entailinge. Also P = tell(c) + tell(d) Fcir ¢VdandP f=cir cVdas
everye output byP entails either or d. Notice, however, tha) = tell(c V d) |=ci1L
cVdbutQ Wcr (cVd) in general, sincé) can output are which certainly entails
¢V d and still entails neithet nord - takee, c andd as in Example 1. Thereforey d
distinguishes” from . The reader may now see why we wish to distinguishi from
cVd.

3 Decidability Results for ntcc

We first present our decidability result for sp equivalence. We then show, with the help
of this first result, our decidability result for tiécc verification problem. Finally, we
present the decidability results for validity and satisfiabilitydRTL.

The theory of Biichi FSA [2] is central to our results. These FSA are ordinary au-
tomata with an acceptance condition for infinite (@ sequences: an sequence is
accepted iff the automaton can read it from left to right while visiting a final state in-
finitely often. The language recognized by a Blichi automatas denoted byi.(A).
Regularw-languages are those recognized by Bichi FSA.

For a better exposition of our results, it is convenient to look first into previous
approaches to the decidability of thecc observational equivalences. First, we need
the following definition.

Definition (Derivatives).DefineP — Qiff P GO Q for somex, d. A process)
is aderivativeof P iff P =P, — ... — P, = Q forsomeP,,...,P,.

Restricted Nondeterminism: Finitely Many StatesNielsen et al [16] show the de-
cidability of output equivalence for threstricted-nondeterministitagment ofntcc

which only allowsx-free processewhosesummations are not in the scope of local op-
erators First, the authors show that each process in this fragmentfiageanumber of
derivativegup-to output equivalence). Then, they show how to construct for any given
restricted-nondeterministie, a Biichi automaton that recognizB% output behavior

as anv— language. Since language equivalence for Biichi FSA is decidable [22] the de-
cidability of output equivalence follows. In his PhD dissertation [24] the author proved
the decidability of the sp (and input-output) equivalence for restricted-nondeterministic
processes by a reduction to that of output equivalence.

More Liberal Nondeterminism: Infinitely Many States.The above-mentioned FSA

have states representing processes and transitions representing observable reductions.
The automata are generated byadgorithmthat uses thatcc operational semantics

to generate all possible observable reductions. Hence, the finiteness of the set of deriva-
tives is crucial to guarantee termination. In fact, the algorithm may diverge if we allow
arbitraryx processes, or summations within local operators because, as illustrated be-
low, they can hav@finitely many derivativesach with different observable behavior.

Example 2.(1) Notice thatxP hasinfinitely many derivativesf the formnext " P
and each of them may exhibit different observable behavior. (2) Rlsd!P generates
asequenck — P||R =— (P || P) || R = If P is notrestricted-
nondeterministicthis sequence can give rise to infinitely many derivativel® efich of
them giving different output sequences: E.g., thke: x tell(c) and note thaf[, , P
can tellc atk + 1 different time units buf], P can only do it at different units. The
same occurs i = dtell(c) whered@ denotes an arbitramyossibly infinitedelay of

Q. This delay operator can be recursively defined@sd:ef Q@ + next §Q and such a
kind of definitions can be derived imcc using replication together withlind choice
summations within local processg$]. O

3.1 Decidability of SP Equivalence

We shall show a Blichi FSA characterization of the sp for processes that can exhibit
infinitely many, observationally different, derivatives—of the kind illustrated in Exam-
ple 2. One patrticular difference with the work previously mentioned is that, to get
around the algorithmic problems illustrated above, the characterizations will be guided
by thesp denotational semanticg ntcc [14] rather than its operational semantics.
Thentcc denotational semantids] : Proc — P(C¥), given in Table 2 by taking
[] = [']¢, is meant to capture the sp. From [5], however, we know that there cannot
be af : Proc — P(C¥), compositionally defined, such thgtP) = sp(P) for all
P. Nevertheless, Palamidessi et al [17] showed {#gf = sp(P) for all P in the
so-calledlocally-independenfragment. This fragment forbids non-unary summations
(and “unless” processes) whose guards depend on local variables.

Definition 8 (Locally-Independent Processes)P is locally-independeriff for every
unless ¢ next Q and)_,_; when ¢; do Q; (|I| > 2) in P, neitherc nor thec;’s
contain variables irhv(P) (i.e., the bound variables d?).

Theorem 1 (Palamidessi et al [17])If P is locally-independent thefP] = sp(P).

The locally-independent fragment allowgprocesses and also blind-choice within
local operators which may exhibit infinitely many observationally different derivatives,
as illustrated in Example 2. Furthermore, every summation whose guards are either all
equivalent or mutually exclusive can be encoded in this fragment [24]. The applicability
of this fragment is witnessed by the fact all thiec application examples in [15, 16,

24] can be model as local-independent processes.

SP Buchi FSA. We shall give a Biichi characterization gf(P) from its denotation
[P]. We then benefit from the simple set-theoretical and compositional natijré of
as well as the closure properties of regularlanguages. A technical problem arises:
There can be infinitely manys such thatc.a € [P] asC may be infinite, but the
alphabets of Buichi FSA are finite. It is therefore convenient to cofiffjeo a suitable
finite setS Cg, C including its so-calledelevant constraints

Definition (Relevant Constraints).GivenS C C, letS be the closure under conjunc-
tion and implication ofS. LetC' : Proc — P(C) be defined as:

C(skip) = {true } C(abort) = {true }
C(Yijer whencido Py) = J;c {ci} UC(F;) C(tell(c)) = {c}
C(PI[Q) = C(P)uCQ C(

(1 P) = C(P) o(
C((local z) P) = {¢,3.c,V.c | c € C(P)}

Define therelevant constraintéor Py, ..., P, written C(Py,..., P,), as the closure
under conjunction of (P) U ... U C(P,).

The interested reader is referred to the author’s PhD dissertation [24] for the intu-
ition behind the notion of relevant constraints. Now, consider two locally-independent
processe® and@. Clearly,C(P, Q) is finite. Moreover, it contains the constraints that
are indeed relevant for the sp equivalenc®aind@.

Theorem 2 (Relevant SP Denotational Characterization)Let P and) be locally-
independent. ThepP]¢ (7@ = [Q]¢(FQ) iff P ~, Q.

Proof. (Outline) LetS = C(P, Q). Verify by induction onP thatc; .cy. ... € [P] iff
c1(5).c2(S).... € [P]°, wheree;(S) is the strongest € S wrt |= such that; = e
(ci(S) is well-defined as is closed unden). By symmetry the same holds f@. Then
conclude thafP]® = [Q]° iff [P] = [Q]- The result follows from Theorem 1. O

Buichi Constructions. Having identified our finite set of relevant constraints for the sp
equivalence characterization, we now proceed to construct forRastdS Cg, C, a
Biichi automatom?, recognizing[P]°. EachA# will be compositionallyconstructed

in the sense that it will be built solely from information about FSA of the foi@
where() is a subprocess dP. The most interesting case of this construction is replica-
tion, as described in the proof of the lemma below.

DABORT: [abort]® = 0
DTELL: [tell(c)]® = {d.a € S¥ |d = ¢}

DSUM: [;c;whenc;doP;]® = U {d.a € S* |d|= c; andd.a € [P]°}
ier
u
Nier{d-a € ¥ | dEci}
DPAR: [P | Q]° = [P]° n[@Q]®
DLOC: [(localz) P]® = {a € S |there existat’ € [P]° suchthaB,a’ = 3.a}
DNEXT: [next P]° = {d.a € S*|a € [P]°}
DUNL: [unless ¢ next P]* = {d.a € S* | d |= ¢}
u
{d.a | d }= canda € [P]°}
DREP: ['P]° = {a € §“ | forall §,a’ suchthatx = 3.a’, we havea’ € [P]°}

DSTAR: [xP]° = {B.a € S* |a € [P]°}

Table2. SP Denotation. Abovés C C and 3.’ is the concatenation of the finite sequertte
followed bya’. The sequencg.« results from applyingl, to each constraint in.. In DSUM if
I = 0, the indexed union and intersection are taken té bad S“, respectively.

Lemma 1. GivenP andS Cy;, C one can effectively construct a Blichi automaton
A% over the alphabe$ such thatZ.(A3) = [P]°.

Proof. We shall give the construction of eaety, by case analysis on the structure of
P. We only describe some of the cases. The others are similar or simpler.

Replication AutomatonP =!Q: We haven € [!Q]° iff every suffix of a is in [Q]°.
We then need to construct4}, that accepts an infinite sequencéf every suffivof it
is accepted bylf?. At first, such a construction may seem somewhat complex to realize.
Nevertheless, notice that the proc&3ds dualto x@) in the sense expressed in [17]:

[Q] =vx([QIN{da]ac X}) while [xQ]=px([QJU{da]ac X})

wherev, i are the greatest and least fixpoint (resp.) in the complete 14), C).
Infact,a € [xQ] iff there is a suffixf o in [Q]°. So, given an automatd® definexB
as the automaton that acceptsf there is a suffiof a accepted byB. The construction
of xB is simple and similar to that o&fQ below. Now, given4, one can construct the

automatord foﬂe complement ok (A) [22]. Hence, keeping duality in mind, we can
take A, to bexAg.

Unbounded but Finite Delay Automatoi®. = +Q: The states ofi}, are those of?,
plus an additional stat®. Its final states are those ﬂfg Its initial states are those of
A% plus so. The transitions are those dfg plus transitions labelled with, for each
c € S, from sq to itself and fromsg to each initial state oﬂg. The transitions “looping”
into the initial statesp model the “arbitrary but finite delay” of@.

Local Automaton.P = (localz) Q: The states ofi7}, ., ,, o are those ofd3. Its

initial and final states are those df;. For eachc € S, Aﬁocalwm has a transition

from p to ¢ labeled withe iff Ag has a transition fromp to ¢ labelled withd for some
d € S suchthafl,d = J.e.

Parallel Automaton.P = @ || R: The theory of Biichi FSA gives us a construction for
the intersection afs languages: Givemg andAJS;z one can construct an automaton that

recognized.(A3) N L(Af) [3]. Take A 5 to be such an automaton.

Skip and Tell AutomataP = skip: Afkip has a single (initial, accepting) state, and
for eachc € S, there is a transition labeled with from this single state to itself.
P = tell(c): Asen(c) has exactly two states: one is its initial state and the other is its

accepting one: the unique statey;,,. The transitions ofi , ., are those ofiZ;,
plus a transition from the initial state to the stateﬁip labeled withd for eachd € S

such thatl = c.

One can verify the correctness 4f, using induction on the structure &. It is easy
to see thatd?, can be effectively constructed, thus concluding the proof. O

We now state our first decidability result: The decidability of the sp equivalence.

Theorem 3 (Decidability of ~,,). Given two locally-independent processand @),
the question of whethd?r ~, @ is decidable.

Proof. From Theorem 2, Lemma 1 and the decidability of language equivalence for
Biichi FSA [22].

3.2 Decidability Results for Verification and CLTL

Here we show the decidability results for the verification problem (i.e., gvamd F'
whetherP |=c_t. F, see Definition 7) as well as f@LTL (Definition 6).

Recall theCLTL models of a given formul@’ are inC*. Thus, for our decidabil-
ity results we may attempt to give a Bilichi characterizatio€bfL formulae facing
therefore the problem pointed out in the previous sectfomay be infinite but Buchi
FSA only have finite alphabets. One could try to resfiic} to its “relevant” constraints
as we did fof[P]. This appears to be possible for negation-free formulae but we do not
know yet how to achieve this for the full language.

Nevertheless, for negation-free formulae there is an alternative to obtain the results
by appealing to Theorem 3 and the correspondence between processes and LTL formu-
lae. More precisely, we show that one can construct a locally-indepeRjenthose
sp corresponds thF'] if F is a restricted-negation formula in the following sense:

Definition 9 (Restricted-Negation LTL). F'is arestricted-negation formui# when-
ever- G appears inF' thend is a state formula (i.e(G = ¢ for somex).

Recall thatinCLTL - ¢ and the state formulac do not match (Example 1). In fact, we
need- ¢ should we want to express the minimal implication fares D = ~ ¢V D.

Lemma 2. Let F' be a restricted-negation formula. One can effectively construct a
locally-independenkr such thaf F] = sp(Rp).

Proof. Take Rr = h(F) whereh is the map from restricted-negation formulae to
locally-independent processes given by

h(true) = skip h(false) = abort

h(c) = tell(c) h(=) when c do abort
W(FAG) = h(F) || l(G) h(FV G) = h(F) + h(G)
h(AzF) = (localz) h(F) h(OF) = next h(G)
h(OF) = h(F) h(OF) = xh(F)

Obviously,h(F') can be effectively constructed. One can verify i} = [h(F)] by
induction on the structure df. From Theorem 1 we obta{l¥] = sp(h(F)). O

Notice that the map above reveals the close connection betweaten and LTL.
We can now state the decidability of the verification problenmtoc .

Theorem 4 (Decidability of Verification). Let F’ be a restricted-negation formula. Let
P be locally-independent. The question of whetReec . F is decidable.

Proof. From Theorem 3 by using the following reduction to sp equivalence:

P |=cim Fiff sp(P) C [F] (Definition 7)
iff sp(P) C [Rr] (Lemma 2)
iff [P] € [Rr] (Theorem 1)
it [P] = [RrlN[P]
iff [P] = [Rr||P] (Definitionof[-])
iff P~y Rp || P (Theorem 2) |

We can reduce the validity of implication to the verification problem. Therefore,

Theorem 5 (Decidability for Validity of Implication). Let F' and G be restricted-
negation formulae. The question of whetlf&#> G is CLTL valid is decidable.

Proof. = G iff [F] = sp(Rr) C [G] by Definition 6 and Lemma 2. ThekRi = G
iff Rp [=cure G by Definition 7. The result follows from Theorem 4. O

As an immediate consequence of the above theorem we obtain the following:

Corollary 1 (Decidability of CLTL Satisfiability and Validity). Let F' be an ar-
bitrary restricted-negation formula. The questions of whetReis CLTL valid and
whetherF' is CLTL satisfiable are both decidable.

Proof. F is CLTL valid iff true = F is CLTL valid, andF is CLTL satisfiable iff
F =false isnotCLTL valid. The result follows from Theorem 5. a

4 An Application to Manna and Pnueli’s LTL

We now apply the previous results on smicc LTL (CLTL) to standard first-order
LTL, henceforth calledTL , as presented by Manna and Pnueli in [10]. Namely, we
obtain a new positive decidability result on the satisfiability of a first-order fragment
of LTL by a reduction to that oELTL . The relevance of our result is thiaEL is not
recursively axiomatizable [1] and, therefore, the satisfiability problem is undecidable
for the full language oETL . We confine ourselves to havirdg (1, and<$> as modalities.
This is sufficient for making a recursive axiomatization impossible [11].

We shall recall briefly some LTL notions given in [10]. We presuppose an underly-
ing first-order languagég (including equality) with its (nonlogical) symbols interpreted
over some concrete domains such as the natural numbers.

A states is an interpretation that assigns to each variabite. a values[z] over the
appropriate domain. The interpretation is extended &xpressions in the usual way.
For example, iff is a function symbol of arity 15[f (z)] = f(s[z]). We writes |= ciff ¢
is true wrts in the given interpretation of thé symbols. For instance, i is interpreted
as addition over the natural numbers affie] = 42 thens |= 3,(z = y + y). We say
thatc is state validiff s |= ¢ for every states.

A modelis an infinite sequence of states. We shall use range over models.
The variables of are partitioned inteigid andflexiblevariables. Each model must
satisfy therigidity condition: If z is rigid ands, s are two states ia thens[z] = s'[z].

The syntax oLTL is to that of CLTL given in Definition 4. In this case, however,

x is a variable inC andc represents a first-order formula ovér

The semantics ofTL is similar that of CLTL (Definition 6) except that now the
formulae are satisfied by sequences of states. We then need to extend the ngtion of
variant (Definition 5) to states: is z-variantof s’ iff s[y] = s'[y] for every variabley
in £ different fromz.

Definition (LTL Semantics). A modelo satisfiesF’ in LTL , notationo =1 F, iff
(0,1) |=urL F where(o,i) |=11L F is obtained from Definition 6 by replacing and
=L with o and =1, respectively. We say thatis LTL satisfiabldff o =1 F for
someo, and thatF' is LTL validiff o =71 F for all o.

In order to prove our decidability resuliye assume that state validity (the set of
valid state formulae) is decidablErom [9] we know that even under this assumption
theLTL defined above is undecidable. In contrast, under the assumplibnsatisfia-
bility is decidable for the fragment in which temporal operators are not allowed within
the scope of quantifiers as it can be reduced to that of propositional LTL [1].

Example 3.Let us now illustrate the interaction between quantifiers, modalities, flexi-
ble and rigid variables ihTL . The formulad 3,(z = uA Ox = u + 1), wherez is
flexible andu is rigid, specifies sequences in whigelincreases by 1 from each state to

the next. This example also illustrates that existential quantification over rigid variables
provides for the specification of counter computations, so we may expect their absence
to be important in our decidability result. In fact, we shall statelffie decidability

for therestricted-negatiofragment (Definition 9) with flexible variablesonly. 0O

Removing Existential Quantifiers One might be tempted to think that, without univer-
sal quantification and without rigid variables, one could remove the existential quanti-
fiers rather easily: Pull them into outermost position with the appropsigt@nversions

to get a prenex form, then remove them sifigé” is LTL satisfiable iffF is LTL sat-
isfiable. But this procedure does not quite work; it does not preserve satisfiability:

Example 4.Let F = (z = 42A Oz # 42), G = 3, OF andH = 03, F wherez is
flexible. One can verify that unliké/, O F and thus are notLTL satisfiable. Getting
rid of existential quantifiers is not as obvious as it may seem. O

Relating CLTL and LTL Satisfiability. Let us give some intuition on how to obtain
areductionfrom LTL satisfiability toCLTL satisfiability. In what follows we confine
ourselves to restricted-negation formulae without rigid variables. One can verify that
—¢ and- ¢ have the samETL models. So, in the reduction we can assume wlg khat
has no- symbols. Notice thal’ = (x = 42V x # 42) is LTL valid but notCLTL
valid (Example 1). HoweverF' is satisfiable in both logics. In general, &f is LTL
satisfiable therF" is CLTL satisfiable. The other direction does not necessarily hold.
{false isnotLTL satisfiable butitisCLTL satisfiable—recall from Section 2.2 that
in CLTL false is notthe same dalse . For examplefalse ¢ e ¢ false
However, we can get around this mismatch by uding false to excludeCLTL
models containinfalse as shown in the lemma below.

Recall that(¥', A) (Definition 1) denotes the underlying cs afidlenotes the un-
derlying first-order language of state formulae. Also recall that bbthnd the set of
valid state formulae are required to be decidable.

Lemma 3. Assume that the ¢, A) has. as first-order language and is the set of
valid state formulae. Then

F isLTL satisfiable iff FAO=false isCLTL satisfiable,

if F'is a restricted-negation formula with no occurrences-odind with no rigid vari-
ables.

Proof. (Outline) “If” direction: Verify that if « = ¢j.c2.... For. F AOfalse
then for anyo = sy.s2.... wheres; = ¢; (i > 1), we haves 1. F. Conclude
the result by using the observation thatif=c 1. F AO~false thena contains
nofalse . “Only if” direction: Verify that if o = sy.s2... =10 F then there is an
a = cj.ca...with s; = ¢; (i > 1) such thainv |=c 7. FAO-false .Eache; can
be taken to be the strongest constraint (urigrsatisfied bys; in the closure under
conjunction of the constraints if. O

We can now state the decidability result we claimed for first-order LTL.

Theorem 6 (Decidability of LTL Satisfaction). Let F' be a restricted-negation for-
mula without rigid variables. The question of whetl#eis LTL satisfiable is decidable.

Proof. From Lemma 3 and Corollary 1, and the fact that one can freely repldge-
in F and the resulting formula will have the sati®. models than the origindl’. O

5 Concluding Remarks

We presented positive decidability results for the sp behavioral equivalengecthe
verification problem, and thatcc specification first-order temporal logi€LTL .
These results apply tafinite-stateprocesses. A somewhat interesting aspect is that for
proving the results it turned out to be convenient to work withritez denotational
semanticsather than with its operational counterpart. Also the use of Blichi automata-
theoretic techniques in these results highlights the automata-like flavicof.

Furthermore, by using a reduction@.TL satisfiability, we identified a first-order
fragment of the standard LTL [10] for which satisfiability is decidable. The result con-
tributes to the understanding of the relation between (timed) ccp and (temporal) classic
logic and also illustrates the applicability of timed ccp to other theories of concurrency.
Related Work. Nielsen et al [14] proved the decidability of the sp equivalence and
other behavioral equivalences for several deterministic timed ccp languages. In another
work Nielsen et al [16] showed that output equivalence is decidable for a restricted
nondeterministitcc fragment. The results in [14, 16] are obtained by showing that
the processes in these languages are infieiéetstate Nielsen et al [14] also show that
the sp equivalence isndecidabléf recursion is present in the language.

Saraswat et al [21] showed how to compile parameterless recursion tcc processes
(basically finite-state deterministidtcc processes) into FSA in a compositional way.
Such FSA provide a simple and useful execution model for tcc but not a direct way
of verifying sp (or input-output) equivalence. In fact, unlike our FSA constructions,
the standard language equivalence between these FSA does not necessarily imply sp
equivalence (or input-output) of the processes they represent.

Another interesting approach to timed ccp verification is that by Falaschi et al [8].
The authors show how to construct structures (models) of tcc processes which then, by
restricting the domains of variables to be finite, can be used for model-checking. Notice
that in our results we make no assumptions about the domains of variables being finite.

The notion of constraint in other declarative formalisms such as Constraint Logic
Programming (CLP) and Constraint Programming (CP) has also been used for the ver-
ification of infinite-state systems. Delzanno and Podelski [6] showed how to translate
infinite-state systems into CLP programs to verify safety and liveness properties. Es-
parza and Melzer [7] used CP in a semi-decision algorithm to verify 1-safe Petri Nets.

Merz [11] and Hodkinson et al [9] identified interesting decidable first-order frag-
ments of LTL. These fragments are all monadic and without equality. A difference with
our work is that these fragments do not restrict the use of negation or rigid variables,
and our fragment is not restricted to be monadic or equality-free.

Future Work. The author believes that we can dispense with the restriction on the

occurrences of negation in our results. If the claim is true, then the inference system for
ntcc [17] would be complete for locally-independent processes (and not just relative

complete). This is because we would be able to determine the validity of arbitcary

LTL implication as required by the consequence rule. It will be, therefore, interesting

to be able to prove this claim.

In our Blichi FSA constructions we were not concerned with state space issues
(e.g., see the “double complementation” construction for the replication automaton in
Section 3.1). For verification purposes, it is important to look into these issues.

Acknowledgments.Many thanks to Catuscia Palamidessi, Mogens Nielsen, Joachim
Parrow, Jiri Srba, Igor Walukiewicz, Martin Abadi, lan Hodkinson, Stephan Merz,
Richard Mayr, Gerardo Schneider and Martin Leucker for helpful comments.

References

1.
2.

3.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. Abadi. The power of temporal proof§heoretical Computer Sciencg5:35-84, 1989.
J. R. Buchi. On a decision method in restricted second order arithmetroén Int. Conf.
on Logic, Methodology, and Philosophy of Scienuages 1-11, 1962.

Y. Choueka. Theories of automatawstapes: A simplified approaciComputer and System
Sciences10:19-35, 1974.

. F. de Boer, M. Gabbrielli, and M. C. Meo. A timed concurrent constraint languiader-

mation and Computatiqri61:45-83, 2000.

. F. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving concurrent constraint

programs correctACM Transactions on Programming Languages and Syst&a(s), 1997.

. G. Delzanno and A. Podelski. Model checking in CTIRCAS’'99LNCS 1579, 1999.
. J. Esparza and S. Melzer. Model checking LTL using constraint programmirigroén of

ICATPN'97.LNCS 1248, 1997.

. M. Falaschi, A. Policriti, and A. Villanueva. Modelling timed concurrent systems in a tem-

poral concurrent constraint language - 1. ENTCS 48, 2001.

. . Hodkinson, F. Wolter, and M. Zakharyasche. Decidable fragments of first-order temporal

logic. Ann. Pure. Appl. Logic106:85—-134, 2000.

. Z.Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Systems, Specifi-

cation Springer, 1991.

. S. Merz. Decidability and incompleteness results for first-order temporal logics of linear

time. Journal of Applied Non-Classical Logi2(2), 1992.

. R. Milner. A finite delay operator in synchronous ccs. TR CSR-116-82, Univ. of Edinburgh.
. R. Milner. Communicating and Mobile Systems: thealculus 1999.
. M. Nielsen, C. Palamidessi, and F. Valencia. On the expressive power of concurrent constra-

int programming languages. PPDP 2002 pages 156-167. ACM Press, October 2002.

. M. Nielsen, C. Palamidessi, and F. Valencia. Temporal concurrent constraint programming:

Denotation, logic and applicationblordic Journal of Computingd(2):145-188, 2002.

M. Nielsen and F. ValenciaTemporal Concurrent Constraint Programming: Applications

and BehaviorLNCS 2300:298-324, 2002.

C. Palamidessi and F. Valencia. A temporal concurrent constraint programming calculus. In
Proc. of CP’01 LNCS 2239, 2001.

V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent constraint pro-
gramming. InProc. of LICS’94 pages 71-80, 1994.

V. Saraswat, R. Jagadeesan, and V. Gupta. Programming in timed concurrent constraint
languages. Ii€onstraint Programming: Proc. 199pages 361-410. Springer-Verlag, 1994.

V. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent constraint programming.
Journal of Symbolic Computatip82:475-520, 1996.

V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of concurrent cons-
traint programming. IfPOPL '91, pages 333-352, 1991.

A. Sistla, M. Vardi, and P. Wolper. The complementation problem for buchi automata with
applications to temporal logicTheoretical Computer Sciencé9:217-237, 1987.

S. Tini. On the expressiveness of timed concurrent constraint programming. ENTCS 27,
1999.

F. Valencia. Temporal Concurrent Constraint ProgrammindhD thesis, BRICS Univ. of
Aarhus, 2003. Available online via http://iwww.brics.dialenci/publications.html.

M. Vardi. An automata-theoretic approach to linear temporal logic. LNCS 1043, 1996.

