
T C C

L A

BRICS, Department of Computer Science
Aalborg University, 9220 Aalborg Ø, Denmark

Dept. of Computer Science, School of Science and Engineering
Reykjavik University, 103 Reykjavik, Iceland

luca@{cs.auc.dk,ru.is}, http://www.cs.auc.dk/~luca/BEATCS

Concurrency theory is home to a plethora of formalisms for the description of
reactive systems, and even when focusing on a single model of concurrent
computation there is a wide choice of possible notions of observable beha-
viour that can be used to induce a notion of “process equivalence” over it—as
witnessed, for instance, by van Glabbeek’s linear time-branching time spec-
trum. This multiplicity of possible semantic views of concurrent computation
requires the development of tools that we can use to put some structure into
it. I believe that expressiveness results play a fundamental role in concurrency
theory, since they offer a powerful, formal way of understanding the relation-
ships amongst models and formalisms for concurrent computation, and their
relative computational power.

This contribution to the concurrency column studies the expressiveness
of two approaches to the description of infinite behaviours in process calculi
like ACP, CCS, CSP and various flavours of the π-calculus, namely recursion
and replication. More specifically, Catuscia Palamidessi and Frank Valencia
offer a unified presentation of work on the relative expressiveness of recursion
and replication in CCS, the π-calculus, and the Ambient calculus. They also
overview the work on this subject in less established calculi such as tcc and
calculi for cryptographic protocols.

I trust that this piece will make some very interesting, recent work by Catus-
cia, Frank and others on the expressiveness of facilities for the description of
infinite behaviours accessible to the concurrency theory community at large.
Enjoy it!

http://www.cs.auc.dk/
http://www.auc.dk/
http://www.ru.is
luca@{cs.auc.dk,ru.is}
http://www.cs.auc.dk/~luca/BEATCS
http://www.lix.polytechnique.fr/~catuscia/
http://user.it.uu.se/~frankv/

As some of the readers of this column might have already noticed, I have
been maintaining a Process Algebra Diary on the web for about eighteen
months now. Those of you who are interested in following my irregular post-
ings are invited to have a look at

http://www.cs.aau.dk/~luca/PA-DIARY/.

Comments and guest postings are most welcome.

R R P C:
E∗

Catuscia Palamidessi
INRIA Futurs and LIX, École Polytechnique
catuscia@lix.polytechnique.fr

Frank D. Valencia
CNRS and LIX, École Polytechnique
fvalenci@lix.polytechnnique.fr

1 Introduction

Process calculi such as CCS [12], theπ-calculus [14] and Ambients [6] are among
the most influential formal methods for modelling and analyzing the behaviour of
concurrent systems; i.e. systems consisting of multiple computing agents, usually
calledprocesses, that interact with each other. A common feature of these calculi
is that they treat processes much like theλ-calculus treats computable functions.
They provide a language in which the structure oftermsrepresents the structure
of processes together with anoperational semanticsto represent computational
steps. Another common feature, also in the spirit of theλ-calculus, is that they
pay special attention to economy. That is, there are few process constructors, each
one with a distinct and fundamental role.

For example, a typical process term is theparallel composition P| Q, which is
built from the termsP andQ with the constructor| and it represents the process

∗Supported by the Project Rossignol of the ACI Sécurité Informatique (Ministère de la recher-
che et nouvelles technologies)

http://www.cs.aau.dk/~luca/PA-DIARY/
catuscia@lix.polytechnique.fr
fvalenci@lix.polytechnnique.fr

that results from the parallel execution of the processesP andQ. Another typical
term is therestriction(νx)P which represents a processP with a private resource
x—e.g., a location, a link, or a name. An operational semantics may dictate that
if P can reduce to (or evolve into)P′, writtenP −→ P′, then we can also have the
reductionsP | Q −→ P′ | Q and (νx)P −→ (νx)P′.

Infinite behaviour is ubiquitous in concurrent systems (e.g., browsers, search
engines, reservation systems). Hence, it ought to be represented by process terms.
Two standard term representations of them arerecursive process expressionsand
replication.

Recursive process expressions are reminiscent of the recursive expressions
used in other areas of computer science, such as for example Functional Pro-
gramming. They may come in the formµX.P whereP may have occurrences of
X. The processµX.P behaves asP with the (free) occurrences ofX replaced by
µX.P. Another presentation of recursion is by usingparametric processesof the
form A(y1, . . . , yn) each assumed to have a unique, possibly recursive,definition

A(x1, . . . , xn)
def
= P where thexi ’s are pairwise distinct, and the intuition is that

A(y1, . . . , yn) behaves as itsP with eachyi replacingxi .

Replication, syntactically simpler than recursion, takes the form !P and it is re-
miniscent of Girard’s bang operator; an operator used to express unlimited number
of copies of a given resource in linear-logic [8]. Intuitively, !P meansP | P | · · · ;
an unbounded number of copies of the processP.

Now, it is not uncommon that a given process calculus, originally presented
with one form of defining infinite behavior, is later presented with the other. For
example, theπ-calculus was originally presented with recursive expressions and
later with replication [16]. The Ambient calculus was originally presented with
replication and later with recursion [11]. This is reasonable as a variant may
simplify the presentation of the calculus or be tailored to specific applications.

From the above intuitive description it should be easy to see thatµX.(P | X) ex-
presses the unbounded parallel behaviour of !P. It is less clear, however, whether
replication can be used to express the unbounded behaviour ofµX.P. In particular,
processes that allows for unboundedly manynestedrestrictions as, for example,
in µX.(νx)(P | X) which behaves as (νx)(P | (νx)(P | (νx)(P | · · ·))). In fact, the
ability of expressing recursive behaviours via replication depends on the particular
process calculus under consideration.

The above discussion raises the issue ofexpressiveness. What does it mean for
one variant to be as expressive as another ? The answer to this question is definite
in the realm of computability theory via the notion of language equivalence. In
concurrency theory, however, this issue is not quite settled.

One approach to comparing expressiveness of two given process calculus vari-
ants is by comparing them w.r.t. some standard process equivalence, say∼. If for

every processP in one variant there is aQ in the other variant such thatQ ∼ P
then we say that the latter variant is at least as expressive as the former.

Another approach consists in telling two variants apart by showing that in one
variant one can solve some fundamental problem (e.g., leader election) while in
the other one cannot. It should be noticed that, unlike computability theory, the
capability of two variants of simulating Turing Machines does not imply equality
in their expressiveness. For example, [18] shows that under some reasonable as-
sumptions the asynchronous version of theπ-calculus, which can certainly encode
Turing Machines, is strictly less expressive than the original calculus.

In this paper, we shall discuss the work on the relative expressiveness of Recur-
sion and Replication in various process calculi. In particular, CCS, theπ-calculus,
and the Ambient calculus. We shall begin with theπ-calculus, then CCS and then
the Ambients calculus. For the simplicity of the presentation we shall consider the
polyadic variant of theπ-calculus [13]. Finally, we shall also overview the work
on this subject in related calculi such as tcc [19] and calculi for Cryptographic
Protocols [10].

2 The Polyadic Pi Calculus:pπ

One of the earliest discussions about the relative expressiveness between replica-
tion and recursion was in the context of the polyadicπ-calculus [13]; one of the
main calculi for mobility. It turns out that in this calculus replication is just as
expressive as recursion. This results was rather surprising since replication seems
such an elementary construct without much control power.

In what follows we shall introduce the polyadicπ-calculus and the variants
relevant for this paper. The various CCS and Ambients variants will be presented
in the next sections as extension/restrictions of the polyadicπ-calculus.

2.1 Finite Pi-calculus

Namesare the most primitive entities in theπ-calculus. We presuppose a count-
able set of (port, links or channel)names, ranged over byx, y, For each name
x, we assume aco-namex thought of ascomplementary, so we decree thatx = x.
We shall usel, l′, . . . to range over names and co-names. We use~x to denote a fi-
nite sequence of namesx1x2 · · · xn. The other entity in theπ-calculus is aprocess.
Process are built from names by the following syntax:

P,Q, . . . :=
∑
i∈I

αi .Pi | (νx)P | P | Q (1)

α := x~y | x(~y)

whereI is a finite set of indexes.
Let us recall briefly some notions as well as the intuitive behaviour of the

various constructs.
The construct

∑
i∈I αi .Pi represents a process able to perform one–but only

one–of itsαi ’s actions and then behave as the correspondingPi. The actions pre-
fixing thePi ’s can be of two forms: An outputxy1 · · · yn and an inputx(y1 · · · yn).
In both casesx is called thesubjectandy1 · · · yn the object. The actionx~y rep-
resents the capability of sending the names~y on channelx. The actionx(~y), with
~y = y1, · · · , ym and no name occurring twice in~y, represents the capability of re-
ceiving the names on channelx, sayz1 · · · zm, and replacing eachyi with zi in its
corresponding continuation.

Furthermore, inx(~y).P the input actions binds the names~y in P. The other
name binder is therestriction (νx)P which declares a namex private toP, hence
bound inP. GivenQ we define in the standard way itsbound names bn(Q) as the
set of variables with a bound occurrence inQ, and itsfree names fn(Q) as the set
of variables with a non-bound occurrence inQ.

Finally, the processP | Q denotesparallel composition; P andQ running in
parallel.

Convention 2.1. We write the summation as0 if |I | = 0, and drop the “
∑

i∈I ” if
|I | = 1. Also we writeπ1.P1 + · · · + πn.Pn for

∑
i∈{1,...,n} πi .Pi.

For simplicity, we omit “()” in processes of the form x().P as well as the
“ .0” in processes of the form x(~y).0. We use(νx1x2 · · · xn)P as an abbreviation
(νx1)(νx2) · · · (νxn)P and

∏
i∈I Pi, where I = {i1, . . . , in}, as an abbreviation of

Pi1 | · · · | Pin. Furthermore, Pσ, whereσ = {z1/y1, . . . , zn/yn}, denotes the proc-
ess that results from the substitution in P of each zi for yi, applyingα-conversion
wherever necessary to avoid captures.

Reduction Semantics of Finite Processes.The above intuition about process
behaviour is made precise by the rules in Table 1. Thereductionrelation −→ is
the least binary relation on processes satisfying the rules in Table 1. The rules are
easily seen to realize the above intuition.

We shall use−→∗ to denote the reflexive, transitive closure of−→. A re-
duction P −→ Q basically says thatP can evolve, after some communication
between its subprocesses, intoQ. The reductions are quotiented by thestructural
congruencerelation≡ which postulates some basic process equivalences.

Definition 2.2 (Structural Congruence). Let≡ be the smallest congruence over
processes satisfying the following axioms:

1. P≡ Q if P and Q differ only by a change of bound names (α-equivalence).

2. P | 0 ≡ P, P | Q ≡ Q | P, P | (Q | R) ≡ (P | Q) | R.

3. If x < fn(P) then(νx)(P | Q) ≡ P | (νx)Q.

4. (νx)0 ≡ 0, (νx)(νy)P ≡ (νy)(νx)P.

REACT:
(· · · + x z1 · · · zn.P) | (· · · + x(y1 · · · yn).Q) −→ P | Q{z1/y1, . . . , zn/yn}

PAR:
P −→ P′

P | Q −→ P′ | Q
RES:

P −→ P′

(νx)P −→ (νx)P′

STRUCT:
P ≡ P′ −→ Q′ ≡ Q

P −→ Q

Table 1: Reductions Rules.

2.2 Infinite Processes in the Polyadic Pi-Calculus

In the literature there are at least two alternatives to extend the above syntax to
express infinite behavior. We describe them next.

Pi with Parametric Recursive Definitions: pπD

A typical way of specifying infinite behavior is by using parametric recursive
definitions [14]. In this case we extend the syntax of finite processes (Equation 1)
as follows:

P,Q, . . . := . . . | A(y1, . . . , yn) (2)

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We
assume that every such an identifier has a unique, possibly recursive,definition

A(x1, . . . , xn)
def
= P where thexi ’s are pairwise distinct, and the intuition is that

A(y1, . . . , yn) behaves as itsP with eachyi replacingxi . We shall presuppose fi-

nitely many such definitions. Furthermore, for eachA(x1, . . . , xn)
def
= P we require

fn(P) ⊆ {x1, . . . , xn}. (3)

The reduction semantics of the extended processes is obtained simply by ex-
tending the structural congruence≡ in Definition 2.2 with the following axiom:

A(y1, . . . , yn) ≡ P[y1, . . . , yn/x1, . . . , xn] if A(x1, . . . , xn)
def
= P. (4)

As usualP[y1 . . . yn/x1 . . . xn] results from syntactically replacing every free
occurrence ofxi with yi and by applyingnameα-conversion, wherever needed to
avoid capture.

We shall usepπD to denote the polyadicπ-calculus with parametric recursive
definitions with the above syntactic restrictions.

Pi with Replication: pπ!

A simple way of expressing infinite behaviour in theπ-calculus is by using replic-
ation. We shall usepπ! to denote the polyadicπ-calculus with replication.

In the pπ! case, the syntax of finite processes (Equation 1) is extended as
follows:

P,Q, . . . := . . . | !P. (5)

Intuitively !P behaves asP | P | . . . | P | !P; unboundedly many copies ofP.
The reduction semantics forpπ! is obtained simply by extending the structural

congruence≡ in Definition 2.2 with the following axiom:

!P ≡ P | !P. (6)

Barbed Bisimilarity

We shall often state expressiveness results by claiming the existence of a process
in one calculus which is equivalent to some given process in another calculus. For
this purpose, here we recall a standard way of comparing processes. We shall use
pπ! to denote the calculus with replication.

Let us begin by recalling a basic notion of observation for theπ-calculus.
Intuitively, given l = x (l = x) we say that (the barb)l can beobservedat P,
written P ↓l , iff P can have an input (output) with subjectx. Formally,

Definition 2.3 (Barbs). Define P↓x iff ∃~z, ~y,R : P ≡ (ν~z)(x~y.Q | R) and x is
not in~z. Similarly, P ↓x iff ∃~z, ~y,Q,R : P ≡ (ν~z)(x(~y).Q | R) and x is not in~z.
Furthermore, P⇓l iff ∃Q : P −→∗ Q ↓l .

Let us now recall the notion of barbed (weak) bisimilarity and congruence.
Remember that a processcontext Cin a given calculus is an expression with a
hole [.] such that placing a process in the hole produces a well-formed process
term in the calculus.

For technical purposes, we shall usepπD+! as the calculus whose process syn-
tax arises from extending the syntax of finite processes (Equation 1) with both
replication and recursive definitions. The reduction semantics ofpπD+! of the ex-
tended processes is obtained by extending the structural congruence≡ in Defini-
tion 2.2 with the axioms in Equations 4 and 6.

Definition 2.4 (Barbed Bisimilarity). A (weak) barbed-simulationis a binary
relationR satisfying the following:(P,Q) ∈ R implies that:

1. if P −→ P′ then∃Q′ : Q −→∗ Q′ ∧ (P′,Q′) ∈ R.

2. if P ↓l then Q⇓l .

The relationR is a barbed bisimulationiff bothR and its converseR−1 are
barbed -simulations. We say that P and Q are(weak) barbed bisimilariff (P,Q) ∈
R for some barbed bisimulationR. Furthermore, we say that P and Q are barbed
congruent, written P≈ Q, iff for each context C[·] in pπD+!, C[P] ∼ C[Q].

2.3 Recursive Definitions vs Replication in Pi

Here we recall a result stating that the variantspπ! andpπD can be regarded as
being equally expressive w.r.t (weak) barbed congruence≈ given in Definition
2.4. More precisely, the expressiveness criteria w.r.t to barbed congruence we
shall use in this section can be stated as follows.

Criteria 2.5. We say that aπ-calculus variant is as expressive as another iff for
every process P in the second variant one can construct a process[[P]] in the first
variant such that[[P]] is (weakly) barbed congruent to P.

All the results presented in this section are consequences of the expressiveness
results in [20].

From pπD to pπ! and back: Encodings

We shall now provide encodings from one variant into the other and state their
correctness. We shall say that a map [[]] is ahomomorphism for parallel com-
position iff [[P | Q]] = [[P]] | [[Q]]. The notion of homomorphism for the other
operators is defined analogously.

Definition 2.6. Let [[·]]0 be the map frompπD processes and recursive definitions
into pπ! processes given by:

[[0]] 0 = 0,

[[Ai(~xi)
def
= Pi]]0 = ! ai(~xi).[[Pi]]0,

[[Ai(~yi)]]0 = ai~yi ,

and for all other processes[[·]]0 is a homomorphism.

Let P be an arbitrarypπD process with{ A1(~xi)
def
= P1, . . . ,An(~xn)

def
= Pn }

as the set of recursive definitions of its process identifiers. Theencodingof P,
denoted[[P]] , is defined as

[[P]] = (νa1 · · · an)([[P]]0 |
∏

i∈{1,...,n}

[[Ai(~xi)
def
= Pi]]0)

where a1, . . . ,an < fn(P).

Intuitively, eachA(~y), with A(~x)
def
= P, is translated into a particlea~y which

excites a copy ofP (with ~y substituted for~x) by interacting with a replicated
resource, a provider of instances ofP, of the form !a(~x).[[P]]. The correctness of
the encoding is stated below.

Theorem 2.7. Let [[·]] be the encoding in Definition 2.6. For each P inpπD, P ≈
[[P]] .

Let us now give an encoding ofpπ! into pπD. The idea is simple: Each !P is

translated into a processAP, recursively defined asAP(~x)
def
= P | AP(~x) which can

provide an unbounded number of copies ofP.

Definition 2.8. Let [[·]]0 be the map frompπ! processes intopπ! processes given
by:

[[0]] = 0,

[[! P]] = AP(~x) where AP(~x)
def
= P | AP(~x) and fn(P) ⊆ {~x}

and for all other processes[[·]]0 is a homomorphism.

We can now state the correctness with respect to barbed congruence.

Theorem 2.9. Let [[·]] be the encoding in Definition 2.8. For each P inpπ!, P ≈
[[P]] .

2.4 Recursion vs Replication in the Private Pi Calculus

The Privateπ-calculus [20] is a sub-calculus with a restricted form of communic-
ation. The idea is that onlybound-outputsare allowed; i.e, outputs of the form
(ν~z)x~z.P. Such bound-outputs are usually abbreviated asx(~z) assuming that no
name occur more than once in~z.

The above syntactic restriction results in a pleasant symmetry between input
and outputs in that they both can be seen as binders. Moreover, the restriction
ensures thatα-conversion is the only kind of substitution required in the calculus.
In fact, the rule REACT in Table 1, which applies a substitution to the continuation
of the input, can be replaced by the following rule:

x(~z).P | x(~z).P −→ (ν~z)(P | Q) (7)

Let us denote byPrivpπ! the calculus that results from applying topπ! the syn-
tactic restriction mentioned above. ThePrivpπD calculus is analogously defined
as a restriction onpπD except that we need an extra-condition to ensure thatα-
conversion is the only substitution needed in the calculus: In every invocation
A(~z), no name may occur more than once in the vector~z.

Now, if we wish an encoding [[·]] from Privpπ! into PrivpπD such that [[P]] ≈
P, we can simply take that of Definition 2.8 restricted to thePrivpπ! case. As
shown below, however, the above restriction makes impossible the existence of an
encoding fromPrivpπD into PrivpπD.

Consider for example the processP = A(z0) where

A(x)
def
= x(z).A(z).

The processP, in parallel with a suitableR, can perform a sequence of actions
where the subject of an action is the object of the next one. This kind of sequences
are calledlogical threads[20]. Moreover,P can perform the infinite logical thread
z0(z1).z1(z2).

Interestingly, as an application of the type theory forPrivpπ!, the results in
[20] state thatno process inPrivpπ! can exhibit an infinite logical thread. Together
with P above, this property ofPrivpπ! can be used to prove the following result.

Theorem 2.10.There is a process P inPrivpπD such that P0 Q for every Q in
Privpπ!.

Therefore, we cannot have an expressiveness result of the kind we have for
pπD andpπ! in the previous section. I.e., there is no encoding [[·]] from PrivpπD
processes intoPrivpπ! processes such that [[P]] ≈ P.

3 The Calculus of Communicating Systems (CCS)

Undoubtedly CCS [12], a calculus for synchronous communication, remains as a
standard representative of process calculi. In fact, many foundational ideas in the
theory of concurrency have sprung from this calculus. In the following we shall
consider some variants of CCS without relabelling operations.

3.1 Finite CCS

The finite CCS processes can be obtained as a restriction of the finite processes of
the Polyadicπ-calculus by requiring all inputs and outputs to have empty subjects
only. Intuitively, this means that in CCS there is no sending/receiving of links but
synchronization on them. (Notice that the ability of transmitting names is used
for the encoding of recursion into replication in Definition 2.6.) More, precisely,
the syntax of finite CCS processes is obtained by replacing the second line of
Equation (1) with

α := x | x | τ (8)

whereτ represents a distinguished action; thesilent action, with the decree that
τ = τ.

The (unlabelled) reduction relation−→ for finite CCS processes can be ob-
tained from that for theπ-calculus given in the previous section. However, since
α-conversion does not hold for one of the CCS variants we consider next, we find
it convenient to define−→ in terms of labelled reduction of CCS given in Table 2.
A transitionP

α
−→ Q says thatP can perform an actionα and evolve intoQ. The

reduction relation is then defined as−→
def
=

τ
−→.

SUM ∑
i∈I αi .Pi

α j
−→ P j

if j ∈ I RES
P

α
−→ P′

(νx)P
α
−→ (νx)P′

if α < {x, x}

PAR1
P

α
−→ P′

P | Q
α
−→ P′ | Q

PAR2
Q

α
−→ Q′

P | Q
α
−→ P | Q′

COM
P

α
−→ P′ Q

α
−→ Q′

P | Q
τ
−→ P′ | Q′

RED
P

τ
−→ Q

P −→ Q

Table 2: An operational semantics for finite CCS.

3.2 Infinite CCS Processes

Both recursion and replication are found in the CCS literature in the forms we
saw for the polyadicπ-calculus. Nevertheless, as recursion in CCS comes in other
forms. Some forms of recursion exhibitdynamicname scoping while others, as
in theπ-calculus, havestaticname scoping. By dynamic scoping we mean that,
unlike the static case, the occurrence of a name can get dynamically (i.e., during
execution) captured under a restriction. Surprisingly, this will have an impact on
their relative expressiveness.

In the literature there are at least four alternatives to extend the above syntax
to express infinite behavior. We describe them next.

CCS with Parametric Definitions: CCSp

The processes of CCSp calculus are the finite CCS processes plus recursion using
parametric definition exactly as inpπD. So in particular we have the restriction on
parametric definitions in Equation 3. The calculus is the variant in [14]. The rules
for CCSp are those in Table 2 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn]

α
−→ P′

A(y1, . . . , yn)
α
−→ P′

if A(x1, . . . , xn)
def
= PA (9)

As usualP[y1 . . . yn/x1 . . . xn] results from syntactically replacing every free oc-
currence ofxi with yi renaming bound names, i.e.,nameα-conversion, wherever
needed to avoid capture. (Of course ifn = 0, P[y1 . . . yn/x1 . . . xn] = P).

As shown in [14] in CCSp we can identify process expression differing only
by renaming of bound names; i.e.,nameα-equivalence—hence (νx)P is the same
as (νy)P[y/x].

Constant Definitions: CCSk

We now consider the CCS alternative for infinite behavior given in [12]. We refer
to identifiers with arity zero and their corresponding definitions asconstantand
constant(or parameterless) definitions, respectively. We omit the “()” inA().

GivenA
def
= P, requiring all names infn(P) to be formal parameters, as we did

in pπD (Equation 3), would be too restrictive—P would not have visible actions.
Consequently, let us drop the requirement to consider a fragment allowingonly
constant definitions butwith possible occurrence of free names in their bodies.
The rules for this fragments are those of CCSp.We shall refer to this fragment as
CCSk. In this case Rule CALL, which for CCSk we prefer to call CONS, takes the

form

CONS
P

α
−→ P′

A
α
−→ P′

if A
def
= P (10)

i.e., there is noα-conversion involved; thus allowing name captures. As illustrated
in the next section, this causes scoping to be dynamic andα-equivalence not to
hold. This is also the reason we cannot just take the reduction relation−→ of the
π-calculus restricted to CCSk processes as such a relation assumesα-conversion
due to the structural rule.

Recursion Expressions: CCSµ

Hitherto we have seen process expressions whose recursive behavior is specified
in an underlying set of definitions. It is often convenient, however, to have expres-
sions which can specify recursive behavior on their own. Let us now extend the
finite CCS processes to include such recursive expressions. The extended syntax
is given by:

P,Q, . . . := . . . | X | µX.P (11)

HereµX.P binds the occurrences of theprocess variable Xin P. As for bound
and free names, thebound variablesof P, bv(P) are those with a bound occur-
rence inP, and thefree variablesof P, f v(P) are those with a non-bound occur-
rence inP. An expression generated by the above syntax is said to be aprocess
(expression)iff it is closed (i.e., it contains no free variables). The processµX.P
behaves asP with the free occurrences ofX replaced byµX.P. Applying variable
α-conversions wherever necessary to avoid captures. The semanticsµX.P is given
by the rule:

REC
P[µX.P/X]

α
−→ P′

µX.P
α
−→ P′ (12)

We call CCSµ the resulting calculus. From [7] it follows that in CCSµ we can
identify processes up-to nameα-equivalence.

Remark 3.1 (Static and Dynamic Scope: Preservation ofα-Equivalence).
An interesting issue of the substitution [µX.P/X] applied toP is whether italso
requires the renaming ofbound namesin P to avoid captures (i.e.,nameα-
conversion). Such a requirement seems necessary should we want to identify
process up-toα-equivalence. In fact, the requirement gives CCSµ staticscope of
names. Let us illustrate this with an example.

Example 3.2. ConsiderµX.P with P = (x | (νx)(x̄.t | X)). First, let us assume
we perform nameα-conversions to avoid captures. So, [µX.P/X] in P renames
the boundX by a fresh name, sayz, thus avoiding the capture ofP′s freez in the
replacement: I.e,

P[µX.P/X] = (x | (νz)(z̄.t | µX.P)) = (x | (νz)(z̄.t | µX.(x | (νx)(x̄.t | X))))

The reader may care to verify (using the rules in Table 2 plus Rule REC) thatt

will not be performed; i.e., there is noµX.P
α1
−→ P1

α2
−→ . . . s.t.αi = t.

Now let us assume that the substitution makes no nameα-conversion, thus
causing a free occurrence ofx in P, shown in a box below, to get bound,dynam-
ically in the scopeof the outermost restriction: I.e.,

P[µX.P/X] = (x | (νx)(x̄.t | µX.P)) = (x | (νx)(x̄.t | µX.(x | (νx)(x̄.t | X)))).

The reader can verify that nowt can eventually be performed. Such an execution
of t cannot be performed byµX.Q whereQ is (x | (νz)(z.t | X)) i.e, P with the
binding and bound occurrence ofx syntactically replaced withz. This shows that
nameα-equivalence does not hold in this dynamic scope case. �

It should be pointed out that using recursive expressions with no nameα-
conversion is in fact equivalent to using instead constant definitions as in the pre-
vious calculus CCSk. In fact, in presenting CCS, [12] uses alternatively both kinds
of constructions; using Rule REC, with no nameα-conversion, for one and Rule

CONS for the other. For example, by takingA
def
= P with P as in Example 3.2 one

can verify that in CCSk, A exhibits exactly the same dynamic scoping behavior il-
lustrated in the above example. So,nameα-equivalence does not hold in CCS.
Notice that the above observations imply some semantics differences between
CCS and theπ-calculus. The former does not satisfy nameα-equivalence be-
cause of the dynamic nature of name scoping—see Example 3.2. The latter uses
static scoping and satisfiesα-equivalence. �

Replication: CCS!

The processes of CCS! are those finite CCS processes plus replication exactly as
in pπ!. This variant is presented in [2]. In the context of CCS, this operators are
studied in [2,3,9].

The operational rules for CCS! are those in Table 2 plus the following rule:

REP
P | !P

α
−→ P′

!P
α
−→ P′ (13)

From [14] we know that in CCS! one can identify processes up to nameα-
equivalence.

3.3 Expressiveness Results for CCS

In this section we report results from [2, 3, 9] on the expressiveness for the CCS
variants above.

The following theorem summarizes the expressiveness of the various calculi
and it is an immediate consequence of the results in [2] and [9]. As for theπ-
calculus we compare expressiveness w.r.t. barbed congruence with the obvious
restriction to CCS contexts (see Criteria 2.5).

Theorem 3.3.The following holds for the CCS variants:

1. CCSk is exactly as expressive as CCSp w.r.t to barbed congruence.

2. CCSµ is exactly as expressive as CCS! w.r.t to barbed congruence.

3. The divergence problem (i.e., whether a given process P has an infinite se-
quence of−→ reductions) is undecidable for the calculi in (1) but decidable
for those in (2).

The results (1-3) are summarized in Figure 1. Let us now elaborate on the
significance and implications of the above results. A noteworthy aspect of (1) is
that any finite set of parametric (possibly mutually recursive) definitions can be
replaced by a set,finiteas well, of parameterless definitions . This arises as a result
of the restricted nature of communication in CCS (e.g., absence of mobility). Re-
lated to this result is that of [12] which shows that, in the context of value-passing
CCS, a parametric definition can be encoded using an set of constant definitions
and infinite sums. However, this set isinfinite.

Regarding (1) some readers may feel that given a processP with a parametric
definitionD, one could simply create as many constant definitions as permutations
of possible parameters w.r.t. the finite set of names inP and D. This would
not work for CCSp; the unfolding of call toD within a restriction may needα-
conversions to avoid name captures, thus generating new names (i.e., names not
in P nor D) during execution.

Regarding (2), we wish to recall the encoding [[·]] of CCSµ into CCS! which
resembles that of Definition 2.6 in the context of theπ-calculus.

Definition 3.4. The encoding[[·]] of CCSµ processes into CCS! is homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise
defined as follows:

[[Xi]] = x̄i

[[µXi .P]] = (νxi)(!xi .[[P]] | x̄i)

where the names xi ’s are fresh.

The above encoding is correct w.r.t. barbed congruence, i.e., [[P]] ≈ P. It is
important to notice that it would not be correct had we adopted dynamic scoping
in the Rule REC for CCSk (see Remark 3.1). TheµX.P in Example 3.2 actually
gives us a counter-example.

Another noteworthy aspect of the results mentioned above is the distinction
between static and dynamic name scoping for the calculi under consideration.
Static scoping renders the calculus with recursion decidable,w.r.t. the divergence
problem, and no more expressive than the calculus with replication. In contrast,
dynamic scoping renders the calculus with constant definitions undecidable and
as expressive as that with parametric definitions. This is interesting since as dis-
cussed in Section 3.2 the difference between the calculi with static or dynamic
scoping is very subtle. Using static scoping for recursive expressions was dis-
cussed in the context of ECCS [7], an extension of CCS whose ideas lead to the
design of theπ-calculus [14].

It should be noticed that preservation of divergence is not a requirement for
equality of expressiveness w.r.t to barbed congruence sincebarbed congruence
does not preserve divergence. Hence, although the results in [2] prove that di-
vergence is decidable for CCS! (and undecidable for CCSp), it does not follow
directly from the arrows in Figure 1 that it is also decidable for CCSµ. The decid-
ability of the divergency problem for CCS! is proven in [9]

Finally, it is worth pointing out that, as exposed in [15], decidability of di-
vergence does not imply lack ofTuring expressiveness. In fact the authors in [3]
show that CCS! is Turing-complete. They do this by showing how construct, given
a two-counter machine, a process that can nondeterministically simulate such a
machine. Two-counter machines are standard Turing-complete devices.

Figure 1: Classification of CCS variants. An arrow fromX to Y indicates that for
everyP in Y one can construct a process [[P]] in X which is barbed congruent to
P. (Un)decidability is meant w.r.t. the existence of divergent computations

4 The Mobile Ambients Calculus

The calculus of Mobile Ambients is a formalism for the description of distrib-
uted and mobile systems in terms ofambients; i.e. a named collection of active
processes and nested sub-ambients.

The work in [4] studies the expressiveness of recursion versus replication in
Mobile Ambients. In particular, the authors of [4] study the expressive power
of ambient mobility in the (Pure) Mobile Ambients variants with replication and
recursion.

4.1 Finite Processes of Ambients

The Pure Ambient Calculus focuses on ambient and processes interaction. Unlike
theπ-calculus, it abstracts away from process communication.

The syntax of the finite processes can be derived from those of thepπ-calculus
by (1) introducing ambients, and the actions for ambient and processes interaction,
(2) eliminating the action for process communication and (3) restricting summa-
tions to have arity at most one. In summary, we obtain the following syntax:

P,Q, . . . := 0 | α.P | n[P] | (νx)P | P | Q (14)

α := in x | out x | open x

The intuitive behaviour of the ambientn[P] andα actions is better explained
after presenting the reduction semantics of Ambients. The intuitive behaviour of
the others constructs can be described exactly as in theπ-calculus.

Reduction Semantics of Finite Processes.Thereductionrelation−→ for Am-
bients can be obtained by adding the axiom (νn)(m[P]) ≡ m[(νn)P] if m, n to the
structural congruence in Definition 2.2 and the following rules for ambients and
process interaction to the rules of thepπ-calculus in Table 1:

1. n[in m.P | Q] | m[R] −→ m[n[P | Q] | R]

2. m[n[out m.P | Q]|R] −→ n[P | Q] | m[R]

3. open n.P | n[Q] −→ P | Q

4.
P −→ Q

n[P] −→ n[Q]

Rules (1-3) describe ambients and their actions and Rule (4) simply says that
reduction can occur underneath ambients. Rule (1) describes how, by using thein
action, an ambient namedn can enter another ambient namedm. Similarly, Rule
(2) describes how an ambient namedn can exit another ambient namedmby using
theout action. Finally Rule (3) describes how a process can dissolve an ambient
boundary to access its contents by performing theopenaction over the namen of
the ambient.

4.2 Infinite Process of Ambients

Infinite behaviour in Ambients can be represented by using replication as inpπ!
or recursive expressions of the formµX.P.

The MA! calculus

The calculusMA! extends the syntax of the finite Ambients processes with !P. Its
reduction semantics−→ is obtained by adding the structural axiom !P ≡ P | !P
to the structural axioms of finite Ambients processes.

The MAr calculus

The calculusMAr extends the syntax of the finite Ambients processes with recurs-
ive expression of the formµX.P exactly as in CCSµ (Section 3.2). Its reduction
semantics−→ is obtained by adding the structural axiomµX.P ≡ P[µX.P/X] to
the structural axioms of finite Ambients processes.

Notice that the issue of the substitution [µX.P/X] applied toP we discussed in
Section 3.2 arises again: Whether the substitutionalso requiresthe renaming of
bound namesin P to avoid captures (i.e.,nameα-conversion). Such a requirement
seems necessary should we want to identify process up-toα-equivalence–which
is included in the structural congruence≡ for Ambients. The CCS examples in
Section 3.2 (see Remark 3.1) can easily be adapted here to illustrate that we obtain
dynamic scoping of names if we do not perform theα-conversion in the substitu-
tion.

It should be noticed that the above has not been completely clarified in the
literature of Ambients. In fact, it raises a technical issue in the results on express-
iveness which we shall recall in the next section.

Expressiveness Results

To isolate the expressiveness of restriction and ambient actions inMA! andMAr ,
[4] considers the following fragments ofMAc with c ∈ {!, r}: (1) MA−νc , theMAc

calculus without the restriction constructor (νx)P, (2) MA−mv
c , the MAc calculus

without thein andout actions, and finally (3)MA−mv,ν
c , the corresponding calculus

with no in/out action nor restriction.
The separation results in [4] among the various calculi are given in terms of the

decidability oftermination; i.e., the problem of whether given a processPdoes not
have any infinite sequence of reductions. Obviously, if the question is decidable
in a given calculus then we know that there is no termination-preserving encoding
of Turing Machines into the calculus. The results in [4] are summarized in Figure
2.

Figure 2: Hierarchy of Ambient Calculi.

Remark 4.1. The undecidability of process termination forMA−mv
r is obtained by

a reduction from termination of RAM machines, a Turing Equivalent formalism.
First [4] uses a CCS fragment with recursion anddynamic scope of namesto
provide a termination-preserving encoding of RAMs. Then the CCS fragment is
claimed to be a sub-calculus ofMA−mv

r . The undecidability of process termination
for MA−mv

r follows immediately.
Nevertheless, as illustrated in Section 3.2 Remark 3.1 such dynamic scope

causesα-equivalence not to be preserved. In principle, this may cause a technical
problem in the proof of the result sinceMA−mv

r requiresα-equivalence to be pre-
served; i.e., the CCS fragment used to simulate RAMs is not a sub-calculus of
MA−mv

r .
One way to deal with the above problem is to use a more involved notion ofα-

conversion inMA−mv
r [5]. Another way would be to consider parametric recursion

in MAr , as in CCSp or pπD, and then use CCSp as the sub-calculus ofMA−mv
r to en-

code RAMs. Nevertheless, either way we will be changing the original semantics
of MA−mv

r given in [11] which treatsα-conversion and recursion as in CCSµ [21].

5 Recursion vs Replication in Other Calculi

Here, we shall briefly survey work studying the relative expressive power of Re-
cursion vs Replication in other process calculi.

In the context of calculi for security protocols, the work in [10] uses a process
calculus to analyze the class of ping-pong protocols introduced by Dolev and Yao.
The author show that all nontrivial properties, in particular reachability, become
undecidable for a very simple recursive variant of the calculus. The recursive
variant is capable of an implicit description of the active intruder, including full
analysis and synthesis of messages . The authors then show that the variant with
replication renders reachability decidable.

In the context of calculi for Timed Reactive System, the work in [17] studies
the expressive power of some variants of Timed concurrent constraint program-
ming (tcc). The tcc model is a process calculus introduced in [19] aimed at spe-
cifying timed systems, following the paradigms of Synchronous Languages [1].
The work states that: (1) recursive procedures with parameters can be encoded
into parameterless recursive procedures with dynamic scoping, and vice-versa.
(2) replication can be encoded into parameterless recursive procedures with static
scoping, and vice-versa. (3) the languages from (1) are strictly more expressive
than the languages from (2). Furthermore, it states that behavioral equivalence is
undecidable for the languages from (1), but decidable for the languages from (2).
The undecidability result holds even if the process variables take values from a
fixed finite domain.

The reader may have noticed the strong resemblance of the work on tcc and
that of CCS described in the previous section; e.g., static-dynamic scoping issue
w.r.t recursion. In fact, [17] had a great influence in the work we described in
this paper for CCS. In particular, in the discovery of the dynamic name scoping
exhibited by the CCS presentation in [12].

6 Final Remarks

The expressiveness differences between recursion and replication we have sur-
veyed in this paper may look surprising to those acquainted with theπ-calculus
where recursion is a derived operation. Our interpretation of this difference is that
the link mobility of theπ-calculus is a powerful mechanism which makes up for
the weakness of replication.

The expressiveness of the replication !P arises from unbounded parallel be-
haviour, which with recursion can be defined asµX.(P | X). The additional
expressive power of recursion arises from the unbounded nested scope ofµX.P
as inR = µX.(νx)(P | X) which behaves as (νx)(P | (νx)(P | (νx)(P | · · ·))).

This, in general, cannot be simulated with replication. However, suppose that
the unfolding of recursion appliesα-conversion to avoid captures as we saw in
Section 3.2. For example for the processR above we will have the unfolding
(νx1)(P[x1/x] | (νx2)(P[x2/x] | (νx3) · · ·))) and eachxi will only occur inP[xi/x].
It is easy to see the replication !(νx)P captures the behaviour ofR. Therefore,R
does not really exhibit (significant) unbounded nesting of scope.

All in all, the ability of expressing recursive behaviours via replication in a
given process calculus may depend on the mechanisms of the calculus to com-
pensate for the restriction of replication as well as on how meaningful the un-
bounded nesting of the recursive expressions are.

References

[1] G. Berry and G. Gonthier. The E synchronous programming lan-
guage: design, semantics, implementation.Science of Computer Program-
ming, 19(2):87–152, November 1992.

[2] N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. recursive defini-
tions in channel based calculi. InICALP: Annual International Colloquium
on Automata, Languages and Programming, 2003.

[3] N. Busi, M. Gabbrielli, and G. Zavattaro. Comparing recursion, replication,
and iteration in process calculi. InICALP: Annual International Colloquium
on Automata, Languages and Programming, 2004.

[4] N. Busi and G. Zavattaro. On the expressive power of movement and restric-
tion in pure mobile ambients.Theoretical Computer Science, 322(3):477–515,
September 2004.

[5] N. Busi and G. Zavattaro.Personal Communication, May 2005.

[6] L. Cardelli and A. Gordon. Mobile Ambients. In M. Nivat, editor,Proc.
of Foundations of Software Science and Computation Structures (FoSSaCS),
European Joint Conferences on Theory and Practice of Software (ETAPS’98),
volume 1378 ofLecture Notes in Computer Science, pages 140–155, Lisbon,
Portugal, 1998. Springer-Verlag, Berlin.

[7] U. Engberg and M. Nielsen. A calculus of communicating systems with label-
passing. Technical report, University of Aarhus, 1986.

[8] Jean-Yves Girard. Linear logic.Theor. Comput. Sci., 50:1–102, 1987.

[9] P. Giambiagi, G. Schneider, and F. Valencia. On the expressiveness of infinite
behavior and name scoping in process calculi. InFoSSaCS, pages 226–240,
2004.

[10] H. Huttel and J. Srba. Recursion vs. replication in simple cryptographic pro-
tocols. InProceedings of the 31st Annual Conference on Current Trends in

Theory and Practice of Informatics (SOFSEM’05), volume 3381 ofLNCS,
pages 175–184. Springer-Verlag, 2005.

[11] Francesca Levi and Davide Sangiorgi. Mobile safe ambients.ACM Transac-
tions on Programming Languages and Systems, 25(1):1–69, January 2003.

[12] R. Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989. SU Fisher Research 511/24.

[13] R. Milner. The polyadicπ-calculus: A tutorial. In F. L Bauer, W. Brauer,
and H. Schwichtenberg, editors,Logic and Algebra of Specification, pages
203–246. Springer-Verlag, Berlin, 1993.

[14] R. Milner. Communicating and Mobile Systems: theπ-calculus. Cambridge
University Press, 1999.

[15] S. Maffeis and I. Phillips. On the computational strength of pure ambient
calculi. InEXPRESS’03, 2003.

[16] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I+

II. Information and Computation, 100(1):1–77, 1992.

[17] M. Nielsen, C. Palamidessi, and F. Valencia. On the expressive power of con-
current constraint programming languages. InProc. of the 4th International
Conference on Principles and Practice of Declarative Programming (PPDP
2002), pages 156–167. ACM Press, October 2002.

[18] C. Palamidessi. Comparing the expressive power of the synchronous and the
asynchronous pi-calculus. In ACM Press, editor,POPL’97, pages 256–265,
1997.

[19] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent
constraint programming. InProc. of the Ninth Annual IEEE Symposium on
Logic in Computer Science, pages 71–80, 4–7 July 1994.

[20] D. Sangiorgi and D. Walker.Theπ−calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001.

[21] D. Sangiorgi.Personal Communication, May 2005.

	Introduction
	The Polyadic Pi Calculus: p
	Finite Pi-calculus
	Infinite Processes in the Polyadic Pi-Calculus
	Recursive Definitions vs Replication in Pi
	Recursion vs Replication in the Private Pi Calculus

	The Calculus of Communicating Systems (CCS)
	Finite CCS
	Infinite CCS Processes
	Expressiveness Results for CCS

	The Mobile Ambients Calculus
	Finite Processes of Ambients
	Infinite Process of Ambients

	Recursion vs Replication in Other Calculi
	Final Remarks

