THE CoNCURRENCY COLUMN
BY

LucA ACETO

BRICS, Department of Computer Science
Aalborg University, 9220 Aalborg @, Denmark

Dept. of Computer Science, School of Science and Engineering

Reykjavik University, 103 Reykjavik, Iceland
luca@{cs.auc.dk,ru.is}, http://www.cs.auc.dk/~luca/BEATCS

Concurrency theory is home to a plethora of formalisms for the description of
reactive systems, and even when focusing on a single model of concurrent
computation there is a wide choice of possible notions of observable beha-
viour that can be used to induce a notion of “process equivalence” over it—as
witnessed, for instance, by van Glabbeek’s linear time-branching time spec-
trum. This multiplicity of possible semantic views of concurrent computation
requires the development of tools that we can use to put some structure into
it. | believe that expressiveness results play a fundamental role in concurrency
theory, since they offer a powerful, formal way of understanding the relation-
ships amongst models and formalisms for concurrent computation, and their
relative computational power.

This contribution to the concurrency column studies the expressiveness
of two approaches to the description of infinite behaviours in process calculi
like ACP, CCS, CSP and various flavours of the z-calculus, namely recursion
and replication. More specifically, Catuscia Palamidessi and Frank Valencia
offer a unified presentation of work on the relative expressiveness of recursion
and replication in CCS, the n-calculus, and the Ambient calculus. They also
overview the work on this subject in less established calculi such as tcc and
calculi for cryptographic protocols.

| trust that this piece will make some very interesting, recent work by Catus-
cia, Frank and others on the expressiveness of facilities for the description of
infinite behaviours accessible to the concurrency theory community at large.
Enjoy it!

http://www.cs.auc.dk/
http://www.auc.dk/
http://www.ru.is
luca@{cs.auc.dk,ru.is}
http://www.cs.auc.dk/~luca/BEATCS
http://www.lix.polytechnique.fr/~catuscia/
http://user.it.uu.se/~frankv/

As some of the readers of this column might have already noticed, | have
been maintaining a Process Algebra Diary on the web for about eighteen
months now. Those of you who are interested in following my irregular post-
ings are invited to have a look at

http://www.cs.aau.dk/~luca/PA-DIARY/.

Comments and guest postings are most welcome.

RECURSION VS REPLICATION IN PROCESS CALCULI:
EXPRESSIVENESS

Catuscia Palamidessi
INRIA Futurs and LIX, Ecole Polytechnique
catuscia@lix.polytechnique. fr

Frank D. Valencia
CNRS and LIX, Ecole Polytechnique
fvalenci@lix.polytechnnique. fr

1 Introduction

Process calculi such as CCS|[12], thealculus[14] and Ambients [6] are among
the most influential formal methods for modelling and analyzing the behaviour of
concurrent systems; i.e. systems consisting of multiple computing agents, usually
calledprocessesthat interact with each other. A common feature of these calculi
is that they treat processes much like fhealculus treats computable functions.
They provide a language in which the structurgerimsrepresents the structure
of processes together with aperational semantict represent computational
steps. Another common feature, also in the spirit of thealculus, is that they
pay special attention to economy. That s, there are few process constructors, each
one with a distinct and fundamental role.

For example, a typical process term is ffagallel composition B Q, which is
built from the termd? andQ with the constructor| and it represents the process

*Supported by the Project Rossignol of the ACI Sécurité Informatique (Ministére de la recher-
che et nouvelles technologies)

http://www.cs.aau.dk/~luca/PA-DIARY/
catuscia@lix.polytechnique.fr
fvalenci@lix.polytechnnique.fr

that results from the parallel execution of the proce$saadQ. Another typical

term is therestriction (vX)P which represents a proceBswith a private resource
x—e.g., a location, a link, or a name. An operational semantics may dictate that
if P can reduce to (or evolve int&, written P — P’, then we can also have the
reductions? | Q — P’ | Qand ¢x)P — (vx)P'.

Infinite behaviour is ubiquitous in concurrent systems (e.g., browsers, search
engines, reservation systems). Hence, it ought to be represented by process terms.
Two standard term representations of themraceirsive process expressioasd
replication

Recursive process expressions are reminiscent of the recursive expressions
used in other areas of computer science, such as for example Functional Pro-
gramming. They may come in the formX.P whereP may have occurrences of
X. The procesgX.P behaves a® with the (free) occurrences of replaced by
uX.P. Another presentation of recursion is by usjyametric processesf the
form A(ys, ...,Yn) each assumed to have a unique, possibly recurdefnition

A(Xg, ..., Xn) “f b where thex’s are pairwise distinct, and the intuition is that
A(ys, ..., Yn) behaves as itB with eachy; replacingx;.

Replication, syntactically simpler than recursion, takes the fétamd it is re-
miniscent of Girard’s bang operator; an operator used to express unlimited number
of copies of a given resource in linear-logi¢ [8]. Intuitivell,ineand | P | ---;
an unbounded number of copies of the prodess

Now, it is not uncommon that a given process calculus, originally presented
with one form of defining infinite behavior, is later presented with the other. For
example, ther-calculus was originally presented with recursive expressions and
later with replication|[[16]. The Ambient calculus was originally presented with
replication and later with recursion [11]. This is reasonable as a variant may
simplify the presentation of the calculus or be tailored to specific applications.

From the above intuitive description it should be easy to segXéP | X) ex-
presses the unbounded parallel behaviouPofit is less clear, however, whether
replication can be used to express the unbounded behavipdt®f In particular,
processes that allows for unboundedly mamegtedrestrictions as, for example,
in uX.(vX)(P | X) which behaves as{)(P | (vwX)(P | (wX)(P | ---))). In fact, the
ability of expressing recursive behaviours via replication depends on the particular
process calculus under consideration.

The above discussion raises the issuexgiressivenes$§Vhat does it mean for
one variant to be as expressive as another ? The answer to this question is definite
in the realm of computability theory via the notion of language equivalence. In
concurrency theory, however, this issue is not quite settled.

One approach to comparing expressiveness of two given process calculus vari-
ants is by comparing them w.r.t. some standard process equivalence, I$&yr

every proces® in one variant there is @ in the other variant such th& ~ P
then we say that the latter variant is at least as expressive as the former.

Another approach consists in telling two variants apart by showing that in one
variant one can solve some fundamental problem (e.g., leader election) while in
the other one cannot. It should be noticed that, unlike computability theory, the
capability of two variants of simulating Turing Machines does not imply equality
in their expressiveness. For example,|[18] shows that under some reasonable as-
sumptions the asynchronous version ofthegalculus, which can certainly encode
Turing Machines, is strictly less expressive than the original calculus.

In this paper, we shall discuss the work on the relative expressiveness of Recur-
sion and Replication in various process calculi. In particular, CCSs-ttedculus,
and the Ambient calculus. We shall begin with thealculus, then CCS and then
the Ambients calculus. For the simplicity of the presentation we shall consider the
polyadic variant of ther-calculus [13]. Finally, we shall also overview the work
on this subject in related calculi such as tcc|[19] and calculi for Cryptographic
Protocols|[10].

2 The Polyadic Pi Calculus:pr

One of the earliest discussions about the relative expressiveness between replica-
tion and recursion was in the context of the polyadicalculus [13]; one of the

main calculi for mobility. It turns out that in this calculus replication is just as
expressive as recursion. This results was rather surprising since replication seems
such an elementary construct without much control power.

In what follows we shall introduce the polyadtecalculus and the variants
relevant for this paper. The various CCS and Ambients variants will be presented
in the next sections as extensi@strictions of the polyadig-calculus.

2.1 Finite Pi-calculus

Namesare the most primitive entities in thecalculus. We presuppose a count-
able set of (port, links or channetpmesranged over by, y, For each name
X, we assume ao-namex thought of acomplementaryso we decree that = x.
We shall usd, I, ... to range over names and co-names. Wexigedenote a fi-
nite sequence of namesgx; - - - X,. The other entity in ther-calculus is grocess.
Process are built from names by the following syntax:

PQ....

D.aP | 0P | PIQ (1)

Xy | x®)

wherel is a finite set of indexes.

Let us recall briefly some notions as well as the intuitive behaviour of the
various constructs.

The constructy);., a;.P; represents a process able to perform one—but only
one—of itse;’s actions and then behave as the corresponBjndhe actions pre-
fixing the P;’s can be of two forms: An outp®y; - - -y, and an input(y; - - - yn)-

In both casex is called thesubjectandy; - - -y, the object The actionXy rep-
resents the capability of sending the narjiesm channek. The actionx(y), with

Yy = V1i,- - ,¥Ym and no name occurring twice i) represents the capability of re-
ceiving the names on channelsayz - - - z;,,, and replacing each with z in its
corresponding continuation.

Furthermore, inx(y).P the input actions binds the namgsn P. The other
name binder is theestriction (vx)P which declares a nameprivate toP, hence
bound inP. GivenQ we define in the standard way li®und names lQ) as the
set of variables with a bound occurrenceQnand itsfree names ffQQ) as the set
of variables with a non-bound occurrencedn

Finally, the proces® | Q denotegarallel compositionP andQ running in
parallel.

@

Convention 2.1. We write the summation d&xif |I| = 0, and drop the % ;" if
Il = 1. Also we writer1.Py + - - - + mn. Py for Yicip

For simplicity, we omit “()” in processes of the form()xP as well as the
“.0” in processes of the form(¥).0. We usgvx;X; - - - X,)P as an abbreviation
(vx)(vx2) - - - (vxn)P and [i, Pi, where | = {i4,...,in}, as an abbreviation of
Py | --- | P;,. Furthermore, B, whereo = {z1/y,. .., z,/yn}, denotes the proc-
ess that results from the substitution in P of eacfory;, applyinga-conversion
wherever necessary to avoid captures.

Reduction Semantics of Finite Processes.The above intuition about process
behaviour is made precise by the rules in Table 1. fEdeictionrelation — is

the least binary relation on processes satisfying the rules in [Table 1. The rules are
easily seen to realize the above intuition.

We shall use—" to denote the reflexive, transitive closure ef>. A re-
ductionP — Q basically says thalP can evolve, after some communication
between its subprocesses, iQo The reductions are quotiented by steuctural
congruenceelation= which postulates some basic process equivalences.

Definition 2.2 (Structural Congruence). Let= be the smallest congruence over
processes satisfying the following axioms:

1. P=Qif P and Q difer only by a change of bound namesédquivalence).
2.P|0=PP|Q=Q|P,PI(QIR=(PIQIR.
3. If x¢ fn(P) then(vx)(P | Q) =P | (vX)Q.

4. (vx)0 =0, (vX)(vy)P = (vy)(vx)P.

REACT: -
(+Xz-zP) | (-4 XY1-¥0)-Q — P | Qzw/ys,..., Zn/Yn}
. P—>P PP
PAR: PIQ—P|Q RES: (v¥Y)P — (vX)P
P=P =
STRUCT: — Q@ =Q

P—Q

Table 1: Reductions Rules.

2.2 Infinite Processes in the Polyadic Pi-Calculus

In the literature there are at least two alternatives to extend the above syntax to
express infinite behavior. We describe them next.

Pi with Parametric Recursive Definitions: prp

A typical way of specifying infinite behavior is by using parametric recursive
definitions [14]. In this case we extend the syntax of finite processes (Eqlation 1)
as follows:

PQ,....=...| A(Ys, ... ¥n) (2)

Here A(ys, ..., Yn) is anidentifier (also call, or invocatior) of arity n. We
assume that every such an identifier has a unique, possibly recutsiystion

A(Xg, ..., Xn) P where thex’s are pairwise distinct, and the intuition is that

A(y1, ...,Yn) behaves as it® with eachy; replacingx. We shall presuppose fi-

nitely many such definitions. Furthermore, for ed¢ky, .. ., X,) L Pwe require

fn(P) C {Xq,..., Xn}. (3)

The reduction semantics of the extended processes is obtained simply by ex-
tending the structural congrueneein Definition[2.2 with the following axiom:

AL oY) = Plys Yo/ %l i AL %) SR (4)
As usualP[y;...Yn/X1 ... Xy] results from syntactically replacing every free
occurrence ok; with y; and by applyingnamea-conversionwherever needed to
avoid capture.
We shall usepr;, to denote the polyadig-calculus with parametric recursive
definitions with the above syntactic restrictions.

Pi with Replication: pr,

A simple way of expressing infinite behaviour in thealculus is by using replic-
ation. We shall usern, to denote the polyadie-calculus with replication.

In the pmr, case, the syntax of finite processes (Equadfion 1) is extended as
follows:

PQ,...:=...|IP (5)

Intuitively 'P behavesaP | P | ... | P | !'P; unboundedly many copies &t
The reduction semantics forr, is obtained simply by extending the structural
congruences in Definition[2.2 with the following axiom:

IP=P|!IP (6)

Barbed Bisimilarity

We shall often state expressiveness results by claiming the existence of a process
in one calculus which is equivalent to some given process in another calculus. For
this purpose, here we recall a standard way of comparing processes. We shall use
pr, to denote the calculus with replication.

Let us begin by recalling a basic notion of observation for thealculus.
Intuitively, givenl = x (I = X) we say that (the barld)can beobservedat P,
written P |, iff P can have an input (output) with subjectFormally,

Definition 2.3 (Barbs). Define Pl iff Zy,R: P = (v)(Xy.Q | R)and xis
not inZ Similarly, P |« if 32y,Q,R: P = (v2(x(¥).Q | R) and x is not inZ
Furthermore, P, if 3Q: P —"Q, .

Let us now recall the notion of barbed (weak) bisimilarity and congruence.
Remember that a procesentext Cin a given calculus is an expression with a
hole [] such that placing a process in the hole produces a well-formed process
term in the calculus.

For technical purposes, we shall usg,, as the calculus whose process syn-
tax arises from extending the syntax of finite processes (Equation 1) with both
replication and recursive definitions. The reduction semantiggrnf of the ex-
tended processes is obtained by extending the structural congraendefini-
tion[2.2 with the axioms in Equation$ 4 gnd 6.

Definition 2.4 (Barbed Bisimilarity). A (weak) barbed-simulatiors a binary
relation R satisfying the following(P, Q) € R implies that:

1. ifP — P thendQ : Q —" Q@ A (P, Q) e R.
2. ifP 4 then QU| .

The relationR is a barbed bisimulationff both R and its convers&k! are
barbed -simulations. We say that P and Q areak) barbed bisimilaf (P, Q) €
R for some barbed bisimulatioR. Furthermore, we say that P and Q are barbed
congruent, written P~ Q, iff for each context €] in prp., C[P] ~ C[Q].

2.3 Recursive Definitions vs Replication in Pi

Here we recall a result stating that the variamts andpr, can be regarded as
being equally expressive w.r.t (weak) barbed congruencgven in Definition

[2.4. More precisely, the expressiveness criteria w.r.t to barbed congruence we
shall use in this section can be stated as follows.

Criteria 2.5. We say that ar-calculus variant is as expressive as anothgfar
every process P in the second variant one can construct a prg&gss the first
variant such thaf P] is (weakly) barbed congruent to. P

All the results presented in this section are consequences of the expressiveness
results in[[20].

From prp to pry and back: Encodings

We shall now provide encodings from one variant into the other and state their
correctness. We shall say that a map [] ifk@momorphism for parallel com-
positioniff [P | Q] = [P] | [Q]. The notion of homomorphism for the other
operators is defined analogously.

Definition 2.6. Let[-] o be the map fronpsr, processes and recursive definitions
into pzr, processes given by:

[Olo = 0,
[AK) = Plo = !'a(®).[Plo,
[AM®o = ay.

and for all other processes]o is a homomorphism.
def

Let P be an arbitrarypr, process with{ A;(X) = Pq,..., Ay(X) def P}
as the set of recursive definitions of its process identifiers. erm@dingof P,
denoted P], is defined as

[P1=0aa)[Plo| [] [A() = Plo)

ie{d,...,n}

where a, ..., a, ¢ fn(P).

Intuitively, eachA(Y), with A(X) “f P, is translated into a particlay which
excites a copy oP (with y substituted forX) by interacting with a replicated
resource, a provider of instancesRfof the form !a(X).[P]. The correctness of
the encoding is stated below.

Theorem 2.7. Let[-] be the encoding in Definitidn 2.6. For each Ppmy, P ~
[Pl
Let us now give an encoding @fr, into prp. The idea is simple: EachPlis

translated into a proce#s, recursively defined a&p(X) p | Ap(X) which can

provide an unbounded number of copiesPof

Definition 2.8. Let[-]o be the map fronpsr, processes intpr, processes given

by:
[0 =0

[Pl = Ae(¥)where A(X) P | Ax(x) and fr(P) < (X)
and for all other processe€s] o is a homomorphism.
We can now state the correctness with respect to barbed congruence.

Theorem 2.9. Let[-] be the encoding in Definitidn 2.8. For each Pgn,, P =~
[PI-

2.4 Recursion vs Replication in the Private Pi Calculus

The Privater-calculus [20] is a sub-calculus with a restricted form of communic-
ation. The idea is that onlgound-outputsare allowed; i.e, outputs of the form
(v2%XZP. Such bound-outputs are usually abbreviate&(@sassuming that no
name occur more than oncezn

The above syntactic restriction results in a pleasant symmetry between input
and outputs in that they both can be seen as binders. Moreover, the restriction
ensures that-conversion is the only kind of substitution required in the calculus.
In fact, the rule REACT in Table] 1, which applies a substitution to the continuation
of the input, can be replaced by the following rule:

X@.P | x2.P — (9P| Q (7)

Let us denote brivpr, the calculus that results from applyingde, the syn-
tactic restriction mentioned above. Thevpn, calculus is analogously defined
as a restriction omm, except that we need an extra-condition to ensure dhat
conversion is the only substitution needed in the calculus: In every invocation
A(2), no name may occur more than once in the veztor

Now, if we wish an encoding-] from Privpn, into Privpa, such that P] =~
P, we can simply take that of Definitidn 2.8 restricted to tw&/pr, case. As
shown below, however, the above restriction makes impossible the existence of an
encoding fronPrivpry into Privpry.

Consider for example the proceBs= A(z) where

AKX = %(2).AQ2).

The procesd, in parallel with a suitabldR, can perform a sequence of actions
where the subject of an action is the object of the next one. This kind of sequences
are calledogical threadq420]. Moreover,P can perform the infinite logical thread
%(21) 4(2). - - ..

Interestingly, as an application of the type theory Povpr,, the results in
[20] state thaho process irivpsr, can exhibit an infinite logical threadlogether
with P above, this property dfrivpr, can be used to prove the following result.

Theorem 2.10.There is a process P iPrivpr, such that P Q for every Q in
Privprm,.

Therefore, we cannot have an expressiveness result of the kind we have for
prp, andpr, in the previous section. l.e., there is no encodifgfffom Privpr,
processes intBrivpsr, processes such thaf] ~ P.

3 The Calculus of Communicating Systems (CCS)

Undoubtedly CCS [12], a calculus for synchronous communication, remains as a
standard representative of process calculi. In fact, many foundational ideas in the
theory of concurrency have sprung from this calculus. In the following we shall
consider some variants of CCS without relabelling operations.

3.1 Finite CCS

The finite CCS processes can be obtained as a restriction of the finite processes of
the Polyadicr-calculus by requiring all inputs and outputs to have empty subjects
only. Intuitively, this means that in CCS there is no senftiexgiving of links but
synchronization on them. (Notice that the ability of transmitting names is used
for the encoding of recursion into replication in Definitjon|2.6.) More, precisely,
the syntax of finite CCS processes is obtained by replacing the second line of
Equation[(1) with

a::)_(lxlr (8)

wherer represents a distinguished action; #ikent action, with the decree that
T=T.

The (unlabelled) reduction relatior— for finite CCS processes can be ob-
tained from that for ther-calculus given in the previous section. However, since
a-conversion does not hold for one of the CCS variants we consider next, we find
it convenient to define— in terms of labelled reduction of CCS given in TabJe 2.

A transitionP -5 Q says thaP can perform an actioa and evolve intdQ. The

reduction relation is then defined as»*= —s.

L PSP -
SUM —————if jel RES— ifa¢{xX
Yiel @i.Pi — P; (vX)P — (vX)P’
a , @ , p a P’ a ,
PAR, — P =P pag, 9 oy PP Q0
PIQ—PI|Q PIQ—P|Q PIQ—P|Q
P50Q
REDP—>Q

Table 2. An operational semantics for finite CCS.

3.2 Infinite CCS Processes

Both recursion and replication are found in the CCS literature in the forms we
saw for the polyadia-calculus. Nevertheless, as recursion in CCS comes in other
forms. Some forms of recursion exhiliynamicname scoping while others, as
in the n-calculus, havestatichame scoping. By dynamic scoping we mean that,
unlike the static case, the occurrence of a name can get dynamically (i.e., during
execution) captured under a restriction. Surprisingly, this will have an impact on
their relative expressiveness.

In the literature there are at least four alternatives to extend the above syntax
to express infinite behavior. We describe them next.

CCS with Parametric Definitions: CCS,

The processes of CG$alculus are the finite CCS processes plus recursion using
parametric definition exactly as par,. So in particular we have the restriction on
parametric definitions in Equatipf 3. The calculus is the variant in [14]. The rules
for CCS§ are those in Tablg| 2 plus the rule:

P[y,,y/X,,Xn]i)P’ .
CALL ALYL n/X1 it AL ... %) def Pa ©)

A1, ..., V) — P’

As usualP[y;...yn/X1 ... X,] results from syntactically replacing every free oc-
currence ofx; with y; renaming bound names, i.@amea-conversionwherever
needed to avoid capture. (Of cours@ i O, P[y1...Vn/X1...X,] = P).

As shown in [14] in CC$we can identify process expressiorfeiing only
by renaming of bound names; i.aamea-equivalence-hence ¢x)P is the same

as fy)Ply/X.

Constant Definitions: CC&

We now consider the CCS alternative for infinite behavior given in [12]. We refer
to identifiers with arity zero and their corresponding definitions@sstantand
constant(or parameterlegsdefinitions, respectively. We omit the “()” iA().

GivenA < P, requiring all names ifn(P) to be formal parameters, as we did
in prry (Equatior B), would be too restrictiveP-would not have visible actions.
Consequently, let us drop the requirement to consider a fragment all@migg
constant definitions butith possible occurrence of free names in their bodies
The rules for this fragments are those of GO®e shall refer to this fragment as
CCS. Inthis case Rule CALL, which for CGSve prefer to call CONS, takes the

form

P-Lp tot

CONS—— ifA=P (10)
AS P
I.e., there is n@-conversion involved; thus allowing name captures. As illustrated
in the next section, this causes scoping to be dynamiceaeduivalence not to
hold. This is also the reason we cannot just take the reduction relatioof the
n-calculus restricted to CG$rocesses as such a relation assumesnversion
due to the structural rule.

/

Recursion Expressions: CCg

Hitherto we have seen process expressions whose recursive behavior is specified
in an underlying set of definitions. It is often convenient, however, to have expres-
sions which can specify recursive behavior on their own. Let us now extend the
finite CCS processes to include such recursive expressions. The extended syntax
is given by:

PQ,...:=...|X|uXP (11)

HereuX.P binds the occurrences of tipgocess variable Xn P. As for bound
and free names, thieound variablesof P, b\(P) are those with a bound occur-
rence inP, and thefree variablesof P, fv(P) are those with a non-bound occur-
rence inP. An expression generated by the above syntax is said topoecass
(expression)ff it is closed (i.e., it contains no free variables). The proges®
behaves aP with the free occurrences dfreplaced by:X.P. Applying variable
a-conversions wherever necessary to avoid captures. The semaXftis given
by the rule:

c P[uX.P/X] - P’

RE -
uXP - P (12)

We call CCS the resulting calculus. From|[7] it follows that in CC®&e can
identify processes up-to nameequivalence.

Remark 3.1 (Static and Dynamic Scope: Preservation ofr-Equivalence).

An interesting issue of the substitutiomX.P/X] applied toP is whether italso
requires the renaming ofbound namesn P to avoid captures (i.e.hamea-
conversiol. Such a requirement seems necessary should we want to identify
process up-te-equivalence In fact, the requirement gives CCStatic scope of
names. Let us illustrate this with an example.

Example 3.2. ConsideruX.P with P = (x | (vX)(x.t | X)). First, let us assume
we perform namer-conversions to avoid captures. SpX[P/X] in P renames
the boundX by a fresh name, sag thus avoiding the capture &fsfreezin the
replacement: l.e,

PluXP/X] = (x| ("7)(zt | uXP)) = (x| ("Dt | pX(x | (x)(Xt | X))))

The reader may care to verify (using the rules in Table 2 plus Rule REC} that
will not be performed:; i.e., there is nOX.P = P; —5 ... s.t.o; = t.

Now let us assume that the substitution makes no naroenversion, thus
causing a free occurrence »in P, shown in a box below, to get boundynam-
ically in the scopef the outermost restriction: I.e.,

PluX.P/X] = (x | (m9(xt | uX.P)) = (x| (mx)(Xt | pX(X] | (X)(Xt | X)))).

The reader can verify that noincan eventually be performed. Such an execution
of t cannot be performed hyX.Q whereQ is (x | (v2)(zt | X)) i.e, P with the
binding and bound occurrence wiyntactically replaced with This shows that
namea-equivalence does not hold in this dynamic scope .case O

It should be pointed out that using recursive expressions with no rmame
conversion is in fact equivalent to using instead constant definitions as in the pre-
vious calculus CCS In fact, in presenting CCS, [12] uses alternatively both kinds
of constructions; using Rule REC, with no name&onversion, for one and Rule

CONS for the other. For example, by takijﬁ\gdéf P with P as in Exampl2 one

can verify that in CCg A exhibits exactly the same dynamic scoping behavior il-
lustrated in the above example. Swmea-equivalence does not hold in CCS
Notice that the above observations imply some semantitsreinces between
CCS and ther-calculus. The former does not satisfy namequivalence be-
cause of the dynamic nature of name scoping—see Exdample 3.2. The latter uses
static scoping and satisfiesequivalence. O

Replication: CCS

The processes of CC8&re those finite CCS processes plus replication exactly as
in prr,. This variant is presented in|[2]. In the context of CCS, this operators are
studied in[[2, 3,0].

The operational rules for CC&re those in Tablg] 2 plus the following rule:

P|IPSP

REP a
Ip-5 pr (13)

From [14] we know that in CCSone can identify processes up to name
equivalence.

3.3 Expressiveness Results for CCS

In this section we report results from [2] 3, 9] on the expressiveness for the CCS
variants above.

The following theorem summarizes the expressiveness of the various calculi
and it is an immediate consequence of the results|in [2] @nd [9]. As fot-the
calculus we compare expressiveness w.r.t. barbed congruence with the obvious
restriction to CCS contexts (see Critgrial2.5).

Theorem 3.3. The following holds for the CCS variants:
1. CCQis exactly as expressive as CG&r.t to barbed congruence.
2. CCSis exactly as expressive as G@gr.t to barbed congruence.

3. The divergence problem (i.e., whether a given process P has an infinite se-
quence of— reductions) is undecidable for the calculi in (1) but decidable
for those in (2).

The results (1-3) are summarized in Figlife 1. Let us now elaborate on the
significance and implications of the above results. A noteworthy aspect of (1) is
that any finite set of parametric (possibly mutually recursive) definitions can be
replaced by a setinite as well, of parameterless definitions . This arises as a result
of the restricted nature of communication in CCS (e.g., absence of mobility). Re-
lated to this result is that of [12] which shows that, in the context of value-passing
CCS, a parametric definition can be encoded using an set of constant definitions
and infinite sums. However, this setiminite.

Regarding (1) some readers may feel that given a prdeesth a parametric
definitionD, one could simply create as many constant definitions as permutations
of possible parameters w.r.t. the finite set of name® iand D. This would
not work for CCS; the unfolding of call toD within a restriction may neea-
conversions to avoid name captures, thus generating new names (i.e., names not
in P nor D) during execution.

Regarding (2), we wish to recall the encoding §f CCS, into CCS which
resembles that of Definitidn 2.6 in the context of thealculus.

Definition 3.4. The encodind -] of CCS processes into CC$ homomorphic
over all operators in the sub-calculus defining finite behavior and is otherwise
defined as follows:

[X] = X
vx)("%.[PT | %)

[1Xi.P]

where the names’s are fresh.

The above encoding is correct w.r.t. barbed congruence, P§.A[P. Itis
important to notice that it would not be correct had we adopted dynamic scoping
in the Rule REC for CCS(see Remark 3]1). TheX.P in Examplg 3.R actually
gives us a counter-example.

Another noteworthy aspect of the results mentioned above is the distinction
between static and dynamic name scoping for the calculi under consideration.
Static scoping renders the calculus with recursion decidabie, the divergence
problem and no more expressive than the calculus with replication. In contrast,
dynamic scoping renders the calculus with constant definitions undecidable and
as expressive as that with parametric definitions. This is interesting since as dis-
cussed in Section 3.2 thefilirence between the calculi with static or dynamic
scoping is very subtle. Using static scoping for recursive expressions was dis-
cussed in the context of ECCS [7], an extension of CCS whose ideas lead to the
design of ther-calculus|[14].

It should be noticed that preservation of divergence is not a requirement for
equality of expressiveness w.r.t to barbed congruence &iadsed congruence
does not preserve divergencelence, although the results in [2] prove that di-
vergence is decidable for CC&nd undecidable for CG$ it does not follow
directly from the arrows in Figurg 1 that it is also decidable for C.O®e decid-
ability of the divergency problem for CC% proven in|[9]

Finally, it is worth pointing out that, as exposed |n [15], decidability of di-
vergence does not imply lack @liring expressiveness. In fact the authors in [3]
show that CCSis Turing-complete. They do this by showing how construct, given
a two-counter machine, a process that can nondeterministically simulate such a
machine. Two-counter machines are standard Turing-complete devices.

Undecidable

Decidable

Figure 1: Classification of CCS variants. An arrow frofo Y indicates that for
everyP in Y one can construct a procesB][in X which is barbed congruent to
P. (Un)decidability is meant w.r.t. the existence of divergent computations

4 The Mobile Ambients Calculus

The calculus of Mobile Ambients is a formalism for the description of distrib-
uted and mobile systems in termsahbientsi.e. a named collection of active
processes and nested sub-ambients.

The work in [4] studies the expressiveness of recursion versus replication in
Mobile Ambients. In particular, the authors o0f [4] study the expressive power
of ambient mobility in the (Pure) Mobile Ambients variants with replication and
recursion.

4.1 Finite Processes of Ambients

The Pure Ambient Calculus focuses on ambient and processes interaction. Unlike
ther-calculus, it abstracts away from process communication.

The syntax of the finite processes can be derived from those pfitkhalculus
by (1) introducing ambients, and the actions for ambient and processes interaction,
(2) eliminating the action for process communication and (3) restricting summa-
tions to have arity at most one. In summary, we obtain the following syntax:

PQ....

[0

OlaP | NP | 0P | PO (14)
inx | outx | open x

The intuitive behaviour of the ambienfP] and « actions is better explained
after presenting the reduction semantics of Ambients. The intuitive behaviour of
the others constructs can be described exactly as im-taculus.

Reduction Semantics of Finite Processes.Thereductionrelation— for Am-
bients can be obtained by adding the axiom(m[P]) = m[(vn)P] if m # nto the
structural congruence in Definitign 2.2 and the following rules for ambients and
process interaction to the rules of thve-calculus in Tablg]1:

1.ninmP| Q] | MRl — m[n[P | Q] | R
2. m[nfoutmP | Q]IR] — n[P | Q] | MR]
3.opennP | N[Q] — P | Q

P—Q
4. n[P] — n[Q]

Rules (1-3) describe ambients and their actions and Rule (4) simply says that
reduction can occur underneath ambients. Rule (1) describes how, by using the
action, an ambient nametdcan enter another ambient nanmadSimilarly, Rule
(2) describes how an ambient nanrechn exit another ambient namexby using
theout action. Finally Rule (3) describes how a process can dissolve an ambient
boundary to access its contents by performingapenaction over the name of
the ambient.

4.2 Infinite Process of Ambients

Infinite behaviour in Ambients can be represented by using replication@as in
or recursive expressions of the fognx.P.

The MA, calculus

The calculusMA, extends the syntax of the finite Ambients processes WAithts
reduction semantics— is obtained by adding the structural axiom £ P | IP
to the structural axioms of finite Ambients processes.

The MA; calculus

The calculusviA; extends the syntax of the finite Ambients processes with recurs-
ive expression of the formX.P exactly as in CCS(Sectior{ 3.R). Its reduction
semantics— is obtained by adding the structural axigiX.P = P[uX.P/X] to

the structural axioms of finite Ambients processes.

Notice that the issue of the substitution{P/X] applied toP we discussed in
Section 3.P arises again: Whether the substitusilsio requiresthe renaming of
bound namea P to avoid captures (i.enamea-conversiol. Such a requirement
seems necessary should we want to identify process upetguivalencewhich
is included in the structural congrueneefor Ambients. The CCS examples in
Sectior] 3.P (see Remdrk B.1) can easily be adapted here to illustrate that we obtain
dynamic scoping of names if we do not perform theonversion in the substitu-
tion.

It should be noticed that the above has not been completely clarified in the
literature of Ambients. In fact, it raises a technical issue in the results on express-
iveness which we shall recall in the next section.

Expressiveness Results

To isolate the expressiveness of restriction and ambient actigigsimnd MA,,
[4] considers the following fragments MA. with c € {!,r}: (1) MAS", the MA;

calculus without the restriction constructonjP, (2) MA;™, the MA; calculus
without thein andout actions, and finally (3MA;™, the corresponding calculus
with no in/out action nor restriction.

The separation results in|/[4] among the various calculi are given in terms of the
decidability oftermination i.e., the problem of whether given a proc&soes not
have any infinite sequence of reductions. Obviously, if the question is decidable
in a given calculus then we know that there is no termination-preserving encoding
of Turing Machines into the calculus. The results in [4] are summarized in Figure
2.

MA,

MA,

MA;Y

Figure 2: Hierarchy of Ambient Calculi.

Remark 4.1. The undecidability of process termination fdA, ™ is obtained by

a reduction from termination of RAM machines, a Turing Equivalent formalism.
First |4] uses a CCS fragment with recursion athhamic scope of namés
provide a termination-preserving encoding of RAMs. Then the CCS fragment is
claimed to be a sub-calculus MIA"™". The undecidability of process termination
for MA,™ follows immediately.

Nevertheless, as illustrated in Sectjon|3.2 Renfiark 3.1 such dynamic scope
causesr-equivalence not to be preserved. In principle, this may cause a technical
problem in the proof of the result sindéA ™" requirese-equivalence to be pre-
served; i.e., the CCS fragment used to simulate RAMs is not a sub-calculus of
MA-™.

One way to deal with the above problem is to use a more involved notien of
conversion ilMA ™ [5]. Another way would be to consider parametric recursion
in MA;, as in CC$ or prrp, and then use CGSs the sub-calculus &A™ to en-
code RAMs. Nevertheless, either way we will be changing the original semantics
of MAT™ given in [11] which treats-conversion and recursion as in CO31].

5 Recursion vs Replication in Other Calculi

Here, we shall briefly survey work studying the relative expressive power of Re-
cursion vs Replication in other process calculi.

In the context of calculi for security protocols, the work|in[[10] uses a process
calculus to analyze the class of ping-pong protocols introduced by Dolev and Yao.
The author show that all nontrivial properties, in particular reachability, become
undecidable for a very simple recursive variant of the calculus. The recursive
variant is capable of an implicit description of the active intruder, including full
analysis and synthesis of messages . The authors then show that the variant with
replication renders reachability decidable.

In the context of calculi for Timed Reactive System, the work in [17] studies
the expressive power of some variants of Timed concurrent constraint program-
ming (tcc). The tcc model is a process calculus introduced in [19] aimed at spe-
cifying timed systems, following the paradigms of Synchronous Languages [1].
The work states that: (1) recursive procedures with parameters can be encoded
into parameterless recursive procedures with dynamic scoping, and vice-versa.
(2) replication can be encoded into parameterless recursive procedures with static
scoping, and vice-versa. (3) the languages from (1) are strictly more expressive
than the languages from (2). Furthermore, it states that behavioral equivalence is
undecidable for the languages from (1), but decidable for the languages from (2).
The undecidability result holds even if the process variables take values from a
fixed finite domain.

The reader may have noticed the strong resemblance of the work on tcc and
that of CCS described in the previous section; e.g., static-dynamic scoping issue
w.r.t recursion. In fact, [17] had a great influence in the work we described in
this paper for CCS. In particular, in the discovery of the dynamic name scoping
exhibited by the CCS presentation in[12].

6 Final Remarks

The expressivenessfiirences between recursion and replication we have sur-
veyed in this paper may look surprising to those acquainted withrttedculus
where recursion is a derived operation. Our interpretation of titisrénce is that

the link mobility of thex-calculus is a powerful mechanism which makes up for
the weakness of replication.

The expressiveness of the replicatidhdrises from unbounded parallel be-
haviour, which with recursion can be defined@s(P | X). The additional
expressive power of recursion arises from the unbounded nested scopd’of
as inR = uX.(vX)(P | X) which behaves as’X)(P | (wX)(P | (wX)(P | ---))).

This, in general, cannot be simulated with replication. However, suppose that
the unfolding of recursion applies-conversion to avoid captures as we saw in
Section 3.p. For example for the procégsibove we will have the unfolding
(vX)(P[x1/X] | (vx2)(P[X2/X] | (vX3)---))) and each will only occur in P[x;/X].

It is easy to see the replication¥)P captures the behaviour & Therefore R

does not really exhibit (significant) unbounded nesting of scope.

All'in all, the ability of expressing recursive behaviours via replication in a
given process calculus may depend on the mechanisms of the calculus to com-
pensate for the restriction of replication as well as on how meaningful the un-
bounded nesting of the recursive expressions are.

References

[1] G. Berry and G. Gonthier. TheskereL synchronous programming lan-
guage: design, semantics, implementati@cience of Computer Program-
ming, 19(2):87-152, November 1992.

[2] N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. recursive defini-
tions in channel based calculi. I€ALP: Annual International Colloquium
on Automata, Languages and Programmigg03.

[3] N. Busi, M. Gabbrielli, and G. Zavattaro. Comparing recursion, replication,
and iteration in process calculi. ICALP: Annual International Colloquium
on Automata, Languages and Programmigg04.

[4] N. Busi and G. Zavattaro. On the expressive power of movement and restric-
tion in pure mobile ambient§.heoretical Computer Sciencg?22(3):477-515,
September 2004.

[5] N. Busiand G. Zavattard?ersonal Communicatigiay 2005.

[6] L. Cardelli and A. Gordon. Mobile Ambients. In M. Nivat, editdProc.
of Foundations of Software Science and Computation Structures (FOSSacCS),
European Joint Conferences on Theory and Practice of Software (ETARS’98)
volume 1378 ol_ecture Notes in Computer Scienpages 140-155, Lisbon,
Portugal, 1998. Springer-Verlag, Berlin.

[7] U. Engberg and M. Nielsen. A calculus of communicating systems with label-
passing. Technical report, University of Aarhus, 1986.

[8] Jean-Yves Girard. Linear logid-heor. Comput. S¢i50:1-102, 1987.

[9] P. Giambiagi, G. Schneider, and F. Valencia. On the expressiveness of infinite
behavior and name scoping in process calculiFd8SaCSpages 226-240,
2004.

[10] H. Huttel and J. Srba. Recursion vs. replication in simple cryptographic pro-
tocols. InProceedings of the 31st Annual Conference on Current Trends in

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Theory and Practice of Informatics (SOFSEM’0%plume 3381 ofLNCS
pages 175-184. Springer-Verlag, 2005.

Francesca Levi and Davide Sangiorgi. Mobile safe ambie®®M Transac-
tions on Programming Languages and Syste2b$1):1-69, January 2003.

R. Milner. Communication and Concurrencynternational Series in Com-
puter Science. Prentice Hall, 1989. SU Fisher Researct2811

R. Milner. The polyadicr-calculus: A tutorial. In F. L Bauer, W. Brauer,
and H. Schwichtenberg, editorspgic and Algebra of Specificatipmpages
203-246. Springer-Verlag, Berlin, 1993.

R. Milner. Communicating and Mobile Systems: thealculus Cambridge
University Press, 1999.

S. Mdfeis and I. Phillips. On the computational strength of pure ambient
calculi. INEXPRESS’032003.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Rart |
II. Information and Computatiqri00(1):1-77, 1992.

M. Nielsen, C. Palamidessi, and F. Valencia. On the expressive power of con-
current constraint programming languages.Phoc. of the 4th International
Conference on Principles and Practice of Declarative Programming (PPDP
2002) pages 156-167. ACM Press, October 2002.

C. Palamidessi. Comparing the expressive power of the synchronous and the
asynchronous pi-calculus. In ACM Press, edifd@PL'97, pages 256—-265,
1997.

V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent
constraint programming. IRroc. of the Ninth Annual IEEE Symposium on
Logic in Computer Scien¢gpages 71-80, 4—7 July 1994.

D. Sangiorgi and D. WalkefTher—calculus: A Theory of Mobile Processes
Cambridge University Press, 2001.

D. Sangiorgi.Personal CommunicatigiMay 2005.

	Introduction
	The Polyadic Pi Calculus: p
	Finite Pi-calculus
	Infinite Processes in the Polyadic Pi-Calculus
	Recursive Definitions vs Replication in Pi
	Recursion vs Replication in the Private Pi Calculus

	The Calculus of Communicating Systems (CCS)
	Finite CCS
	Infinite CCS Processes
	Expressiveness Results for CCS

	The Mobile Ambients Calculus
	Finite Processes of Ambients
	Infinite Process of Ambients

	Recursion vs Replication in Other Calculi
	Final Remarks

