The Expressivity of Universal Timed CCP:

Undecidability of Monadic FLTL and Closure Operators for Security

Carlos Olarte

INRIA and LIX Ecole Polytechnique
Pontificia Universidad Javeriana Cali

carlos.olarte@lix.polytechnique.fr

Abstract

The timed concurrent constraint programing model (tcc) is a
declarative framework, closely related to First-Order Linear Tem-
poral Logic (FLTL), for modeling reactive systems. The universal
tcc formalism (utcc) is an extension of tcc with the ability to
express mobility. Here mobility is understood as communication
of private names as typically done for mobile systems and security
protocols.

This paper is devoted to the study of 1) the expressiveness
of utcc and 2) its semantic foundations. As applications of this
study, we also state 3) a noteworthy decidability result for the well-
established framework of FLTL and 4) bring new semantic insights
into the modeling of security protocols.

More precisely, we show that in contrast to tcc, utcc is Turing-
powerful by encoding Minsky machines. The encoding uses a
monadic constraint system allowing us to prove a new result for
a fragment of FLTL: The undecidability of the validity problem for
monadic FLTL without equality and function symbols. This result
refutes a decidability conjecture for FLTL from a previous paper. It
also justifies the restriction imposed in previous decidability results
on the quantification of flexible-variables.

We shall also show that as in tcc, utcc processes can be seman-
tically represented as partial closure operators. The representation
is fully abstract wrt the input-output behavior of processes for a
meaningful fragment of the utcc. This shows that mobility can be
captured as closure operators over an underlying constraint system.
As an application we identify a language for security protocols that
can be represented as closure operators over a cryptographic con-
straint system.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]

General Terms Theory, Verification, Security,

Keywords Concurrent Constraint Programming, First-order Lin-
ear Temporal Logic, Closure Operators, Security Protocols

1. Introduction

Timed concurrent constraint programming (tcc) (24) is a declar-
ative temporal formalism from concurrency theory for modeling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’08, July 16-18, 2008, Valencia, Spain.

Copyright (© 2008 ACM 978-1-60558-117-0/08/07. .. $5.00

Frank D. Valencia

CNRS and LIX Ecole Polytechnique
frank.valencia@lix.polytechnique.fr

reactive systems. The tcc calculus combines the traditional oper-
ational view of process calculi with a declarative one based upon
first-order linear-time temporal logic (FLTL). The tcc language is
parametric in an underlying constraint system specifying the basic
constraints (pieces of information) that agents can tell or ask during
execution (e.g, x > 42).

Both the computational expressiveness and semantic founda-
tions of tcc have been thoroughly studied in the literature (24;
22; 28). This allowed for a better understanding of tcc and its
relation with other formalisms. In particular, the expressiveness
study in (28) shows that tcc processes can be represented as finite-
state Blichi automata (8). The denotational semantics study in (24)
shows that tcc processes can be compositionally interpreted as clo-
sure operators (monotonic, idempotent, and extensive functions)
over sequences of constraints.

Universal tcc (23), henceforth utcc, is an extension of the tcc
calculus. The purpose of the extension is to add to tcc the expres-
siveness needed for modeling mobility while preserving its elegant
closure-operator semantic characterization. (Mobility refers to the
communication of private names as typically done for mobile sys-
tems and security protocols in Concurrency Theory). Although (23)
illustrates several utcc examples involving mobility, no formal
statement about the expressiveness of utcc nor the preservation
of the closure-operator semantics has been previously given.

In this paper we shall study the expressiveness of utcc in terms
of its computational power and semantic characterization. We shall
show that 1) unlike tcc processes, utcc processes can represent
Turing-powerful formalisms. Furthermore, we shall show that de-
spite this extra expressiveness as tcc processes 2) utcc processes
can still be compositionally interpreted as partial closure operators.
We shall also show the applicability of this declarative framework
and the elegant theory of concurrent constraint programming to
other domains of computer science. By using 1) we shall state a
new insightful undecidability result for the well-established frame-
work of FLTL. As an application of 2) we shall also bring new se-
mantic insights into the modeling of security protocols. These two
applications correspond to 3) and 4) in the contributions below.

Contributions. More precisely, to show 1) above we shall encode
in utcc Minsky machines (20). The encoding of Minsky machines
in utcc will be given in terms of a very simple decidable constraint
system involving only monadic predicates and no equality nor func-
tion symbols. The importance of using such a constraint system is
that it will allow us to use utcc to state a new impossibility result
for monadic FLTL and the main technical application of this paper:
Namely, 3) the undecidability of the validity problem for monadic
FLTL without functions symbols and equality. In fact, we show that
this FLTL is strongly incomplete which of course implies its unde-
cidability. Notice that this result contrasts the standard decidability
result of (untimed) monadic classic first-order logic (7).

It is worth noticing that there are several works in the literature
addressing the decidability of fragments of FLTL and in particular
the monadic one (1; 18; 27; 16; 21). The above-mentioned result is
insightful in that it answers an issue raised in a previous work and
justifies some restrictions on monadic FLTL in other decidability
results by showing them to be necessary. Namely, in (28) it was
suggested that one could dispense with the restriction to negation-
free formula in the decidability result for the Pnueli’s FLTL frag-
ment there studied. Our undecidability result actually contradicts
this conjecture since with negation that logic would correspond to
the FLTL here presented. Furthermore, another work in (18) shows
the decidability of monadic FLTL. This seemingly contradictory
statement arises from the fact that unlike this work, (18) disal-
lows, without a technical explanation, quantification over flexible
variables. Our results, therefore, show that restriction to be neces-
sary for decidability thus filling a gap on the decidability study of
monadic FLTL. We shall elaborate more on these related results in
Section 4.2.

As for 2) above, by building on the semantics of tcc given in
(24) we show that the input-output behavior of any utcc process
can be characterized as a partial closure-operator. Because of ad-
ditional technical difficulties posed by utcc, the codomain of the
closure-operators is more involved than that for tcc. Namely, we
shall use sequences of future-free temporal formulae (constraints)
rather than sequences of basic constraints as in tcc. We shall also
give a compositional denotational account of this closure-operator
characterization. We shall show that closure-operator denotation of
utcc is fully abstract wrt the input-output behavior of processes for
a significant fragment of utcc. This in particular shows that mobil-
ity in utcc can be elegantly represented as closure operators over
some underlying constraint system.

As an application of the above-mentioned semantic result, we
shall 4) identify a process language for security protocols that can
be represented as closure operators. This language arises as a spe-
cialization of utcc with a particular cryptographic constraint sys-
tems. We argue that the interpretation of the behavior of protocols
as closure operators is a natural one: E.g., suppose f is a closure-
operator denoting a spy inferring information from the one he sees
on the network. By extensiveness (f(w) > w), the spy produces
new information from the one he obtains, by monotonicity (w > v
implies f(w) > f(w)) the more information the spy gets, the more
he will infer, and finally by idempotence (f(f(w)) = f(w)) the
spy infers as much as possible from the info he gets. To our knowl-
edge no closure operator denotational account has previously been
given in the context of calculi for security protocols.

All in all, this paper gives an expressiveness account of a declar-
ative framework in terms of computational power and semantic
characterization, and importantly, with novel applications to other
domains, namely FLTL and security protocols.

Organization. The paper is organized as follows. Section 2 gives
some preliminaries and Section 3 recalls the notions and definitions
of utcc. The expressiveness study and its application to FLTL
is presented in Section 4. The closure-operator semantics and its
application to security protocols is given in Section 5. Finally, we
discuss the related work in Section 6.

2. Preliminaries

In this section we recall the notions of constraint systems and
Linear-Time Temporal Logic (FLTL).

Constraint Systems. Concurrent Constraint Programming (CCP)
calculi (26) are parametric in a constraint system. A constraint sys-
tem can be represented as a pair (X, A) where X is a signature of
function and predicate symbols, and A is a first-order theory over

3. Given a constraint system (X, A), let £ be its underlying first-
order language with variables x, y, . . ., and the standard logic sym-
bols =, A, V, =, <>, 3, V, true and false. The set of constraints C
with typical elements c, d, . . . is given by the set of formulae over
L modulo logical equivalence. We say that c entails d in A, written
cta d,iff (c=d) € A (i.e., iff c = d is true in all models of A).
We shall omit “A” in A when no confusion arises. For operational
reasons - is often required to be decidable.

Let 7 be the set of terms induced by X with typical elements
t,t’, ... We shall use = to denote syntactic term equivalence (e.g.
x = x and z # y). We use i'for a sequence of terms t1,...,t,
with length |#] = n. If |£] = 0 then £ is written as €. We use c[£/],
where |#] = |Z| and ;s are pairwise distinct, to denote ¢ with the
free occurrences of x; replaced with ¢;. The substitution [£/&] will
be similarly applied to other syntactic entities.

Temporal Formulae and Constraints. In the following sections
we shall make use of notions from First-Order Linear-Time Tem-
poral Logic (FLTL). Here we recall the syntax and semantics of this
logic. See (17) for further details.

DEFINITION 1. Given a constraint system with a first-order lan-
guage L, the LTL formulae we use are given by the syntax:

F,G,...:= ¢|FAG|~F|3aF | © F | oF | OF.

where c is a constraint in L, from now on also referred to as state
formula.

The modalities ©F,oF and LJF stand for resp., that F' holds
previously, next and always. We use VxF for —3x—F, and the
eventual modality & F as an abbreviation of =[1—F.

We presuppose the reader is familiar with the basic concepts of
Model Theory. The non-logical symbols of £ are given meaning in
an underlying L-structure, or L-model, M (L) = (Z, D). (They are
interpreted via Z as relations over a domain D of the corresponding
arity). A state s is a mapping assigning to each variable = in £ a
value s[z] in D. This interpretation is extended to £-expressions in
the usual way (e.g. s[f(x)] = Z(f)(s[z])). We write s =pqz) €
iff ¢ is true wrt s in M(L). The state s is an x-variant of s’ iff
s'[y] = sly] for each y # z. We use o to range over infinite
sequences of states. We say that o is an x-variant of o’ iff for each
i >0, o(¢) (the i-th state in o) is an z-variant of o/ (3) .

Furthermore, the variables are partitioned into rigid and flexible
variables. For the rigid variables, each o must satisfy the rigidity
condition: If x is rigid then for all s, s’ in o s[z] = §'[z]. If z is
a flexible variable then different states in o may assign different
values to .

DEFINITION 2. We say that o satisfies F' in an L-structure M(L),
written o = ey F, iff (0,0) Eaey F where:

(o

(0,9) ‘

(0,1) FEmce) € iff (i) Fame ¢

(0,9) Fameey 7F iff (0,9) ey F

(0,9) Faey FAGff (0,4) Faey Fand (0,i) Fame) G
<0',i> ':M(g) @F lﬁtl>061nd<0’,l—1>):M(L)F
(0,1) Famey oF iff {o,i+1) Fmey F

20, i) Emey OF iff forall j >4,(0,j) Emey F

0,1) Eameey ITF iff forsome z-variant o' of o, {0’ i) Epmc) F

We say that F is valid in M (L) iff for all 0, 0 \=amc) F. F is said
to be valid if F is valid for every model M(L).

DEFINITION 3 (FLTL Theories). Given a constraint system (A, X)
with first-order language L, the FLTL theory induced by A, T'(A)
is the set of FLTL sentences that are valid in all the L-structures

(or L-models) of A. We write F =pay G iff (F = G) € T(A).
We omit “(A)” in Fpay when no confusion arises.

Closure Operators. Finally we recall the notion of (partial) clo-
sure operator that we shall use in Section 5. Given a partially
ordered set (S, <), a partial closure operator on S is a function
f S — S with the following properties: For all z € S

1. Extensiveness: z < f(x).

2. Idempotence: f(f(x)) = f(z).
Furthermore, f is a closure operator if it also satisfies

3 Monotonicity: for all z,y € S, if x < gy then f(x) < f(y).

A fundamental derived property of a closure operator is that it is
uniquely determined by its set of fixed points.

3. Universal Timed CCP

In this section we first describe the temporal concurrent constraint
(tcc) model (24) following the presentation in (22). We then recall
the universal tcc model (utcc) introduced in (23).

Timed CCP. The tcc calculus extends CCP for timed systems
(24). Time is conceptually divided into time intervals (or time
units). In a particular time interval, a CCP process P gets an input ¢
from the environment, it executes with this input as the initial store,
and when it reaches its resting point, it outputs the resulting store
d to the environment. The resting point determines also a residual
process Q which is then executed in the next time interval. The
resulting store d is not automatically transferred to the next time
interval.

DEFINITION 4. Processes P,Q,... in tcc are built from con-
straints in the underlying constraint system by the following syn-
tax:
P,Q:= skip|tell(c)| whencdo P |P | Q|
(local #;c) P | next P | unless cnext P || P

with the variables in T being pairwise distinct.

The process skip does nothing and tell(c) adds c to the store in the
current time interval. If in the current time interval c can eventually
be derived from the store, the ask process when ¢ do P evolves
into P within the same time interval. Otherwise when ¢ do P
evolves into skip. P || @ denotes P and) running in parallel
during the current time interval and (local &;¢) P binds & in P
by declaring them private to P under a constraint c¢. The bound
variables bv(Q) (free variables fv(Q)) are those with a bound (a
not bound) occurrence in Q).

The unit-delay next P executes P in the next time interval. The
time-out unless c next P is also an unit-delay, but P is executed
in the next time unit iff ¢ is not entailed by the final store at the cur-
rent time interval. We use next” P as short for next . .. next P,
with next repeated n times. Finally, the replication | P means
P || next P || next®P | ... ie., unboundedly many copies
of P but one at a time.

3.1 The Language of UTCC

In (23) the authors introduced the Universal Timed CCP calculus
(utcc) by extending the tcc language with an abstraction opera-
tor. This calculus allows for mobility behavior in the sense of the
m-calculus (19), i.e. generation and communication of private chan-
nels or links. In this section we recall the notion of abstractions in
utcc central to its expressivity. Later we present its operational se-
mantics. See (23) for further details.

In utcc, the ask operation when ¢ do P is replaced with
a parametric ask of the form (abs Z;c) P. This process can be
viewed as an abstraction of the process P on the variables &

under the constraint (or with the guard) c. From a programming
language perspective, Z in (local Z; ¢) P can be viewed as the local
variables of P while 7 in (abs &; ¢) P can be viewed as the formal
parameters of P.

From a logic perspective abstractions have a pleasant dual-
ity with the local operator: The processes (localZ;c) P and
(abs ;c) P correspond, resp., to the existential and universal
formulae 3Z(c A Fp) and VZ(c = Fp) where Fp corresponds
to P. We shall elaborate more on this logical meaning of utcc
processes in Section 4.2.

DEFINITION 5 (utcc processes). The utcc processes result from
replacing in the syntax in Definition 4 the expression when cdo P
with (abs Z; ¢) P with the variables in T being pairwise distinct.

Intuitively, Q = (abs &;c) P executes P[t/Z] in the current
time interval for all the sequences of terms t s.t c[t/Z] is entailed
by the store. The process () binds the variables & in P and c. Sets
fv(.) and bv(.), are extended accordingly. Furthermore @) evolves
into skip after the end of the time unit, i.e. abstractions are not
persistent when passing from one time-unit to the next one.

NOTATION 1. We use when ¢ do P for the empty abstraction
(abs€; c) P. We write (local ¥) P as a short for (local Z; true) P.
The derived operator (wait T; c) do P waits, possibly for several
time units until for some t, c[t/] holds. Then it executes P[t/Z].
More precisely,

def

(wait ¥;¢c)do P = (local stop, go) tell(out’(go))

||! unless out’(stop) next tell(out’(go))

[|! (abs T; ¢ A out’(go)) (P ||! tell(out’(stop))
where stop, go ¢ fuv(P). We shall use whenever c do P as a
short for (wait ¢; ¢) do P.

Mobile links. We conclude this section with a small example
from (23) illustrating how mobility is obtained from the interplay
between abstractions and local processes.

EXAMPLE 1 (Mobility). Let 3 be a signature with the unary pred-
icates out, outs, ... and a constant 0. Let A be the set of axioms
over Y valid in first-order logic. Let

P = (abs y; out1(y)) tell(outz(y))

and

Q = (localz) (tell(outi(2)) ||
when outz(z) do next tell(out2(0)))

Intuitively, if a link y is sent on channel outy, P forwards it on
outs . Now, Q) sends its private link z on out1 and if it gets it back
on outs it outputs 0 on outy .

3.2 An Operational Semantics for UTCC

The structural operational semantics (SOS) of utcc considers tran-
sitions between process-store configurations (P, c¢) with stores rep-
resented as constraints and processes quotiented by =. We use
~,7', ... to range over configurations.

DEFINITION 6. Let = be the smallest congruence satisfying: 0)
P = Q if they differ only by a renaming of bound variables 1)
Plskip=P2)P|Q=Q| P3P || Q] R) =
(Pl Q) I R 4)P | (local;c)Q = (localZsc) (P || Q) if
Z & fu(P), 5) (local &; c) skip = skip. Extend = by decreeing
that (P, c) = (Q,c) iff P = Q.

The SOS transitions are given by the relations — and = in

Table 1. The internal transition (P,d) — (P’,d’) should be read
as “P with store d reduces, in one internal step, to P’ with store

d’ . The observable transition P % R should be read as

R
T tell(c),d) — (skip,d A c)

(P, ¢y — <P',d>
(Pl Q) — (P Q,d)
(P,c A (3Ed)) — (P, ¢ A (3Ed))
" ((local%;c) P,d) — ((local;c’) P',d A 3@c')

Rp

dFc

R
v (unless c next P,d) — (skip,d)

(!P,d) — (P||next!P,d)

dr clf/z) 11 = ¢

Ra = =
((abs &; c) P,d) — (P[t/Z] || (abs & c AT #t) P, d)
Y1 —> 772 ..

Rs - ify1 =) andy2 = 75
Y1 72

(Pc) —" (Q,d) 7/

P L2 pQ)

Table 1. Internal and observable reductions. = and F' are given
in Definitions 6 and 7. In Ra, # # denotes Viciciz @i # ti. I

|| = 0, & # t'is defined as false.

“P on input ¢, reduces in one time unit to R and outputs d”. The
observable transitions are obtained from finite sequences of internal
transitions.

We only describe some of the rules in Table 1 due to space
restrictions. The other rules are standard, easily seen to realize the
operational intuitions given above (see (22) for further details). As
clarified below, the seemingly missing rules for “next” and “unless”
processes are given by Ro.

We dwell a little upon the description of Rule Ry, as it may
seem somewhat complex. Consider Q = (localz;c) P in Rule
Ri1.. The global store is d and the local store is c¢. We distinguish
between the external (corresponding to Q) and the infernal point
of view (corresponding to P). From the internal point of view,
the information about z, possibly appearing in the “global” store
d, cannot be observed. Thus, before reducing P we first hide
the information about z that () may have in d by existentially
quantifying x in d. Similarly, from the external point of view, the
observable information about x that the reduction of internal agent
P may produce (i.e., ¢’) cannot be observed. Thus we hide it by
existentially quantifying x in ¢’ before adding it to the global store.
Additionally, we make ¢’ the new private store of the evolution of
the internal process.

Rule R4 describes the behavior of (abs &; ¢) P. If the store en-
tails c[t/&] then P[t/&] is executed. Additionally, the abstraction
persists in the current time interval to allow other potential replace-
ments of Z in P but c is augmented with x; # ¢; to avoid executing
P[t/Z] again.

Rule Ro says that an observable transition from P labeled
with (c,d) is obtained from a terminating sequence of internal
transitions from (P, ¢) to a (Q, d). The process R to be executed
in the next time interval is equivalent to F'(Q) (the “future” of Q).
F(Q) is obtained by removing from @ abstractions and any local
information which has been stored in @, and by “unfolding” the
sub-terms within “next” and “unless” expressions.

DEFINITION 7. Let F' be a partial function defined as:

skip if P = skip
skip if P = (abs Z;¢c) Q
Fpy={ F@)I W) i P=h | P
) (localZ) F(Q) if P = (localZ;c)Q
Q if P = next Q
Q if P = unless c next Q)

NOTATION 2. We shall denote with C* the set of infinite sequences
of constraints with typical elements o, o/, Given ¢ € C, c*
represents the constraint c.c. . .. The i-th element in « is denoted

by (7).

Input-Output Behavior. We will use the following input-output
relations over utcc processes.

DEFINITION 8 (Input-Output Relations). Given o = ci.c2... and

(a,a’ (c1 »Cl1)

.)
o = cl|.ch..., we write P === whenever P = Py
(c2,ch)

P> The set

i0(P) = {(a,a) | P <220y

denotes the input-output behavior of P. If io(P) = i0(Q) we say
that P and Q are input-output equivalent and we write P ~%* Q.
Furthermore, we say that P eventually outputs ¢, written P ., if
w ’
P) nd o/ (i) c for some i > 0.
REMARK 1. Let P be a process and o, o be sequences of con-
straints s.t. (o, ') € i0(P). Recall that computation in tcc dur-
ing a time-unit progresses via the monotonic accumulation of con-
straints (24). Then for all i > 0, ¢'(i) & c(i). Recall also that the
final store at the end of the time-unit is not automatically transfered
to the next one. Therefore, it may be the case that c(i)' 1/ c(i — 1)'.
Constraints in o are provided by the environment as input to the
system and then, they are not supposed to be related to each other.

In (23), utcc is shown to be deterministic in the following
sense:

THEOREM 1 (Determinism (23)). Let o, o’ and (3 be sequences of
constraints. If both (3,), (B,a’) € io(P) then for all i > 0,
F a(i) & o' (3). Le. the outputs of P are the same up to logical
equivalence.

REMARK 2. The reader may have noticed that the abstraction
operator may induce an infinite sequence of internal transitions
within a time interval thus never producing an observable transi-
tion. One source of infinite internal behavior involves looping (re-
cursion) in abstractions. E.g.

R = (abs z;out;(z)) ((local z) tell(out:(2)))

with outy as in Example 1. A similar problem involves several
abstractions producing mutual recursive behavior. Another source
of infinite internal behavior involves the constraint system under
consideration. Let

R = (abs z;c) P.
If the current store d entails c[t/x] for infinitely many t’s, then R
will have to execute P[t/z] for each such t.

We shall see that there are meaningful utcc processes which do
not exhibit infinite internal behavior. We call them well-terminated
processes. In fact, we shall prove in the next section that they are
sufficient to show that utcc is Turing-powerful.

DEFINITION 9 (Well-termination). The process P is said to be
well-terminated iff for every a, there exists ' such as (a,a’) €

io(P).

Nevertheless, in Section 5 we shall consider also non well-
terminated processes. For this purpose, we will recall in Section 5.1
the alternative symbolic operational semantics given in (23) which
deals with the above-mentioned internal termination problems.

4. Expressiveness of UTCC

In this section we shall state the Turing expressiveness of utcc with
monadic first-order logic as underlying constraint system. We shall
also state our main application result, namely the undecidability
of the validity problem for Monadic FLTL without equality nor
function symbols.

4.1 Turing-Expressiveness of UTCC

We shall begin by showing that the sub-language of well-terminated
utcc processes is Turing-powerful. We prove this by providing a
utcc construction (or encoding) of two-counter machines, also
called Minsky machines, which are known to be Turing-powerful
(20). This construction will be defined in terms of a very simple
decidable underling constraint system: The monadic fragment of
first-order logic without function symbols nor equality. This is a
key property for our undecidability result for FLTL.

A two-counter Minsky machine M (v0,v1) is an impera-
tive program consisting of a sequence of labeled instructions
L1;...; L which modify the values of two non-negative coun-
ters co and c; initially set to vg and vy (resp.). The instructions,
using counters ¢, for n € {0, 1}, are of three kinds:

L; : halt
L; @ cni=cn+1;g0to Lj
L; : if ¢, =0 then goto L; else ¢, :=c¢n, — 1; goto Ly,

The Minsky machine starts at L and halts if the control reaches the
location of a halt instruction. Furthermore, the Minsky machine
M (vo,v1) computes the value n if it halts with co = n.

We presuppose a monadic constraint system including the unin-
terpreted predicates out, out)(-) forn € {0,1} and m € {1,2}
as in Example 1. Additionally, we presuppose the following propo-
sitional variables: iszy, incy,, dec, forn € {0,1} and halt . A
counter is defined as follows ¢, =

1 !when isz,, do
2 unless inc, next tell(iszy) ||
3 when inc, do next (local a) (tell(out;.(a))||
3 !when out?(a) do tell(isz,,))
[|! (abs z; outl (2))
whenever dec, V inc, do

when dec,, do next tell(out?2(2))||

when inc, do next (localb) (tell(out? (b))||
7’ !'when out?(b) do tell(out)(2)))

N O Ot

The counters co and c; are obtained by replacing the sub-index
n in out]'(+), iszn, inc, and dec, by 0 and 1 respectively in the
expression above. Intuitively, isz, is used to test if the counter
is zero (line 1) and inc, and dec,, to trigger the action of incre-
ment and decrement the counter respectively. Each time an incre-
ment instruction is executed, a new local variable is created and
sent through the public channel out;, (-) (lines 3 and 7). Decrement
operations (line 6) send back these local variables using the chan-
nel out2(-). The processes in lines 3’ and 7 when receiving the
correspondent local variable on channel out? (-) move to the state
immediately before the last increment instruction took place.

For the set of instruction L1;...; L, we assume a set of vari-
ables l1, ..., l,. The i-th instruction is encoded as

[L:] =!when out(l;) do ins(L;)

where ins(L;) =

tell(halt) if L; = halt

tell(incy,) || next tell(out(l;)) if Li=cp:=cp+1;g0to L;

when isz,, do next tell(out(l;)) || if L; = if ¢, = 0 then goto L;
unless isz, next (tell(decy) || else ¢y := ¢y —1ligoto Ly,
next tell(out(ly)))
Without loss of generality assume that counters are initially set
to 0. The program takes the form:

[M(0,0)] = s In) (tell(out(Ls)) || co || c1 ||
tell(iszg) || tell(isz;) ||
[La] |- I [Ln])

Let Dec,, be the process decrementing n times the counter co.
If it succeeds, it outputs the constraint yes:

(locally, ...

Decy = when iszp do tell(yes)
Dec,, = unless iszp next (tell(decy) || Decn—1)

For the correctness of the construction, one can verify that
M(0,0) computes the value n if and only if after the encoding
halts one can decrement co exactly n times until telling “yes”. More
precisely:

THEOREM 2 (Correctness). A Minsky machine M (0,0) computes
the value n iff

([M(0,0)] || whenever halt do Decy) yes

As an application of the above construction we can show the
undecidability of the input-output equivalence for well-terminated
processes.

Given M (0,0) we define [M(0,0)]" as the above encoding
[M(0,0)] except that ins(halt) = skip—notice that ins(halt) =
tell(halt) in [M(0,0)]. Clearly, M (0, 0) does not halt iff

[[M(Ov 0)]]/ ~ [[M(07 O)H
We then obtain the following corollary.

COROLLARY 1. Fix the underling constraint system to be monadic
first-order logic without equality nor function symbols. Then, the
question of whether P ~% Q, given two well-terminated processes
P and Q), is undecidable.

A more compelling application of the above construction is
given in the next section. In fact, the following result is the main
application of the paper.

4.2 Application: Undecidability of monadic FLTL

In this section we shall state a new undecidability result for
monadic FLTL as an application of the above Minsky encoding
and the logic characterization of utcc in (23).

FLTL Characterization. We first need to recall the FLTL charac-
terization of utcc (23).

DEFINITION 10. Let [-] a map from wtcc processes to FLTL for-
mulae given by:

[skip] = true [tell(c)] = ¢
[@bszio Pl = Vie=[P) [PIQ] = [PIALQ]
[(local Z; ¢) P] = 3Z(cA[P]) [next P] = ofP]
[unless cnext P] = c¢V o[P] ['P] = 0g[P]

The compositional encoding in Definition 10 gives a pleasant
correspondence between utcc processes and FLTL formulae.

THEOREM 3 (Logic Correspondence (23)). Let [-] as in Defini-
tion 10 and b as in Definition 3. If P is a well-terminated process
and c a state formula then

[P] Fr ©c iff Py .

It should be noticed that the encoding of Minsky machines in
the previous section uses only well-terminated processes.

Quantification of flexible variables. 1In (18) a FLTL named TLV
is studied. The logic we present in Definition 1 differs from TLV
only in that TLV disallows quantification of flexible variables as
well as the past operator. We shall see that quantification over flexi-
ble variables is fundamental for our encoding of Minsky machines.
We also state in Corollary 2 that the past-free monadic fragment
of the FLTL in Section 2 without equality nor function symbols is
strongly incomplete. This in contrast with the same TLV fragment
which is decidable wrt validity (18).

Because of the above-mentioned difference with TLV we shall
use the following notation:

NOTATION 3. Henceforth we use TLV-flex to denote the past-free
fragment of the FLTL presented in Section 2, i.e., the set of FLTL
formulae without occurrences of the past modality ©.

In (18) it is proven that the problem of validity of a monadic
TLV formula A without equality and function symbols is decidable.
This decidability result is proven the same way as the standard de-
cidability result for classical monadic first-order logic—By getting
rid of quantifiers and reducing the problem to the decidability of
propositional LTL.

Nevertheless, quantification of flexible variables makes impos-
sible to obtain a prenex form of a formula which may then allows
us to get rid of quantifiers as it can be done for monadic first-order
logic. Consider for example the unary predicate p.(x) testing if
is equal to a constant c. Take the formula F' = (p.(x) A o—pc(x)).
If z is a flexible variable, notice that (J3x F’ is satisfiable whereas
JxOF is not. Hence, moving quantifier to the outermost position to
get a prenex form does not preserve satisfiability. Notice also that
if x is a rigid variable instead, [J3z F' and JzUJF" are both logically
equivalent to false.

The following proposition follows from composing the encod-
ings from Minsky machines into utcc and from utcc into FLTL.

PROPOSITION 1. Let M(0,0) be a Minsky machine and P =
[M(0,0)] as defined in Section 4.1. Let A = [P] be the FLTL
Sformula obtained as in Definition 10. Then A is a monadic without
equality and function symbols TLV-f1lex formula.

To see the importance of quantifying over flexible variables in
the encoding A = [P], take the output of a in line 3 of the encoding
P = [M(0,0)] and assume that « is rigid. Notice that abstraction
in line 4 is replicated, thus corresponding to a formula of the form
(V. out;.(2) = F. Once the formula out;,(a) is true, by the
rigidity of a, the formula F[a/z] must be true in the following
states, which does not correspond to the intended meaning of the
machine execution. Instead, if a is flexible, the fact that out}, (a) is
true at certain state does not imply that F'[a/z] must be true in the
subsequent states.

Now with the help of the above proposition and the encoding
we obtain the following:

PROPOSITION 2. Given a Minsky machine M (0, 0), it is possible
to construct a monadic TLV-flex formula without equality and
Sfunction symbols Fr s.t Fiy is valid iff M (0, 0) loops (i.e., it never
halts).

Let M(0,0) be a Minsky machine. Let P = [M(0,0)]"” where
[M(0,0)]" is defined as the encoding [M (0, 0)] in Section 4.1
except that ins(-) adds tell(running) in parallel to the encoding
of all instructions but halt. For the above proposition, we can then
take Fy = A = Orunning, where A = [P] and [P] as given
in Definition 10.

Since the set of looping Minsky machines (i.e. the complement
of the halting problem) is not recursively enumerable, a finitistic ax-
iomatization of monadic TLV-flex without equality and function
symbols would yield to a recursively enumerable set of tautologies.
Therefore such a logic is strongly incomplete.

COROLLARY 2 (Incompleteness). Monadic TLV-flex without
equality and function symbols is strongly incomplete.

From this corollary it follows that the validity problem in the
above-mentioned monadic fragment of TLV-flex is undecidable.

5. Closure-Operator Semantics

In the previous section we showed that utcc processes can repre-
sent Minsky machines. In this section we show that utcc processes
can be represented as partial closure operators.

More precisely, we shall give a compositional characterization
of the input-output behavior of utcc processes in terms of (partial)
closure operators. We build on the closure operator semantics in
(24) for tcc. Because of additional technical difficulties posed by
the abstraction operator of utcc, the codomain of the closure-
operators is more involved than that for tcc. Namely, instead of
sequences of constraints as in tcc, we shall use sequences of
future-free temporal formulae (constraints).

The proposed denotational semantics takes into account also
non well-terminated processes (Definition 9). Consequently, we
shall use the alternative symbolic reduction semantics in (23) which
deals with the infinite internal computation problems discussed in
Section 3.2 (Remark 2).

5.1 Symbolic Semantics

Here we recall the symbolic reduction semantics in (23). Intuitively,
the symbolic observable reductions use temporal constraints to
represent in a finite way a possibly infinite number of substitutions
as well as the information that an infinite loop may provide. This
semantics guarantees that every sequence of internal transitions is
finite.

Before defining the symbolic semantics let us give some intu-
itions of its basic principles.

A. Substitutions as Constraints. Take R = (abs z; ¢) P. The
operational semantics performs P[t/xz] for every ¢ s.t c[t/x] is
entailed by the store d. Instead, the symbolic semantics dictates that
R should produce e = d A Vx(c = d’) where, similarly, d’ should
be produced according to the symbolic semantics by P. Let ¢ be an
arbitrary term s.t d & c[t/z]. The idea is that if €’ is operationally
produced by P[t/z] then €’ should be entailed by d'[t/x]. Since
d c[t/x] then e b d'[t/z] I €. Therefore e entails the constraint
that any arbitrary P[t/x] produces.

B. Timed Dependencies in Substitutions. The symbolic se-
mantics represents as temporal constraints dependencies between
substitutions from one time interval to another. E.g., suppose that
for R above, P = next tell(c'). Operationally, once we move to
the next time unit, the constraints produced are of the form ¢'[t/x]
for those t’s s.t the final store d in the previous time unit entails
c[t/z]. The symbolic semantics captures this as ¢/ = (Od) A
Vz((Oc) = c') where O is the “previous” (or “past”) modality
in FLTL (see Section 2).

For the symbolic semantics we then use the Future-free frag-
ment of the FLTL in Definition 1.

DEFINITION 11 (Future-free constraints). A temporal formula is
said to be future-free iff it does not contain occurrences of [
and o. We shall use e,€’... to range over future-free formulae
and w,w’,v,v’, ... to range over infinite sequences of future-free
formulae. Notice that every constraint (i.e., state formula) is a
future-free formula.

(P,3%e) — 4 <Q, e’ A EI:Ee>
{(abs &;e') P,e) — {(abs F;e') Q,e AVE(e =€)

Ras

(Pe) —7 (Q,¢') s

(e.e”)

P ==, F(Q,¢)

Ros

Table 2. Symbolic Rules for Internal and Observable Transitions.
The function F5 is given in Definition 12.

We shall assume that processes and configurations are extended
to include future-free formulae rather than just constraints (state
formulae). So, for example a process-store configuration of the
form ((abs y;Oc) P, ©d) may appear in the transitions of the
symbolic semantics.

5.1.1 Symbolic Reductions.

The internal and observable symbolic transitions — 5, —> are
defined as in Table 1 with I~ replaced by -7 and with Ra and Ro
replaced by Ras and Ros in Table 2 resp.

The rule Ras represents with the temporal constraint VZ(e =
€') the substitutions that its operational counterpart Ra would
induce. Notice that in the reduction of P the variables & in e are
hidden, via existential quantification, to avoid clashes with those in
P.

The function F§ in Ros is similar to its operational counter-
part F' in Definition 7. However, F records the final global and
local stores as well as abstraction guards as past information. As
explained before, this past information is needed in next time unit.

DEFINITION 12. Let F be a partial function from configurations
to processes defined by Fs(P, e) = tell(©e) || F'(P) where:

skip if P = skip

(abs #; 0e) F'(Q) if P = (abs &;e) Q
F'(P) || F'(P) ifP="P | P

F'(P)= (local #;0e) F'(Q) if P = (local Z;e) Q
Q if P = next Q
Q if P = unless c next Q

Clearly, no infinite sequence of internal transitions vy1 —
Y2 —s ... can be generated by the symbolic semantics.

We now define the input-output behavior and equivalence for
the symbolic reduction semantics.

DEFINITION 13 (Symbolic Relations). Let e and e’ be future-free
formulae. We write e = ¢’ whenevere -1 €. Ife = ¢’ and e’ = e
we write e = €. Ife = €' and e % €' then we write e = ¢'. We
extend >, >~ and = to sequences of future-free formulae: w > v
(w = v, w = v)ifforalli > 0, w(i) = v(i) (w(E) = v(i),
w(i) = v(1)).

(w,w’)

(e1,e}) (e2,eh)

IfP =P s P s .. We write P ——=>;
where w = ej.ez... and w' = €}.e5... The symbolic input-output
(w,w’)

behavior i0s(P) is defined as the set {(w,w’) | P
modulo = . We write P ~¢ Q iff i0,(P) = i0s(Q).

As shown in (23), the symbolic reduction semantics and the
SOS coincide for the fragment of abstracted-unless free processes:

s}

DEFINITION 14 (Abstracted-unless free Processes). We say that
P is abstracted-unless free if it has no occurrences of processes
of the form unless c next Q where c or QQ has occurrences of
variables under the scope of an abstraction.

The correspondence is confined to this fragment of the calculus
due to the problem of representing the negation of entailment as
logic formulae (see (23) for further details).

THEOREM 4 (Semantic Correspondence (23)). Let P be an abstracted-

unless free process. Suppose that P (crdy) P, (c2dp) - Lends)

P;and P %S P’ (c2.0) PR (es,04) P/. Then for every
ce€Candje{l,... i}, d;j b ciffej Fre

5.2 Monotonic fragment and closure operators

In this section we show that i0,(P) is a partial closure operator—
see Section 2. Notice that the “unless” operator unlike the other
constructs in utcc exhibits non-monotonic input-output behavior
in the following sense: Given w = w’ and P = unless c next Q,
if (w,v), (w',v") € ios(P), it may be the case that v’ = v. E.g.,
take @ = tell(d), w = c. true” and w’ = true®.

DEFINITION 15 (Monotonic Processes). We say that P is a mono-
tonic process iff P does not have occurrences of processes of the
form unless ¢ next Q.

In fact, for a monotonic process P, i0s(P) is a closure opera-
tor. The next proposition basically follows from the corresponding
closure-operator properties for internal symbolic transition which
in turn can be proven by induction on the (depth of) derivation of
internal symbolic transitions.

PROPOSITION 3 (Closure Properties). Let P be an arbitrary utcc
process. We have the following:

e Extensiveness: [f (w,w') € ios(P) then w' = w

¢ Idempotence: If (w, w') € ios(P) then (w',w") € ios(P)

e Monotonicity: if P is monotonic, (w1,w2) € i0s(P) and
wi = w1, then there exists wy such that (wy,ws) € io0s(P)
and wh = wa.

A pleasant property of closure operators is that they are uniquely
determined by its set of fixed points; here referred to as strongest
postcondition.

DEFINITION 16 (Strongest Postcondition). Given a utcc process
P, the set

sps (P) = {w | (w, w) € ios(P)}
denotes the strongest postcondition of P. Moreover, if w € sps(P),
we say that w is a quiescent sequent for P, i.e. P under input
w cannot add any information whatsoever. Define P ~F Q iff
sps(P) = sps(Q).

Recall that the symbolic semantics transfers the final store of a
time-unit to the next one as a past formula (Definition 12). There-
fore, for any process P, if s € sp,(P) then s is a past-monotonic
sequence in the following sense.

DEFINITION 17 (Past-Monotonic Sequences, PM). We say that
an infinite sequence of future-free formulae w is past-monotonic
iff foralli > 1, w(i) br ©Ow(i — 1). The set of infinite sequences
of past-monotonic formulae is denoted by PM.

Before relating the input-output behavior with the strongest
postcondition of a process, we need to introduce the following
notation.

NOTATION 4. The upper closure of a future-free formula e is the
set {e' | ¢ = e} and we write T e. We extend this notion to
sequences by decreeing that T w = {w’ | w’ = w}.

The input-output behavior of a monotonic process can be re-
trieved from its strongest postcondition. This characterization is ex-
pressed by the following corollary, whose proof is standard, given
that o, (P) is a closure operator.

COROLLARY 3. Let min be the minimum function wrt the order
induced by >. Given a monotonic utcc process P,

(w,w") € ios(P) iff w' = min(sps (P)N T w)

Therefore to characterize the input-output behavior of P, it suf-
fices to specify sps (P). In the next section we give a denotational
semantics [-] that aims at specifying sp; (-) compositionally.

5.3 Denotational Model

This section presents a denotational model for the strongest post-
condition of utcc processes. This semantics is built on the clo-
sure operator semantics for tcc in (24). We will briefly discuss the
technical problems in giving a closure operator semantics for the
abstraction process.

We need the following notations.

NOTATION 5. Given the sequence of variables ¥ = x1,...,Tn,
dz stands for the expression 33, 3zy...3e,,. We shall use Izw to
denote the sequence obtained by pointwise applying 3z to each
constraint in w. Similarly, w A w' denotes the sequence v such
that v(i) = w(i) A w' (i) for i > 0. Abusing of the notation, for
Z ¢ fu(w) we understand that none of the variables in T occurs
free in the constraints of w.

The equations for the local and abstraction operators involve
the notion of Z-variants. Basically, two formulae (or sequences
of formulae) are Z-variant if they are the same except for the
information about the variables in . Formally:

DEFINITION 18 (Z-variant). We say that e and €' are T-variants
if 3ze = 3ze’. Similarly, the sequence w is an T-variant of the
sequence w' iff Jzw = Jzw'.

The denotational semantics is defined as a function [-] which
associates to each process a set of infinite sequences of past-
monotonic formulae, namely [-] : Proc — P(PM). The definition
of [-] is given in Figure 1. Recall that [P] is meant to capture the
quiescent sequences of P; those sequences P cannot add any in-
formation whatsoever—i.e., the strongest postcondition of P.

Let us first give some intuition about the semantics of processes
that do not bind variables. So, skip cannot add any information to
any sequence in PM (Ds). The sequences to which tell(c) cannot
add information are those whose first element can entail ¢ (D).
A sequence is quiescent for P || @ if it is for P and Q@ (Dp).
Process next P has not influence in the first element of a sequence,
thus e.w is quiescent for it if w is quiescent for P (Dy). A similar
explanation can be given for the process unless ¢ next P (Dy).
A sequence is quiescent for ! P if every suffix of it is quiescent for
P (Dr).

We now consider the binding processes. A sequence w is qui-
escent for Q = (local Z; c) P if there exists an Z-variant w’ of w
s.t. w’ is quiescent for P. Hence, if P cannot add any information
to w’ then cannot add any information to w. To see this notice
that w and w’ are Z-variants; i.e., they are the same except possibly
on the information about the variables in Z. Clearly) cannot add
any information on (the global variables) & appearing in w. So, if
Q were to add information to w, then P could also do the same to
w’. But the latter is not possible since w’ is quiescent for P.

Now, we may then expect that the semantics for the abstraction
can be straightforwardly obtained in a similar fashion by quantify-
ing over all possible Z-variants. Nevertheless, this is not the case as
we shall illustrate below.

5.3.1 Denotation of Abstraction Using Z-variants

Recall that the ask tcc process when ¢ do @ is a shorthand for
the empty abstraction process (abs ¢;c¢) @ (Notation 1). Recall
also that 7 denotes the set of all terms in the underlying constraint

system. The first intuition for the denotation of the process P =
(abs &; ¢) Q is given with the following equation.

() [(when cdo Q)[t/]]
teT!?l
where [when ¢ do Q)] is the usual denotational equation for the
ask processes in tcc, i.e.

[when cdo Q] = {w | w(1) Fr cimplies w € [Q]}

This equation arises directly from the fact that P can be viewed
as the (possibly infinite) parallel composition of the processes
(when ¢ do Q)[t/Z] for every sequence of terms ¢ € 717!,

Nevertheless we can give a denotational equation for abstraction
which is analogous to that of the local operator. By using the notion
of Z-variants the equation does not appeal to substitution as the
one above. As illustrated below the denotation of abstraction is
not entirely dual to the denotation of the local operator. The lack
of duality between Di, and DA is reminiscent of the result in
CCP (11) stating that negation does not correspond exactly to the
complementation (See (9; 11)).

NOTATION 6. Given a sequence €1 .€s..., we use €1.€s... to denote
the past-monotonic sequence

e1.(e2 A Oer).(e3 A Oea A O%ey)..

EXAMPLE 2. Let Q = (abs z;c) P where ¢ = out (z) and
P = tell(out’(z)). Take the past-monotonic sequence

w = (out(0) A out’(0)). true* € sp, (Q).
Suppose that we were to give the following definition of [Q]:
{w | for every x-variant w' of w if w'(1) Fr c then w' € [P]}

Let 0 be a term. Notice that we have an x-variant

w’ = (out(0) A out’(0) A out(z)). true

ofws.t. w' (1) br cbut w' ¢ [P]. Then w ¢ [Q] under this naive
definition of [Q].

We fix the above definition in Equation D s by using the follow-
ing condition
w' = (F=1)*.
for a sequence of terms % s.t. || = |Z| and £ # &. Intuitively,
this condition together with w’(1) Fr c requires that w’'(1) Fr
¢\ = t'and hence that w’(1) Fr co for a substitution o = [£/].
Furthermore w’ > (Z = £) together with w’ € [P] realizes the

operational intuition that P runs under the substitution o. In fact
the denotation satisfies the following:

PROPOSITION 4. Let [-] as in Figure I and Q = (abs &;c) P.

we [Qliffwe () [(when cdo P)[i/]

feT!?l

5.4 Full-abstraction

In this section we show the correspondence between the symbolic
reduction semantics of utcc and the denotational one.

Soundness. The soundness of the denotation holds for the abstracted-
unless free fragment of utcc (see Definition 14). The technical
reason is that in proving sps(P) C [P] for P = (abs z;¢) Q
where x € fv(Q) we need @Q to be monotonic (Definition 15).

THEOREM 5 (Soundness). Given an abstracted-unless free pro-
cess P, sps(P) C [P]

Ds [skip] = PM

Dt [tell(c)] = {ew€ PM|etr c}

Dp [P Q] = [PIn[Q]

Dx [next P] = {ew € PM |w € [P]}

Dy [unlesscnextP] = {ew € PM |el/r candw € [P]}U
{eew € PM |ebtr ¢}

Dr [!'P] = {w € PM |forallv, v s.t.w = v.v’,

v € [P}
D [(local Z;c) P] = {w € PM | there exists an Z-variant

w’ of wstw’ (1) Fr candw’ € [P]}

Da [(abs &;c) P] {w € PM | for every &-variant w’ of w
ifw’ (1) Fr cand w’ = (& = 1)
for some 's.t. | €| = |¢] and & # ¢ 'then
w' € [P[}

Figure 1. Denotational Semantics for utcc. The function [-] is
of type Proc — P(PM).In Da, & = T denotes the constraint
/\1<i<|f| z; = t; and § # & stands for point-wise syntactic
differj:nce, ie. {\19’5\5\ t; # x; (see Sect. 2). If |Z| = 0 then
Z =t and & # t are defined as true.

The proof of the above theorem proceeds by induction on the
size of P. Here we only outline the main steps of the abstrac-
tion case P = (abs &;c)Q —the other cases proceed as in
(22). As a mean of contradiction assume that w € sp(P) and
w ¢ [P]. By using alpha-conversion we can assume that & ¢
fv(w). Since w ¢ [P] then let w’ be an Z-variant of w s.t.
w'(1) Fr ¢, w' = (F=1)* with Z # tand w’ ¢ [Q]. By
hypothesis w’ ¢ sps(Q). Since P is abstracted-unless free then

’ ’
@ is a monotonic process and thus Q) %S forav’ = w'.

We can now use the facts that w’ > (& = £)* and that w’ is an
Z-variant of w to verify that (Q ||! tell(Z =)) Qo). and thus
o o (w,3z0’
that R = (local %) (Q ||! tell(Z = t)) wzv) s. We then show
that R ~%° Q[t/Z] and hence (w,3zv") € ios(Q[E/Z]). Since w
and w’ are Z-variants, T ¢ fv(w) and v’ = w’ then Jzv" > w.

Therefore,

w ¢ sps(Q[E/])
Notice that because w’(1) Fr c and w’ > (Z=1)" we have
w'(1) Fr c[t/], and thus w(1) Fr c[t/Z] since w and w' are
Z-variants. This leads to a contradiction by verifying that for all
w,tif w € sps(P) and w(1) Fr c[t/Z] it must be the case that
w € sps (Q[t/Z]).

Completeness. For completeness we have similar technical prob-
lems that in the case of tcc (22) namely: the combination between
the local and the “unless” operator—see (22) for details. Thus as in
(22) the full abstraction is achieved only for the locally independent
fragment.

DEFINITION 19 (Locally Independent Processes). We say that P
is locally independent iff P has no occurrences of processes of the
form unless ¢ next Q) under the scope of a local operator.

The use of the abstracted-unless free condition in the complete-
ness result is analogous to that for soundness.

THEOREM 6 (Completeness). Given a locally independent and
abstracted-unless free process P, [P] C sps(P)

Similar to the case of soundness, the proof of Correctness pro-
ceeds by induction on the size of P. Here we only outline the main
steps of the abstraction case P = (abs Z;c) Q. As a mean of
contradiction assume that w € [P] and w ¢ sps(P). By alpha-
conversion we can assume that & ¢ fv(w). Since w ¢ sps(P) then
one can verify that we have at # & s.t. w(1) - c[t/&] and

w ¢ sps(Q[E/7]).

Letw’ = wA(Z = £)“. Notice that w’ is an Z-variant of w because
Z ¢ fu(w). Thus, since w(1) Fr c[t/Z] then w'(1) Fr c[t/].
From w € [P], and Equation Da, w’ € [Q] and by hypothesis
w' € sps(Q). Using Rule Ras and the fact that w ¢ sp,(P), we

can show that w ¢ sp; (Q). Since w’ € sps(Q) then Q (w’,w") .
(w’,w")

From this we can verify that (Q ||!'tell(# = {)) === and
Q[t/4] %g Therefore, w € sps(Q[t/]), a contradiction.

Full Abstraction. From Corollary 3, soundness and complete-
ness, we can derive the following full-abstraction result.

COROLLARY 4 (Full abstraction). Let P and Q be locally inde-
pendent and monotonic processes and [-] as in Figure 1. Then

P~y Q iff[P] = [Ql

Therefore, the input-output behavior of the monotonic locally-
independent fragment of utcc can be compositionally specified in
terms of closure operators. To illustrate the applicability of this
fragment, in the next section we shall identify a language for
security protocols whose semantics can be given in terms of this
kind of closure operators.

REMARK 3. Notice that the connection between the operational
semantics and the denotational semantics for well-terminated pro-
cesses follows from Theorem 4 and the soundness and completeness
results in this section.

5.5 Application: A security process language

Cryptographic protocols aims at communicating agents securely
over an untrusted network. Several process languages have been
defined to analyze these protocols (10; 3; 4; 6). Typically, these
calculi provide a mechanism for communication of private names
(nonces) and they are parametric in an entailment relation over a
logic for reasoning about cryptographic properties.

In this section we show how the monotonic locally-independent
fragment of utcc and its closure operator characterization can be
used to give meaning to a process language enjoying the typical
features of calculi for security mentioned above. This language
arises as specialization of utcc with a particular cryptographic
constraint systems. We will show that processes in the language can
be compositionally specified as closure operators. So, e.g., the set
of messages a protocol may produce can be represented as a closure
operator over sequences of constraints. The least fixed point of this
operator may be used to verify if a secrecy property is not verified
by the protocol.

The modeling language: SCCP

We shall use a syntax of processes following that of SPL (10). Ba-
sically, this language offers primitives to output and receive mes-
sages as well as to generate secrets or nonces (randomly-generated
unguessable items).

DEFINITION 20 (Syntax of SCCP).

Values v, o' u= nlz
Keys k m= pub(v) | priv(v)
Messages M,N == wv|k|X|(M,N)|{M},
Patterns ILII" == wo|k|X|(ILII)
Processes R n= nil

Inew (z)R

lout(M).R

lin [M > T1).R

'R

R R

We shall refer to the language given by the above syntax as
SCCP (Security Concurrent Constraint Programming Language).
The language includes a set of names (values) with n, m, A,
B ranging over it. These values represent ids of principals or
nonces. The set of keys is built upon two constructors providing
the public (pub(v)) and the private key (priv(v)) associated to
a value. Messages can be constructed from composition (M, N)
and encryption {M }j of messages. As explained below, message
decomposition can be obtained by using pattern matching.

Intuitively, processes in SCCP run in time intervals. The output
process out(M).R broadcasts M over the network and then it
behaves as R in the next time unit. The input in [M > II]. R waits
for a message M that matches the pattern I and binds the variables
occurring in the pattern and then it behaves like R in the next time
unit. For example, for every message of the form (N, N ’)pub(A)s
the process in [{M },us (4) > (,y)].R executes R[N/z, N'/y]
in the next time unit. The process new(x)R generates a (nonce)
x private to R. The process nil does nothing; R || R’ denotes the
parallel execution of R and R’. Finally ! R denotes the execution of
R in each time unit.

Dolev-Yao Constraint System. Typically in the modeling of se-
curity protocols one must take into account all possible actions
the attacker may perform. This attacker is usually given in terms
of the Dolev and Yao thread model (14) which presupposes an at-
tacker that can eavesdrop, disassemble, compose, encrypt and de-
crypt messages with available keys. It also presupposes that cryp-
tography is unbreakable.

Before giving a closure operator semantics to our security lan-
guage, we then need a constraint system handling the cryptographic
constructs (e.g. encryption, message composition, etc) and whose
entailment relation follows the inferences a Dolev-Yao attacker
may perform.

DEFINITION 21. Let ¥ be a signature with constant symbols in
V, function symbols enc, pair, priv and pub and unary predicate
out. Let A, be the closure under deduction of { F' | Fs F } witht-
as in Table 3. The (secure) constraint system is the pair (s, As).

Intuitively, V represents the set of principal ids, nonces and val-
ues. We use {m} and (m1, mz) resp., for enc(m, k) (encryption)
and pair(ma1, mz)(composition). Rule ENC says that if one can
infer that the message m as well as a key k are output on the global
channel out, then one may as well infer that {m} is also output
on out. The other rules can be explained similarly.

A Protocol in SCCP

To illustrate the language consider the following simplification of
the Denning-Sacco key distribution protocol (13):

{(A,m) }pun(m)
{n}pub(m)

This protocol involves two principals A and B. In the first step, A
sends to B the message {A, m}pub(B) representing the composi-
tion of the A’s identifier and the nonce m encrypted with the B’s

msgi A— B
msga B— A

F t5 out((mq,m2)) i € {1,2}

PRJ
F 5 out(m;)
F s out(my) F kg out(mz)
PAIR
F 5 out((m1,m2))
F s out(m) F g out(k
ENC (m) (k)

F g out({m}y)

F 5 out(priv(k)) F ks out({m}yupk))

DEC
F 5 out(m)

Table 3. Security constraint system entailment relation.

public key. With its private key, B decrypts the message sent by A
and he sends a new nonce n encrypted with the public key gener-
ated from m. The property that must be verified is that only A and
B can know n.

Assume the following execution of the protocol between A, B
and C'. Here C'is an intruder, i.e. a malicious agent playing the role
of a principal in the protocol.

msgi A—-C
msgi C— B
msgs B— A

{(A;m) }pus ()
{(A,m) }pus (B)

{n}pub(m)

In this execution, the attacker replies to B the message sent by
A and B believes that he is establishing a session key with A.
Since the attacker knows the nonce m from the first message, he
can decrypt the message {n},u; (m) and n is not longer a secret
between A and B as intended.

We model the behavior of the initiator and the responder in our
running example as follows:

Init(A,B) = !nmew(m)
OUt({(Avm)}pub(B))-nil

lin [M > {(x>u)}pub(B)}-

new(n)

OUt({TL}pub (u))nil

|acr ! out(A).nil

lacp out(pub(A)).nil

lacBaa ! out(priv(A)).nil

Resp(B) =

Spy =

The process Spy corresponds to the initial knowledge the attacker
has. Given the set of principals of the protocol P, the spy knows all
the names of the principals in the protocol and their public keys. He
also knows a set of private keys denoted by Bad. This set represents
the leaked keys, for example, the private key of C' in the above
configuration exhibiting the secrecy flaw.

Notice that the processes Init and Resp are replicated. This
models the fact that principal may initiate different sessions during
the execution of the protocol.

Closure Operators for SCCP

The following definition interprets SCCP processes as monotonic
utcc processes.

DEFINITION 22. Let I be a function from SCCP to monotonic
utcc processes defined by:

skip if R = nil
(localx) I(R') if R = new(z)R'
tell(out(M)) || next I(R') if R = out(M).R’

=19 (abs;c)next [(R) if R =in [M > II.R'
llicr I(R:) if R =llier R
(R ifR =R

where & = fu(Il) and ¢ = out (M) A (M = TI).

It is easy to see that the above interpretation realizes the be-
havioral intuition of SCCP given before. Intuitively the output
out(M) is mapped to a process adding the constraint out (M).
Since the final store in utcc is not automatically transferred to the
next time interval, the process tell(out(M)) is replicated. This
reflects the fact that the attacker can remember all the messages
posted over the network.

For the case of inputs, we use the guard of the abstraction
operator to check if the input received matches with the pattern
I1. Take for example Resp(B) in our example. This process is
interpreted via I above as:

!'(abs z, u; out ({M}pup(5y) A M = (x,w)) next Q

where Q@ = I(new(n)out({n}),us)-nil). When a con-
straint of the form out ({(N, N')},us(5)) can be deduced from the
current store, the process Q[N/z, N'/y] is executed in the next
time unit as expected.

The following function maps our security processes into its set
of fixed points as specified in Figure 1—i.e., its strongest postcon-
dition.

DEFINITION 23. For any SCCP process R we define [R]sccp as
[Z(R)] with I(-) as in Definition 22 and [-] as in Fig. 1.

Since the interpretation function [is given in terms of the
monotonic fragment of utcc, it follows from Section 5.4 that
[R]sccp corresponds to a closure operator.

Modeling Secrecy Properties. 'We can represent protocols in such
a way that potential attacks can be specified as the least fixed point
of the closure operators representing them. To detect when the
secret created by Resp is revealed by the attacker, we modify the
definition of this process as follows:

Resp'(B) = !in [M > {(z, u) }pun(s))-
new (n)(out({n}u(w))nil) ||
lin [Y > n].out(attack).nil)

Intuitively, Resp’ outputs the message attack when the mes-
sage n appears unencrypted on the network, i.e., when out(n) can
be deduced from the current store.

Recall that false is an absorbing element for conjunction and
it is the greatest future-free formulae wrt >=. Our approach is then
to add the constraint false when the message attack can be
read from the network. In terms of the closure operator semantics
it implies that if a process R outputs the message attack, then
the least fixed point of the closure operator representing R is a
sequence whose suffix is the sequence false“. More precisely,

PROPOSITION 5. Let R be a SCCP process. Let f be defined as
[R]scce N [! when out(attack) do ! tell(false)]

Therefore, I(R) attack Uff the least-fixed point of the closure
operator corresponding to f takes the form w. false”

The previous proposition allows us to exhibit the secrecy flaw
in our running example. Le., let P = {4, B, C'} be the set of prin-
cipal names and Bad = {C'} be the set of leaked keys in our previ-
ous protocol example. Given the process DS = Init(A,C) ||xep
Resp'(X) and

f=1[DS]scce N[! when out(attack) do tell(false)]

The least fixed point v of f takes the form v = w. false® .

Closure Properties of a Spy. We conclude this section by point-
ing out that the interpretation of the behavior of protocols as closure
operators is a natural one. To see our intuition, let us suppose that
f is a closure operator denoting a SCCP Spy eavesdropping and
producing information in the network.

e f(w) > w: The Spy produces new information from the one he
obtains.

o If w = v then f(w) = f(v): The more information the Spy
gets, the more he will infer.

e f(f(w)) = f(w): The Spy infers as much as possible from the
info he gets.

6. Concluding Remarks and Related Work

We showed that unlike the processes of its predecessor tcc, utcc
processes can represent Turing-powerful formalisms. As an appli-
cation we showed the undecidability of monadic FLTL without
function symbols nor equality. We also showed that like for tcc
processes, utcc can be represented as partial closure operators. As
an application we identify a language for security in which proto-
cols can be represented as closure operators. The language arose
as a specialization of utcc in a particular cryptographic constraint
system.

Expressiveness of TCC and FLTL. The expressivity of CCP-
based languages has been explored in (24; 21; 28). These works
show that tcc processes are finite-state. The results in (21) also
imply that the processes of the extension of tcc with arbitrary
recursive definitions are not finite-state. Nevertheless these results
do not imply that they can encode Turing-expressive formalisms.

There are several works addressing the decidability of frag-
ments of FLTL. In Section 4 we already discussed that in (18)
showing that the validity problem in monadic TLV without equal-
ity and function symbols is decidable. As mentioned before, TLV
unlike TLV-flex does not allow quantification over flexible vari-
ables. Our decidability results justifies the imposition of this quan-
tification restriction.

The work in (21) shows the decidability of the satisfiability
problem restricted to negation-free TLV-f1ex formulae. It was also
suggested in (21) that one could dispense with this restriction.
This paper refutes this since in the absence of this restriction one
can obviously define universal quantification (not present in the
negation-free fragment of (21)) and then be able to reproduce the
encoding of looping Minsky machines here presented.

Based on the undecidability result of TLV(()) (27) (i.e. TLV with
the empty set of predicates), (18) proves an incompleteness result
for monadic without equality and function symbols TLP logic. Un-
like TLV, in TLP the interpretation of the predicates is flexible (state
dependent) and all the variables are rigid. (18) also relates unde-
cidability results of n-adic fragments of TLP with undecidability
results of n 4 1-adic fragments of TLV. Thus adding binary predi-
cates turns TLV strongly incomplete. In (16) the monodic fragment
of FLTL is introduced. A formula is monodic if every subformulae
beginning with a temporal operator have at most one free variable.
In this case the authors use a TLP-like semantics and conclude that
the set of valid formulae in the 2-variable monadic fragment (i.e.
monadic formulae with at most 2 distinct individual variables) is
not recursively enumerable even considering finite domains in the
interpretation. Nevertheless validity in the fragment of 2-variable
monodic formulae is decidable. In (12) these results are extended
claiming the undecidability for validity in the monodic monadic
2-variable with equality fragment of TLP.

Closure-Operator Semantics and Security. As previously men-
tioned the closure-operator semantics for utcc builds on that for

its predecessor tcc in (24) and (22). The denotation in these works
map processes into sequences of constraints. Because of the tech-
nical difficulties posed by the abstraction operator our denota-
tion maps instead processes into sequences of past-monotonic se-
quences of future-free FLTL formulae.

Several process languages have been defined to analyze secu-
rity protocols. For instance Crazzolara and Winskel’s SPL (10), the
spi calculus variants by Abadi (3) and Amadio (4), and Boreale’s
calculus in (6) are all operationally defined in terms of configura-
tions containing items of information (messages) which can only
increase during evolution. Such monotonic evolution of informa-
tion is akin to the notion of monotonic store in CCP. Moreover, the
calculi in (4; 6; 15) are parametric in an entailment relation over a
logic for reasoning about protocol properties very much like CCP is
parametric in an entailment relation over an underlying constraint
system.

Although utcc can be used to reason about certain aspects of
security protocols (e.g., secrecy), it was not specifically designed
for this application domain. Here we illustrated how the closure op-
erator semantics of utcc may offer new reasoning techniques for
the verification of security protocols. We also argued for the closure
operators as a natural characterization of the information that can
be inferred (e.g., by Spy) from a protocol. Furthermore, the closure
operator semantics presented here and the full abstraction theorem
in Section 5.4 may allow us to tailor techniques based on behav-
ioral equivalences, e.g. (3; 15), for analyzing security protocols.
An example modeling the Needham-Schroeder protocol in utcc
was presented in (23). This example however uses non-monotonic
processes which do not allow a closure-operator representation. To
our knowledge closure operators had not been considered in the
study of security protocols.

The successful logic programming approach to security proto-
cols in (2) is closely related to ours. Basically, in (2) protocols are
modeled as a set of Horn clauses rather than processes. The veri-
fication of the secrecy property relies in deducing (or proving that
it is not possible) the predicate attack(M) from the set of Horn
clauses. A benefit from our approach is that we can overcome the
problem of false attacks pointed in (5). E.g. Consider a piece data
that needs to be kept secret in a first phase of the protocol and later
is revealed when is not longer a secret. Because the lack of tem-
poral dependency this may generate a false attack. The temporal
approach presented here allows us to control when a message is
required to be secret. The work in (5) also avoid false attacks by
using a linear logic approach rather than a temporal one.

References

[1] M. Abadi. Corrigendum: The power of temporal proofs. Theor.
Comput. Sci., 70(2), 1990.

[2] M. Abadi and B. Blanchet. Analyzing Security Protocols with Secrecy
Types and Logic Programs. Journal of the ACM, 52(1), 2005.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols:
The spi calculus. In Fourth ACM Conference on Computer and
Communications Security, pages 36-47. ACM Press, 1997.

[4] R. M. Amadio, D. Lugiez, and V. Vanackere. On the symbolic reduc-
tion of processes with cryptographic functions. Theor. Comput. Sci.,
290(1), 2003.

[5] B. Blanchet. Security Protocols: From Linear to Classical Logic by
Abstract Interpretation. Information Processing Letters, 95(5), 2005.

[6] M. Boreale and M. G. Buscemi. A method for symbolic analysis of
security protocols. Theor. Comput. Sci., 338(1-3), 2005.

[7] E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Prob-
lem. Springer, 2001.

[8] J. R. Buchi. On a decision method in restricted second order arith-
metic. In Proc. of Int. Conf. on Logic, Methodology, and Philosophy
of Science, 1962.

[9] A. Cortesi, G. Filé, F. Ranzato, R. Giacobazzi, and C. Palamidessi.
Complementation in abstract interpretation. ACM Trans. Program.
Lang. Syst., 19(1), 1997.

[10] FE. Crazzolara and G. Winskel. Petri nets in cryptographic protocols.
ipdps, 03,2001.

[11] E S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving
concurrent constraint programs correct. ACM Transactions on Pro-
gramming Languages and Systems, 19(5), 1997.

[12] A. Degtyarev, M. Fisher, and A. Lisitsa. Equality and monodic first-
order temporal logic. Studia Logica, 72(2), 2002.

[13] D. E. Denning and G. M. Sacco. Timestamps in key distribution
protocols. Commun. ACM, 24(8), 1981.

[14] M. Fiore and M. Abadi. Computing symbolic models for verifying
cryptographic protocols. In Proc. of the 14th IEEE Workshop on
Computer Security Foundations. IEEE CS, 2001.

[15] C. Fournet and M. Abadi. Hiding names: Private authentication in the
applied pi calculus. In Proc. of ISSS, 2003.

[16] I. M. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable frag-
ment of first-order temporal logics. Ann. Pure Appl. Logic, 106(1-3),
2000.

[17] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Springer-Verlag, 1991.

[18] S. Merz. Decidability and incompleteness results for first-order tem-
poral logics of linear time. Journal of Applied Non-Classical Logics,
2(2), 1992.

[19] R. Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999.

[20] M. L. Minsky. Computation: finite and infinite machines. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1967.

[21] M. Nielsen, C. Palamidessi, and F. Valencia. On the expressive power
of temporal concurrent constraint programming languages. In Proc. of
PPDP’02. IEEE Computer Society, 2002.

[22] M. Nielsen, C. Palamidessi, and F. Valencia. Temporal concurrent
constraint programming: Denotation, logic and applications. Nordic
Journal of Computing, 9(1), 2002.

[23] C.Olarte and F. D. Valencia. Universal concurrent constraint program-
ing: Symbolic semantics and applications to security. In Proc. of SAC
2008. ACM, 2008.

[24] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed
concurrent constraint programming. In Proc. of LICS’94. IEEE CS,
1994.

[25] V. A. Saraswat. Concurrent Constraint Programming. MIT Press,
1993.

[26] V. A. Saraswat, M. Rinard, and P. Panangaden. The semantic foun-
dations of concurrent constraint programming. In POPL '91. ACM
Press, 1991.

[27] A. Szalas and L. Holenderski. Incompleteness of first-order temporal
logic with until. Theor. Comput. Sci., 57, 1988.

[28] F. D. Valencia. Decidability of infinite-state timed ccp processes and
first-order 1tl. Theor. Comput. Sci., 330(3), 2005.

