Temporal Concurrent Constraint Programming

Frank D. Valencia’s Ph.D Defense

Supervisor: Mogens Nielsen

BRICS, University of Aarhus
Aarhus, Denmark

February, 2003

EBRICS

Temporal CCP Feb., 2003

Motivation: Concurrency and Time

Concurrent Systems: Multiple agents (processes) that interact among
each other (e.g., Internet).

e Synchronous Systems:
Agents need to synchronize (e.g., phone calls).

e Mobile Systems:
Agents can change their communication links (e.g., mobile phones).

e Timed Systems:
Agents are constrained by timed requirements. (e.g., people at a company,
music performance, micro-controllers).

EBRICS .

Temporal CCP Feb., 2003

Motivation: Our Goal

A CCP model for describing and analyzing timed systems.

e Timed Systems involve:
> constraints specifying concurrent behavior
> partial information
> specific domains applications

e CCP used for:
> specifying concurrency via constraints
> manipulating partial information
> defining domain specific programming languages.

The model we developed is the ntcc calculus; the subject of this talk.

Temporal CCP Feb., 2003

Other models: Guidelines

e Models confine themselves to specific computational phenom-

ena
E.g. The m calculus: mobility and synchronous communication.

e Models must be simple, expressive, formal and provide tech-
niques.
E.g. The m calculus:
> simple idea of naming,
> full expressive power,
> formal process theory,
> bisimulation techniques.

e Modern models often arise as generalizations (or extensions)
of mature models.
E.g., The w calculus: a generalization of CCS.

Temporal CCP Feb., 2003

Our Model: The ntcc calculus.

e ntcc confines itself to timed systems where:
computation evolves in discrete time intervals (or time units).

e ntcc is simple, expressive, formal and provide techniques.
> Simple ideas from concurrency and temporal logic.
> |t expresses interesting real-world temporal situations.
> Formalization upon process algebra and logic.
> Techniques from a denotational semantics and process logic.

e ntcc arises as a generalization of tcc (Saraswat et al, 94).
Extends the computational model of tcc to allow for nondeterminism and
asynchrony.

EBRICS 4

Temporal CCP Feb., 2003

Models for Concurrency: Key Issues Addressed.

e Which process constructs fit the intended phenomena?
E.g. atomic actions, parallelism, nondeterminism, hiding, recursion, etc.

e How should these constructs be endowed with meaning 7
E.g. Operational, denotational, or algebraic semantics

e How should processes be compared 7
E.g. Observable Behavior, process equivalences, congruences and their

(un)decidability.

e How should process properties be specified and proved ?
E.g. Logic for expressing process specifications (Hennessy-Milner Logic)

e How expressive are the constructs 7
E.g., for the 7 calculus: Asynchronous vs. synchronous version.

Temporal CCP Feb., 2003

Our Model: Key Issues Addressed.

e Which process constructs fit discrete-timed systems?
Nondeterminism, replication, unbounded delays, unit delays and time-outs.

e How are these constructs given meaning ?
Operational and Denotational Semantics.

e How are ntcc processes compared ?
Behavioral equivalences, associated congruences and their (un)decidability.

e How are ntcc process properties specified and proved ?
E.g, Process Logic and associated proof system.

e How expressive are the ntcc constructs ?
E.g., Expressive power hierarchy of variations of ntcc.

Temporal CCP Feb., 2003

Our Model: The main benefit.

ntcc combines the declarative view of temporal logic with the
operational-behavioral view from process calculi . Thus, it benefits
from two well-established approaches in concurrency theory.

"..One of the outstanding challenges in concurrency is to find the right
marriage between logic and behavioural approaches” R. Milner.

EBRICS 7

Temporal CCP Feb., 2003

General Contributions

1. A simple yet expressive model for timed systems.
2. Extending the operational & temporal logic interpretation of processes.
3. Adapting to CCP techniques used in concurrency theory

4. Using ntcc theory to study pre-existing CCP Languages:
e First Temp. CCP expressive-power hierarchy
e (Un)Decidability results for their equivalences.

That is, our work extends and strengthens the CCP theory of concurrency.

EBRICS 5

Temporal CCP Feb., 2003

The Rest of this Talk: Overview of our work

Agenda

> CCP Intuitions.

> Ntcc intuitions.

> Operational Semantics.

> Denotational Semantics.

> Logic and Proof System.

> Applications.

> Behavioral equivalences, congruences and their decidability.
>

Hierarchy of temporal CCP languages and (un)decidability of their
equivalences.

EBRICS 0

Temporal CCP Feb., 2003

CCP Intuitions: A Typical CCP Scenario

(temperature > 20)! (temperature = 30)7.P

pY /!
MEDIUM

N (Store) N

(temperature < 40)! (O<temperature < 44)?7.Q)

e Partial Information (e.g. temperature is some unknown value > 20).
e Concurrent Execution of Processes.

e Synchronization via Blocking-Ask.

EBRICS 10

Temporal CCP Feb., 2003

CCP Intuitions: Representing Partial Information

Definition. A constraint system consists of a signature Y and first-order
theory A over 2.

e Constraints a,b, ¢, formulae over 2.
e Relation FA: decidable entailment relation between constraints.

e (C: set of constraints under consideration.

= BRICS 1

Temporal CCP Feb., 2003

Ntcc Intuitions: Systems that Concern us

/ /
C C3 Qw

NN N S
P Ps

e Stimulus ¢; : input information for P; .
e Response c}: output information of P; .

e Stimulus-Response duration: time interval (or time unit).

Examples: Programmable Logic Controllers (PLC's), LEGO RCX bricks and
micro-controllers in general.

12

Temporal CCP

Feb., 2003

Ntcc Syntax

Processes

Description

Basic tcc Processes

Action within the time interval

o tell(c)

e whencdo P
e localzin P
e next P

e unless cnext P

Pl@

telling information
asking information
hiding

unit-delay
time-out

parallelism

add ¢ to the store

when ¢ in the store execute P
execute P with local x

delay P one time unit.

unless ¢ now in the store do P next

execute P and ()

BRICS

13

Temporal CCP Feb., 2003

Ntcc Additional Basic Processes

e Non Deterministic Behavior:) ., whenc; do P;

Guarded Choice.

e Asynchronous Behavior: xP

Unbounded but finite delay of P

e Infinite Behavior: |P

Unboundely many copies of P, one at a time: P || next P || next*P || ...

EBRICS 14

Temporal CCP Feb., 2003

Some Derived Constructs

.. . def
e Inactivity: skip =

2ico P
P || skip = P.
e Abortion: abort & (tell(false))

P || abort = abort.

e Fair asynchronous parallel: P|Q 4 (*xP || Q)+ (P || xQ)

PIQ=Q|P ad P|(Q|R)=(P|Q)|R.

e Bounded ! and « : ;P & [l,c;next’P and */P oo > ;eynext'P

= BRICS 15

Temporal CCP Feb., 2003

Power Saver Example

> A power saver :

l(unless (lights = off) next * tell(lights = off))

> A refined power saver :

l(unless (lights = off) next %y o) tell(lights = off))

> A more refined one; deterministic power saver:

l(unless (lights = off) next tell(lights = off))

EBRICS 16

Temporal CCP Feb., 2003

Operational Semantics

> Internal Transitions:

QT@.

RT Rell(e),a) — (skip,anc) 0 (S, whenc; do Pi,a) —s (P}, a)

RB RS (n20)

(! P,a) — (P || next! P, a) (x P,a) — (next"P,a)

> Observable Transition

(P,a) —* (Q,d) /> ([@ f Q = next Q'
RO (a.a) Q' if @ = unless (c) next Q'
P ——=F(Q) = { F@Q)IFQ) ifQ=0Q1| Q2
local z in F(Q') if @ =local = in Q’
\ skip otherwise

EBRICS 17

Temporal CCP

Feb., 2003

Observations to Make of Processes

> Stimulus-response interaction

P — wH AQTOHV ww Anwuowv ww Aowuowv .

(@)

denoted by P ——=“ with a = ¢1.co... and o/ = ¢}.c;.

Observable Behavior

> Input-Output io(P) = {(a, ') | P 3 @) —=“}
> Qutput o(P)={d'|P E%waaw
> Strongest Postcondition sp(P) = {a'|P Ai —— ¥}

EBRICS

18

Temporal CCP Feb., 2003

Strongest-Postcondition Denotational Semantics

[tell(a)]={c-a€C¥ : cka,}

[PIQRI=[P]IN[Q]

['P]={a : foral B € C*,a’ € C¥: a = B.a implies o’ € [P]}
[xP]={B.a: BeC",ac[P]}

:M&mNS.WmSA@&VQoNu;H C&m.lo.Q : ckajandec-a € [P])U
(Nierle-a e a;, a € C*})

Definition. P is locally-independent iff its guards depend on no local variables.

Theorem. sp(P) C [P] and, if P is a locally-independent, sp(P) = [P]

EBRICS 19

Temporal CCP

Feb., 2003

A Logic a la Pnueli for ntcc

Syntax. A:=c|AANA|-~A|3,A|0A|OA|DA

Semantics. Say a = A iff (o, 1) = A where

(a, 1) = c iff
(a, 1) = —-A iff
(a,1) = A1 N Ay iff
(a,i) = 0OA iff
(a, 1) = U0A iff
(a,i) = A iff
(a, i) =3, A iff

a(i) - c

(o, 1) = A

(a,1) = Ar and (a, 1) = As
(oni+1) | A

forallj > i (a,j) F A
there exists j > 7 st. (a,j) F A
there is ' xvariant of a st. (o, 1) |= A.

Collection of all models: [A] ={a|a | A}

Satisfaction: P = A iff sp(P) C [A] (i.e., all outputs of P satisfy A)

EBRICS

20

Temporal CCP Feb., 2003

Proof System for P = A

tell(c) F c (tell)

PFA QF+B

PTQFAnB P P g (hide)

localzxin P + 4,

P+ A
next P OA (next)

Proat®) P o)

Zie[when c; do P; \/iEI(ci A\ Az) V /\iGI —c;

(sum)

P |—£|_AB:> B (rel)

Theorem. (Completeness) For every P, A
> P+ A implies P = A and
> P = A implies P &= A, if P is locally-independent.

EBRICS

21

Temporal CCP Feb., 2003

Applications: Cells

e Cell z: (v) denotes a cell z with contents v.

z:(2) 4 tell(x = z) || unless change(z) next z : (2)

e The exchange operation exch¢(z,y) models| y = x , z := f(x)

exchy(x,y) o > ., wWhen (x = v) do (tell(change(xz)) || tell(change(y))

| mext(z: f(v) | v:(v)))

Example. z: (3) ||y : () || exchr(z,y) ——— x:(7) ||y : (3).

E BRICS 22

Temporal CCP Feb., 2003

Applications: Logic & Proof System at Work

Proposition. | exch¢(z,y) F (x =v) = Oz = f(v) Ay =0)

e (g(w) Fa=g(w) "y Fy=w "
z:(gw) lly: (wkz=gwAy=mw INEXT
next (z : (g(w)) ||y : (w)) = Oz = g(w) Ay = w) Lem.(3)
Vw € D tell(change(x)) || tell(change(y)) || next(z : f(w) || y: (w)) F Oz = g(w) Ay = w) LSUM
exch¢(z,y) V @=wAO@=gw)Ay=w))V A “z=uw
weD . weD L CONS
exch¢(z,y) - S\m/\b?u =w=0(z=g(w) Ay = w))

: LCON
manbe&QSTQH@UO@HQAS>@H@VV CONS

= BRICS 2

Temporal CCP Feb., 2003

Applications: LEGO Zigzagging

Specification. Go forward (f), right (r) or left (1) but
DO NOT go:

> f if preceding action was f,

> r if second-to-last action was r, and

> 1 if second-to-last action was 1.

GoForward fexen(acty, acty) || tell(forward)
GoRight o rezen(acty, acty) || tell(right)
GolLeft S Lezen(acty, acty) || tell(left)
Zigzag et (when (act; # £)do GoForward
+ when (acty # r)do GoRight
+ when (acty; # 1) do GolLeft)
| next Zigzag
StartZigzag &t act;:(0) || acts:(0) || Zigzag

Proposition. StartZigzagt O({$right A $left)

EBRICS %

Temporal CCP Feb., 2003

Behavioral Equivalences

Definition. Letl € {0,10,sp}. Define P ~; Q iffl(P) =1(Q).

But neither ~;, nor ~, are congruences. Let ~;, and =, be the corresponding
congruences.

Theorem. =;,,==~,C ~;, C~,.

EBRICS

25

Temporal CCP Feb., 2003

Distinguishing Context Characterizations

Theorem. Let ~ € {=,, ~y, ~y}. One can construct contexts U[.] and C'P@)[]
such that for all P, Q).

> P=x,Q iff U[P] ~, U[Q] (for finite set of constraints).
> P~Q iff CUOVP] ~, CTYQ]

e Interesting consequence of the theorem:

Decidability of all ~;,, ~,,~, and =, reduce to that of ~,.

e Interesting result introduced for the proof of the theorem:

Given P one can construct a finite set including all relevant inputs.

EBRICS

26

Temporal CCP Feb., 2003

Behavioral Equivalence: Decidability.

Definition. A star-free P is locally-deterministic iff all its summations
occur outside of its local processes.

Theorem. Given a locally-deterministic P one can effectively construct a
Biichi automaton Bp that recognizes o(P).

As a corollary,

Theorem. =,,~i,, ~i, , ~s are all decidable for locally-deterministic
processes.

27

Temporal CCP Feb., 2003

Variants and their Expressive Power

Deterministic ntcc with the following alternatives for
infinite behavior.

e tcc[Rec]

: L def
Recursive definitions A(x1, ..., %y)

= P with fo(P) C{x1,...,z,}.

e tcc|Rec, Identical Parameters]
As above but every call of A in P is of the form A(z1,...,2,).

e tcc|Rec, No Parameters, Dyn. Scoping]

Recursive definitions A & P with Dynamic Scoping

e tcc|Rec, No Parameters, Static Scoping]

Recursive definitions A & P with Static Scoping.

EBRICS 28

Temporal CCP Feb., 2003

TCC Hierarchy and ~;, (un)decidability.

ConmoRe iR loPa Dyn Scope]
o UNDEC|DAB|.E

B PP

DECIDABLE
i
(Buchi Autom,)

ntec[Rec, ldent. Par] — ntec[Rec,No Par, Static Scope]

ntcc[Replication]

—> : Encoding.
—p: Sublanguage.

® The results clarify conjectures made in the literature.

® Qualitative distinction between dynamic and static scope.

® The results involve FSA, PCP, Encodings and Bisimulations.

® The results have inspired similar results for CCS.

= BRICS 2

Temporal CCP Feb., 2003

Remarks and Future Work

We have presented
> ntcc; a calculus for discrete timed systems.

> Denotation, linear-time logic and proof system for ntcc.

> Examples illustrating the applicability of the calculus.

> Equivalences, congruence and (un)decidability results.

> Hierarchy of temporal CCP languages

Current and Future Work

> (Un)decidability results for the full calculus and process logic.
> Branching temporal logic for the calculus.

> Probabilistic extension of ntcc.

> Programming language for RCX controllers based on ntcc.

>

The role of ntcc (and CCP) in modeling security protocols.

= BRICS 30

Temporal CCP Feb., 2003

Paper Contributions.

e Book Chapter.
1. M. Nielsen and F. Valencia. Temporal Concurrent
Constraint Programming: Applications and Behavior.
Formal and Natural Computing: Essays Dedicated to

Grzegorz Rozenberg. Springer, LNCS 2300. 2002.

e Journal article.
2. M. Nielsen, C. Palamidessi and F. Valencia. Tem-
poral Concurrent Constraint Programming: Denotation,
Logic and Applications. Nordic Journal of Computing,

Vol. 9. 2002.

e Proceedings of International Conferences.
3. M, Nielsen, C. Palamidessi and F. Valencia. On the
Expressive Power of Concurrent Constraint Program-
ming Languages. In Proc. of PPDP 2002. ACM Press.
2002.

4. C. Rueda and F. Valencia. Proving musical proper-
ties using a temporal concurrent constraint calculus. In

Proc. of ICMC 2002. ICMC 2002.
= BRICS 3

Temporal CCP Feb., 2003

5 F. Valencia. Temporal Concurrent Constraint
Programming (Ext. Abstract). In Proc. of CP2001.
Springer-Verlag, LNCS 2239. 2001.

6. C. Palamidessi and F. Valencia. A Temporal

Concurrent Constraint Programming Calculus. In Proc.
of CP2001. Springer-Verlag, LNCS 2239. 2001.

e Workshops and Newsletters.
7. Mogens Nielsen and Frank D. Valencia. Temporal
Concurrent Constraint Programming: A Framework for
Discrete-Timed Systems. Vol 15 n. 4 of the Association
for Logic Programming (ALP) Newsletter. 2003

8. Camilo Rueda and Frank D. Valencia. Formalizing
Timed Musical Processes with a Temporal Concurrent
Constraint Programming Calculus. CP2001.

9. Mogens Nielsen, Catuscia Palamidessi and Frank
D. Valencia. A Calculus for Temporal Concurrent

Constraint Programming. EXPRESS'01. 2001.

= BRICS 3

Temporal CCP Feb., 2003

Examples of Observables

when b do next tell(d) when a do next when b do next tell(d)
when a do next + .+
when ¢ do next tell(e) when a do next when ¢ do next tell(e)
P Q

Assuming a, b, ¢, d and e mutually exclusive:

e 0(P)=0(Q) ={true“}.

e 0(P)# i0(Q) If @ =a.c. true” then (o,) € i0(Q) but (, @) & i0(P)

o sp(P) # sp(Q): If a =a.c.true® then a € sp(Q) but a & sp(P).

E BRICS 33

