
Formally Reasoning About Security Issues in P2P
Protocols: A Case Study

Andrés A. Aristizábal1, Hugo A. López1, Camilo Rueda1, and Frank D. Valencia2

1 AVISPA Research Group. Pontificia Universidad Javeriana Cali, Colombia
aaaristizabal@puj.edu.co, {halopez,crueda}@cic.puj.edu.co

2 CNRS-LIX École Polytechnique de Paris, France.
frank.valencia@lix.polytechnique.fr

Abstract. Peer-to-Peer (P2P) systems can be seen as highly dynamic distributed systems
designed for very specific purposes, such as resources sharing in collaborative settings. Be-
cause of their ubiquity, it is fundamental to provide techniques for formally proving prop-
erties of the communication protocols underlying those systems. In this paper we present
a formal specification of MUTE, a protocol for P2P systems, modelled in the SPL process
calculus. Furthermore, we use the SPL reasoning techniques to show how the protocol
enjoys a secrecy property against outsider attacks. By formally modeling and analyzing a
real-world, yet informally specified protocol, we bear witness to the applicability of SPL
as a formalism to specify security protocols as well as the flexibility of its reasoning tech-
niques. This paper represents our first approach towards the use of process calculi, in
particular SPL, for the specification and reasoning of P2P protocols.

1 Introduction

Peer-to-Peer (P2P) protocols are widely used for communication in distributed systems, providing
an accurate and efficient way to perform certain important tasks, including information retrieval
and routing. Protocols for P2P systems are then used to share private information between
peers, which usually involves security risks. Currently these systems are dramatically receiving
attention in research, development and investment. They had become a major force in nowadays
computing world because of its huge amount of benefits, such as its architecture cost, scalability,
viability, and resource aggregation of distributed management infrastructures. Essentially this
kind of systems are used to obtain the major benefit from distributed resources to perform a
function in a real decentralised manner. In this way, these systems are scalable since they avoid
dependencies on centralised nodes, and they also have a low cost infrastructure, since they enable
direct communication between the participants of these systems.

The P2P protocols used in various tools have to maintain a certain amount of important
properties to guarantee their well functioning. One class of the most relevant P2P protocols are
those concerned to security. Properties like secrecy and non-traceability have been studied in the
literature in order to overcome security risks [1]. Secrecy is considered important, since we may
want to keep secret from an entity outside the P2P group the messages transmitted and managed
between the components within the network. Obviously, in some groups a malicious outsider
may easily become an insider by signing up as a peer. However, one can imagine situations when
becoming a peer requires to show that the potential peer can be trusted, or to provide certain
information the outsider is not capable or willing to give. Despite the popularity of this kind of
protocols, rigorous analysis about security matters are still open to development.

Formal methods constitute an analytical approach for software and hardware design, that
intends the reduction of errors by relying on solid mathematical models. One of the major

benefits of formal methods is that they offer reasoning techniques that cover every possible
state of a design, and the inclusion of well-defined proof techniques which ensure the accuracy
and correctness of a design. The generality of formal methods contrasts with the ad-hoc spirit
present in other approaches, such as empirical analysis and simulations. Process calculi constitute
a particular class of formal languages, specially oriented to the analysis of concurrent systems.
The main idea underlying process calculi is the abstraction of real systems in terms of basic units
known as processes. The calculi provide precise elements to describe systems as a combination
of processes, as well as offer tools to study the behavior of systems over time.

Consequently, process calculi appear as convenient tools to give a formal flavor to complex,
concurrent computing systems. Several process calculi have been proposed over the last twenty
years [2,3,4,5,6,7]: although they differ on particular aspects for understanding communications,
all of them agree on the basic principles given above. Following an interesting evolution, in
the last five years process calculi have particularized in specific domain areas. In this way, for
instance, several process calculi tailored for modeling biological phenomena have been proposed
[8,9,10,11,12,13]. Similarly, security has been a particular active area in this recent evolution:
diverse process calculi, offering alternatives to the problem of modeling and verifying secure
communications have been proposed. Instances of process calculi for security include π and the
Spi calculus [4,14], the CSP process algebra [6], and more recently, the Secure Protocol Language
(SPL) by Crazzolara and Winskel [15].

Despite of the recent interest in P2P systems and applications, little work has been done in
the formal analysis of P2P protocols. Previous works related with process calculi include the
work within the Pepito project [16] in the verification of correctness properties in static ver-
sions of P2P protocols using CCS variants [17]. Other analyses has been made for specific P2P
functionalities, like [18] and [19]. To the best of our knowledge, this paper thus constitutes the
first work concerned to the modelling of P2P protocols using a formal approach such as process
calculi. We illustrate our approach by formalizing MUTE, a P2P tool for sharing and transmit-
ting resources in a highly dynamic distributed network [20]. MUTE is based on its particular
searching protocol, which claims to guarantee an anonymous and secure way of communicating
data through the entire P2P network. In spite of being a well-known P2P protocol, MUTE has
only been informally described. We shall use SPL to give a formal specification of MUTE for
the first time. Based on such a specification, we use SPL reasoning techniques to verify a secrecy
property for MUTE, namely, that a malicious, outsider agent can not access messages within
MUTE network.

The main contribution of this paper is a formal model of MUTE which abstracts away from
details not concerned with security issues. By means of this model and its associated security
proofs, we bear witness of the applicability of SPL and its proof techniques for modelling and
reasoning about protocols. The work in the present paper represents our first approach towards
the use of SPL as formalism for specifying and verifying P2P protocols.

The paper is structured as follows. Next we present a brief summary of preliminaries, including
a short introduction to the SPL calculus. In section 3, we explain the MUTE protocol, presenting
an intuitive representation, as well as its formalisation on SPL. In section 4, we use SPL proof
techniques to verify the secrecy property for messages behind an outsider attacker in the MUTE
protocol. In section 5 we discuss some related work and in the last chapter we give out some
concluding remarks, as well as future work.

2 Preliminaries

This section presents a brief overview of SPL (Security Protocol language), a process calculus
for security protocols proposed by Winskel and Crazzolara in [15]. A full coverage of the calculus
is given in [21].

2.1 SPL

SPL is a process calculus designed to model protocols and prove their security properties by means
of transitions and event-based semantics. SPL is based on the Dolev-Yao Model [22], which states
that cryptography is unbreakable and the spy is an active intruder capable of intercept, modify,
replay and suppress messages. The calculus is operationally defined in terms of configurations
containing items of information (messages) which can only increase during evolution, modelling
the fact that, in an open network an intruder can see and remember any message that was ever
in transit.

SPL Syntax The syntactic entities SPL are described below:

– An infinite set N of names denoted by n,m, ..., A,B, ... Names range over nonces (randomly
generated values, unique from previous choices [23]) and agent names.

– Three types of variables: over names (denoted by x, y, ...,X, Y, ...,), over keys (χ, χ′, χ1, ...,)
and over messages (ψ,ψ′, ψ1, ...,). They could also be expressed as a vector of variables,
denoted as x,χ and ψ respectively.

– A set of process, denoted by P,Q,R,

Variables over names x, y, ...,X, Y, ...,

Variables over keys χ, χ′, χ1, ...,

Variables ψ,ψ′, ψ1

over messages

Name expressions v ::= n,A, ... |x,X
Key expressions k ::= Pub(v) |Priv(v) |Key(v) |χ, χ′, ...
Messages M,M ′ ::= v | k | (M,M ′) | {M}k | ψ,ψ′, ...
Processes p ::= out new(x)M.p | in patxχψM.p | ‖i∈I Pi | !P

(a) SPL Syntax

Output 〈out new(x)M.p, s, t〉 outnew(n)M [n/x]−→ 〈p[n/x], s ∪ {n}, t ∪ {M [n/x]}〉 if all the names in n are distinct and not in s

Input 〈in patxχψM.p, s, t〉 inM [n/x,k/χ,N/ψ]−→ 〈p[n/x,k/χ,N/ψ], s, t〉 if M [n/x,k/χ,N/ψ] ∈ s

Par. Comp.
〈pj ,s,t〉 α−→〈p′j ,s′,t′〉

〈‖i∈IPi,s,t〉 j:α−→〈‖i∈IP ′
i ,s′,t′〉

where p′i = p′j for i = j, otherwise p′i = pi

(b) SPL Transition Semantics

The rest of the elements of SPL syntactic set are defined in Table 1(a), where Pub(v), Priv(v)
and Key(v) denote the generation of public, private and shared keys respectively. We use the
vector notation s to denote a list of elements, possibly empty, s1, s2, . . . , sn.

2.2 Intuitive Description and Conventions

Let us now give some intuition and conventions for SPL processes.
The output process out new(x)M.p generates a set of fresh distinct names (nonces) n =

n1, n2, . . . , nm for the variables x = x1, x2, . . . , xm. Then it outputs the message M [n/x] (i.e., M
with each xi replaced with ni) in the store and resumes as the process p[n/x]. The output process
binds the occurrence of the variables x in M and p. As an example of a typical output, pA =
out new(x) {x,A}Pub(B).p can be viewed as an agent A posting a message with a nonce n and
its own identifier A encrypted with the public key of an agent B. We shall write out new(x)M.p
simply as outM.p if the x is empty.

The input process in patxχψM.p waits for a message in the store that matches (the pattern)
the message M for some instantiation of its variables x, χ and ψ. The process resumes as p with
the chosen instantiation. The input process in patxχψM.p is the other binder in SPL binding the
occurrences of xχψ inM and p. As an example of a typical input, pB = in pat x, Z {x, Z}Pub(B).p
can be seen as an agent B waiting for a message of the form {x,Z} encrypted with its public
key B: If the message of pA above is in the store, the chosen instantiation for matching the
pattern could be n for x and A for Z. When no confusion arises we will sometimes abbreviate
in patxχψM.p as inM.p.

Finally, ‖i∈I Pi denotes the parallel composition of all Pi. For example in ‖i∈{A,B} Pi the
processes PA and PB above run in parallel so they can communicate. We shall use !P =‖i∈ω P
to denote an infinite number of copies of P in parallel. We sometimes write P1 ‖ P2 ‖ . . . ‖ Pn

to mean ‖i∈{1,2,...n} Pi.

The syntactic notions of free variables and closed process/message are defined in the obvi-
ous way. A variable is free in a process/message is has a non-bound occurrence in that pro-
cess/message. A process/message is said to be closed if it has no free variables.

Transition Semantics SPL has a transition semantics over configurations that represents the
evolution of processes. A configuration is defined as 〈p, s, t〉 where p is a closed process term (the
process currently executing), s a subset of names N (the set of nonces so-far generated), and t
is a subset of variable-free messages (i.e., the store of output messages).

The transitions between configurations are labelled by actions which can be input/output
and maybe tagged with an index i indicating the parallel component performing the action.
Actions are thus given by the syntax α :: out new(n)M | inM | i : α. where n is as a set of
names, i as an index and M a closed message.

Intuitively a transition 〈p, s, t〉 α−→ 〈p′, s′, t′〉 says that by executing α the process p with s
and t evolves into p′ with s′ and t′. The new set of messages t′ contains those in t since output
messages are meant to be read but not removed by the input processes. The rules in Table 1(b)
define the transitions between configurations. The rules are easily seen to realize the intuitive
behaviour of processes given in the previous section.

Nevertheless, SPL also provides an event based semantics, where events of the protocol and
their dependencies are made more explicit. This is advantageous because events and their pre
and post-conditions form a Petri-net, so-called SPL nets.

Event-Based Semantics Although transition semantics provide an appropriate method to
show the behaviour of configurations, these are not enough to show dependencies between events,
or to support typical proof techniques based on maintenance of invariants along the trace of the
protocols. To do so, SPL presents an additional semantics based in events that allow to explicit
protocol events and their dependencies in a concrete way.

SPL event-based semantics are strictly related to persistent Petri nets, so called SPL-nets
[21] defining events in the way they affect conditions. The reader may find full details about
Petri Nets and all the elements of a SPL-Nets in Appendix A and [21], below we just recall some
basic notions.

Description of Events in SPL In the event-based semantics of SPL, conditions take an important
place as they represent some form of local state. There are three kinds of conditions: control,
output and name conditions (denoted by C, O and N , respectively). C-conditions includes input
and output processes, possibly tagged by an index. O-conditions are the only persistent conditions
in SPL-nets and consists of closed messages output on network. Finally, N -conditions denotes
basically the set of names N being used for a transition. In order to denote pre and post conditions
between events, let .e = {ce,o e,n e} denote the set of control, name and output preconditions,
and e. = {ec, eo, en} the equivalent set of postconditions. An SPL event e is a tuple e = (.e, e.)
of the preconditions and postconditions of e and each event e is associated with a unique action
act(e). Figure 1 gives the general form of an SPL event. In the Appendix we will give the events
for the protocol MUTE according to the SPL Event-Semantics. The exact definition of each
element of the semantics can be can be found in [21]. For space limitations, here we shall recall
some and illustrate others.

To illustrate the elements of the event semantics, consider a simple output event e = (Out (out newxM) ;n),
where n = n1 . . . nt are distinct names to match with the variables x = x1 . . . xt. The action
act(e) corresponding to this event is the output action out newnM [n/x]. Conditions related with
this event are:

ce = 〈out new(x).M.p, a〉 oe = ∅ ne = ∅
ec = 〈Ic(p[n/x])〉 eo = {M [n/x]} en = {n1, . . . , nt}

Where Ic(p) stands for the initial control conditions of a closed process p: The set Ic(p) is
defined inductively as Ic(X) = {X} if X is an input or an output process, otherwise Ic(‖i∈I

Pi) =
⋃

i∈I{i : c | c ∈ Ic(Pi)}

pi

ni

Ni
Mi

mi

qi

. . .

. . .

. . .

. . .

. . .

. . .

act(e)

Fig. 1. Events and transitions of SPL event based semantics. pi and qi denote control conditions, ni and
mi name conditions and Ni, Mi output conditions. Double circled conditions denote persistent events.

Relating Transition and Event Based Semantics Transition and event based semantics
are strongly related in SPL by the following theorem from [21]. The reduction M e−→M ′ where
e is an event and M and M ′ are markings in the SPL-net is defined in the Appendix following
the token game in Persistent Petri Nets (see Appendix A).

Theorem 1. i) If 〈p, s, t〉 α−→ 〈p′, s′, t′〉, then for some event e with act(e) = α, Ic(p) ∪ s ∪ t e−→
Ic(p′) ∪ s′ ∪ t′ in the SPL-net.

ii) If Ic(p) ∪ s ∪ t e−→ M’ in the SPL-net, then for some closed process term p′, for some s′ ⊆ N and

t′ ∈ O, 〈p, s, t〉 act(e)−→ 〈p′, s′, t′〉 and M’ = Ic(p′) ∪ s′ ∪ t′.

Justified in the theorem above, the following notation will be used: Let e be an event, p be a
closed process, s ⊆ N, and t ⊆ O. We write 〈p, s, t〉 e−→ 〈p′, s′, t′〉 iff Ic(p)∪s∪t e−→ Ic(p′)∪s′∪t′
in the SPL-net.

Events of a Process Each process has its own related events, and for a particular closed process
term p, the set of its related events Ev(p) is defined by induction on size, in the following way:
Ev(out newxM.p) = { Out (out newxM.p; n)}

∪
S
{Ev(p[n/x])}

Where n are distinct names
Ev(in patxχψM.p) = {In(in patxχψM.p; n,k,L)}∪S

{Ev(p[n/x,k/χ,L/ψ])}
Where n names, k are keys, and L are closed messages
Ev(‖i∈Ipi) =

S
i∈I i : Ev(pi)

where, if E is a set, i : E denotes the set {i : e | e ∈ E}.

3 The MUTE protocol

The MUTE protocol works in a P2P network as a tool to communicate requests of keywords
through the net, so that an specific file can be found and then received [20]. It is based on
a particular searching protocol, which claims to guarantee an anonymous and secure way of
communicating data through the entire P2P network. In spite of being a real life protocol,
MUTE has only been informally described. Following an original approach, we shall use SPL to
give a formal specification of the MUTE protocol.

This protocol aims to provide an easy and effective search while protecting the privacy of
the participants involved. It is inspired in the behaviour of ants in the search for food. The
analogy is accomplished representing each ant as a node of a network, files requested as food,
and pheromones as traces. In this way, one of the key properties of this model is the inherent
anonymity of the protocol, because, like the ants that do not know the shortest path between the
food and the anthill, peers are unaware of the overall environment layout and MUTE messages
must be directed through the network using only local hints3 .

Since MUTE claims to have anonymous users, none of the nodes in the P2P network knows
where to find a particular recipient. Each node in the MUTE network only knows the existence
of other peers in the network by means of direct connections between them, using them to
accomplish the search and transmission of data. This nodes are called “neighbours” and through
these, messages are secretly passed, either as a request or as an answer, in such a way that no
agent outside the peer to peer network could manage to understand any of these data. Despite
anonymity being essential on this protocol, secrecy is also an important property in the protocol
, since transmitted messages along the network involve information only concerned to the ones
sharing the resources and must not be revealed to the outside world.
3 Abstracting from the MUTE website, available at [20]

3.1 Abstraction of MUTE

In spite of being already implemented and used as a tool for downloading and file-sharing, to our
knowledge MUTE has not yet been formally specified. Part of our work consists in abstracting
from the code elements that have an impact in security, leaving aside elements in the protocol
such as the dynamic nature of the nodes in the P2P network, as well as their insertion and
deletion. These considerations, albeit important in P2P systems, can be modelled by including
elements in the protocol guaranteeing the freshness of every request produced. Phases of key
establishment, widely studied in several works [24,25,26], are also not considered in the model.

Definition 1 (Sets in MUTE). Let Files be the set of all files in the P2P network and
Files(A) the set of files belonging to peer A. Let Keywords be the set of keywords associated
to Files, Keywords(A) the keywords associated to the peer A and Keys the relation Files :
Keywords, representing the keywords associated to a particular file. Let Headers be the set
of headers of files associated to Files, Headers(A) the set directly related to Files(A), such
that each header which belongs to Headers(A) will be associated to a unique file belonging to
Files(A).

Definition 2 (P2P network model). We shall describe a P2P network as an undirected graph
G whose nodes represent the peers and whose edges mean the direct connections among them.
We use Peers(G) to denote the set of all nodes in G. Given a node X ∈ Peers(G), Let ngb(X)
be the set of immediate neighbors of X. We use the notation X −→ Y : M stating that X sends
a message M to Y.

For example, consider a P2P network G with A,B ∈ Peers(G). Suppose that A initiates the
protocol by broadcasting a request with the keyword Kw and a nonce N to all its neighbors in
order to find a particular answer, Also suppose that B is the agent that has the desired answer
which A is searching for, which is willing to send a response. In this case, B can be any node
in G with the desired file on its store. A requests for a particular file he wishes to download,
sending the request to the network, by broadcasting it to his neighbors. This request includes
a keyword kw ∈ Keywords, which will match the desired file, and a nonce N which will act as
the request identifier. Along the searching path an unknown amount of peers, will forward the
request until B is reached, the peer with the correct file, st.∃f ∈ Files(B) and kw ∈ Keys(f).
Then, B sends its response by means of the header of the file RES, among with the identifier N
and a new name M generated by it, to recognize the message as an answer. This is done again,
by broadcasting the message through a series of forward steps, until reaching the initial sender
A. Figure 2 give a representation of the above description.

A −→ X : ({N,Kw}key(A,X), A,X) for X ∈ ngb(A)
X −→ Y : ({N,Kw}key(X,Y), X, Y) for Y ∈ ngb(X)
...
Z −→ B : ({N,Kw}key(Z,B), Z,B)
B −→ X ′ : ({N,RES,M}key(A,X′), A,X

′) for X ′ ∈ ngb(B)
X ′ −→ Y ′ : ({N,RES,M}key(X′,Y ′), X

′, Y ′) for Y ′ ∈ ngb(X)
...
Z′ −→ A : ({N,RES,M}key(Z′,A), Z

′, A)

Fig. 2. Dolev Yao Model of the MUTE protocol

Here X,Y, Z are variables which represent the peers which forward the message along the
path going from agent A to B. This process may continue until the target is reached. Meanwhile
the X ′, Y ′, Z ′ variables will represent the peers which will forward the answer from B to A. This
process may be repeated several times as well.

3.2 MUTE Specification on SPL

We use the core of the MUTE protocol in order to establish some security properties. The phases
that we shall consider are the ones that involve the transmission of the keyword, the response
message and the keys, leaving behind the phases of connection, and the submessages that include
plaintext. We assume that the symmetric keys are equivalent (i.e. key(A,B) = key(B,A)). The
formal model is presented in Figure 3 4.

Init(A) ≡ (‖B ∈ngb(A) out new(n)({n,Kw}Key(A,B), A,B)) .
(‖Y ∈ngb(A) in ({n, res,m}key(Y,A), Y, A))

Interm(A) ≡ !
`
‖Y ∈ngb(A) in({M}key(Y,A), Y, A) . ‖B ∈ngb(A)−{Y } out ({M}key(A,B), A,B)

´
Resp(A) ≡ ‖Y ∈ngb(A) , kw∈Keys(Files(A)) in({x,Kw}Key(Y,A), Y, A) .

(‖B ∈ngb(A)out new(m)({x, res,m}key(A,B), A,B))

Node(A) ≡ Init(A) ‖ Interm(A) ‖ Resp(A)
SecureMUTE ≡ ‖A∈Peers(G)Node(A)

Fig. 3. MUTE specification on SPL

Intuitive description of the specification We assume that the topology of the net has
already been established. The agent starts searching for an own keyword. This agent broadcasts
the desired keyword to all its neighbours. Its neighbours receive the message and see if the
keyword matches one of their files, if at least one of the neighbours have the requested keyword,
it will broadcast a response message, such that eventually the one searching for the keyword will
get it and understand it as an answer to its request. The message will be forwarded by all the
agents until it reaches its destination. Otherwise, if the keyword does not match any file of the
agent, then it will broadcast it to its neighbours asking them for the same keyword. The choice
of having or not the right file is modeled in a non-deterministic way. This model abstracts way
from issues such as the search for the best path, since it has no impact in secrecy.

3.3 MUTE Secrecy Proofs for a Outsider Spy

Here we will establish the secrecy of MUTE for a Spy outside the P2P network.

Definition of the Spy Using a well studied model of spy [21], a possible attacker over the
network is presented in table 1

4 Notation (‖i∈I Pi) . R, representing the execution of process R once parallel composition ‖i∈I Pi is
fully executed, can be easily encoded using elements in the language. See [27] for more details.

Compose different messages into a single tuple Spy1 ≡ inψ1.inψ2.out ψ1, ψ2

Decompose a compose message into more components Spy2 ≡ inψ1, ψ2.out ψ1.out ψ2

Encrypt any message with the keys that are available Spy3 ≡ in x.inψ.out {ψ}Pub(x)

Spy4 ≡ inKey(x, y).inψ.out {ψ}Key(x,y)

Decrypt messages with available keys Spy5 ≡ inPriv(x).in {ψ}Pub(x).out ψ
Spy6 ≡ inKey(x, y).in {ψ}Key(x,y).out ψ

Sign with available keys Spy7 ≡ inPriv(x).in ψ.out {ψ}Priv(x)

Verify signatures with available keys Spy8 ≡ in x.in {ψ}Priv(x).out ψ

Create new random values Spy9 ≡ out new(n)n

Table 1. Spy model for the MUTE protocol

Finally, the complete Spy is a parallel composition of the Spyi processes:

Spy ≡ ‖i∈{1...9}Spyi (1)

In this way, the complete protocol includes the specification of MUTE, SecureMute in Figure
3, in parallel with the Spy:

MUTE ≡ SecureMUTE‖!Spy (2)

Let us recall some elements. Let Headers be the set of headers of files, which is associated
to Files, Headers(A) the set directly related to Files(A), such that each header which belongs
to Headers(A) will be associated to a unique file belonging to Files(A) (See section 3.1).

To analyze secrecy of a given protocol in SPL, one considers arbitrary runs of the protocol.

Definition 3 (Run of a Protocol). A run of a process p = p0 is a sequence

〈p0, s0, t0〉
e1−→ · · · ew−→ 〈pw, sw, tw〉

ew+1−→ . . .

We shall use in the theorems a binary relation < between messages. Intuitively M < M ′

means message M is a subexpression of message M ′. (See Appendix B for the exact definition)

The Events of MUTE MUTE has three kind of events, according to each role of the agents
in the network:

Definition 4 (Events in MUTE). The event ew is an event in the set

Ev(MUTE) = Init : Ev(pInit) ∪ Interm : Ev(pInterm) ∪ Resp : Ev(pResp) ∪ Spy : Ev(pSpy)

Where the events are graphically represented in figures 4, 5 and 6.

Initiator Events: The initiator events indicate the behavior of process Init(A). This process can
be splitted in two main sub-processes: an output that generates a new name n and a request
message ({n, kw}Key(A,B), A,B) over the store (figure 4(b)), and an input process that receives
the answer message ({n, res,m}Key(A,B), A,B) via an input action in ({n, res,m}Key(A,B), A,B),
as can be seen in figure 4(a).

Init(A) : j : B out new(n)({n, kw}Key(A,B), A,B)

out new(n)({n, kw}key(A,B), A,B)

({n, kw}key(A,B), A,B)

n

Init(A) : j : in ({n, res,m}Key(Y,A), Y, A)

(a) Initiator Output action

in ({n, res,m}key(Y,A), Y, A)

({n, res,m}key(Y,A), Y, A)Init(A) : j : in ({n, res,m}key(Y,A), Y, A)

(b) Initiator Input action

Fig. 4. Initiator Events

in ({M}Key(Y,A), Y, A)

({M}key(Y,A), Y, A)

Initerm(A) : j : in ({M}key(Y,A), Y, A)

Interm(A) : j : B : out({M}key(A,B), A,B)

(a) Input action

out({M}key(A,B), A,B)

({M}key(A,B), A,B)

Interm(A) : j : B : out({M}key(A,B), A,B)

(b) Output action

Fig. 5. Intermediator Events

Intermediator Events: Each agent acting as an intermediator has to forward the received mes-
sages. The figure 5(a) illustrates the event in which the intermediator receives the message
({M}Key(Y,A), Y, A) via an input action in ({M}Key(Y,A), Y, A). The composition of a second
subprocess (figure 5(b)) completes the intermeditator behavior, forwarding received messages M
to one of the neighbors by means of an output out ({M}Key(A,B), A,B).

Responder Events: The responder events indicate the way in which an agent acting as a responder
must behave. A responder agent is basically composed by two processes: An initial input (figure
6(a)) that awaits for a message request ({n, kw}Key(Y,A), Y, A), and a subsequent output of the
answer ({n, res,m}Key(A,B), A,B) via an output action out ({n, res,m}Key(A,B), A,B), with a
new name m (figure 6(b)).

3.4 Secrecy Properties

The first secrecy theorem for the MUTE protocol concerns the shared keys of neighbours. If
these are not corrupted from the beginning of the protocol, and the peers behave as the protocol
states then the keys will not be leaked during a protocol run. If we assume that key(X,Y) 6v t0,

in ({n, kw}Key(Y,A), Y, A)

({n, kw}Key(Y,A), Y, A)Resp(A) : j : in ({n, kw}key(Y,A), Y, A)

Resp(A) : j : B : out new(m)({x, res,m}key(A,B), A,B)

(a) Input action

Resp(A) : j : B out new(m)({x, res,m}key(A,B), A,B)

out new(m)({x, res,m}key(A,B), A,B)

({x, res,m}key(A,B), A,B)m

(b) Output action

Fig. 6. Responder Events

where X,Y ∈ Peers, then at the initial state of the run there is no danger of corruption. This
will help us to prove some other security properties for MUTE.

Theorem 2. Given a run of MUTE 〈MUTE, s0, t0〉
e1−→ · · · ev−→ 〈pv, sv, tv〉

ev+1−→ . . . and A0, B0 ∈
Peers(G), if key(A0, B0) 6v t0 then for each w ≥ 0 in the run key(A0, B0) 6v tw

Proof. Outline Following the proof technique given in [21] the proof proceeds by stating a prop-
erty associated with shared keys not appearing as a cleartext in the protocol. Then we assume a
run which contains an event which violates the property stated before, and using dependencies
among events within the protocol, we derive a contradiction. (The complete proof can be found
in Appendix D1). By proving that shared keys never appear in the cleartext during a run of
the protocol, we can guarantee that a Spy outside the P2P network cannot have access to them.
Later on we will see the importance of this property for ensuring security in the protocol.

The following theorem concerns the secrecy property for the request. It states that the key-
word asked by the initiator and broadcasted through the network will never be visible for a Spy
outside the peer to peer group.

Theorem 3. Given a run of MUTE 〈MUTE, s0, t0〉
e1−→ · · · ev−→ 〈pv, sv, tv〉

ev+1−→ . . . , A0 ∈
Peers(G) and kw0 ∈ Keywords(A0), if for all A,B ∈ Peers(G), key(A,B) 6v t0, where B ∈
ngb(A) and the run contains the Init event a1 labelled with action

act(a1) = Init : (A0) : i0 : B0 :
out new(n0)({n0, kw0}key(A0,B0), A0, B0)

where i0 is an index, B0 is an index which belongs to the set ngb(A0), and n0 is a name, then
for every w ≥ 0 in the run kw0 /∈ tw

Proof. Outline Following the proof technique given in [21] the proof proceeds by stating that
the shared keys are never leaked during a run of the protocol (Theorem 2). We state a stronger
property Q which holds for all keywords not appearing as a cleartext during a run of the protocol.
Then we assume an event which violates propertyQ, and using dependencies among events within
the protocol we derive a contradiction. (The complete proof can be found in Appendix D2).

By proving that the keyword sent by the initiator peer as a request never appears in the
cleartext during a run of the protocol, we can affirm that a Spy outside of the network will never
know that keyword, so he will never recognise the file a sender is requesting.

The next theorem states that the message sent as an answer by the responder will never
appear as a cleartext during a run of the MUTE protocol, and in this way nobody outside the
peer to peer boundaries will understand it.

Theorem 4. Given a run of MUTE 〈MUTE, s0, t0〉
e1−→ · · · ev−→ 〈pv, sv, tv〉

ev+1−→ . . . and A0 ∈
Peers(G) and res0 ∈ Headers(B0), if for all A,B ∈ Peers(G), key(A,B) 6v t0, where B ∈
ngb(A) and if the run contains a Resp event b2 labelled with action

act(b2) = Resp : (A0) : i0 : B0 :
out new(m0)({n0, res0,m0}key(A0,B0), A0, B0)

where i0 is an index, B0 is an index which belongs to the set ngb(A0) and n0,m0 are names,
then for every w ≥ 0 res0 6∈ tw

Proof. Outline The proof is analogous to that of Theorem 2 (The complete proof can be found
in Appendix D3).

If we prove that the answer header sent by the receiver, never appears in the cleartext during
a run of the protocol we can manage to guarantee that a Spy outside the peer to peer network
will never know or access the file.

4 Concluding Remarks and Future Work

The use of process calculi allows us to formalise communication protocols leaving aside technical
details, transforming complex distributed algorithms into abstract models syntactically close to
their descriptions in pseudo-code. In particular, the use of SPL calculus lets us model several
processes involved in the protocol without losing dependencies among them, in order to verify
security properties along all the runs of a given protocol. In this way, these properties essential to
communication (P2P) protocols can be easily verified. We demonstrate the above by giving the
first formal description MUTE and by showing secrecy properties for messages w.r.t. a outsider
attacker in the MUTE protocol. This bears witness of the specification power of SPL and its
reasoning techniques.

We have proved the secrecy property for an outsider in the MUTE protocol. However, it is
crucial to explore security properties for threats inside the P2P network or an outsider who can
masquerade as a trusted peer. Our future work will study secrecy w.r.t. to a malicious insider
in the MUTE protocol. We shall also explore the SPL expressiveness in order to model new
cutting-edge protocols, using its own reasoning techniques, or extending it in order to verify
other important security properties like non-traceability and non-malleability.

References

1. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi calculus. Inf.
Comput., 148(1):1–70, 1999.

2. Andrés A. Aristizábal and Hugo A. López. Using process calculi to model and verify security
properties in real life communication protocols. Bsc. thesis, Pontificia Universidad Javeriana, January
2006.

3. Alexander Bockmayr and Arnaud Courtois. Using hybrid concurrent constraint programming to
model dynamic biological systems. In Peter J. Stuckey, editor, ICLP, volume 2401 of Lecture Notes
in Computer Science, pages 85–99. Springer, 2002.

4. Johannes Borgstrôm, Uwe Nestmann, Luc Onana Alima, and Dilian Gurov. Verifying a structured
peer-to-peer overlay network: The static case. In Paola Quaglia Corrado Priami, editor, Global
Computing: IST/FET International Workshop, GC 2004 Rovereto, Italy, March 9-12, 2004 Revised
Selected Papers, volume 3267 of Lecture Notes in Computer Science, page 250. Springer, 2004.

5. Mario José Cáccamo, Federico Crazzolara, and Giuseppe Milicia. The ISO 5-pass authentication
in χ-Spaces. In Youngsong Mun and Hamid R. Arabnia, editors, Proceedings of the Security and
Management Conference (SAM’02), pages 490–495, Las Vegas, Nevada, USA, June 2002. CSREA
Press.

6. Luca Cardelli. Brane calculi. In Vincent Danos and Vincent Schachter, editors, CMSB, volume 3082
of Lecture Notes in Computer Science, pages 257–278. Springer, 2004.

7. Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Software Science and
Computation Structures: First International Conference, FOSSACS ’98. Springer-Verlag, Berlin Ger-
many, 1998.

8. Federico Crazzolara. Language, semantics, and methods for security protocols. Doctoral Dissertation
DS-03-4, brics, daimi, May 2003. PhD thesis. xii+160.

9. Federico Crazzolara and Glynn Winskel. Events in security protocols. In ACM Conference on
Computer and Communications Security, pages 96–105, 2001.

10. Danny Dolev and Andrew C. Yao. On the security of public key protocols. Technical report, Dept.
of Computer Science, Stanford University, Stanford, CA, USA, 1981.

11. Paul B. Garrett. Making, Breaking Codes: Introduction to Cryptology. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000.

12. Julian Gutiérrez, Jorge Andrés Pérez, Camilo Rueda, and Frank Valencia. A Timed Process Calculus
for Modeling and Verifying Biological Systems. Submitted for Publication, January 2006.

13. Seif Haridi and Thom Sjôland. Pepito - peer-to-peer: Implementation and theory, 2002. Project
Proposal.

14. C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 26(1):100–106, 1983.
15. J. Krivine and V. Danos. Formal molecular biology done in CCS-R. In BioConcur 2003, Workshop

on Concurrent Models in Molecular Biology, 2003.
16. Gavin Lowe. An attack on the needham-schroeder public-key authentication protocol. Inf. Process.

Lett., 56(3):131–133, 1995.
17. Giuseppe Milicia. χ-Spaces: Programming Security Protocols. In Proceedings of the 14th Nordic

Workshop on Programming Theory (NWPT’02), November 2002.
18. Robin Milner. Communication and concurrency. Prentice Hall International (UK) Ltd., Hertford-

shire, UK, UK, 1995.
19. Robin Milner. Communicating and Mobile systems. The Pi Calculus. Cambridge University Press,

1999.
20. Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne, Bruno Richard,

Sami Rollins, and Zhichen Xu. Peer-to-peer computing. Technical Report HPL-2002-57, HP Labs,
March 2002.

21. Charles Perkins. IP Mobility Support - RFC2002. IETF RFC Publication, 1996.
22. James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, 1977.
23. G. D. Plotkin. A structural approach to operational semantics. Technical report, University of

Aarhus, 1981.
24. Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and Ehud Y. Shapiro. Bioam-

bients: an abstraction for biological compartments. Theor. Comput. Sci., 325(1):141–167, 2004.
25. Aviv Regev, William Silverman, and Ehud Y. Shapiro. Representation and simulation of biochemical

processes using the pi-calculus process algebra. In Pacific Symposium on Biocomputing, pages 459–
470, 2001.

26. V. Saraswat, M. Rinard and P. Panangaden. The semantic foundations of concurrent constraint
programming. In POPL ’91, pages 333–352, jan 1991.

27. J. Rohrer and M. Roth. Mute: Simple, anonymous file sharing, 2005. Available at
http://mute-net.sourceforge.net/howAnts.shtml.

28. Mudhakar Srivatsa and Ling Liu. Vulnerabilities and security threats in structured peer-to-peer
systems: A quantitative analysis.

29. Helen J. Wang, Yih-Chun Hu, Chun Yuan, Zheng Zhang, and Yi-Min Wang. Friends troubleshoot-
ing network: Towards privacy-preserving, automatic troubleshooting. In Geoffrey M. Voelker and
Scott Shenker, editors, IPTPS, volume 3279 of Lecture Notes in Computer Science, pages 184–194.
Springer, 2004.

A An introduction to Petri Nets

Petri nets are an abstract formal model used to describe concurrent an asynchronous systems.
In this model it is possible to verify properties of a system, as constraints that can never be
broken. It basic model consists of a directed graph where two kind of nodes are available: places
and transitions. Places represents states of a process and transitions the synchronisation methods
between states. This model is well suited to represent sequential and static behaviour of processes,
as well as the dynamic properties and the execution of concurrent processes. We refer the reader
to [28] for deeper description of the model.

A.1 Multisets

A multiset is a set where the multiplicities of its elements matters.
Multisets could have infinite multiplicities. This is represented by including an extra element ∞
to the natural numbers. Multisets support addition + and multiset inclusion ≤.

A.2 General Petri nets

A general Petri net is a place transition system consisting of a set of conditions P , a set of
events T and a set of arcs connecting both of them. There are two types of arcs, the precondition
map pre, which to each t ∈ T assigns a multiset pre(t) (traditionally written .t) over P and a
postcondition map post which to each t ∈ T assigns a ∞-multiset post(t) (t.) over P . Petri nets
also include a Capacity function Cap, an ∞-multiset over P , which assigns to each condition its
respective multiplicity.

Token game for general nets.- A marking is a very important concept in Petri nets, since
it captures the notion of a distributed global state. A marking is represented by the presence of
tokens on a condition. The number of tokens denotes the multiplicity of each condition.

Markings can change as events occur, moving tokens from the event preconditions to its
postconditions by what is called the token game of nets. For M,M ′ markings and t ∈ T we
define

M
t−→M ′ iff .t ≤M ∧M ′ = M −. t+ t.

An event t is said to have concession at a marking M iff its occurrence leads to a marking.

A.3 Basic Nets

Basic nets are just an instantiation of a general Petri net, where in all the multisets the multiplic-
ities are either 0 or 1, and so can be regarded as sets. In this case, the capacity function assigns
1 to every condition in such a way that markings become just simply subsets of conditions.

A basic Petri net consists of a set of conditions B, a set of events E and two maps. A pre-
condition map pre : E → Pow(B), and a postcondition map post : E → Pow(B).

We can denote .e for the preconditions and e. for the postconditions of e ∈ E requiring that
.e ∪ e. 6= ∅

Token game for basic nets.- For markings M,M ′ ⊆ B and event e ∈ E, define

M
e−→M ′ iff

(1) .e ⊆ M & (M\.e) ∩ e. = ∅ and
(2) M ′ = (M\.e) ∪ e.

A.4 Nets with persistent conditions

A net with persistent conditions is a modification of a basic net. It allows certain conditions to be
persistent in such a way that any number of events can make use of them as preconditions which
never cease to hold. This conditions can also act as postconditions for several events without
generating any conflict.

Now, amongst the general conditions of the basic net, are the subset of persistent conditions
P , forming in this way a persistent net.

The general net’s capacity function will be either 1 or ∞ on a condition, being ∞ precisely
on the persistent conditions. When p is persistent, p ∈ e. is interpreted in the general net as arc
weight (e.)p = ∞, and p ∈. e as (.e)p = 1.

Token game with persistent conditions.- The token game is modified to account for the
subset of persistent conditions P . Let M and M ′ be markings (i.e. subsets of conditions), and e
an event. Define

M
e−→ M ′ iff

(1) .e ⊆ M & (M\(.e ∪ P)) ∩ e. = ∅ and
(2) M ′ = (M\.e) ∪ e. ∪ (M ∩ P).

B General Proof principles [21]

From the net semantics we can derive several principles useful in proving authentication and
secrecy of security protocols. Write M v M ′ to mean message M is a subexpression of message
M ′, i.e., v is the smallest binary relation on messages st:

M vM
M v N ⇒M v N,N ′ and M v N ′, N
M v N ⇒M v {N}k

where M,N,N ′ are messages and k is a key expression. We also write M < t iff ∃M ′.M < M ′ ∧
M ′ ∈ t, for a set of messages t.
Well-foundedness.- Given a property P on configurations, if a run 〈p0, s0, t0〉

e1−→ ...
er−→

〈pr, sr, tr〉
er+1−→ ..., contains configurations s.t. P (p0, s0, t0) and ¬P (pj , sj , tj), then there is an

event eh, 0 < h ≤ j, s.t. P (pi, si, ti) for all i < h and ¬P (ph, sh, th).
We say that a name m ∈ N is fresh on an event e if m ∈ en and we write Fresh(m, e)

Freshness.- Within a run

〈p0, s0, t0〉
e1−→ ...

er−→ 〈pr, sr, tr〉
er+1−→ ...,

the following properties hold:

i) If n ∈ si then either n ∈ s0 or there is a previous event ej s.t. Fresh(n, ej).
ii) Given a name n there is at most one event ei s.t. Fresh(n, ei).
iii) If Fresh(n, ei) then for all j < i the name n does not appear in 〈pj , sj , tj〉.

Control Precedence.- Within a run

〈p0, s0, t0〉
e1−→ ...

er−→ 〈pr, sr, tr〉
er+1−→ ...,

if b ∈ cei either b ∈ Ic(p0) or there is an earlier event ej , j < i, s.t. b ∈ eo
j .

Output-input Precedence.- Within a run

〈p0, s0, t0〉
e1−→ ...

er−→ 〈pr, sr, tr〉
er+1−→ ...,

if M ∈ oei, then either M ∈ t0 or there is an earlier event ej , j < i, s.t. M ∈ eo
j

Output Principle.- Within a run

〈p0, s0, t0〉
e1−→ ...

er−→ 〈pr, sr, tr〉
er+1−→ ...,

According to the message persistence in SPL, ∀ ev in a run, eo
v − eo

v−1 are the new messages
generated by event ev

Message Surroundings.- Given messages M and N the surroundings of N in M are the small-
est submessages of M containing N under one level of encryption. So for example the surround-
ings of Key(A) in

(A, {B,Key(A)}k, {Key(A)}k′)

are {B,Key(A)}k and {Key(A)}k′ . If N is a submessage of M but does not appear under en-
cryption in M then we take the surroundings of N in M to be N itself.
For example the surroundings of Key(A) in

(A, {B,Key(A)}k,Key(A))

are {B,Key(A)}k and Key(A).
Let M and N be two messages. Define σ(N,M) the surroundings of N in M inductively as

follows:

σ(N, v) =


{v} if N = v
∅ otherwise

σ(N, k) =


{k} if N = k
∅ otherwise

σ(N, (M,M ′)) =


{(M,M ′)} if N = M,M ′

σ(N,M) ∪ σ(N,M ′) otherwise

σ(N, {M}k) =


{{M}k} if N ∈ σ(N,M) or N = {M}k

σ(N,M) otherwise

σ(N,ψ) =


{ψ} if N = ψ
∅ otherwise

C Secrecy Property (Full Proofs)

Secrecy property for shared keys This theorem for the MUTE protocol concerns the shared
keys of neighbors. If this shared keys are not corrupted from the start and the peers behave as
the protocol states then the keys will not be leaked during a protocol run. If we assume that
key(X,Y) 6v t0, where X,Y ∈ Peers, then at the initial state of the run there is no danger of
corruption. This will help us to prove some other security properties for MUTE.

Theorem 5. Given a run of MUTE and A0, B0 ∈ Peers(G), if key(A0, B0) 6v t0 then at each
stage w in the run key(A0, B0) 6v tw

Proof. Suppose there is a run of MUTE in which key(A0, B0) appears on a message sent over
the network. This means, since key(A0, B0) 6v t0, that there is a stage w > 0 in the run st.

key(A0, B0) 6v tw−1 and key(A0, B0) v tw

Where ew ∈ Ev(MUTE) (Definition 4) and by the token game of nets with persistent condi-
tions, is st.

key(A0, B0) v eo
w

As can easily be checked by using the events defined in 3.3, the shape of every Init or Interm
or Resp event

e ∈ Init : Ev(pInit) ∪ Interm : Ev(pInterm) ∪ Resp : Ev(pResp)

is st.

key(A0, B0) 6v eo

The event ew can therefore only be a spy event. If ew ∈ Spy : Ev(pSpy), however by con-
trol precedence and the token game, there must be an earlier stage u in the run, u < w st.
key(A0, B0) v tu which is a contradiction.

C.1 Secrecy property for the request

The following theorem concerns the secrecy property for the request. It states that the keyword
asked by the initiator and broadcasted through the network will never be visible for a Spy outside
the P2P group.

Theorem 6. Given a run of MUTE and A0 ∈ Peers(G) and kw0 ∈ Keywords(A0), if for all
peers A and B key(A,B) 6v t0, where B ∈ ngb(A) and the run contains Init event a1 labelled
with action

act(a1) = Init : (A0) : i0 : B0 : out new(n0)({n0, kw0}key(A0,B0), A0, B0)

where i0 is a session index and B0 is an index which belongs to the set ngb(A0), n0 is a name
and kw0 is a keyword, then at every stage w in the run kw0 6∈ tw

Proof. We state a stronger property:

Q(p, s, t) ⇔ σ(kw0, t) ⊆ {({n0, kw0}key(A0,B0), A0, B0)}
If we can show that at every stage w in the run Q(pw, sw, tw) holds, then clearly kw0 6∈ tw

for every stage w in the run. Suppose the contrary. By freshness clearly Q(MUTE, s0, t0). By
well-foundedness, let v be the first stage in the run st. ¬Q(pv, sv, tv). From the freshness principle
it follows that

a1 −−−−→ ev

Where ev ∈ Ev(MUTE) (Definition 4) and from the token game ({n0, kw0}key(A0,B0), A0, B0) ∈
σ(kw0, tv−1) (Because messages are persistent in the net). From the token game of nets with per-
sistent conditions we have

σ(kw0, e
o
v − eo

v−1) 6⊆ {({n0, kw0}key(A0,B0), A0, B0)} (3)

Clearly ev can only be an output event since eo
v − eo

v−1 = ∅ for all input events e. Examining
the output events of Ev(MUTE) we conclude that ev 6∈ Ev(MUTE) reaching a contradiction.

In the following lines we will explore each output event in the protocol in order to verify that
the event ev is different to all of them.

Initiator output events.

act(ev) = Init : (A) : j : B : out new(n)({n, kw}key(A,B), A,B)

where A ∈ Peers(G) and so A ∈ s0 and kw ∈ Keywords(A) and so kw ∈ s0, where n is
a name, j is a session index and B is an index which belongs to the set ngb(A). Property 3
and the definition of message surroundings imply that ∃ψ v ({n, kw}key(A,B), A,B) . kw0 v ψ.
Then kw0 v ({n, kw}key(A,B), A,B). Since A,B ∈ Peers(G) and A,B ∈ s0, freshness implies
that kw0 6= A and kw0 6= B. Since {n, kw}key(A,B) is a cyphertext, kw0 v {n, kw}key(A,B). If
kw0 = kw then one reaches a contradiction to property 3 because from the output principle if
follows that eo

v − eo
v−1 = {{n0, kw0}key(A0,B0), A0, B0}. Since kw0 ∈ s0 freshness implies that

n 6= kw0. Therefore ev cannot be an Init event with the above action.

Intermediator output events.

act(ev) = Interm : (A) : j : B :
out ({M}key(A,B), A,B)

Case 1: (M = (n, kw))

act(ev) = Interm : (A) : j : B : out ({n, kw}key(A,B), A,B)

where A ∈ Peers(G) and so A ∈ s0 and kw ∈ Keywords and so kw ∈ s0, where n
is a name, j is a session index and B is an index which belongs to the set ngb(A) − {Y },
where Y ∈ ngb(A) and it is the sender/forwarder of the message. Property 3 and the definition
of message surroundings imply that ∃ψ v ({n, kw}key(A,B), A,B) . kw0 v ψ. Then kw0 v
({n, kw}key(A,B), A,B). Since A,B ∈ Peers(G) and then A,B ∈ s0 and freshness implies that
kw0 6= A and kw0 6= B, and since {n, kw}key(A,B) is a cyphertext, kw0 v {n, kw}key(A,B). If
kw0 = kw then a contradiction to property 3 is reached, because from the output principle
if follows that eo

v − eo
v−1 = {{n0, kw0}key(A,B), A,B}. Then, from the definition of message

surroundings and Property 3 kw0 = n. By control precedence there exists an event eu in the
run st.

eu −−−−→ ev

and
act(eu) = Interm : (A) : j : Y : in ({kw0, kw}key(Y,A), Y, A)

By the token game

({kw0, kw}key(Y,A), Y, A) ∈ tu−1

where kw0 6= n0 and so ¬Q(pu−1, su−1, tu−1) which is a contradiction since u < v
Case 2: (M = (n, res,m))

act(ev) = Interm : (A) : j : B :
out ({n, res,m}key(A,B), A,B)

where A ∈ Peers(G) and so A ∈ s0 and res ∈ Headers and so res ∈ s0, where n,m
are names, j is a session index and B is an index which belongs to the set ngb(A) − {Y },
where Y ∈ ngb(A) and it is the sender/forwarder of the message. Property 3 and the defi-
nition of message surroundings imply that ∃ψ v ({n, res,m}key(A,B), A,B) . kw0 v ψ. Then
kw0 v ({n, res,m}key(A,B), A,B). Since A,B ∈ Peers(G) and then A,B ∈ s0 and freshness
implies that kw0 6= A and kw0 6= B, and since {n, res,m}key(A,B) is a cyphertext, kw0 v
{n, res,m}key(A,B), and from the freshness property kw0 6= res, so if property 3 holds, then
kw0 = n or kw0 = m and either n 6= n0 or m 6= m0. By control precedence there exists an
event eu in the run st.

eu −−−−→ ev

and
act(eu) = Interm : (A) : j : Y : in ({n, res,m}key(Y,A), Y, A)

By the token game

({n, res,m}key(Y,A), Y, A) ∈ tu−1

and ¬Q(pu−1, su−1, tu−1) since ({kw0, res,m}key(Y,A), Y, A) ∈ σ(kw0, tu−1) or ({n, res, kw0}key(Y,A),
Y, A) ∈ σ(kw0, tu−1), and then σ(kw0, tu−1) 6⊆ ({n0, kw0}key(A0,B0), A0, B0) A contradiction
follows because u < v.

Responder output events.

act(ev) : Resp : (A) : j : B :
out new(m)({n, res,m}key(A,B), A,B)

where A ∈ Peers(G) and so A ∈ s0 and res ∈ Headers(A) and so res ∈ s0, where n,m are
names, j is a session index and B is an index which belongs to the set ngb(A). Property 3 and the
definition of message surroundings imply that ∃ψ v ({n, res,m}key(A,B), A,B) . kw0 v ψ. Then
kw0 v ({n, res,m}key(A,B), A,B). Since A,B ∈ Peers(G) and then A,B ∈ s0 and freshness
implies that kw0 6= A and kw0 6= B, and since {n, res,m}key(A,B) is a cyphertext, kw0 v
{n, res,m}key(A,B), and from the freshness property it follows that m 6= kw0 and res 6= kw0,
therefore since property 3 holds and by definition of message surroundings kw0 = n. By control
precedence there exists an event eu in the run st.

eu −−−−→ ev

and
act(eu) = Resp : (A) : j : in({kw0, kw}key(Y,A), Y, A)

By the token game
({kw0, kw}key(Y,A), Y, A) ∈ tu−1

Where kw0 6= n0 and so ¬Q(pu−1, su−1, tu−1) which is a contradiction since u < v

Spy output events. An assumption of the theorem is that the shared keys are not leaked, meaning
that for all peers A and B key(A,B) 6v t0. At every stage w in the run key(A,B) 6v tw (Theorem
5). Since this there is no possible way for a spy to reach kw0, ev is not a spy event.

C.2 Secrecy property for the answer

The next theorem states that the message sent as an answer by the responder will never appear
as a cleartext during a run of the MUTE protocol, and in this way nobody outside the peer to
peer boundaries will understand it.

Theorem 7. Given a run of MUTE and A0 ∈ Peers(G) and res0 ∈ Headers(B0), if for all
peers A and B key(A,B) 6v t0, where B ∈ ngb(A) and if the run contains a Resp event b2 labelled
with action

act(b2) = Resp : (A0) : i0 : B0 :
out new(m0)({n0, res0,m0}key(A0,B0), A0, B0)

where i0 is a session index, B0 is an index which belongs to the set ngb(A0), n0,m0 are names
and res0 ∈ Headers(B0) and then at every stage w res0 6∈ tw
Proof. We show a stronger property such as this:

Q(p, s, t) ⇔ σ(res0, t) ⊆ {({n0, res0,m0}key(A,B), A,B)}
If we can show that at every stage w in the run Q(pw, sw, tw) Then clearly res0 6∈ tw for

every stage w in the run.Suppose the contrary. Suppose that at some stage in the run property
Q does not hold, by freshness clearly Q(MUTE, s0, t0). Let v by well-foundedness, be the first
stage in the run st. ¬Q(pv, sv, tv). From the freshness principle it follows that

b2 −−−−→ ev

Where ev ∈ Ev(MUTE) (Definition 4) and from the token game ({n0, res0,m0}key(A0,B0), A0, B0)
∈ σ(res0, tv−1) (messages on the network are persistent). From the token game of nets with per-
sistent conditions the event ev is st.

σ(res0, eo
v − eo

v−1) 6⊆ {({n0, res0,m0}key(A0,B0), A0, B0)} (4)

Clearly ev can only be an output event since eo
v − eo

v−1 = ∅ for all input events e. We
examine the possible output events of Ev(MUTE) and conclude that ev 6∈ Ev(MUTE), reaching
a contradiction.

In the following lines we will explore each output event in the protocol in order to verify that
the event ev is different to all of them.

Initiator output events.

act(ev) = Init : (A) : j : B : out new(n)({n, kw}key(A,B), A,B)

where A ∈ Peers(G) and so A ∈ s0 and kw ∈ Keywords(A) and so kw ∈ s0, where n is
a name, j is a session index and B is an index which belongs to the set ngb(A). Property 4
and the definition of message surroundings imply that ∃ψ v ({n, kw}key(A,B), A,B) . res0 v
ψ. Then res0 v ({n, kw}key(A,B), A,B). Since A,B ∈ Peers(G) and then A,B ∈ s0 and
freshness implies that res0 6= A and res0 6= B, and since {n, kw}key(A,B) is a cyphertext, res0 v
{n, kw}key(A,B), and from the freshness principle it follows that n 6= res0 and res0 6= kw because
kw ∈ s0 and kw ∈ Keywords and res0 ∈ Files and Files 6= Keywords, therefore ev can’t be a
Init output event with the above action.

Intermediator output events.

act(ev) = Interm : (A) : j : B : out({M}key(A,B), A,B)

Case 1: (M = (n, kw))

act(ev) = Interm : (A) : j : B :
out ({n, kw}key(A,B), A,B)

where A ∈ Peers and so A ∈ s0 and kw ∈ Keywords and where n is a name,j is a session
index and B is an index which belongs to the set ngb(A) − {Y } where Y ∈ ngb(A) an it is
the sender/forwarder of the message. Property 4 and the definition of message surroundings
imply that ∃ψ v ({n, kw}key(A,B), A,B) . res0 v ψ. Then res0 v ({n, kw}key(A,B), A,B). Since
A,B ∈ Peers(G) and then A,B ∈ s0 and freshness implies that res0 6= A and res0 6= B,
and since {n, kw}key(A,B) is a cyphertext, res0 v {n, kw}key(A,B) Since kw ∈ s0 the freshness
definition implies that res0 6= kw, so res0 = n. By control precedence there exists an event eu

in the run st.

eu −−−−→ ev

and

act(eu) = Interm : (A) : j : Y : in({res0, kw}key(Y,A), Y, A)

By the token game

({res0, kw}key(Y,A), Y, A) ∈ tu−1

where res0 6= n0 and so ¬Q(pu−1, su−1, tu−1, res0), which is a contradiction since u < v.
Case 2: (M = (n, res,m))

act(ev) = Interm : (A) : j : B :
out ({n, res,m}key(A,B), A,B)

where A ∈ Peers(G) and so A ∈ s0 and res ∈ Headers and so res ∈ s0, where n,m are
names, j is a session index and B is an index which belongs to the set ngb(A) − {Y }, where
Y ∈ ngb(A) and it is the sender/forwarder of the message. Property 4 and the definition of
message surroundings implies that ∃ψ v ({n, res,m}key(A,B), A,B) . res0 v ψ. Then res0 v
({n, res,m}key(A,B), A,B). Since A,B ∈ Peers(G) and then A,B ∈ s0 and freshness implies
that res0 6= A and res0 6= B, and since {n, res,m}key(A,B) is a cyphertext, if property 4 holds,
then res0 = n, or res0 = res or res0 = m and either n 6= n0 or res 6= res0 or m 6= m0. By
control precedence there exists an event eu in the run st.

eu −−−−→ ev

And
act(eu) = Interm : (A) : j : Y : in ({n, res,m}key(Y,A), Y, A)

By the token game

({n, res,m}key(Y,A), Y, A) ∈ tu−1

and ¬Q(pu−1, su−1, tu−1) since either n 6= n0 or res 6= res0 or m 6= m0. A contradiction follows
because u < v.

Responder output events.

act(ev) : Resp : (A) : j : B : out new(m)({n, res,m}key(A,B), A,B)

where A ∈ Peers(G) and so A ∈ s0 and res ∈ Headers(A) and so res ∈ s0, where n,m are
names, j is a session index and B is an index which belongs to the set ngb(A). Property 4 and
the definition of message surroundings implies that ∃ψ ∈ ({n, res,m}key(A,B), A,B) . res0 v ψ.
Then res0 v ({n, res,m}key(A,B), A,B). Since A,B ∈ Peers(G) and then A,B ∈ s0 and
freshness implies that res0 6= A and res0 6= B, and since {n, res,m}key(A,B) is a cyphertext,
res0 v {n, res,m}key(A,B) and the freshness property follows that res0 6= m, if res0 = res we
reach a contradiction to property 4 because from the output principle it follows that eo

v−eo
v−1 =

{{n0, res0,m0}key(A,B), A,B}. Then res0 = n By control precedence there exists an event eu in
the run st.

eu −−−−→ ev

and
act(eu) = Resp : (A) : j : in({res0, kw}key(Y,A), Y, A)

By the token game

({res0, kw}key(Y,A), Y, A) ∈ tu−1

Where res0 6= n0 so ¬Q(pu−1, su−1, tu−1, res0), which is a contradiction since u < v.

Spy output events. An assumption of the theorem is that the shared keys are not leaked, meaning
that for all peers A and B key(A,B) 6v t0. At every stage w in the run key(A,B) 6v tw (Theorem
5). Since this there is no possible way for a spy to reach kw0, ev is not a spy event.

