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Abstract

This essay offers an overview of basic aspects and central development
in Concurrency Theory based on formal languages. In particular, it focuses
on the theory of Process Calculi.

1 Introduction
Concurrency is concerned with the fundamental aspects of systems con-
sisting of multiple computing agents, usually called processes, that interact
among each other. This covers a vast variety of systems which nowadays,
due to technological advances such as the Internet, programmable robotic
devices and mobile computing, most people can easily relate to. Some ex-
amples are:

• Message-passing communication based systems: Agents interact by
exchanging messages. For instance, e-mail communication on the
Internet, or robot point-to-point exchange of messages via infra-red
communication.

• Shared-Variables communication based systems: Agents communi-
cate by posting and reading information from a central location. For
instance, reading and posting information on a server as in an Internet
newsgroup. In the context of co-operative robotic devices, there can
be a central control, usually a PC, on which the robots can post and
read information (e.g., their relative positions).

• Synchronous systems: As opposed to asynchronous systems, in syn-
chronous systems, agents need to synchronize with one another. In
Internet telephony services the caller and the callee’s terminal need



to synchronize to establish communication. In systems of mobile
robotic devices, robots most certainly need to synchronize, e.g., to
avoid bumping into each other. An example of asynchrony is SMS
communication on mobile phones.

• Reactive systems: Involve systems that maintain an ongoing interac-
tion with their environment. For instance, reservation systems and
databases on the Internet. Co-operative robotic devices are typically
programmed to react to their surroundings, e.g., going backwards
whenever a touch sensor is pressed.

• Timed systems: Systems in which the agents are constrained by tem-
poral requirements. For example, browser applications are constrained
by timer-based exit conditions (i.e., time-outs) for the case in which
a server cannot be contacted. E-mailer applications can be required
to check for messages every k time units. Also, robots can be pro-
grammed with time-outs (e.g., to wait for some signal) and with timed
instructions (e.g., to go forward for 42 time units).

• Mobile systems: Agents can change their communication links.
This is the essence of mobile computing devices. For example,
portable computers can connect to the Internet from different loca-
tions. Robotic devices also exhibit mobility since, as they are on
the move they may change their communication configuration. E.g.,
robots, which could initially communicate with one another, may
sometime later be too far away to continue to do so.

• Secure systems: Systems in which critical resources of some sort (e.g.,
secret information) must not be accessed, misused or modified by un-
wanted agents. Credit card usage on the Internet is now a common
practice involving secure systems. To a more physical level, one now
hears of robotic security systems [9] which involve mobile devices that
are strategically programmed to patrol, detect intruders and respond
accordingly.

The above are but a few representatives of systems exhibiting concurrency,
often referred to as concurrent systems. Furthermore, they can be combined
to give rise to very complex concurrent systems; for example the Internet
itself.

1.1 Problem: Reasoning about Concurrency
The previous examples illustrate the practical relevance, complexity and
ubiquity of concurrent systems. It is therefore crucial to be able to describe,
analyze and, in general, reason about concurrent behavior. This reasoning
must be precise and reliable. Consequently, it ought to be founded upon



mathematical principles in the same way as the reasoning about the behav-
ior of sequential programs is founded upon logic, domain theory and other
mathematical disciplines.

Nevertheless, giving mathematical foundations to concurrent computa-
tion has become a serious challenge for computer science. Traditional math-
ematical models of (sequential) computation based on functions from inputs
to outputs no longer apply. The crux is that concurrent computation, e.g.,
in a reactive system, is seldom expected to terminate, it involves constant
interaction with the environment, and it is non-deterministic owing to un-
predictable interactions among agents.

1.2 Solution: Models of Concurrency
Computer science has therefore taken up the task of developing models, con-
ceptually different from those of sequential computation, for the precise un-
derstanding of the behavior of concurrent systems. Such models, as other
scientific models of reality, are expected to satisfy the following criteria:

• They must be simple, i.e., based upon few basic principles.

• They must be expressive, i.e., capable of capturing interesting real-
world situations.

• They must be formal, i.e., founded upon mathematical principles.

• They must provide techniques to allow reasoning about their particular
focus.

In order to develop a model of concurrency one could suggest the following
general strategy: Seize upon a few pervasive aspects of concurrency (e.g.,
synchronous communication), make them the focus of a model, and then
submit the model to the above criteria. This strategy can be claimed to
have been involved in the development of a mature collection of models
for various aspects of concurrency. Some representatives of this collection
are mentioned next.

Representative models for synchronous communication. Some of
the most mature and well-known models of concurrency are process calculi
like Milner’s CCS [16], Hoare’s CSP [12], and ACP (developed by Bergstra
and Klop [4] and also by Baeten [6]). The common focus of these models is
synchronous communication.

Process calculi treat processes much like the λ-calculus treats com-
putable functions. They provide a language in which the structure of terms
represents the structure of processes together with an operational semantics
to represent computational steps. For example, the term P ‖ Q, which is
built from P and Q with the constructor ‖, represents the process that results



from the parallel execution of those represented by P and Q. An operational
semantics may dictate that if P can evolve into P′ in a computational step
then P ‖ Q can also evolve into P′ ‖ Q in a computational step.

An appealing feature of process calculi is their algebraic treatment of
processes. The constructors are viewed as the operators of an algebraic the-
ory whose equations and inequalities among terms relate process behavior.
For instance, the construct ‖ can be viewed as a commutative operator, hence
the equation P ‖ Q ≡ Q ‖ P states that the behavior of the two parallel com-
positions are the same. Because of this algebraic emphasis, these calculi are
often referred to as process algebras.

A representative model for true-concurrency. Another important
model of concurrency is Petri Nets [23]. The focus of Petri Nets is the
simultaneous occurrence of actions (i.e., true concurrency). The theory of
Petri Nets, which was the first well-established theory of concurrency, is an
elegant generalization of classic automata theory in which the concept of
concurrently occurring transitions can be expressed.

1.3 Model Extensions
Science has made progress by extending well established theories to capture
new and wider phenomena. For instance, computability theory was initially
concerned only with functions on the natural numbers but it was later ex-
tended to deal with functions on the reals [11]. Also, classical logic was
extended to various modal logics to study reasoning involving modalities
such as possibility, necessity and temporal progression. Another example of
great relevance is automata theory, initially confined to finite sequences, but
later generalized to reason about infinite ones as in Büchi automata theory
[5].

Similarly, several mature models of concurrency have been extended to
treat additional issues. These extensions should not come as a surprise since
the field is indeed large and subject to the advents of new technology.

One example of these additional issues is the notions of mobility and
security which now pervade the informational world; none of the represen-
tative models mentioned above dealt with these notions. It was later found
that a CCS extension, the π-calculus [18], could treat mobility in a very sat-
isfactory way. A further extension, the spi-calculus [1], was also designed
to model security.

Another prominent example is the notion of time. This notion not only is
a fundamental concept in concurrency but also in science at large. Just like
modal extensions of logic for temporal progression study time in logic rea-
soning, theories of concurrency were extended to study time in concurrent
activity. For instance, neither CCS, CSP nor Petri Nets, in their basic form,



were concerned with temporal behavior but they all have been extended to
incorporate an explicit notion of time, leading for instance Timed CCS [33],
Timed CSP [28], Timed ACP [3] and Timed Petri Nets [34].

2 The Theory of Process Calculi
This section describes some fundamental concepts from process calculi. We
do not intend to give an in-depth review of these calculi (the interested reader
is referred to [17]), but rather to describe those issues which influenced their
development.

There are many different process calculi in the literature mainly agreeing
in their emphasis upon algebra. The main representatives are CCS [16] ,
CSP [12] and the process algebra ACP [4, 6]. The distinctions among these
calculi arise from issues such as the process constructions considered (i.e.,
the language of processes), the methods used for giving meaning to process
terms (i.e. the semantics), and the methods to reason about process behavior
(e.g., process equivalences or process logics). Some other issues addressed
in the theory of these calculi are their expressive power, and analysis of their
behavioral equivalences. In what follows we discuss some of these issues
briefly.

2.1 The Language of Processes
A common feature of the languages of process calculi is that they pay special
attention to economy. That is, there are few operators or combinators, each
one with a distinct and fundamental role. Process calculi usually provide the
following combinators:

• Action, for representing the occurrence of atomic actions.

• Product, for expressing the parallel composition.

• Summation, for expressing alternate course of computation.

• Restriction (or Hiding), for delimiting the interaction of processes.

• Recursion, for expressing infinite behavior.

A process language. For the purposes of the exposition of the next sec-
tions we shall define a basic process language which exemplifies the above.

We presuppose an infinite set N of names a, b, . . . . and then introduce a
set of co-names N = {a | a ∈ N} disjoint from N . The set of labels, ranged
over by l and l′, is L = N ∪ N . The set of actions Act, ranged over by the
boldface symbols a and b extends L with a new symbol τ. The action τ is
said to be the silent (internal or unobservable) action. The actions a and a



are thought of as being complementary, so we decree that a = a. The syntax
of processes is given by:

P,Q, . . . ::= 0 | a.P | P + Q | P ‖ Q | P\a | A 〈b1, . . . , bn〉

Intuitive Description. The intuitive meaning of the process terms is as
follows. The process 0 does nothing. a.P is the process which performs an
atomic action a and then behaves as P. The summation P + Q is a process
which may behave as either P or Q. P ‖ Q represents the parallel compo-
sition of P and Q. Both P and Q can proceed independently but they can
also synchronize if they perform complementary actions. The restriction
P\a behaves as P except that it cannot perform the actions a or a. The
names a and a are said to be bound in P\a. A 〈b1, . . . , bn〉 denotes the in-
vocation to a unique recursive definition of the form A(a1, . . . , an) def= PA

where all the non-bound names of process PA are in {a1, . . . , an}. Obviously
PA may contain invocations to A. The process A 〈b1, . . . , bn〉 behaves as
PA[b1, . . . , bn/a1, . . . , an], i.e., PA with each ai replaced by bi – with renam-
ing of bound names wherever necessary to avoid captures.

2.2 Semantics of Processes
The methods by which process terms are endowed with meaning may in-
volve at least three approaches: operational, denotational and algebraic se-
mantics. Traditionally, CCS and CSP emphasize the use of the operational
and denotational method, respectively, whilst the emphasis of ACP is upon
the algebraic method.

Operational semantics. The methods was pioneered by Plotkin in his
Structural Operational Semantics (SOS) work [24, 25, 26]. An operational
semantics interprets a given process term by using transitions (labeled or
not) specifying its computational steps. A labeled transition P

a
−→ Q speci-

fies that P performs a and then behaves as Q. The relations
a
−→ are defined to

be the smallest which obey the rules in Table 1. In these rules the transition
below the line is to be inferred from those above the line.

The rules in Table 1 are easily seen to realize the intuitive description
of processes given in the previous section. Let us describe some. The rules
SUM1 and SUM2 say that the first action of P+Q determines which alterna-
tive is selected, the other is discarded. The rules for composition COM1 and
COM2 describe the concurrent performance of P and Q. The rule COM3
describes a synchronizing communication between P and Q. For recursion,
the rule REC says that the actions of (an invocation) A 〈b1, . . . , bn〉 are just
those that can be inferred by replacing every ai with bi in (the definition’s
body) PA where A(a1, . . . , an) def= PA.



ACT
a.P

a
−→ P

SUM1
P

a
−→ P′

P + Q
a
−→ P′

SUM2
Q

a
−→ Q′

P + Q
a
−→ Q′

COM1
P

a
−→ P′

P ‖ Q
a
−→ P′ ‖ P

COM2
Q

a
−→ Q′

P ‖ Q
a
−→ P ‖ Q′

COM3
P

l
−→ P′ Q

l
−→ Q′

P ‖ Q
τ
−→ P′ ‖ Q′

RES
P

a
−→ P′

P\a
a
−→ P′\a

if a , a and a , a

REC
PA[b1, . . . , bn/a1, . . . , an]

a
−→ P′

A 〈b1, . . . , bn〉
a
−→ P′

if A(a1, . . . , an) def= PA

Table 1: An operational semantics for a process calculus.

Behavioral equivalences. Having defined the operational semantics,
we can now introduce some typical notions of process equivalence. Here
we shall recall trace, failures and bisimilarity equivalences. Although these
equivalences can be defined for both CSP and CCS, traditionally the first
two are associated with CSP and the last one is associated with CCS.

We need a little notation: The empty sequence is denoted by ε. Given a
sequence of actions s = a1.a2. . . . ∈ Act∗, define

s
=⇒ as

(
τ
−→)∗

a1
−→ (

τ
−→)∗ . . . (

τ
−→)∗

an
−→ (

τ
−→)∗

Notice that
ε
=⇒=

τ
−→
∗

. We use P
s
=⇒ to mean that there exists a P′ s.t.,

P
s
=⇒ P′ and similarly for P

s
−→.

• Trace equivalence. This equivalence is perhaps the simplest of all. In-
tuitively, two processes are deemed trace equivalent if and only if they
can perform exactly the same sequences of non-silent (or observable)



actions. Formally, we say that P and Q are trace equivalent, written
P =T Q, if for every s ∈ L∗,

P
s
=⇒ iff Q

s
=⇒ .

A drawback of =T is that it is not sensitive to deadlocks. For example,
let P1 = a.b.0 + a.0 and Q1 = a.b.0. Notice that P1 =T Q1 but unlike
Q1, after doing a, P1 can reach a state in which it cannot perform any
action, i.e., a deadlock.

• Failures equivalence. This equivalence is more discriminating
(stronger or finer) than trace equivalence. In particular it is sensitive
to deadlocks.
A failure is a pair (s, L) where s ∈ L∗ (called a trace) and L is a set of
labels. Intuitively, (s, L) is a failure of P if P can perform a sequence
of observable actions s evolving into a P′ in which no action from
L ∪ {τ} can be performed.
Formally, we say that (s, L) is a failure of P if there exists P′ such that

(1) P
s
=⇒ P′, (2) P′ 6

τ
−→ and (3) for all l ∈ L, P′ 6

l
−→.

We then say that P and Q are failures-equivalent, written P =F Q, iff
they posses the same failures.
Notice that =F⊆=T as a trace is part of a failure. To see the strict inclu-
sion, notice that for the trace equivalent processes P1 and Q1 given in
the previous point, we have P1 ,F Q1 as P1 has the failure (a, {b}) but
Q1 does not. Another interesting example is given by the processes
P2 = a.(b.0 + c.0) and Q2 = a.b.0 + a.c.0. They have the same traces,
however P2 ,F Q2 since Q2 has the failure (a, {c}) but P2 does not.

• Bisimilarity. Here we first recall the strong version of the equivalence.
Intuitively, P and Q are strongly bisimilar if whenever P performs an
action a evolving into P′ then Q can also perform a and evolve into a
Q′ strongly bisimilar to P′, and similarly with P and Q interchanged.
The above intuition can be formalized as follows. A symmetric rela-
tion B between process terms is said to be a strong bisimulation iff for
all (P,Q) ∈ B,

if P
a
−→ P′ then for some Q′, Q

a
−→ Q′ and (P′,Q′) ∈ B.

We say that P is strongly bisimilar to Q, written P =S B Q iff there
exists a strong bisimulation containing the pair (P,Q).
A weaker version of strong bisimilarity, called weak bisimilarity or
simply bisimilarity, abstracts away from silent actions. Bisimilarity



can be obtained by replacing the transitions
a
−→ above with the (se-

quences of observable) transitions
s
=⇒ where s ∈ L∗. We shall use =B

to stand for (weak) bisimilarity. Notice that P =B τ.P but P ,S B τ.P.
Bisimilarity is more discriminating than trace equivalence. It is easy
to see that =B⊆=T . The usual example to see the strict inclusion is
P2 and Q2 as given above. Also, bisimilarity is more discriminating
than failures equivalence wrt the branching behavior (i.e., nondeter-
minism); take P3 = a.(b.c.0 + b.d.0) and P3 = a.b.c.0 + a.b.d.0; they
have the same failures but one can verify that P3 ,B Q3. However,
failures equivalence is more discriminating than bisimilarity wrt di-
vergence (i.e., the execution of infinite sequences of silent actions).
Notice that the divergent process Div, with Div def= τ.Div, is bisimilar
to the non-divergent τ.0, however Div ,F τ.0 since τ.0 has the failure
(ε, ∅) but Div does not.

Denotational Semantics. The method was pioneered by Strachey and
provided with a mathematical foundation by Scott. A denotational semantics
interprets processes by using a function [[.]] which maps them into a more
abstract mathematical object (typically, a structured set or a category). The
map [[.]] is compositional in that the meaning of processes is determined
from the meaning of its sub-processes.

A strategy for defining denotational semantics advocated in works such
as [13] involves the identification of what can be observed of a process; what
behavior is deemed relevant (e.g., failures, traces, divergence, deadlocks). A
process is then equated with the set of observations that can be made of it.
For example, if the observation is the traces of processes, the denotation of
the prefix construct a.P can be defined as

[[a.P]] = {ε} ∪ {a.s ∈ L∗ | s ∈ [[P]]}

and the denotation of the summation can be defined as

[[P + Q]] = [[P]] ∪ [[Q]].

It easy to see that these denotations realize the operational intuition of traces;
any trace of a.P is either empty or it starts with a followed by a trace of
P; any trace of P + Q is either a trace of P or one of Q. Note that the
compositional nature is illustrated by stating the denotations of a.P and P+Q
in terms of those of P and Q.

Once the denotation has been defined one may ask whether it is in com-
plete agreement with a corresponding operational notion. For example, for
the trace denotation one would like the following correspondence wrt the
operational notion of trace equivalence,

[[P]] = [[Q]] iff for all contexts C, C[P] =T C[Q]



(A context is an expression with a hole [.] such that placing a process in the
hole produces a well-formed process term, e.g., if C = R ‖ [.] then C[P] =
R ‖ P.) If a denotational-operational agreement like the one above can
be proven, we say that the denotation is fully-abstract [15] wrt the chosen
operational notion.

Denotational semantics are more abstract than the operational ones in
that they generally distant themselves from any specific implementation.
However, the operational semantics approach is, in some informal sense,
more elemental in that when developing a denotational semantics one usu-
ally has an operational semantics in mind.

Algebraic semantics. This method has been advocated by Baeten and
Weijland [6] as well as Bergstra and Klop [4]. An algebraic semantics at-
tempts to give meaning by stating a set of laws (or axioms) equating process
terms. The processes and their operations are then interpreted as structures
that obey these laws. As remarked by Baeten and Weijland [6], the algebraic
approach answers the question “What is a process?” with a seemingly circu-
lar answer: “A process is something that obeys a certain set of axioms...for
processes”.

As an example consider the following axioms for parallel composition:

P ‖ 0 ≡ P, P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R

In other words parallel composition is seen as a commutative, associative
operator with 0 being the unit. Notice that the above axioms basically equate
processes that are the same except for irrelevant syntactic differences, thus
one may expect that any reasonable notion of equivalence validates them.
But consider the following distribution axiom

a.(P + Q) ≡ a.P + a.Q

This axiom is valid if we are content with trace equivalence, but not in gen-
eral (e.g., it does not hold for failures equivalence or bisimilarity).

Given a set of algebraic laws, one may be interested in looking into the
correspondence with a denotational semantics or with some operational no-
tion of equivalence. An interesting property is whether the equalities derived
from the laws are exactly those which hold for a natural notion of process
equivalence. If this property holds, the set of algebraic laws is said to be
complete wrt the notion of process equivalence under consideration.

In the algebraic approach one can simply postulate process equalities
while in the operational (or denotational) approach one would need to prove
them. On the advantages of postulation Russell [29] remarked the following:

The method of postulation has many advantages: they are the same as the
advantages of theft over honest toil

— Bertrand Russell



Algebraic semantics, however, is a convenient framework for the study
of process equivalences; postulating a set of laws, and then investigating
the consistency of that set and what process equivalence it produces. Some
frameworks (e.g., [18]) combine the operational semantics with the alge-
braic one by, for example, considering processes modulo the equivalence
produced by a set of axioms.

2.3 Specification and Process Logics
One often is interested in verifying whether a given process satisfies a prop-
erty, i.e., a specification. But process terms themselves specify behavior, so
they can also be used to express specifications. Then this verification prob-
lem can be reduced to establishing whether the process and the specification
process are related under some behavioral equivalence (or pre-order).

Hennessy-Milner’s modal logic. Another way of expressing process
specifications is by using a process logic. One such logic is the Hennessy-
Milner’s modal logic. The basic syntax of formulae is given by:

F := true | false | F1 ∧ F2 | F1 ∨ F2 | 〈K〉 F | [K]F

where K is a set of actions. Intuitively, the modality 〈K〉 F, called possibility,
asserts (of a given P) that: It is possible for P to do a ∈ K and then evolve
into a Q which satisfies F. The modality [K]P, called necessity, expresses
that if P can do a ∈ K then it must thereby evolve into a Q which satisfies F.

Formally, the compliance of P with the specification F, written P |= F,
is recursively given by:

P 6|= false
P |= true
P |= F1 ∧ F2 iff P |= F1 and P |= F2
P |= F1 ∨ F2 iff P |= F1 or P |= F2

P |= 〈K〉 F iff for some Q, P
a
−→ Q, a ∈ K and Q |= F

P |= [K]F iff if P
a
−→ Q and a ∈ K then Q |= F

As an example consider our familiar trace equivalent (but not bisimilar)
processes P1 = a.(b.0 + c.0) and P2 = a.b.0 + a.c.0. Notice that the formula

F = 〈{a}〉 (〈{b}〉 true∧ 〈{c}〉 true)

discriminates among them, i.e. P1 |= F but P2 6|= F. In fact the discriminat-
ing power of this logic wrt a finite processes (i.e., recursion-free processes)
coincides with strong bisimilarity (see [31]). That is, two finite processes
are strongly bisimilar iff they satisfy the same formulae in the Hennessy-
Milner’s logic. The result can be extended to image-finite processes by
considering infinite disjunctions and conjunctions in the Hennessy-Milner’s
logic.



Temporal logics. The above logic can express local properties such as
“an action must happen next” but it cannot express long-term properties such
as “an action eventually happens”. This kind of property, which falls into the
category of liveness properties (expressing that “something good eventually
happens”), and also safety properties (expressing that “something bad never
happens”) have been found to be useful for reasoning about concurrent sys-
tems. The modal logics attempting to capture properties of the kind above
are often referred to as temporal logics.

Temporal logics were introduced into computer science by Pnueli [27]
and thereafter proven to be a good basis for specification as well as for (auto-
matic and machine-assisted) reasoning about concurrent systems. Temporal
logics can be classified into linear and branching time logics. In the linear
case at each moment there is only one possible future whilst in the branching
case at each moment time may split into alternative futures.

Below we consider a very simple example of a linear-time temporal logic
based on [20]. The syntax of the formulae is given by

F := true | false | L | F1 ∨ F2 | F1 ∧ F2 | ♦F | �F

where L is a set of non-silent actions. The formulae of this logic express
properties of sequences of non-silent actions; i.e. traces. For the sake of
uniformity, we are interested only in infinite traces. Intuitively, the modality
♦F, pronounced eventually F, asserts of a given trace s that at some point in
s, F holds. Similarly, �F, pronounced always F, asserts of a given trace s
that in every point of s, F holds.

The models of the formulae are taken to be infinite sequence of actions;
elements of Actω. Formally, the infinite sequence of actions s = a1.a2 . . .

satisfies (or is a model of) F, written s |= F, iff 〈s, 1〉 |= F, where

〈s, i〉 |= true
〈s, i〉 6|= false
〈s, i〉 |= L iff ai ∈ L ∪ τ
〈s, i〉 |= F1 ∨ F2 iff 〈s, i〉 |= F1 or 〈s, i〉 |= F2
〈s, i〉 |= F1 ∧ F2 iff 〈s, i〉 |= F1 and 〈s, i〉 |= F2
〈s, i〉 |= �F iff for all j ≥ i 〈s, j〉 |= F
〈s, i〉 |= ♦F iff there is a j ≥ i s.t. 〈s, j〉 |= F

Intuitively, P satisfies a linear-temporal specification F, written P |= F,
iff all of its traces are models of F. Recall, however, that the traces are
finite sequences of non-silent actions. But since formulae say nothing about
silent actions, we can just interpret a finite trace s as the infinite sequence
ŝ = s.(τω) which results from s followed by infinitely many silent actions.
This leads to the definition: P |= F iff whenever P

s
=⇒ then ŝ |= F.

Let us consider the definitions A(a, b, c) def= a.(b.A 〈a, b, c〉+c.A 〈a, b, c〉)
and B(a, b, c) def= a.b.B 〈a, b, c〉 + a.c.B 〈a, b, c〉. Notice that the trace equiv-



alent processes A 〈a, b, c〉 and B 〈a, b, c〉 satisfy the formula �♦(b ∨ c); i.e.
they always eventually do b or c. In general, for every two processes (finite
or infinite) if they are trace equivalent then they satisfy exactly the same for-
mulae of this temporal logic. The other direction does not hold in general
since the logic is not powerful enough to express, for example, facts about
the immediate (or next) future. Take the processes a.a.0 and a.0; they are
not trace equivalent, but they satisfy the same formulae in this simple logic.

2.4 Analyzing Equivalences: Decidability and Con-
gruence Issues
Much work in the theory of process calculi, and concurrency in general, in-
volves the analysis of process equivalences. Let us say that our equivalence
under consideration is denoted by ∼. Two typical questions that arise are:

1. Is ∼ decidable ?

2. Is ∼ a congruence ?

The first question refers to the issue as to whether there can be an algorithm
that fully determines (or decides) for every P and Q if P ∼ Q or P / Q.
Since most process calculi can model Turing machines most natural equiv-
alences are therefore undecidable. So, the interesting question is rather for
what subclasses of processes is the equivalence decidable. For example,
bisimilarity is undecidable for full CCS, but decidable for finite state pro-
cesses (of course) and also for the families of infinite state processes includ-
ing context-free processes [8], pushdown processes [30] and basic parallel
processes [7]. Obviously, the decidability of an equivalence leads to another
related issue: the complexity of verifying the equivalence.

The second question refers to the issue as to whether the fact that P and
Q are (∼) equivalent implies that they are still (∼) equivalent in any context.
The equivalence ∼ is a congruence if P ∼ Q implies C[P] ∼ C[Q] for every
context C (as said before, a context C is an expression with a hole [.] such
that placing a P in the hole yields a process term). The congruence issue
is fundamental for algebraic as well as practical reasons; one may not be
content with having P ∼ Q equivalent but R ‖ P / R ‖ Q.

For example, trace equivalence and strong bisimilarity for the process
language here considered is a congruence (see [17]) but weak bisimilarity is
not because is not preserved by summation contexts. Notice that we have
b.0 =B τ.b.0, but a.0 + b.0 ,B a.0 + τ.b.0. In this case new questions arise:
In what restricted sense is the equivalence a congruence? What contexts is
the equivalence preserved by? What is the closest congruence to the equiv-
alence? The answer to these questions may lead to a re-formulation of the
operators. For instance, the problem with weak bisimilarity can be avoided



by using a somewhat less liberal summation called guarded-summation (see
[18]).

2.5 Process Calculi Variants

Given a process calculus it makes sense to consider variants of it (e.g., sub-
classes of processes, new process constructs, etc) to seek for simpler presen-
tations of the calculus or different applications of it. Having these variants
one can ask, for example, whether the process equivalences become simpler
or harder to analyze (as argued in the previous section) or whether there is
loss or gain of expressive power.

To compare expressive power one has to agree on what it means for
a variant to be as expressive as the other. A natural way of doing this is
by comparing wrt some process equivalence: If for every process P in one
variant there is a Q in the other equivalent to P then way say that the latter
variant is as expressive (wrt to the equivalence under consideration) as the
former one.

Several studies of variants of CCS and their relative expressive power
have been reported in [2]. Also several variants of the π-calculus (itself
a generalization of CCS) have been compared wrt weak-bisimilarity (see
[32]). An interesting result is that the π calculus construction !P whose be-
havior is expressed by the law !P ≡ P ‖!P can replace recursion without loss
of expressive power. This is rather surprising since the syntax of !P and its
description are so simple. Another interesting result is that of Palamidessi
[22] showing that under some reasonable assumptions the asynchronous ver-
sion of the π-calculus is strictly less expressive than the synchronous one.

3 Conclusions
The λ-calculus is a canonical model of sequential computation. Unfortu-
nately, there is no canonical model for concurrent computation at the present
time. In spite of promising progress towards canonicity (e.g., [10, 21, 19])
an all-embracing theory of concurrency has yet to emerge. According to
Petri [23] such a general model may attain a range of application compara-
ble to that of physics. As argued in [17], however, even after the discovery
of it, we shall need to choose different special models for different applica-
tions. Here is an analogy from [14]: Newtonian mechanics is not a suitable
framework for describing the flow of fluids, for which one needs a theory
containing mathematical concepts corresponding to friction and viscosity.
Concurrency, as physics, is a field with a myriad of aspects for which we
may require different terms of discussion and analysis.
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