
A Calculus for Concurrent Processes with Constraints
�

Juan Francisco DIAZ FRIAS y Camilo RUEDA z Frank D. VALENCIA POSSO x

May 20, 1999

Abstract

The �-calculus is a formal model of concurrent computation based on the notion of naming. It has an

important role to play in the search for more abstract theories of concurrent and communicating systems.

In this paper we augment the �-calculus with a constraint store and add the notion of constraint agent

to the standard �-calculus concept of agent. We call this extension the �+-calculus. We also extend

the notion of barbed bisimulation to de�ne behavioral equivalence for the �+-calculus and use it to

characterize some equivalent behaviors derived from constraint agents. The paper discusses examples of

the extended calculus showing the transparent interaction of constraints and communicating processes.

Keywords: Concurrent Programming, Constraint Programming, �-calculus, �+-calculus, Formal

Calculi, Mobile Processes.

1 Introduction

Research on multiparadigm languages has known increasing interest in the last years. The integration of
what appears to be fundamentally di�erent notions of programming has come up as a real need in some
domains. A relevant example is the realm of computer supported musical composition. Composers de�ne
complex hierarchical structures representing multiple musical dimensions which are to evolve according to
either (or both) predetermined trajectories or to satisfaction of a set of compositional rules supplying partial
structural information. Both Object-Oriented and Constraint programming paradigms easily come to mind
as relevant for devising music composition tools capable of e�ectively handling such interactions.

Constraint Programming is a simple and powerful model of computation obtained by considering the notion of
computation as deduction over (�rst-order) systems of partial information. The crucial issue in this paradigm
is to replace the notion of store-as-valuation central to von Neumann computing with the notion of store as
a constraint, that is, as pieces of partial information about the values that variables can take [Sar93]. The
traditional notions of read and write are respectively replaced by the new primitives ask and tell. An ask

operation is executed to check whether or not the current constraint store entails a given constraint (i.e.,
whether every valuation allowed by the store is also allowed by the constraint). A tell operation is executed
to add a some constraint to the store. A tell operation does not change the value of a variable but may rule
out certain values that were previously possible for it. In this sense the store is monotonically re�ned by using
tell operations. Thus, in Constraint Programming, computation progresses by accumulating constraints in
the store, and by checking whether the store entails constraints.

�This work is supported in part by grant 1251-14-041-95 from Colciencias-BID.
yAvispa and Gedi research groups, Universidad del Valle, Colombia. E-mail: jdiaz@borabora.univalle.edu.co.
zDirector, Avispa research group, Ponti�cia Universidad Javeriana Cali, Colombia.
xAvispa research group, Ponti�cia Universidad Javeriana Cali, Colombia. Currently a doctorate student at BRICS,

Denmark. E-mail: fvalenci@brics.dk.

1

CLEI Electronic Journal 1 (2), 1998 2

The need to establish a �rm base for the integration of programming models has led to the design of formal
calculi for a variety of paradigms. One approach in this direction is to devise a calculus for a particular
paradigm and then show how to simulate the others in it [JM95]. A more direct approach is to include
the notions of the integrated paradigms in a new calculus [Vas94]. In our quest for the foundations of a
computer music language we favor the strategy of relying on minimal orthogonal extensions to calculi that
have already found an established place in the programming language community. We have chosen as our
point of departure the �-calculus [RMW92, Mil91], a well known, elegant and simple model of concurrent
computation.

Having concurrency in the calculus appeals to us because it is at the heart of the musical craft and also
because we believe it is fundamental to both Object-Oriented and Constraint Programming. Indeed, several
tell and/or ask operations can be executed simultaneously and synchronized by the so called blocking ask

mechanism. Ask agents can be blocked until enough information to entail them is available.

To our knowledge there has been no attempt to encode �rst-order constraints into the �-calculus nor to
orthogonally extend the �-calculus to include them. The �-calculus [Smo94b] considers only equational
constraints, whereas [VP96] shows that equational constraints can be encoded into the �-calculus.

In this paper we de�ne the �+-calculus, an orthogonal extension of the (polyadic) �-calculus [Mil91]. In
the �+-calculus the notion of constraint agent interacting with a store is added to the standard �-calculus
concept of agent. In this way communication between processes can be parametric in a constraint system.
Constraint agents perform the basic Ask and Tell operations of Concurrent Constraint Programming (CCP)
languages, thus adding to the �-calculus synchronization of processes via blocking ask. The semantics of the
extension is de�ned operationally in a similar way as the one given for the cc-model in [Sar93]. We illustrate
the de�nition of recursive processes in the �+-calculus and discuss the representation of cells providing a
notion of state compatible with concurrency and constraints.

We also extend the concept of barbed bisimulation [MS92] to de�ne behavioral equivalence and to characterize
equivalent behaviors derived from constraint agents.

In sections 2, 3, and 4 we present the syntax and semantics of the �+-calculus and discuss some examples.
The proposed syntax adds constraint agents to the standard �-calculus agents.

In section 5 we de�ne a notion of behavioral equivalence for our calculus, in a similar way as it was done for
the �-calculus [RMW92, Mil91]. Finally, section 6 shows conclusions and section 7 presents future work.

2 Syntax

The syntax of the �+-Calculus is given in Table 1. There are only two kinds of entities in the �-calculus:
Channels and Agents (or Processes). The �+-calculus adds Constraint agents and agents declaring variables
to the standard �-calculus agents. In the �-calculus names denote channels. The �+-calculus also allows
variables and primitive values to be channels.

In what follows, we describe agents informally. In an agent of the form �:P , the pre�x � represents an atomic

action and P denotes the continuation of �:P: When � is a writing pre�x C![C1 : : : Cn]; �:P means \send
C1; : : : ; Cn along channel C and then activate P". When � is a reading pre�x C?[x1 : : : xn]; �:P means
\receive the arguments, say x1; : : : ; xn, along channel C; use them in P and then activate P". In both cases
C is called the subject of �.

The summation form M +N represents a process able to take part in one -but only one - of two alternatives
for communication. The choice of one alternative precludes the other. The null process 0 is the process doing
nothing.

CLEI Electronic Journal 1 (2), 1998 3

Normal Processes: M;N ::= �:P Agent under pre�x
j M + N Summation
j O Inaction or null

process

Constraint agents: R ::= !�:P Tell agent
j ?�:P Ask agent

Agents (or processes) P;Q ::= (�a)P New name a in P
j (�x)P New variable x in P
j P j Q Composition
j N Normal process
j �P Replicated agent
j R Constraint agent

Channels C ::= a Name
j v Value
j x Variable

Pre�xes: � ::= C?[x1 : : : xn] Reading pre�x
j C![C1 : : : Cn] Writing pre�x

Table 1: �+-calculus syntax

Constraint agents are new kind of agents whose behavior depends on a global store. A store contains
information supplied by constraints. The tell agent !�:P means \Add � to the store and then activate P".
The ask agent ?�:P means \Activate P if constraint � is a logical consequence of the information in the
store".

Agent (�a)P restricts the use of name a to P: Another way to describe this is that (�a)P declares a new
unique name a, distinct from all external names, for use in P: Similarly, (�x)P (new agent) declares a new
variable x; distinct from all external variables in P:

Agent P j Q means that P and Q are concurrently active, so they can act independently (and possibly
communicate). �P , \Bang P", means P j P : : : (as many copies as you wish). The operator � is called
replication. A common instance of replication is ��:P: This represents a resource that can only be replicated
when a requester communicates via �:

We often write �: instead of �:O: We also omit :O in constraint agents !�:O and ?�:O:

We describe formally the behavior of agents in the next section.

3 Operational Semantics

3.1 Constraint System

The �+-calculus is parameterized in a Constraint System. For our purposes it will su�ce to found the notion
of constraint system on �rst-order Predicate Logic, as it was done in [Smo94b, Smo94a] 1. A Constraint

1There exist more general and foundationally less heavy alternatives for setting up the notion of a constraint system (e.g

[Sar93]); however, by taking Predicate Logic as the starting point, we can build on well-established intuitions, notions and

CLEI Electronic Journal 1 (2), 1998 4

System consists of:

� A signature � (a set of functions, constants and predicate symbols with equality) including a distin-
guished in�nite set, N ; of constants called names denoted as a; b; : : : ; u: Other constants, called values,
are written v1; v2; : : : :

� A consistent theory � (a set of sentences over � having a model) satisfying two conditions:

1. � j= :(a = b) for every two distinct names a; b:

2. � j= �$ for every two sentences �; over � such that can be obtained from � by permutation
of names.

Often � will be given as the set of all sentences valid in a certain structure (e.g. the structure of �nite trees,
integers, or rational numbers). Given a constraint system, symbols �; ; : : : denote �rst-order formulae in �,
henceforth called constraints. We say that � entails in �, written � j=� , i� �! is true in all models
of �: We say that � is equivalent to in �; written � j=j� , i� � j=� and j=� �: We say that � is
satis�able in � i� � 6j=? : We use ? for the constraint that is always false and > for the constraint that is
always true.

As usual, we will use in�nitely many x; y; : : : 2 V to denote logical variables, designating some �xed but
unknown element in the domain under consideration. The sets fv(�) � V and bv(�) � V denote the sets of
free an bound variables in �; respectively. Finally, fn(�) � N is the set of names appearing in �:

As we said before, constraint agents act relative to a store. A store is de�ned in terms of the underlying
constraint system:

De�nition 3.1 (Store) A store S = �1 ^ �2 ^ : : : ^ �r (with r � 0) is a constraint in �: When r = 0; S is

said to be the empty store (i.e., S = >). When S j=�?; S is said to be the unsatis�able store.

The operational semantics of the �+-calculus will be de�ned in terms of an equivalence relation (written ��+)
on con�gurations describing computation states and a one-step reduction relation (written �!) describing

transitions on these con�gurations. A con�guration is a tuple hP ;Si consisting of an agent P and a store S:

3.2 Structural Congruence and equivalence on con�gurations

We identify �rst the binding operators in the �+-calculus: The binding operator for names, (�a)P , declares a
new name a in P: There are two binding operators for variables: (�x)P that binds x in P and C?[x1 : : : xn]:P
that declares formal parameters x1; : : : ; xn in P: Free names fn(P); bound names bn(P); free variables fv(P);
bound variables bv(P) of a process P are de�ned as usual. In a similar way as [Mil91], we de�ne structural
congruence for the �+-calculus.

De�nition 3.2 (Structural Congruence) Let structural congruence, �; be the smallest congruence rela-

tion over agents satisfying the following axioms:

� Agents are identical if they only di�er by a change of bound variables or bound names.

� (NP= �;+; O) and (A= �; j; O) are symmetric monoids, where NP and A are the set of normal

processes and agents respectively.

notations, and proceed quickly to the issues we want to bring across.

CLEI Electronic Journal 1 (2), 1998 5

� �P � P j � P:

� (�a)O � O; (�x)O � O; (�a)(�b)P � (�b)(�a)P; (�x)(�y)P � (�y)(�x)P; (�a)(�x)P � (�x)(�a)P:

� If a 62 fn(P) then (�a)(P j Q) � P j (�a)Q:

� If x 62 fv(P) then (�x)(P j Q) � P j (�x)Q:

� If � j=j� and P � Q then !�:P �! :Q and ?�:P �? :Q

De�nition 3.3 (�+-equivalence relation on con�gurations) We will say that < P1;S1 > is �+-equivalent

to < P2;S2 >; written < P1;S1 >��+< P2;S2 >; if P1 � P2; S1 j=j�S2; fn(S1) = fn(S2) and fv(S1) =
fv(S2): Relation ��+ is said to be the �+-equivalence relation on con�gurations.

The behavior of an agent P is de�ned by transitions from an initial con�guration hP ;>i : A transition,
hP ;Si �! hP 0;S0i ; means that hP ;Si can be transformed into hP 0;S0i by a single computational step. For
simplicity, we assume that all variables and names are declared in the initial con�guration (i.e. fv(P) =
fn(P) = ;). Notice that this closes the outermost term, but not necessarily terms inside that one. We de�ne
transitions on con�gurations next.

3.3 Reduction relation

The reduction relation ,�!; over con�gurations is the least relation satisfying the following rules:

COMM:
Sj=�C=C

0

h((M + C?[x1:::xn]:Q) j (N+C 0![C1:::Cn]:P));Si�!h(QfC1;:::;Cn=x1;:::;xng j P);Si

COMM describes the communication between two normal processes C?[x1 : : : xn]:Q and C 0![C1 : : : Cn]:P
appearing in a summation, which are sending and receiving along the same channel. The current store is
used to decide whether they are indeed using the same channel. In this sense we can say that the store
controls all communications in the �+-calculus. Agent Q fC1; : : : ; Cn=x1; : : : ; xng is obtained by replacing,
in parallel, every free occurrence of x1; : : : ; xn by C1; : : : ; Cn; respectively. Notice that the remaining normal
processes (M and N;) are discarded since at most one component of a summation is allowed to execute.

Rules ASK and TELL describe the interaction between constraint agents and the store.

TELL: h!�:P ;Si �! hP ;S ^ �i

ASK:
Sj=��

h?�:P ;Si�!hP ;Si
;

Sj=�:�
h?�:P ;Si�!hO;Si

TELL is the way of adding information to the store. It says that !�:P adds constraint � to store S and
then activates its continuation P: Such augmentation of the store is the major mechanism in CCP languages
for an agent to inuence other agents in the system [Sar93]. For example, agent !(x = a):P tells agent
x![C1 : : : Cn]:Q that its communication channel is now �xed to a:

ASK is the way of \reading" information from the store. The rule says that P can be activated whenever the
current store S entails �; or discarded when S entails :�: For instance, agent ?(x = a_x = b):x![C1 : : : Cn]:P
is able to send C1 : : : Cn along channel x; just in case x represents either channel a or channel b: The reason
for discarding P is the monotonicity of the constraint store. Of course, an inconsistent store entails both �

CLEI Electronic Journal 1 (2), 1998 6

and :�, so that the rules introduces nondeterminism in this case. However, there is no way to augment an
inconsistente store so this indeterminism really adds nothing computationally.

An ask agent that cannot be reduced in the current store S is said to be suspended by S: An agent suspended
by S might be \awakened" and reduced in some augmentation of S: In the previous example ?(x = a _ x =
b):x![C1 : : : Cn]:P is suspended by the empty store, but if a tell agent adds x = a to this store then it can be
reduced.

PAR:
hP ;Si�!hP 0;S0i

hQ j P ;Si�!hQ j P 0;S0i

DEC-V:
x62fv(S) hP ;S�fxgi�!hP 0;S0i

h(�x)P ;Si�!hP 0;S0i
, DEC-N:

a62fn(S) hP ;S�fagi�!hP 0;S0i
h(�a)P ;Si�!hP 0;S0i

PAR says that reduction can occur underneath composition. DEC-V is the way of introducing new variables.
By S � fC1; : : : ; Cng we mean the store S ^ C1 = C1 ^ : : : ^ Cn = Cn; that is obviously equivalent to S:
Thus, we add variable x 62 fv(S) to the store by S � fxg ensuring that x will not be used in subsequent
declarations. In the case that x 2 fv(S) we can rename x with a new variable z 62 fv(S) [fv(P) by using
the �rst item of de�nition 3.2 (i.e. (�x)P � (�z)Pfz=xg if z 62 fv(P)). DEC-N is de�ned in a similar way.

Rule EQUIV simple says that �+-equivalent con�gurations have the same reductions.

EQUIV:
hP1;S1i��+hP

0

1;S
0

1i hP2;S2i��+hP
0

2;S
0

2i hP1;S1i�!hP2;S2i

hP 0

1;S
0

1i�!hP
0

2;S
0

2i

It is easy to see that the �-calculus is a special case of the �+-calculus parameterized in a minimal constraint
system (i.e. a constraint system including only names in the domain under consideration), without resorting
to constraint agents.

In what follows, =) will denote the reexive and transitive closure of �!. Finally, we will say that hP 0;S0i
is a derivative of hP ;Si i� hP ;Si =) hP 0;S0i :

Runtime failure. In the cc-model [Sar93], the invariant property of the store is that it is satis�able. This
property can be maintained in the �+-Calculus by performing a transition from h!�:P ;Si i� S^� is satis�able
and otherwise reducing to a distinguished con�guration called fail denoting a runtime failure. This runtime
failure is propagated thereafter in the usual way. For the sake of simplicity we do not consider runtime
failures, but we can add these rules orthogonally, as in [Tur95], without a�ecting any of our results.

Potentiality of reduction. Whenever the store is augmented, the potentiality of reduction, that is, the
number of possible transitions from a con�guration, increases. The following proposition states that any
agent P 0 obtained from a con�guration hP ;S1i can be obtained from a con�guration hP ;S2i, S2 being an
augmentation of S1.

Proposition 3.4 If D j=� C and hP1;Ci �! hP2;C
0i then hP1;Di �! hP2;D

0i and D0 j=� C 0:

Proof: We proceed by structural induction on the form of reduction derivation expressions (RDE). RDE's are

inductively (and implicitly) de�ned by the reduction rules given above. A RDE is just a sequence of reduction rules

used in proving membership to the reduction relation. COMM, TELL, ASK are thus base forms in the inductive

de�nition of RDE's, whereas PAR, DEC-V, DEC-N and EQUIV are constructors.

1. Base forms:

ASK: Let P1 be ?�:P . Since D j=� � whenever D j= C and C j= �, we have that hP1;Di �! hP ;Di whenever

hP1;Ci �! hP ;Ci

CLEI Electronic Journal 1 (2), 1998 7

COMM: A similar reasoning applies, since D j=� (I = I 0) whenever C j=� (I = I 0).

TELL: Let P1 be !�:P . Since there are no premises, we have hP1;Di �! hP ;D ^ �i and also hP1;Ci �!

hP ;C ^ �i. Since D ^ � j=� C ^ � whenever D j=� C, we have the desired result.

2. Constructors:

EQUIV: Suppose the proposition is true for the RDE establishing the reduction stated in the premise of the

EQUIV rule. Let a particular instance of this rule be

(H):
hQ1;S1i��+hP1;Ci hQ2;C2i��+hP2;C

0i hQ1;S1i�!hQ2;C2i
hP1;Ci�!hP2;C 0i

By the inductive hypothesis, there is a reduction hQ1;D1i �! hQ2;D2i with D1 j=�+ S1 and D2 j=�+ C2. By

the congruences in the premises of (H), we also have D1 j=�+ C and D2 j=�+ C0. Now, let D;D0 be such that

D ��+ D1 and D0
��+ D2. The EQUIV rule can thus be applied:

hQ1;D1i��+hP1;Di hQ2;D2i��+hP2;D
0i hQ1;D1i�!hQ2;D2i

hP1;Di�!hP2;D0i

and the stated property follows.

3. DEC-V: Suppose the proposition is true for the RDE establishing the reduction stated in the premise of the

DEC-V rule. Let hP ;C � fxgi �! hP 0;C0
i be such reduction. Now, let D be a store such that x 62 fv(D) and

D j=�+ C. Obviously, D � fxg j=�+ C � fxg. By the inductive hypothesis, we must have hP ;D � fxgi �!

hP 0;D0
i, with D0

j=�+ C0. We have then the necessary premises for applying rule DEC-V and conclude

hP ;Di �! hP 0;D0
i, as needed.

Constructor DEC-N is proved analogously.

4. PAR: Suppose the proposition is true for the RDE establishing the reduction stated in the premise of the PAR

rule. Let hP ;Ci �! hP 0;C0
i be such reduction. Let let D be a store such that D j=�+ C. By the inductive

hypothesis, there exists a reduction hP ;Di �! hP 0;D0
i, with D0

j=�+ C0. But then rule PAR can be applied

to conclude hQ j P ;Di �! hQ j P 0;D0
i.

In the following example we will describe the behavior of an agent to clarify our semantics.

Example 3.5 Agent P1 sends along channel r the greater of two numbers x and y, which is then used by Q.

Let � be the set of all sentences valid in the rational numbers.

P1 � (�x)P2; P2 � (�y)P3; P3 � (�r)P4; P4 � (r?[z]:Q j ?(x > y):r![x] j ?:(x > y):r![y] j !(x = y + 1)); i.e.,
P1 � (�x)(�y)(�r)(r?[z]:Q j ?(x > y):r![x] j ?:(x > y):r![y] j !(x = y + 1)):

Since variable declarations are di�erent, by DEC-V, the derivatives of hP1;>i are the derivatives of

hP2;>� fxgi ; whose derivatives are in turn the derivatives of hP2;> � fx; ygi : By DEC-N (remember

that r denotes a name) the derivatives of hP2;>� fx; ygi are the derivatives of hP4;> � fx; y; rgi ; if any.
The ask agents in P4 are suspended by > � fx; y; rg. Since there is no other agent sending along channel r;

hP4;>� fx; y; rgi can only be reduced by applying TELL combined with PAR and EQUIV. Thus,

hP4;>� fx; y; rgi �! h(r?[z]:Q j ?(x > y):r![x] j ?:(x > y):r![y] j 0);>� fx; y; rg ^ x = y + 1i :

Now using ASK combined with PAR and EQUIV,

�! h(r?[z]:Q j r![x] j ?:(x > y):r![y] j 0);>� fx; y; rg ^ x = y + 1i :

We can eliminate the null process by using ��+ ;

��+ h(r?[z]:Q j r![x] j ?:(x > y):r![y]);> � fx; y; rg ^ x = y + 1i :

Using ASK combined with PAR,

�! h(r?[z]:Q j r![x] j 0);>� fx; y; rg ^ x = y + 1i :

CLEI Electronic Journal 1 (2), 1998 8

Using ��+ processes can be rewritten so they have the correct format for COMM,

and eliminate the null process,

��+ h((r?[z]:Q+ 0) j (r![x] + 0));>� fx; y; rg ^ x = y + 1i :

Finally, applying COMM and ��+ ;

�! h(Qfx=zg j 0);>� fx; y; rg ^ x = y + 1i : ��+ hQfx=zg;>� fx; y; rg ^ x = y + 1i

Thus, hP1;>i �! hQfx=zg;>� fx; y; rg ^ x = y + 1i :

Names and Variables. In the �-calculus there is no di�erence between names and variables [Smo94b].
Names, conveniently used, provide a unique reference to concurrent objects. They can also be used for data
encapsulation as in [Tur95]. Names and variables are considered di�erent in the �+-calculus because of the
presence of constraints.

We �rst give an example to illustrate the di�erence. Let P1 � (�x)(�y)(?:(x = y):Q) and P2 �
(�a)(�b)(?:(a = b):Q) and let � be the set of sentences valid in the natural numbers. It is easy to see
that

hP2;>i �! hQ;>� fa; bgi :

However, since ?:(x = y):Q is suspended by > � fx; yg; there is no reduction for hP1;>i :

Finally, we take from [Smo94b] a proposition stating that names are di�erent from any other value that can
be uniquely described by a formula:

Proposition 3.6 . Let � be a constraint such fv(�) = fxg; and such that � determines x, that is, � j= 9!x�.
Then � j= :�fa=xg for every name a not occurring in �.

Proof: The proof is based on the two conditions for a consistent theory mentioned in the de�nition of a constraint

system. See [Smo94b].

4 Using the �
+-calculus

4.1 Recursive process de�nitions

We often wish to de�ne process recursively. For instance suppose you want to de�ne the addition of the
natural numbers x; y; returning the result along channel z. This can be done as follows (consider a constraint
system providing equations, inequations, natural numbers and the successor function):

D1(x; y; z)
def
= (?y > 0:(�x1)(�y1)(!(x1 = succ(x)) j !(succ(y1) = y) j D1(x1; y1; z))) j ?y = 0:z![x]:

Recursively-de�ned processes have the form D(x1; : : : ; xn)
def
= P; where P may contain occurrences of D

(perhaps with di�erent arguments), fv(P) � fx1; : : : ; xng and fn(P) = ;: When no confusion arises we

write D (without arguments) instead of D(x1; : : : ; xn)
def
= P: That is, we use D without arguments as a

\reference" to a previously given process de�nition. Intuitively, de�nitions behave like \macros" that are to
be \expanded" at invocations when needed.

However, \de�nition-making" is not a primitive since it can easily be encoded using replication as in [Milner,

91] and [Turner, 95]. The idea is to replace each de�nition D(x1; : : : ; xn)
def
= P (i.e. D) by the process

�d1?[x1 : : : xn]:P (where d is a new channel) and every call D(C1; : : : ; Cn) by the process d![C1 : : : Cn]. We
give an example to clarify this idea.

CLEI Electronic Journal 1 (2), 1998 9

Example 4.1 Let Q = (�r)(�x)(D1 j D1(x; 1; r) j !(x = 5) j r?[z]:Q1) be a process where, as explained above,

D1 names the process de�nition given at the beginning of the section, and D1(x; 1; r) denotes a call to it.

Intuitively, we expect that

hQ;>i =) hD1 j Q1fx1=zg; : : :^ x = 5 ^ x1 = succ(x) ^ : : :i :

In the translation, D1 is replaced by an agent P , where

P � �d1?[xyz]:(?y > 0:((�x1)(�y1)(!(x1 = succ(x)) j !(succ(y1) = y) j d1![x1y1z])) j ?y = 0:z![x]):

Process Q is replaced by agent Q0, where

Q0 � (�d1)(�r)(�x)(P j d1![x1r] j !(x = 5) j r?[z]:Q1):

Finally, note that hQ0;>i =) hP j Q1fx1=zg;>� fd1; r; x1; y1g ^ x = 5 ^ x1 = succ(x) ^ succ(y1) = yi :

4.2 Encoding Cells

Cells are useful for modeling mutable data structures. They are syntactic entities in the concurrent constraint
calculi � and [Smo94b]. A cell a : C can be thought of as a location a whose current contents is C: In the
�+-calculus, cells can be encoded as follows:

De�nition 4.2 (Cell generator) The cell generator agent is de�ned as:

D2(x; y)
def
= x?[x1x2]:(x1![y]:D2(x; y) + x2?[z]:D2(x; z)):

A cell a : C is obtained by an invocation to the cell generator; i.e.

[[a : C]]
def
= D2 j D2(a; C):

A cell containing the value 5 at location a is [[a : 5]] ; a cell containing a value greater than 10 at location b is
(�x)([[b : x]] j !(x > 10)) . The contents of the cell can be read along a channel x1 or updated by sending a
new value along a channel x2. The summation operator in the cell generator ensures that read and update
requests cannot be executed concurrently. Thus, when an update request has been accepted, all subsequent
read requests will be answered with the updated contents of the cell.

For instance, agent [[a : 5]] j (�r)(�u)(a![ru]:r?[z]:Q) reads the contents of the cell [[a : 5]] along channel r,
which is then used by Q. Note that:

h[[a : 5]] j (�r)(�u)(a![ru]:r?[z]:Q;>i =) hD2 j (r![5]:D2(a; 5) + u?[z]:D2(a; z)) j r?[z]:Q;>� fr; ugi
=) hD2 j D2(a; 5) j Qf5=zg;>� fr; ugi
��+ h[[a : 5]] j Qf5=zg;>� fr; ugi

Process [[a : 5]] j (�r)(�u)(a![ru]:u![4]) updates (decreases) the contents of the cell [[a : 5]] by using channel u.
Note that:

h[[a : 5]] j (�r)(�u)(a![ru]:u![4];>i =) hD2 j (r![5]:D2(a; 5) + u?[z]:D2(a; z)) j u![4];>� fr; ugi
=) hD2 j D2(a; 4) j 0;>� fr; ugi
��+ h[[a : 4]] ;>� fr; ugi

A common operation in cells, written ayC, is called exchange. It records the current contents of the cell in a
variable y and replaces it by C. Obviously, non atomic exchange can be implemented in three steps: reading

CLEI Electronic Journal 1 (2), 1998 10

the contents of the cell, recording this contents in y by using a Tell agent, and �nally updating the contents
with C. The de�nition of exchange is:

D3(x; y; z)
def
= (�r)(�u)(x![ru]:r?[z0]:!(y = z0):x![ru]:u![z])

Thus, the non atomic exchange operation [[ayC]] is de�ned as:

[[ayC]]
def
= D3 j D3(a; y; C)

For instance, agent P � ([[a : 5]] j (�x) [[ax4]]) transforms [[a : 5]] into [[a : 4]] and records its old contents in a
new variable x. Note that:
hP ;>i =) hD2 j D3 j (r![5]:D2(a; 5) + u?[z]:D2(a; z)) j r?[z]:!(x = z):a![ru]:u![4];>� fx; r; ugi

=) hD2 j D3 j D2(a; 5) j !(x = 5):a![ru]:u![4];>� fx; r; ugi
=) hD2 j D3 j D2(a; 5) j a![ru]:u![4];>� fx; r; ug ^ x = 5i
=) hD2 j D3 j D2(a; 4);>� fx; r; ug ^ x = 5i
��+ hD3 j [[a : 4]] ;> � fx; r; ug ^ x = 5i

Atomic exchange could similarly be de�ned by considering cells with a single \read-and-update" operation.
Namely,

D2(x; y)
def
= (�z) x?[x1]:(x1![yz]:D2(x; z):

5 Behavioral equivalence

In the �-calculus, barbed bisimulation [MS92] equates agents that can match each other's interaction and
can communicate on the same channels at each step. For each channel C, the latter is expressed by means
of an observation predicate #C detecting the possibility of performing a communication with the external
environment along C. We take from [Mil91] the notions of unguardness and observability and modify them
by parameterizing in a store (the store controls all communication in the �+-calculus, anyhow).

De�nition 5.1 (Observability in the �+-calculus) An agent P occurs unguarded in Q i� it has some

occurrence in Q that is not under a pre�x or within a constraint agent. An agent Q is observable at C in a

store S, written Q #SC, i� some �:P 0 occurs unguarded in Q and S j=� C = C 0; where C 0 is the subject of �

and it is not bound by a binding operator (�x) or (�a). More precisely, given a channel C:

O 6 #SC : (�a)P #SC iff P #SC and S j=� C 6= a:

!�:P 6 #SC : (�x)P #SC iff P #SC and S j=� C 6= x:

?�:P 6 #SC : (P j Q) #SC iff P #SC or Q #SC :

C 0![x1 : : : xn]:P #SC iff S j=� C = C 0: (P + Q) #SC iff P #SC or Q #SC :

C 0?[x1 : : : xn]:P #SC iff S j=� C = C 0: �P #SC iff P #SC :

De�nition 5.2 (Strong �+- reduction equivalence) (Strong) �+- reduction equivalence (or �+-barbed

bisimulation), _��+ ; is the largest equivalence relation R over con�gurations such that (hP1;S1i; hP2;S2i) 2 R
implies:

1. If hP1;S1i �! hP 0

1;S
0

1i then hP2;S2i �! hP 0

2;S
0

2i

for some hP 0

2;S
0

2i such that (hP 0

1;S
0

1i ; hP
0

2;S
0

2i) 2 R:

2. For each channel C if P1 #
S1
C then P2 #

S2
C

In other words, the �rst condition says that any transition from P1 in a store S1 can be simulated by a
transition from P2 in a store S2, such that derivatives hP 0

1;S
0

1i and hP
0

2;S
0

2i remain in the simulation. Note

CLEI Electronic Journal 1 (2), 1998 11

that in the second condition we do not require S1 and S2 to be equivalent, but we just require that they
allow communication with the external environment along the same channels.

However, �+-reduction equivalence is not preserved by agent constructions. For example,

hx?[z] j y?[z];Si _��+ hx?[z] + y?[z];Si

, but communicating the agents along x with x![r], we get

hx?[z] j y?[z] jx![r];Si 6 _��+h(x?[z] + y?[z]) jx![r];Si:

This motivates the de�nition appearing below:

De�nition 5.3 (Strong �+-context reduction equivalence) We say that P1 in a store S1 is (strong)

�+-context reduction equivalent to P2 in a store S2; written, hP1;S1i ��+ hP2;S2i ; i� for any agent context

C[:]; hC[P1];S1i _��+ hC[P2];S2i. An agent context C[:] is an agent term with a single hole, such that placing an

agent in the hole yields a well-formed process. ��+ is said to be the (strong) �+-context reduction equivalence

relation.

The weak version of the equivalences, where a reduction from a con�guration can be simulated by several
reductions from the other, is obtained in the standard way: Let +SC be =)#SC , the composition of the
two relations. Weak �+- reduction equivalence, written _��+ ; is de�ned by replacing in De�nition 5.2 the
reduction hP2;S2i �! hP 0

2;S
0

2i with hP2;S2i =) hP 0

2;S
0

2i and P2 #S2C with P2 +S2C . Weak �+- context

reduction equivalence, written ��+ ; is de�ned by replacing in De�nition 5.3 _��+ with _��+ :

The standard congruence theorems (congruence of bisimulation wrt. parallel composition, substitution, etc.)
can be shown in a similar way as it was done in the �-calculus [RMW92, Mil91]. In what follows we only
show some equivalent behaviors derived from constraint agents.

The following proposition shows an obvious result: There is no need to replicate a Tell agent:

Lemma 5.4 For any Q; hQ j �!�:P ;Si _��+ hQ j !�: � P ;Si

Proof: Consider a binary relation R on con�gurations de�ned recursively as follows:

1. (hQ j �!�:P ;Si ; hQ j !�: � P ;Si) 2 R

2. (hQ0
j �!�:P ;S01i ; hQ

0
j T2;S

0
2i) 2 R whenever

(hQ j �!�:P ;S1i ; hQ j T2;S2i) 2 R and

� hQ;S1i �! hQ0;S01i

� hQ;S2i �! hQ0;S02i

� S1 � S2

3. (hQ j P j �!�:P ;S ^ �i ; hQ j P j T2;S
0
2i) 2 R whenever

(hQ j �!�:P ;Si ; hQ j T2;S2i) 2 R and

� S � S2

�

n
S2=S

0

2
if T2=�P and (S2^��S2

(S0

2
=S2^�)^(T

0

2
=�P) if T2=!�:�P

o

We claim R is a weak �+-reduction equivalence relation. First, it is straightforward to show that for all

(hP1;S1i ; hP2;S2i) 2 R we have S1 � S2. Notice also that for any (hP1;S1i ; hP2;S2i) 2 R we have that P2 +
S2
C

for every channel C such that P1 +
S1
C . Indeed, it can be easily shown that if some pair (A;B) 2 R did not have this

property then no other pair could have it either, which contradicts the fact that the pair in item 1 of the de�nition of

R does.

CLEI Electronic Journal 1 (2), 1998 12

Now, suppose R is not a weak �+-reduction equivalence relation. Then it must be the case that there exists a pair

(hQ j �!�:P ;S1i ; hQ j T2;S2i) such that for some possible reduction hQ j �!�:P ;S1i �! hQ0;S01i there is no weak

reduction hQ j T2;S2i =) hQ00;S02i such that (hQ0;S01i ; hQ
00;S02i): Consider all possible one step reductions from

con�guration hQ j �!�:P ;S1i. These involve either Q or �!�:P but not both since P is guarded in �!�:P . That is,

either

� Q0 = Q1 j �!�:P and hQ;S1i �! hQ1;S
0
1i ; or

� Q0 = Q j P j �!�:P and h�!�:P ;S1i �! hP j �!�:P ;S1 ^ �i

In the �rst case, we must also have hQ;S2i �! hQ1;S
0
2i since S1 � S2. But then (hQ1 j �!�:P ;S

0
1i ; hQ1 j T2;S

0
2i) 2 R;

contradicting the hypothesis. Now, notice that either T2 =!�: � P or T2 = �P since rule 2 in the de�nition of R does

not modify T2 and rule 3 either does not modify T2 or assumes it is equal to !�: � P and changes it to �P . But then

there is always a reduction hQ j T2;S2i =) hQ j P j T 0
2;S

0
2i with T2; T

0
2; S2; S

0
2 satisfying all conditions in item 3 of

the de�nition of R. Thus (hQ j P �!�:P ;S1 ^ �i ; hQ j P jT 0
2;S

0
2i) 2 R, contradicting the hypothesis.

Theorem 5.5 h�!�:P ;Si ��+ h!�: � P ;Si

Proof: To show that

hP1;Si ��+ hP2;Si

we only need to consider contexts C[:]; where both P1 and P2 can act, that is, with P1 and P2 occurring unguarded

in C[P1] and C[P2]; respectively . Since �!�:P and !�: � P are not normal processes, these contexts have the form

(�C
i
)(Q j (�C

0j
) :)

for any Q (here, Ck denotes a (possibly empty) sequence of variables and/or names, C1 : : : Ck, and (�Ck) denotes

(�C1) : : : (�Ck)). Thus, assuming that there is no need of renaming, from DEC-V (or DEC-N) we should show that

Q j �!�:P ;S � fC1; : : : ; Ci; C

0
1; : : : ; C

0
jg
�
_��+

Q j !�: � P ;S � fC1; : : : ; Ci; C

0
1; : : : ; C

0
jg
�

. The proof follows from the lemma 5.4

As we said before, in the cc-model a computation fails if a Tell agent attempts to add an inconsistent
information to the store. In this sense two agents rendering the store unsatis�able, and able to use its
inconsistent information (i.e. they can use the inconsistent store to be observed at external channels) should
be equivalent. In the �+-calculus these agents will be weak reduction equivalent:

Theorem 5.6 Suppose hP1;S1i =)

P1

0;S1
0
�
and hP2;S2i =)

P2

0;S2
0
�
where S1

0 and S2
0 are unsatis�able

stores and each Pi
0 (with i 2 f1; 2g) includes at least one unguarded agent. Then hP1;S1i _��+hP2;S2i:

Proof: It is straightforward from De�nition 5.1. Both con�gurations can reduce (in zero or more steps) to a

con�guration having an unsatis�able store with an agent including an unguarded agent. From De�nition 5.1 this

agent is observable at any channel, so it can simulate (weakly) any derivative from the other.

In the previous section we gave an example of the behavior of P1 � (�x)(�y)(?:(x = y):Q) and
P2 � (�a)(�b)(?:(a = b):Q) to illustrate the di�erence between names and variables. Assuming that
Q is observable at some channel, the di�erence is preserved by our behavioral equivalence, that is,
hP1;>i 6 _��+ hP2;>i :

6 Conclusions

We de�ned the �+-calculus, an orthogonal extension of the �-calculus to handle constraints. We did this by
adding variables and allowing agents to interact through constraints with a global store.

CLEI Electronic Journal 1 (2), 1998 13

We believe that including constraints in concurrent processes calculi provides a powerful formal base for
music composition tools. We think that the development of computational models and of tools for computer
aided music composition should go hand in hand to bene�t from insights at the user level while maintaining
a coherent formal base. In recently proposed computer aided musical composition systems such as Situation
[BR98] constraints and Common Lisp objects can be used to de�ne complex musical structures. In the
same spirit, but more closely integrated to the underlying Smalltalk language, Backtalk [PR95] provides
a framework for handling constraint satisfaction within an object environment. Both systems have been
successfully used in practical musical settings. In both applications, however, the constraint engine is a black
box barely accessible to the user. Moreover, communicating data structures back and forth between the
constraint and process (object) models is often awkward. In fact, processes containing partial information and
"standard" fully instantiated processes are not really amenable to the same kind of computational treatment.
In musical applications this lack of communication potential can be specially troublesome since the approach
of the composer involves for the most part constant re�nement and modi�cation of compositional models
based on the acoustical result of partial implementations.

The �+-calculus is parameterized in a constraint system and thus independent of a particular domain for
constraints. We de�ned the operational semantic through an equivalence relation and a reduction relation on
con�gurations of an agent and a store. We showed how the reduction relation essentially mimics that of the
�-calculus but also that the �+ is able to express the more general notion of potentiality of reduction by the
presence of ASK and TELL rules interacting with the store. We described examples showing the transparent
interaction of constraints and communicating processes, including the possibility to de�ne mutable data.

We extended to the �+-calculus the notion of observability of an agent and de�ned equivalence of con�g-
urations under context reductions. These allowed us to prove that there is no need to replicate Tell agent
and that con�gurations having di�erent agents communicating through inconsistent stores are weak reduc-
tion equivalent, thus con�rming the usual behavior in CCP of Tell agents attempting to add inconsistent
information to the store.

7 Future Work

We propose three main directions for future work on this topic:

� Among the most successful work in parallel object-oriented programming languages is that on the POOL
family of languages [Ame89]. [Wal95] provides a semantics for a member of this family, via a phrase by
phrase translation into the �-calculus. In particular, an object is represented as an agent whose algebraic
structure reects the internal structure of the object, and whose pattern of interaction captures the way
in which the object may interact with others. The variables (which represent attributes), are translated
into cells in the �-calculus, which are similar to those of the �+-calculus, but without constraints. We
believe that an extension of that language integrating OO, Concurrent and Constraints paradigms can
be constructed successfully by using the �+-calculus.

� The Turner's abstract machine [Tur95] is an e�cient implementation of the �-calculus used in the
programming language PICT [PT96]. Because of the orthogonality of our extension, it is feasible to
think in an extension of this abstract machine for the �+-calculus and also an extension of PICT to
consider �rst-order constraints.

� We will analyze the possibility of incorporating in our calculus the type system for the �-calculus
presented in [Tur95]. Moreover, we want to extend our calculus to consider objects (with classes) as a
basic entity in a similar way as in [Vas94].

CLEI Electronic Journal 1 (2), 1998 14

References

[Ame89] P. America. Issues in the design of a parallel object-oriented language. Formal Aspects of Com-
puting, 1989.

[BR98] A. Bonnet and C. Rueda. Situation: Un Langage Visuel Basee sur les Contraintes pour la Com-

position Musicale. HERMES, Paris, France, 1998. in: Recherches et Applications en Informatique
Musicale. M. Chemillier and F. Pachet (Eds).

[JM95] N. Joachim and M. M�uller. Constraints for Free in Concurrent Computation. In Kanchana
Kanchanasut and Jean-Jacques L�evy, editors, Asian Computing Science Conference, Lecture Notes
in Computer Science, vol. 1023, pages 171{186, Pathumthani, Thailand, December 1995. Springer-
Verlag.

[Mil91] R. Milner. The polyadic �-calculus: a tutorial. Technical Report ECS-LFCS-91-180, Laboratory
for Foundations of Computer Science,, October 1991. Also in Logic and Algebra of Speci�cation,
ed. F. L. Bauer, W. Brauer and H. Schwichtenberg, Springer Verlag , 1993.

[MS92] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Proc. of 19th International

Colloquium on Automata, Languages and Programming (ICALP '92), volume 623 of Lecture Notes
in Computer Science, pages 685{695. Springer-Verlag, 1992.

[PR95] F. Pachet and P. Roy. Mixing constraints and objects: A case study in automatic harmonization.
In Proceedings of TOOLS Europe'95, pages 119{126, Versailles, France, 1995. Prentice-Hall.

[PT96] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. Technical
report; available electronically, 1996.

[RMW92] J. Parrow R. Milner and D. Walker. A calculus of mobile processes, Parts I and II. Journal of

Information and Computation, 100:1{77, September 1992.

[Sar93] V. A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge, MA, 1993.

[Smo94a] G. Smolka. A calculus for higher-order concurrent constraint programming with deep guards.
Research Report RR-94-03, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz, Stuhlsatzen-
hausweg 3, D-66123 Saarbr�ucken, Germany, February 1994.

[Smo94b] G. Smolka. A foundation for higher-order concurrent constraint programming. In Jean-Pierre
Jouannaud, editor, 1st International Conference on Constraints in Computational Logics, Lecture
Notes in Computer Science, vol. 845, pages 50{72, M�unchen, Germany, September 1994. Springer-
Verlag.

[Tur95] D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD thesis, Laboratory
for Foundations of Computer Science,, 1995.

[Vas94] V. T. Vasconcelos. Typed concurrent objects. In M. Tokoro and R. Pareschi, editors, Proc. of
8th European Conference on Object-Oriented Programming (ECOOP'94), volume 821 of Lecture
Notes in Computer Science, pages 100{117. Springer-Verlag, 1994.

[VP96] B. Victor and J. Parrow. Constraint as processes. In Proc. of CONCUR'96, volume 1119 of Lecture
Notes in Computer Science, pages 389{405. Springer-Verlag, 1996.

[Wal95] D. Walker. Objects in the �-calculus. Journal of Information and Computation, 116(2):253{271,
1995.

