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Abstract. The tcc model is a formalism for reactive concurrent constraint programming.
We present a model of temporal concurrent constraint programming which adds to tcc the
capability of modeling asynchronous and nondeterministic timed behavior. We call this
tcc extension the ntcc calculus. We also give a denotational semantics for the strongest-
postcondition of ntcc processes and, based on this semantics, we develop a proof system
for linear-temporal properties of these processes. The expressiveness of ntcc is illustrated
by modeling cells, timed systems such as RCX controllers, multi-agent systems such as
the Predator/Prey game, and musical applications such as generation of rhythms patterns
and controlled improvisation.
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1. Introduction

Research on concurrent constraint programming (ccp) for timed systems has at-
tracted growing interest in the last years. Timed systems often involve specific do-
mains (e.g., controllers, databases, reservation systems) and have time-constraints
specifying their behavior (e.g., the lights must be switched on within the next three
seconds). The ccp model enjoys a dual operational and declarative logical view
allowing, on the one hand, programs to be expressed using a vocabulary and con-
cepts appropriate to the specific domain, and on the other hand, to be read and
understood as (logical) specifications. An obvious benefit of this view is to provide
the developer with one domain specific ccp language suitable for both the specifica-
tion and implementation of programs. Indeed, several timed extensions of ccp have
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been developed in order to provide settings for the programming and specification
of timed systems with the declarative flavor of concurrent constraint programming
[Saraswat et al. 1994, Saraswat et al. 1996, de Boer et al. 2000, Gupta et al. 1998].

1.1 Concurrent constraint programming: the ccp model

Concurrent constraint programming [Saraswat 1993] has emerged as a simple but
powerful paradigm for concurrency tied to logics. Ccp extends and subsumes both
concurrent logic programming [Shapiro 1990] and constraint logic programming
[Jaffar and Lassez 1987]. A fundamental issue in ccp is the specification of con-
current systems by means of constraints. A constraint (e.g. x + y > 10) represents
partial information about certain variables. During the computation, the current
state of the system is specified by a set of constraints (store). Process can change
the state of the system by telling information to the store (i.e., adding constraints
to the store), and synchronize by asking information to the store (i.e., determining
whether a given constraint can be inferred from the store).

In the ccp model processes are built by using the basic operations ask and tell,
and the operators of parallel composition, hiding, guarded-choice (the guards being
constraints), and recursion. Unlike other models of concurrency, without guarded-
choice the model is deterministic, namely the result of a finite computation is al-
ways the same, independently from the execution order (scheduling) of the parallel
components [Saraswat et al. 1991].

1.2 Reactive concurrent constraint programming: the tcc model

The tcc model [Saraswat et al. 1994] is a formalism for reactive ccp which com-
bines deterministic ccp with ideas from the Synchronous Languages [Berry and
Gonthier 1992, Halbwachs 1998].

In tcc time is conceptually divided into discrete intervals (or time units). In-
tuitively, in a particular timed interval, a deterministic ccp process P receives a
stimulus (i.e. piece of information represented as a constraint) c from the envi-
ronment, it executes with this stimulus as the initial store, and when it reaches its
resting point, it responds to the environment with the resulting store d. The resting
point also determines a residual process Q, which is then executed in the next time
interval.

The tcc model extends the deterministic ccp model with two temporal operators:
nextP and unless c nextP. The next operator specifies a one time unit delay for the
execution of P. The unless operator is similar, but the delay is carried only if the
information represented by its guard (i.e, the constraint c) cannot be inferred from
the store during the current time interval. Many interesting temporal constructs can
then be derived in tcc. In particular, the doPwatchingc construct of ESTEREL
[Berry and Gonthier 1992], which executes P continuously until the signal c is
present. In general, tcc allows processes to be “clocked” by other processes, thus
allowing meaningful pre-emption constructs.
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1.3 A model of temporal concurrent constraint programming

Being a model of reactive ccp based on the Synchronous Languages (i.e. programs
must be determinate and respond immediately to input signals), the tcc model is not
meant for modeling nondeterministic or asynchronous temporal behavior. Indeed,
patterns of temporal behavior such as “the system must output c within the next t
time units” or “the message must be delivered but there is no bound in the delivery
time” cannot be expressed within the model. It also rules out the possibility of
choosing one among several alternatives as an output to the environment. The task
of zigzagging (see Section 7), in which a robot can unpredictably choose its next
move, is an example where nondeterminism is useful.

In general, a benefit of allowing the specification of nondeterministic behavior
is to free programmers from the necessity of coping with issues that are irrelevant
to the problem specification. Dijkstra’s language of guarded commands, for exam-
ple, uses a nondeterministic construction to help free the programmer from over-
specifying a method of solution. As pointed out by Winskel [1993], a disciplined
use of nondeterminism can lead to a more straightforward presentation of pro-
grams. This view is consistent with the declarative flavor of ccp: The programmer
specifies by means of constraints the possible values that the program variables can
take, without being required to provide a computational procedure to enforce the
corresponding assignments. Constraints state what is to be satisfied but not how.

Furthermore, a very important benefit of allowing the specification of nondeter-
ministic (and asynchronous) behavior arises when modeling the interaction among
several components running in parallel, in which one component is part of the en-
vironment of the others. These systems often need nondeterminism to be modeled
faithfully.

In this paper we propose an extension of tcc, which we call the ntcc calculus,
for temporal concurrent constraint programming. The ntcc calculus is obtained by
adding guarded-choice for modeling nondeterministic behavior and an unbounded
finite-delay operator for asynchronous behavior. Computation in ntcc progresses
as in tcc, except for the nondeterminism induced by the new constructs. The cal-
culus allows for the specification of temporal properties, and for modeling (and
expressing constraints upon) the environment, both of which are useful in proving
properties of timed systems.

The declarative nature of ntcc comes to the surface when we consider the de-
notational characterization of the strongest postcondition observables, as defined
by de Boer et al. [1997] for ccp, and extended to a timed setting. We show that
the elegant model based on closure operators, developed by Saraswat et al. [1991]
for deterministic ccp, can be extended to a sound model for ntcc without losing
its essential simplicity. We also obtain completeness for a class of processes that
we shall call locally independent. These are the processes in which the choice and
unless constructs contain no bound variables in their guards. It turns out that the
local-independence condition for the choice operator subsumes the so-called re-
stricted choice condition considered by Falaschi et al. [1997]. Restricted choice
means that in every choice the guards are either pairwise mutually exclusive or
equal – e.g., blind (or internal) choice falls into this category.
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The logical nature of ntcc comes to the surface when we consider its
relationship with linear-temporal logic: We show that all the operators of
ntcc correspond to temporal logic constructs like the operators of ccp correspond to
(classical) logic constructs. Following the lines of the proof (or inference) system
proposed in [de Boer et al. 1997] for ccp, we develop a sound system for proving
linear temporal properties of ntcc, and we show that the system is also (relatively)
complete wrt locally independent processes. The proof system for tcc in [Saraswat
et al. 1994], whose underlying logic is intuitionistic rather than classical, is com-
plete for hiding (and recursion) free tcc processes only.

Furthermore, we illustrate the expressive power of ntcc by modeling constructs
such as cells and some applications involving timed systems (RCXTM controllers),
multi-agent systems (the Predator/Prey game), and musical applications (genera-
tion of rhythms patterns and controlled improvisation).

The main contributions of this paper can be summarized as follows:
(1) a model of temporal concurrent constraint programming that extends the

specification and modeling capabilities of tcc,
(2) a denotational semantics capturing the strongest postcondition behavior of a

ntcc process,
(3) an inference system for proving whether a given ntcc process satisfies a prop-

erty specified in a linear temporal logic, and
(4) applications of temporal concurrent constraint programming.
A preliminary version of this paper, without proofs or a detailed treatment of

items (2) and (3), was published as [Palamidessi and Valencia 2001]. Here we
shall study in full detail items (1-3), and regarding item (4), we shall illustrate new
applications of the calculus.

2. Syntax and intuitive behavior

In this section we present the syntax of the various ntcc constructs and their intu-
itive behavior. First we recall the notion of constraint system which is central to
concurrent constraint programming.

2.1 Constraint systems

The ntcc processes are parametric in a constraint system. A constraint system pro-
vides a signature from which syntactically denotable objects called constraints can
be constructed and an entailment relation ` specifying inter-dependencies between
these constraints.

A constraint represents a piece of information (or partial information) upon
which processes may act. For instance, processes modeling temperature con-
trollers may have to deal with partial information such as 42 < tsensor < 100
expressing that the sensor registers an unknown (or not precisely determined) tem-
perature value between 42 and 100. The inter-dependency c ` d expresses that
the information specified by d follows from the information specified by c, e.g.
(tsensor > 42) ` (tsensor > 0).

We can set up the notion of constraint system by using First-Order Logic as it was
done in [Smolka 1994]. Let us suppose that Σ is a signature (i.e., a set of constant,
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functions and predicate symbols) and that ∆ is a consistent first-order theory over
Σ (i.e., a set of sentences over Σ having at least one model). Constraints can be
thought of as first-order formulae over Σ. We can then decree that c ` d if the
implication c⇒ d is valid in ∆. This gives us a simple and general formalization
of the notion of constraint system as a pair (Σ,∆).

DEFINITION 2.1. (CONSTRAINT SYSTEM) A constraint system is a pair (Σ,∆)
where Σ is a signature (i.e., a set of constants, functions and predicate symbols)
and ∆ is a consistent first-order theory over Σ (i.e., a set of first-order sentences
over Σ having at least one model).

Given a constraint system (Σ,∆), let L be the underlying first-order language
(Σ,V ,S), where V is a countable set of variables and S is the set containing the
symbols ¬,∧,⇒,∃,true and false which denote logical negation, conjunction,
implication, existential quantification, and the always true and always false predi-
cates, respectively. Constraints, denoted by c,d, . . . are first-order formulae over L .
We say that c entails d in ∆, written c `∆ d (or just c ` d when no confusion arises),
if c⇒ d is true in all models of ∆. For operational reasons, we shall require ` to
be decidable. We say that c is equivalent to d, written c ≈ d, iff c ` d and d ` c.
Henceforward C denotes the set of constraints modulo ≈ in (Σ,∆).

An alternative formalization of the notion of constraint system is given in
[Saraswat et al. 1991] by using Scott’s information system without consistency
structure.

2.2 Process syntax

The process syntax of ntcc is parametric in an underlying constraint system (Σ,∆).

DEFINITION 2.2. (SYNTAX) Processes P, Q, . . .∈Proc are built from constraints
c ∈ C and variables x ∈ V in the underlying constraint system (Σ,∆) by the fol-
lowing syntax.

P,Q, . . . ::= tell(c) | ∑
i∈I

when ci do Pi | P ‖ Q | local x inP

| nextP | unless c nextP | ? P | !P

The only move or action of process tell(c) is to add the constraint c to the current
store, thus making c available to other processes in the current time interval.

The guarded-choice ∑i∈I when ci do where I is a finite set of indexes, rep-
resents a process that, in the current time interval, must nondeterministically
choose one of the Pj ( j ∈ I) whose corresponding guard constraint c j is en-
tailed by the store. The chosen alternative, if any, precludes the others. If
no choice is possible then the summation is precluded. We shall often write
when ci1 do Pi1 + . . . + when cin do Pin , the other of the terms being insignifi-
cant, if I = {i1, . . . , in} and, if no ambiguity arises, omit the “when c do” when
c = true. The “blind-choice” process ∑i∈I when true do Pi, for example, can be
written as ∑i∈I Pi. We shall omit the “∑i∈I” when I is a singleton. We use skip as
an abbreviation of the empty summation ∑i∈ /0 Pi.
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Process P ‖ Q represents the parallel composition of P and Q. In one time unit
P and Q operate concurrently, communicating through the store. We shall use
∏i∈I Pi, where I = {i1, . . . , in}, to denote the parallel composition ((. . . (Pi1 ‖ Pi2) ‖
. . .) ‖ Pin−1) ‖ Pin .

Process local x inP behaves like P, except that all the information on x pro-
duced by P can only be seen by P and the information on x produced by other
processes cannot be seen by P. We use local x1x2 . . .xn inP as an abbreviation of
local x1 in(local x2 in(. . . (local xn inP) . . .)).

The only move of nextP is a unit-delay for the activation of P. Process P will
then be activated in the next time interval in some store which may be unrelated
to the one in the current time interval. The process unless c nextP is similar, but
P will be activated only if c cannot be eventually inferred from the information
in the store during the current time interval. Notice that unless c nextP is not
the same as when ¬c do nextP since it could very well be the case that neither
¬c nor c can be inferred from the information in the store. Notice also that Q =
unless false nextP is not the same as R = nextP since unlike Q, even if the
store contains false, R will still activate P in the next time interval (and the store
in the next time interval may not contain false). We shall use nextn(P) as an
abbreviation for next(next(. . . (nextP) . . . )), where next is repeated n times.

The operator “?” corresponds to the unbounded but finite delay operator ε for
synchronous CCS [Milner 1992] and it allows us to express asynchronous behavior
through the time intervals. Intuitively, process ?P represents P+nextP+next2P+
. . ., i.e., an arbitrary long but finite delay for the activation of P.

The operator “!” is a delayed version of the replication operator for the
π−calculus [Milner 1999]: !P represents P ‖ nextP ‖ next2P ‖ . . ., i.e. unbound-
edly many copies of P but one at a time. The replication operator is the only way
of defining infinite behavior through the time intervals.

2.2.1 Derived operators

By using the ? operator we can define a fair asynchronous parallel composition
P | Q as (P ‖ ? Q) + (? P ‖ Q) as described in [Milner 1992]. A move of P | Q
is either one of P or one of Q (or both). Moreover, both P and Q are eventually
executed (i.e. a fair execution of P | Q).

Note that the bounded versions of !P and ?P can be derived from the previous
constructs. We shall use !IP and ?IP, where I is an interval of the natural numbers,
as abbreviations for ∏i∈I nextiP and ∑i∈I nextiP, respectively. Intuitively, ?[m,n]P
means that P is eventually active between the next m and m + n time units, while
![m,n]P means that P is always active between the next m and m+n time units.

2.3 Some examples

We shall give some examples illustrating the specification of temporal be-
havior in ntcc such as response and invariant requirements. Let us assume
that the underlying constraint system includes the predicate symbols in
{Off,TurnOn,OutofOrder,OverHeated}.
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EXAMPLE 2.1. (POWER SAVER) Consider the “power saver” process

!P = !(unless LightsOff next ? tell(LightsOff)).

This process triggers a copy of P each time unit. Thus, the lights are eventually
turned off, unless the environment or other process tells P that the lights are already
turned off. We may want, however, to specify that the light must be turned off not
only eventually but within the next 60 time units. A process specifying this and
thus “refining” the previous one would be

!(unless LightsOff next ?[0,60] tell(LightsOff)).

Finally, we may also want to write an “implementation” of these specifications.
For instance, the process

!(unless LightsOff next tell(LightsOff))

is one of the possible deterministic processes implementing the above two.

Another example is the specification of (bounded) invariance requirements.

EXAMPLE 2.2. (MACHINES) Consider the following two processes:

!(when OutofOrder(M) do ! tell(¬TurnOn(M)))
!(when OverHeated(M) do ![0,t]tell(¬TurnOn(M)))

The first process repeatedly checks the state of a machine M and, whenever it
detects that M is out of order, it tells the other processes that M should not be used
anymore. The second process, whenever it detects that M is overheated, tells other
processes that M should not be turned on during the next t time units.

3. Operational semantics

In this section we shall make precise the intuitive process description given in the
previous sections. We shall give meaning to the ntcc processes by means of an op-
erational semantics. The semantics, which is inspired by work on the π-calculus,
provides internal and external transitions describing process evolutions. The inter-
nal transitions describe evolutions within a time unit and thus they are regarded as
being unobservable. In contrast, the external transitions are regarded as being ob-
servable as they describe evolution across the time units. We shall introduce some
relevant notions of observable process behavior based on the external transitions.
Such notions induce behavioral process equivalences that abstract from internal
transitions and thus from internal behavior.

Operationally, the current information is represented as a constraint c ∈ C , so-
called store. Our operational semantics is given by considering transitions be-
tween configurations γ of the form 〈P,c〉. Following standard lines, we shall ex-
tend the syntax with a construct local (x,d) in P, which represents the evolution of
a process of the form local x inQ, where d is the local information (or store) pro-
duced during this evolution. Initially d is “empty”, so we regard local x inP as
local (x,true) in P.
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We now introduce a notion of free variables invariant wrt the equiva-
lence on constraints. We define the set of “relevant” free variables of c as
fv(c) = {x ∈ V |∃xc 6≈ c}. For example, fv(x = y) = {x,y} but fv(x = x) =
fv(true) = /0. The complementary notion is that of bound variables. We
therefore define the set of bound variables of a constraint c as bv(c) =
{x ∈ V |x occurs in c}− fv(c). We next extend these definitions to processes.

DEFINITION 3.1. (FREE AND BOUND VARIABLES) The set of free variables of a
processes P, f v(P), is defined inductively as follows:

fv(tell(c)) = fv(c),
fv(∑i when ci do Pi) =

⋃

i fv(ci)∪ fv(Pi),
fv(local (x,c) in P) = (fv(P)∪ fv(c)) − {x}
fv(unless c nextP) = f v(c)∪ fv(P)
fv(nextP) = fv(!P) = fv(?P) = fv(P).
A variable x occurring in P is bound in P iff x 6∈ f v(P).The set of bound variables

of P is denoted by bv(P).

As usual to make the transition system simpler several expressions in the lan-
guage are identified with the relation ≡ defined below.

DEFINITION 3.2. (STRUCTURAL CONGRUENCE) Let ≡ be the smallest congru-
ence over processes satisfying the following axioms:

(1) P ‖ skip≡ P, P ‖ Q≡ Q ‖ P, P ‖ (Q ‖ R)≡ (P ‖ Q) ‖ R.

(2) P≡ Q if they only differ by a renaming of bound variables.

(3) next skip ≡ skip, next(P ‖ Q)≡ nextP ‖ nextQ.

(4) local x in skip≡ skip, local xy inP≡ local yx inP.

(5) local x innextP ≡ next(local x inP).

(6) local x in (P ‖ Q)≡ P ‖ local x inQ if x 6∈ fv(P).
We extend ≡ to configurations by defining 〈P,c〉 ≡ 〈Q,c〉 if P≡ Q.

The structural congruence describes irrelevant syntactic aspects of processes in
a simple and intuitive way. Notice, for example, that we did not consider the ex-
tended processes local (x,c) inP in the axioms of ≡. The axioms for such pro-
cesses would require some reasoning about the operational role of local stores, thus
adding unnecessary complexity to the definition. Furthermore, as we shall see in
the next section, these extended local processes, which were introduced merely for
operational reasons, are used only in internal (and thus unobservable) transitions.

3.1 Reduction relations

The operational semantics will be given in terms of the reduction relations −→ and
=⇒ given by the rules in Table 3.1. The internal transition

〈P,d〉 −→
〈

P′,d′
〉
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should be read as “P with store d reduces, in one internal step, to P with store d ′ ”.
We then say that P′ is an internal evolution of P.

The observable or external transition

P
(c,d)

====⇒ P′

should be read as “P on input c from the environment, reduces in one time unit
to P′ and outputs d to the environment”. We then say that P′ is an (observable)
evolution of P.

Intuitively, the above observable reduction is obtained from a sequence of inter-
nal reduction starting in P with initial store c and terminating in a process Q with
store d. Process P′, which is the process to be executed in the next time, is ob-
tained by removing from Q what was meant to be executed only during the current
time interval. The store d is not automatically transferred to the next time unit. If
needed, information in d can be transfered to next time unit by P itself.

TABLE 3.1: Rules for the internal reduction −→ (upper part) and the observable reduction =⇒
(lower part). Notation γ 6−→ in Rule OBS means that there is no γ′ such that γ−→ γ′. Function F is
given in Definition 3.3.

TELL
〈tell(c),d〉 −→ 〈skip,d∧ c〉

SUM
d ` c j j ∈ I

〈∑i∈I when ci do Pi,d〉 −→
〈

Pj,d
〉

PAR
〈P,c〉 −→ 〈P′,d〉

〈P ‖ Q,c〉 −→ 〈P′ ‖ Q,d〉

UNL d ` c
〈unless c nextP,d〉 −→ 〈skip,d〉

LOC
〈P,c∧ (∃xd)〉 −→ 〈P′,c′∧ (∃xd)〉

〈local (x,c) inP,d∧∃xc〉 −→ 〈local (x,c′) inP′,d∧∃xc′〉

REP
〈!P,d〉 −→ 〈P ‖ next!P,d〉

STAR
n≥ 0

〈?P,d〉 −→ 〈nextnP,d〉

STR
γ1 ≡ γ′1 −→ γ′2 ≡ γ2

γ1 −→ γ2

OBS
〈P,c〉 −→∗ 〈Q,d〉 6−→ R≡ F(Q)

P
(c,d)

====⇒ R
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Let us now describe the rules in Table 3.1. Rule TELL, SUM, PAR and UNL are
self-explanatory. Instead, we shall dwell at length on the description of Rule LOC
as it may seem somewhat complex. Let us consider the process

Q = local (x,c) inP

in Rule LOC. The global store is d plus some information about the local store c.
We distinguish between the external (corresponding to Q) and the internal point of
view (corresponding to P). From the external point of view the internal information
about x, possibly appearing in c, cannot be observed by Q. Hence, x in c should be
hidden in the global store. We do this by existentially quantifying x in c. Similarly,
from the internal point of view, the information about x, possibly appearing in the
“global” store d, cannot be observed by P. Therefore, before reducing P we should
first hide the information about x that Q may have in d. Now, the information about
x that a reduction of P may produce (i.e., c′ ) cannot be observed from the external
point of view. Thus, we hide it by existentially quantifying x in c′ before adding
it to the global store corresponding to the evolution of Q. Furthermore, we should
make c′ the new private store of the evolution of P for its future reductions.

We now return to describing the rules. Rule STAR says that ?P triggers P in
some time interval (either in the current one or in a future one). Notice that this
rule generates unbounded nondeterminism (or infinite branching) as any arbitrary
n ≥ 0 can be chosen for the reduction. Rule REP specifies that the process !P
produces a copy P at the current time unit, and then persists in the next time unit.
Notice that there is no risk of infinite behavior within a time unit as we delay one
time unit the only way of specifying infinite behavior. Rule STR simply says that
structurally congruent configurations have the same reductions.

Rule OBS says that an observable transition from P labeled by (c,d) is obtained
by performing a sequence of internal transitions from 〈P, c〉 till we reach a con-
figuration 〈Q,d〉 where Q is a process that cannot proceed anymore. The residual
process R to be executed in the next time interval is equivalent to F(Q) (“future”
of Q), which is obtained by removing from Q summations that did not triggered
activity within the current time interval and any local information which has been
stored in Q, and by “unfolding” the sub-terms within nextR expressions. More
precisely:

DEFINITION 3.3. (FUTURE FUNCTION) Let F : Proc→ Proc be defined by

F(P) =











































tell(c) if P = tell(c)
skip if P = ∑i∈I when ci do Pi
F(P1) ‖ F(P2) if P = P1 ‖ P2
local x inF(Q) if P = local (x,c) inQ
Q if P = nextQ
Q if P = unless c nextQ
!Q if P =!Q
?Q if P = ?Q

REMARK 3.1. Function F could have been defined as a partial function since
whenever we need to apply F to a P (Rule OBS in Table 3.1), all tell(c), !Q and
?Q in P will occur within a “next” or “unless” expression.



TCCP: DENOTATION, LOGIC AND APPLICATIONS 155

EXAMPLE 3.1. (ILLUSTRATING REDUCTION) Let us consider the process !P in
the power-saver example (Example 2.1). Let c = LightsOff and R = tell(c). One
can verify that for any n > 0 the following is a valid sequence of observable transi-
tions starting with Q = !P ‖ next R.

Q
(c,c)

====⇒!P ‖ R
(true,c)
====⇒!P

(true,true)
====⇒ !P ‖ ?R

(true,true)
====⇒ !P ‖ nextnR

(true,true)
====⇒ !P ‖ nextn−1R

(true,true)
====⇒ . . .

(true,true)
====⇒ !P ‖ R

(true,c)
====⇒!P.

In the first time unit (or time interval) the environment tells c (i.e., c is given as
input to Q) thus !P does not trigger its ?R (i.e., the ?R occurring within !P). In
the second time unit the environment does not tell c but R does, thus !P does not
trigger its ?R. In the third time unit neither the environment nor other process tell
c, thus !P triggers its ?R. In the fourth time unit ?R triggers the next process which
n time units later executes P. Thus in the 5+n−th time unit R tells c.

4. Observable behavior

In this section we introduce some notions of what an observer (e.g., ourselves) can
see from a process behavior. We shall refer to such notions as process observations.
We assume that what happens within a time unit cannot be directly observed, and
thus we abstract from internal transitions. The ntcc calculus makes easy to focus
on the observation of input-outputs events in which a given process engages and
the order in which they occur.

Henceforth C ω and C ∗ denote the set of infinite and finite sequences, respect-
ively, of constraints in C . We shall use α,α′ to represent elements of C ω and β
to represent an element of C ∗. Furthermore, we shall use β.α to represent the
concatenation of β and α.

4.1 Interpreting process runs

Let us consider the sequence of observable transitions

P = P1
(c1,c′1)====⇒ P2

(c2,c′2)====⇒ P3
(c3,c′3)====⇒ . . .

This sequence can be interpreted as a interaction between the system P and an
the environment. At the time unit i, the environment provides a stimulus c i and Pi
produces c′i as response. As observers, we can see that on input α the process P
responds with α′. We then regard (α,α′) as a reactive observation of P. If α =

c1.c2.c3. . . . and α′ = c′1.c
′
2.c
′
3 . . ., we represent the above interaction as P

(α,α′)
====⇒ω.

Given P we shall refer to the set of all its reactive observations as the input-output
behavior of P.

Alternatively, if α = trueω, we can interpret the run as an interaction among the
parallel components in P without the influence of an external environment (i.e.,
each component is part of the environment of the others). In this case α is regarded
as an irrelevant input sequence and α′ is regarded as a timed observation of such



156 M. NIELSEN, C. PALAMIDESSI, F. VALENCIA

an interaction in P. Thus, as observers what we see is that on the empty input, P
produces α in its own right. We shall refer to the set of all timed observations of a
process P as the (default) output behavior of P.

Another observation we can make of a process is its set of quiescent input se-
quences. Intuitively, those are sequences on input of which P can run without
adding any information, wherefore what we observe is that the input and the out-
put coincide. More precisely, the quiescent sequences of P are those sequences α
s.t. P

(α,α)
====⇒ω.

It turns out that the set quiescent sequences of a process P is equivalent to an
observation which is to the opposite extreme of the output behavior observation
of P. Namely, the observation of all infinite sequences that P can possibly output
under the influence of arbitrary environments. Proposition 4.1 below states this
equivalence. Consequently, following de Boer et al. [1997] in untimed ccp, we
shall refer to the set of quiescent sequences of P as the strongest postcondition
of P (wrt C ω), written sp(P). We shall see later that, as in Dijkstra’s strongest
postcondition approach, proving whether P satisfies a given (temporal) property A,
in the presence of any environment, reduces to proving whether sp(P) is included
in the set of sequences satisfying A.

The definition below summarizes the various notions of observable behavior
above mentioned.

DEFINITION 4.1. (OBSERVABLES) The behavioral observations that can be
made of a process are:

(1) The input-output (or stimulus-response) behavior of P

io(P) = {(α,α′) | P
(α,α′)

====⇒ω}.

(2) The (default) output behavior of P

o(P) = {α′ | P
(trueω,α′)
====⇒ ω}.

(3) The strongest postcondition (or quiescent) behavior of P

sp(P) = {α | P
(α,α)

====⇒ω for some α}.

The following two sections are devoted to develop a denotational semantics and
a temporal logic for the strongest postcondition behavior of P. The input-output
and output behavioral observations are studied in detail in [Nielsen and Valencia
2002].

We conclude this section by showing the equivalence above claimed between the
set of quiescent sequences of P and the set of all sequences P can possibly output
under the presence of arbitrary environments.

PROPOSITION 4.1. (SP AND QUIESCENT BEHAVIOR) For every ntcc process P
and sequence α ∈ C ω, α ∈ sp(P) iff there exists α′ such that (α′,α) ∈ io(P).



TCCP: DENOTATION, LOGIC AND APPLICATIONS 157

PROOF. The only-if part is trivial: just choose α′ as α. Concerning the if part, let
α = c1.c2 . . .cn . . . , α′ = c′1.c

′
2 . . .c′n . . .. We will prove that from

P = P1
(c′1,c1)

====⇒ P2
(c′2,c2)

====⇒ . . .Pn
(c′n,cn)

====⇒ . . .

we can derive

P = P1
(c1,c1)

====⇒ P2
(c2,c2)

====⇒ . . .Pn
(cn,cn)

====⇒ . . .

In order to prove the above, let Q and R be generic processes, and d and e be generic

constraints. We will show that Q
(d,e)

====⇒ R implies Q
(e,e)

====⇒ R. An analogous
property holds also for standard ccp [de Boer et al. 1997].

Note that the observable transition Q
(d,e)

====⇒ R corresponds to a sequence of
internal transitions

〈Q,d〉= 〈Q1,d1〉 −→ 〈Q2,d2〉 −→ . . . −→ 〈Qn,dn〉= 〈S,e〉 6−→

with F(S) = R. We will show that from the above sequence we can derive

〈Q,e〉= 〈Q1,e〉 −→ 〈Q2,e〉 −→ . . . −→ 〈Qn,e〉= 〈S,e〉 6−→

Observe that:
(1) During the computation the store increases, i.e. for every P, P′, c and c′, if
〈P,c〉 −→ 〈P′,c′〉 then c′ ` c. This property can be easily proved by induction
on the definition of −→ (Table 3.1). Therefore, e ` di holds for every i =
1,2, . . . ,n.

(2) For every P, P′, c, c′ and c′′, if 〈P,c〉 −→ 〈P′,c′〉 then 〈P,c∧c′′〉 −→ 〈P′,c′∧
c′′〉. Again, the property can be easily proved by induction on the definition
of −→. Hence we have

〈Q1,d1∧ e〉 −→ 〈Q2,d2∧ e〉 −→ . . . −→ 〈Qn,dn∧ e〉= 〈S,e〉 6−→

(3) Finally from (1) we derive that di ∧ e = e for every i = 1,2, . . . ,n, which
concludes the proof. 2

5. Denotational semantics

In this section we give a denotational characterization of the strongest postcondi-
tion observables of ntcc following ideas developed in [de Boer et al. 1997] and
[Saraswat et al. 1994] for the ccp and tcc case, respectively.

Nevertheless, the combination of nondeterminism and hiding presents a technical
problem to deal with: The observables for the hiding operator cannot be specified
compositionally (see [de Boer et al. 1997]). Another technical problem arises from
the combination between hiding and the “unless” operator: the “unless” operator,
unlike all other operators of the calculus, is not monotonic. Therefore, our goal
is to identify crucial conditions under which the semantics is complete wrt our
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observables. We shall see that indeed a significant fragment of the calculus satisfies
such conditions.

The denotational semantics is defined as a function [[·]] which associates to each
process a set of infinite constraint sequences, namely [[·]] : Proc→ P (C ω). The
definition of this function is given in Table 5.2. We use ∃xα to represent the se-
quence obtained by applying ∃x to each constraint in α. Notation α(i) denotes the
i-th element in α.

Intuitively, [[P]] is meant to capture the quiescent sequences of a process P. For
instance, the sequences to which tell(c) cannot add information are those whose
first element is stronger than c (D1). Process nextP has not influence in the first
element of a sequence, thus d.α is quiescent for it if α is quiescent for P (D5). A
sequence is quiescent for !P if every suffix of it is quiescent for P (D7). A sequence
is quiescent for ?P if there is a suffix of it which is quiescent for P (D8). The other
rules can be explained analogously.

REMARK 5.1. (FIXED POINTS) The ! and the ? operators are dual. In fact, we
could define their denotational semantics as follows:

[[!P]] = νX ([[P]]∩{d.α | d ∈ C ,α ∈ X})
[[?P]] = µX ([[P]]∪{d.α | d ∈ C ,α ∈ X})

where ν and µ represent respectively the greatest and the least fix-point operators
in the complete lattice (P (C ω),⊆).

TABLE 5.2: Denotational semantics of ntcc.

D1 [[tell(c)]] = {d.α | d ` c,α ∈ C ω}

D2 [[∑i∈I when ci do Pi]] =
⋃

i∈I{d.α | d ` ci,d.α ∈ [[Pi]]}
∪
⋂

i∈I{d.α | d 6` ci,d.α ∈ C ω}

D3 [[P ‖ Q]] = [[P]]∩ [[Q]]

D4 [[local x in P]] = {α | there exists α′ ∈ [[P]] s.t. ∃xα = ∃xα′}

D5 [[next P]] = {d.α | d ∈ C ,α ∈ [[P]]}

D6 [[unless c next P]] = {d.α | d ` c,α ∈ C ω}
∪
{d.α | d 6` c,α ∈ [[P]]}

D7 [[!P]] = {α | ∀β ∈ C ∗,α′ ∈ C ω s.t. α = β.α′, we have α′ ∈ [[P]]}

D8 [[?P]] = {β.α | β ∈ C ∗,α ∈ [[P]]}
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Next theorem states the relation between the denotational semantics of a ntcc
process and its strongest postcondition behavior.

THEOREM 5.1. (SOUNDNESS OF THE DENOTATION) For every ntcc process P,
sp(P)⊆ [[P]].

PROOF. Assume P
(α,α)

====⇒ω. We proceed by induction on the structure of P.

P = tell(c). Let α = d.α′. We must have

tell(c)
(d,d)

====⇒Q
(α′,α′)

====⇒ω

for some Q. But this is possible only if d ` c. Hence by definition of [[tell(c)]]
we conclude α ∈ [[tell(c)]].

P = ∑i∈I when ci do Pi. Let α = d.α′. We distinguish two cases:

(1) There exists i ∈ I such that d ` ci. Then for some P′ and Q, 〈P,d〉 −→

〈P′,d〉, 〈P′,d〉 −→∗ 〈Q,d〉 6−→, and F(Q)
(α′,α′)

====⇒ ω. One can verify

that P′≡ Pi, hence we must have Pi
(d.α′,d.α′)
====⇒ ω. By inductive hypothesis,

d.α′ ∈ [[Pi]] and therefore d.α′ ∈ [[∑i∈I when ci do Pi]].

(2) For all i ∈ I, d 6` ci. Immediate.

P = Q ‖ R. Let α = c1.c2 . . .cn . . .. One can then verify that there is a derivation of
the form

Q ‖ R = Q1 ‖ R1
(c1,c1)

====⇒Q2 ‖ R2
(c2,c2)

====⇒ . . .Qn ‖ Rn
(cn,cn)

====⇒ . . .

Such that each Qi+1 is an evolution of Qi and each Ri+1 is an evolution of Ri
(i > 1). From the operational semantics of the parallel operator we derive

Q = Q1
(c1,c1)

====⇒ Q2
(c2,c2)

====⇒ . . .Qn
(cn,cn)

====⇒ . . .

and
R = R1

(c1,c1)
====⇒ R2

(c2,c2)
====⇒ . . .Rn

(cn,cn)
====⇒ . . .

Therefore, Q
(α,α)

====⇒ ω and R
(α,α)

====⇒ ω. By inductive hypothesis, we have
α ∈ [[Q]] and α ∈ [[R]], from which we conclude α ∈ [[Q ‖ R]].
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P = local x in P′. Let α = c1.c2 . . .cn . . .. We can verify that there must be a deriva-
tion of the form

local x in P′ = local x in P′1
(c1,c1)

====⇒

local x in P′2
(c2,c2)

====⇒
. . .

local x in P′n
(cn,cn)

====⇒
. . .

From the LOC rule for −→ and induction on the length of each observable
transition, we derive

P′ = P′1
(∃xc1,c′1)====⇒ P′2

(∃xc2,c′2)====⇒ . . .P′n
(∃xcn,c′n)====⇒ . . .

where for every i ≥ 1 there exists a di such that c′i = (∃xci)∧ di and ci =
ci∧∃xdi. By Proposition 4.1 we obtain

P′ = P′1
(c′1,c

′
1)====⇒ P′2

(c′2,c
′
2)====⇒ . . .P′n

(c′n,c
′
n)====⇒ . . .

and therefore, by the inductive hypothesis, we have α′ = c′1.c
′
2 . . .c′n . . . in

[[P′]]. Finally, observe that ∃xα = ∃xα′, since for each i ≥ 1 we have ∃xci =
∃x(ci∧∃xdi) = (∃xci)∧ (∃xdi) = ∃x((∃xci)∧di) = ∃xc′i.

P = next P′. Let α = d.α′. Then we must have

next P′
(d,d)

====⇒ Q
(α′,α′)

====⇒ω

for some Q. We must have Q ≡ F(next P′) = P′. By inductive hypothesis,
we then derive α′ ∈ [[P′]] and therefore d.α′ ∈ [[next P′]].

P = unless c next P′. Let α = d.α′. We distinguish two cases:

(1) d ` c. Immediate.

(2) d 6` c. This case is similar to the case P = nextP′.

P = !Q. Let α = c1.c2.c3 . . .cn . . .. We can verify that if 〈!Q,c1〉 −→ 〈R,c1〉,
then R ≡ Q ‖ nextQ. We then must have 〈Q ‖ next !Q,c1〉 −→

∗ 〈Q′ ‖
next !Q,c1〉 6−→. Since F(Q′ ‖ next !Q) = F(Q′) ‖ !Q, by repeating this rea-
soning and that of the parallel case, we can obtain for Q = Q1,1 a derivation
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of the form:

!Q1,1
(c1,c1)

====⇒ Q1,2 ‖ !Q1,1
(c2,c2)

====⇒ Q1,3 ‖ Q2,2 ‖ !Q1,1
(c3,c3)

====⇒ Q1,4 ‖ Q2,3 ‖ Q3,2 ‖ !Q1,1
. . .

(cn−1,cn−1)
====⇒ Q1,n ‖ Q2,n−1 ‖ Q3,n−2 ‖ . . . ‖ Qn−1,2 ‖ !Q1,1
(cn,cn)

====⇒ . . .

where each parallel component contributes in the following way:

Q1,1
(c1,c1)

====⇒ Q1,2
(c2,c2)

====⇒ Q1,3 . . .
(cn−1,cn−1)
====⇒ Q1,n

(cn,cn)
====⇒ . . .

Q1,1
(c2,c2)

====⇒ Q2,2
(c3,c3)

====⇒ Q2,3 . . .
(cn−1,cn−1)
====⇒ Q2,n−1

(cn,cn)
====⇒ . . .

Q1,1
(c3,c3)

====⇒ Q3,2
(c4,c4)

====⇒ Q3,3 . . .
(cn−1,cn−1)
====⇒ Q3,n−2

(cn,cn)
====⇒ . . .

. . .

By the inductive hypothesis we derive

c1.c2.c3 . . .cn . . . ∈ [[Q]]
c2.c3 . . .cn . . . ∈ [[Q]]

c3 . . .cn . . . ∈ [[Q]]
. . .

By definition of [[!Q]] we conclude c1.c2.c3 . . .cn . . . ∈ [[!Q]].

P = ?Q. Let α = c1.c2.c3 . . .cn . . .. If 〈?Q,c1〉 −→ 〈R,c1〉 then R ≡ next kQ for
some k ≥ 0. We distinguish two cases.

k = 0. In this case we have

〈?Q,c1〉 −→ 〈Q,c1〉 −→
∗ 〈Q′,c1〉 6−→

and F(Q′)
(α′,α′)

====⇒ ω, where α′ = c2.c3 . . .cn . . .. Hence Q
(α,α)

====⇒ ω.
By inductive hypothesis we derive α ∈ [[Q]] and therefore, by definition
of [[?Q]], α ∈ [[?Q]].

k ≥ 1. Since there are no internal transitions from 〈nextkQ,c1〉 for k≥ 1, and
F(nextiQ) = nexti−1Q for every i≥ 1, we must have that

?Q
(c1,c1)

====⇒ nextk−1Q
(c2,c2)

====⇒ . . .nextQ
(ck,ck)

====⇒Q

and
Q = Q1

(ck+1,ck+1)
====⇒ Q2

(ck+2,ck+2)
====⇒ . . .Qn−k

(cn,cn)
====⇒ . . .

Hence we derive, by inductive hypothesis, that the sequence
ck+1.ck+2.ck+3 . . .cn . . . is in [[Q]]. By definition of [[?Q]] we conclude
α ∈ [[?Q]]. 2
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5.1 Completeness

We now explore the reverse of Theorem 5.1, namely completeness, which does not
hold in general. The essential reason is the combination of the local operator, which
decreases the store by hiding away information, and constructs whose input-output
relation is not conversely monotonic in the sense described below. Let us first de-
fine the following relation on sequences. Recall α(i) denotes the i-th element in α.

DEFINITION 5.1. (SEQUENCE ORDER) The (partial) ordering≤ on C ω is defined
by α≤ α′ iff for all i≥ 1,α′(i) ` α(i) holds.

By a conversely monotonic relation R here we mean that if (α1,α2) ∈ R and α′1 ≤
α1 then there exists α′2 such that (α′1,α′2) ∈ R and α′2 ≤ α2. We shall call a relation
R monotonic if whenever (α1,α2) ∈ R and α1 ≤ α′1 then there exists α′2 such that
(α′1,α′2) ∈ R and α2 ≤ α′2.

One example of a construct whose input-output relations io(.) are not necessary
conversely monotonic is the choice ∑i∈I when ci do Pi when two of the guards (the
ci’s) are compatible but different. Two constraints c and d are compatible if there
exists e 6= false such that e ` c and e ` d. In literature, non-compatible constraints
are also called mutually exclusive.

EXAMPLE 5.1. (CONVERSELY NON-MONOTONIC SUMMATION) Let us consider
the following processes

P = (when (x = a) do tell(true)) + (when true do tell(y = b))

Notice that io(P) is not conversely monotonic since process P on input α1 = (x =
a).trueω it can output α2 = α1 while on input α′1 = trueω it can only output
α′2 = (y = b).trueω

By using the local operator, we can now construct a counterexample to complete-
ness. Consider the process

Q = local x in P

We have α1 ∈ [[P]] and consequently, since ∃xα′1 = ∃xα1, α′1 ∈ [[Q]]. However
α′1 6∈ sp(Q).

The above example corresponds to Example 4.2 in [de Boer et al. 1997], where
an analogous fact is proved for ccp. In [de Boer et al. 1997] an even stronger
negative result is proved: There exist no denotational semantics [[·]] for ccp such
that [[P]] is equal to the strongest postcondition of P for every P. Following [de Boer
et al. 1997], we could prove an analogous result for ntcc.

The choice is the only ccp construct that in general does not satisfy converse
monotonicity. In ntcc, however, there is also another operator which does not sat-
isfy converse monotonicity: the unless construct.

EXAMPLE 5.2. (CONVERSELY NON-MONOTONIC UNLESS) Let us consider the
following “unless” processes

P = unless (x = a) next tell(y = b)
Q = local x in P
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Let α1 and α′1 be like in Example 5.1. Note that P on input α′1 gives only the output
true .(y = b).trueω, and on input α1 gives only the output α1. Thus, io(P) is not
conversely monotonic. Notice that io(P) is not monotonic either, and that like in
Example 5.1, α′1 ∈ [[Q]] while α′1 6∈ sp(Q).

We consider now the conditions under which completeness does hold. Intu-
itively, we need to make sure that we use locality only in combination with con-
versely monotonic constructs. This justifies the following definition.

DEFINITION 5.2. (LOCALLY INDEPENDENT PROCESSES) A ntcc process P is
local independent iff both the following conditions are satisfied:

(1) For every construct of the form ∑i∈I when ci do Pi occurring in P, either
◦ I is a singleton, or
◦ the ci’s contain only free variables, i.e. their variables are not in the

scope of any local operator in P.
(2) For every construct of the form unless c next P occurring in P, c contains

only free variables.

The locally-independent choice processes represent a significant fragment of the
calculus. As shown in [Valencia 2002], wrt the strongest postcondition obser-
vables, the local-independence condition for the choice operator subsumes the so-
called restricted choice condition considered by [Falaschi et al. 1997]. Restricted
choice means that in every choice the guards are either pairwise mutually exclusive
or equal. Every application example in this paper belongs to either the locally-
independent or the restricted choice fragment.

Next result shows that local independence is preserved through derivations:

PROPOSITION 5.1. (LOCAL INDEPENDENCE INVARIANCE) If P is local inde-

pendent, and P
(c,d)

====⇒ Q for some c,d and Q, then also Q is local independent.

PROOF. Reduction −→ and function F preserve local independence. 2

We prove now that for local independent processes the other direction of
Theorem 5.1 holds as well. We first need the following technical definition and
lemmata:

DEFINITION 5.3. (RELATION �) The relation � on ntcc processes is the minimal
ordering relation that satisfies the following:

(1) For any ntcc process P, skip� P.
(2) Let P and Q be ntcc processes, and E[ ] a ntcc “context”, i.e. a ntcc process

“with a hole”. If P�Q, then E[P]� E[Q].
(3) If P≡ P′ � Q′ ≡Q then P� Q

Intuitively, P � Q represents the fact that Q contains “at least as much code” as
P. From a computational point of view, Q is at least as active as P, and therefore
P has at least the resting points of Q, i.e., sp(Q) ⊆ sp(P). The following lemma
shows that the “future” operator is monotonic wrt �.
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LEMMA 5.1. (�-MONOTONICITY OF FUTURE) Let P and Q be ntcc processes.
If P� Q, then F(P)� F(Q).

PROOF. Using structural induction on Q, the definition of ≡ and F. 2

LEMMA 5.2. Let P be a sub-term of a local independent process P′, and assume
that for some constraint c and some processes P1 = P,P2, . . .Pn we have

〈P1,c〉 −→ 〈P2,c〉 −→ . . .〈Pn,c〉 6−→

Let x be a variable which does not occur free in P′, let Q be a process such that
Q � P, and let d1 be a constraint such that c ` d1. Then there exist processes
Q1 = Q,Q2, . . .Qm, with m≤ n, and constraints d2, . . .dm such that c ` di for every
i with 2≤ i≤ m, and

〈Q1,(∃xc)∧d1〉 −→ 〈Q2,(∃xc)∧d2〉 −→ . . . 〈Qm,(∃xc)∧dm〉 6−→

with F(Qm)� F(Pn).

PROOF. By induction on n.

n = 1. In this case we have 〈P1,c〉 6−→. Since c ` (∃xc)∧ d1, it is easy to see, by
case analysis on P1, that 〈Q1,(∃xc)∧ d1〉 6−→. Furthermore, by Lemma 5.1
we get F(P1)� F(Q1).

n > 1. If Q1 = skip we are done. Otherwise we proceed by case analysis on P1.
We consider only the choice and the unless operators; the other cases are
easy.

P1 = ∑ j∈J when e j do R j. Since Q1 � P1, we therefore have Q1 ≡

∑ j∈J when e j do S j with S j � R j for all j ∈ J. Let c ` e j, and P2 = R j.
There are two cases:

(∃xc)∧d1 ` e j. Let Q2 = S j and d2 = d1. We therefore have
〈Q1,(∃xc)∧ d1〉 −→ 〈Q2,(∃xc)∧ d2〉. Furthermore, since Q2 � P2
and c ` d2, we can apply the inductive hypothesis to get the conclu-
sion.

(∃xc)∧d2 6` e j. Since (∃xc) 6` e j and c ` e j , e j must contain occurrences
of x. Since x is not a free variable, by definition of local indepen-
dence I must be a singleton. Thus 〈Q1,(∃xc)∧ d1〉 6−→. Finally,
note that F(Q1) = skip.

P1 = unless e next R. Since Q1 � P1, Q1 ≡ unless e next S with S � R. If
〈P1,c〉 −→ 〈P′1,c〉 then P′1 ≡ skip and c ` e. By definition of local
independence, e does not contain occurrences of x, hence (∃xc)∧d1 ` e
and therefore 〈Q1,(∃xc)∧d1〉 −→ 〈skip,(∃xc)∧d1〉. 2
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LEMMA 5.3. Let local x in P be a local independent process. Assume that for

some constraint c and some process R we have P
(c,c)

====⇒ R. Then for every
Q � P and for every d such that ∃xd = ∃xc there exists S � R such that

local x in Q
(d,d)

====⇒ local x in S.

PROOF. Assume P
(c,c)

====⇒ R, Q � P, and ∃xd = ∃xc. Then there exist some
processes P1 = P,P2, . . .Pn with F(Pn) = R. such that

〈P1,c〉 −→ 〈P2,c〉 −→ . . . 〈Pn,c〉 6−→

Let d1 = true. By Lemma 5.2 there exist some processes Q1 = Q,Q2, . . .Qm, with
m≤ n, and constraints d2, . . .dm such that c ` di for every i with 2≤ i≤ m, and

〈Q1,(∃xc)∧d1〉 −→ 〈Q2,(∃xc)∧d2〉 −→ . . . 〈Qm,(∃xc)∧dm〉 6−→

with F(Qm) � F(Pn). Since ∃xc = ∃xd, by repeated application of the LOC rule
for −→ we obtain

〈local (x,d1) in Q1,d∧∃xd1〉 −→
〈local (x,d2) in Q2,d∧∃xd2〉 −→

. . .
〈local (x,dm) in Qm,d∧∃xdm〉 6−→

Observe now that for each i such that 1≤ i≤m we have d ` ∃xd = ∃xc ` ∃xdi and
therefore d∧∃xdi = d. Hence we obtain

local x in Q1
(d,d)

====⇒ F(local (x,dm) in Qm) = local x in F(Qm)

Finally, define S = F(Qm) and note that S = F(Qm)� F(Pn) = R. 2

We are now ready to prove our main result:

THEOREM 5.2. (COMPLETENESS OF THE DENOTATION) If P is a local indepen-
dent process, then [[P]]⊆ sp(P).

PROOF. By induction on the structure of P. The only case for which we need the
local independence condition is the local operator, and we will discuss this case
thoroughly. The cases for the operators next, ‖, ! and ? can be proved easily by
reversing the proofs of the corresponding cases in Theorem 5.1 and so we skip
them. As for the remaining cases, we give their proofs in full extension, although
they are also similar to the reverse of the proofs in Theorem 5.1 except for small
technical details.

P = local x in P′. Assume α∈ [[local x in P′]] and let α = c1.c2 . . .cn . . .. By defini-
tion of [[local x in P′]], there exist α′ = c′1.c

′
2 . . .c′n . . . such that ∃xc′i = ∃xci for

every i≥ 1 and α′ ∈ [[P′]]. By inductive hypothesis, we must have a derivation
of the form

P′ = P′1
(c′1,c

′
1)====⇒ P′2

(c′2,c
′
2)====⇒ . . .P′n

(c′n,c
′
n)====⇒ . . .
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By Proposition 5.1, each P′i is local independent. Hence, by repeated applica-
tion of Lemma 5.3, we derive that there exist Q1,Q2, . . .Qn, . . . with Q1 = P′

such that Qi � P′i for every i≥ 2 and

local x in P′ = local x in Q1
(c1,c1)

====⇒

local x in Q2
(c2,c2)

====⇒
. . .

local x in Qn
(cn,cn)

====⇒
. . .

Hence we conclude P = local x in P′
(α,α)

====⇒ω.

P = tell(c). Assume α ∈ [[tell(c)]]. Then α = d.α′ with d ` c. Hence we have

tell(c)
(d,d)

====⇒ skip. Since skip
(α′,α′)

====⇒ω, we conclude tell(c)
(d.α′,d.α′)
====⇒ ω.

P = ∑i∈I when ci do Pi. Assume α ∈ [[∑i∈I when ci do Pi]]. Let α = d.α′. We dis-
tinguish two cases:

(1) There exists i ∈ I such that d ` ci and d.α′ ∈ [[Pi]]. In this case, we have

〈P,d〉 −→ 〈Pi,d〉 and, by inductive hypothesis, Pi
(d.α′,d.α′)
====⇒ ω. Hence we

conclude P
(d.α′,d.α′)
====⇒ ω.

(2) For all i ∈ I, d 6` ci. Then 〈P,d〉 6−→. Since F(P) = skip, we derive

P
(d,d)

====⇒ skip
(α′,α′)

====⇒ω

and therefore P
(d.α′,d.α′)
====⇒ ω.

P = unless c next P′. Assume α ∈ [[unless c next P′]] and α = d.α′. We distin-
guish two cases:

(1) d ` c. Then 〈unless c next P′,d〉 −→ 〈skip,d〉. Since skip
(d.α′,d.α′)
====⇒ ω,

we conclude that unless c next P′
(d.α′,d.α′)
====⇒ ω.

(2) d 6` c and α′ ∈ [[P′]]. In this case we should certainly have

unless c next P′
(d,d)

====⇒ P′ and, by inductive hypothesis, P′
(α′,α′)

====⇒ω.

We then conclude unless c next P′
(d.α′,d.α′)
====⇒ ω. 2

The rest of this section investigates the semantic properties of the class of ntcc
processes which are deterministic and monotonic.

DEFINITION 5.4. (DETERMINISTIC & MONOTONIC PROCESSES) Let P be a
ntcc process.
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◦ P is deterministic if it does not contain occurrences of either the choice op-
erator (except when the index set is a singleton) or the ? operator.

◦ P is monotonic if it does not contain the unless operator.

We will show that for processes which are both deterministic and monotonic the
semantics allows us to retrieve the input-output relation (which for deterministic
processes is a function). We first need to introduce the following definitions.

DEFINITION 5.5. (LATTICE NOTATION)
◦ Given a set S ⊆ C ω, min(S) denotes the minimal element of S, if it exists.

◦ Given α ∈ C ω, ↑ α denotes the upward closure of α, namely

↑ α = {α′ | α≤ α′}

It is possible to show that if (C ,`) is a complete lattice, then also (C ω,≤) is a
complete lattice.

On this ordering we can prove for deterministic monotonic processes a property
analogous to what holds for deterministic ccp, namely that the input-output relation
is a closure operator:

PROPOSITION 5.2. (DETERMINISTIC & MONOTONIC PROPERTIES) If P is a
deterministic and monotonic process, then

(1) io(P) is a function.

(2) io(P) is a closure operator, namely it satisfies the following properties

Extensiveness: If (α,α′) ∈ io(P) then α≤ α′.
Idempotency: If (α,α′) ∈ io(P) then (α′,α′) ∈ io(P).
Monotonicity: If (α1,α2) ∈ io(P) and α1 ≤ α′1, then there exists α′2 such

that (α′1,α′2) ∈ io(P) and α2 ≤ α′2.

PROOF.
(1) Analogous to the standard case for deterministic ccp (see for instance

[Saraswat et al. 1991]). Note that the interleaving rule for the parallel op-
erator does not introduce any nondeterminism.

(2) Extensiveness: From Observation 1 in Proposition 4.1. (Note that this prop-
erty holds for ntcc processes in general.)

Idempotency: From Proposition 4.1. (Also this property holds for ntcc pro-
cesses in general.)

Monotonicity: It is sufficient to show that for every Q, R, c1 and c2, if
〈Q,c1〉 −→

∗ 〈R,c2〉 6−→, then for every c′1 ` c1 and Q′ such that Q�Q′ there
exists c′2 ` c2 and R′ with F(R)� F(R′) such that 〈Q′,c′1〉 −→

∗ 〈R′,c′2〉 6−→.
This can be proved by induction on the length of the derivation using the
following two properties:
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(a) −→ is monotonic wrt the store, in the sense that, for every Q, R, c1
and c2, if 〈Q,c1〉 −→ 〈R,c2〉 then for every c′1 ` c1 and Q′ such that
Q � Q′ there exists c′2 ` c2 and R′ with R � R′ such that 〈Q′,c′1〉 −→
〈R′,c′2〉. This property holds for ntcc in general and can be proved easily
by induction on the structure of Q′.

(b) For every monotonic Q and c1, if 〈Q,c1〉 6−→ then for every c′1 ` c1 and
Q such that Q�Q′ we have either
◦ 〈Q′,c′1〉 6−→, or
◦ There exists c′2 ` c2 and R′ with F(Q) � F(R′) such that
〈Q′,c′1〉 −→

∗ 〈R′,c′2〉 6−→ Also this property can be proved eas-
ily by induction on the structure of Q′. The restriction to programs
which do not contain unless constructs is essential here. 2

Note that unless is the only ntcc operator which introduces non-monotonicity
(across time boundaries). All the other ntcc constructs, including those of ccp,
are monotonic.

A pleasant property of closure operators is that they can be completely charac-
terized by the set of their fixed points, which in our case are the elements of sp(P).
This characterization is expressed by the following corollary, whose proof is stan-
dard, given that io(P) is a closure operator.

COROLLARY 5.1. If P is a deterministic and monotonic process, then (α,α′) ∈
io(P) iff α′ = min(sp(P)∩ ↑ α).

From this corollary, the soundness theorem, the fact that deterministic processes
are local independent, and the completeness theorem, we derive:

THEOREM 5.3. (INPUT-OUTPUT RETRIEVAL FROM SP) If P is deterministic and
monotonic, then (α,α′) ∈ io(P) iff α′ = min([[P]]∩ ↑ α).

Therefore, the input-output and strongest postcondition observations of deter-
ministic and monotonic processes coincide in the following sense.

COROLLARY 5.2. Let P and Q be deterministic and monotonic processes.
io(P) = io(Q) if and only if sp(P) = sp(Q).

6. Temporal logic and proof system

In this section we define a linear temporal logic for expressing temporal properties
of ntcc processes. We shall also give an inference system for proving that a process
satisfies a property given in this logic.

6.1 Temporal logic syntax

We define a linear temporal logic for expressing properties of ntcc processes.
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DEFINITION 6.1. (SYNTAX) The formulae A,B, ... ∈ A are defined by the gram-
mar

A := c | A⇒̇A | ¬̇A | ∃̇x A | ◦A |�A | ♦A

Here c denotes an arbitrary constraint which we shall refer to as atomic proposition.
The intended meaning of the other symbols is the following: ⇒̇, ¬̇ and ∃̇ represent
linear-temporal logic implication, negation and existential quantification. These
symbols are not to be confused with the symbols ⇒,¬ and ∃ in the underlying
constraint system. The symbols ◦, �, and ♦ denote the temporal operators next,
always and sometime. We use A ∨̇B as an abbreviation of ¬̇A⇒̇B and A ∧̇B as an
abbreviation of ¬̇(¬̇A ∨̇ ¬̇B). The temporal true symbol ˙true stands for �true
and the temporal false symbol ˙false stands for ¬̇ ˙true.

6.2 Temporal logic semantics

The standard interpretation structures of linear temporal logic are infinite se-
quences of states of [Manna and Pnueli 1991]. In the case of ntcc, it is natural to
replace states by constraints, and consider therefore as interpretations the elements
of C ω. The semantics of the logic is given in Definition 6.3. Following [Manna
and Pnueli 1991] we first introduce the notion of x-variant. Recall that given a
sequence α, ∃xα denotes the sequence resulting from the application of ∃x to each
element in α.

DEFINITION 6.2. (x-VARIANTS) Given c,d ∈ C we say that d is an x-variant of
c iff ∃xc = ∃xd. Similarly, given α,α′ ∈ C ω we say that α′ is an x-variant of α iff
∃xα = ∃xα′

Intuitively, α′ (d) is an x-variant of α (c) if they are the same except for the
information about x.

DEFINITION 6.3. (TEMPORAL SEMANTICS) We say that α ∈ C ω is a model of
(or that it satisfies) A, notation α |= A, if 〈α,1〉 |= A, where:

〈α, i〉 |= c iff α(i) ` c
〈α, i〉 |= ¬̇A iff 〈α, i〉 6|= A
〈α, i〉 |= A1 ⇒̇A2 iff 〈α, i〉 |= A1 implies 〈α, i〉 |= A2
〈α, i〉 |= ◦A iff 〈α, i+1〉 |= A
〈α, i〉 |= �A iff for all j ≥ i 〈α, j〉 |= A
〈α, i〉 |=♦A iff there is a j ≥ i s.t. 〈α, j〉 |= A
〈α, i〉 |= ∃̇x A iff there is an x-variant α′ of α s.t. 〈α′, i〉 |= A.

Notation α(i) denotes the i-th element in α. We define [[A]] to be the collection of
all models of A, i.e, [[A]] = {α | α |= A}.

We ought to clarify the role of constraints as atomic propositions in our logic.
A temporal formula A expresses properties over sequences of constraints. As an
atomic proposition, c expresses a property which is satisfied only by those e.α ′
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such that e ` c holds. Therefore, the atomic proposition false (and consequently
�false) has at least one sequence that satisfies it (e.g. falseω). On the contrary
the temporal formula ˙false has no models whatsoever. Similarly, the models of
the temporal formula c ∨̇d are those e.α′ such that either e ` c or e ` d holds.
Therefore, the formula c ∨̇d and the atomic proposition c∨ d may have different
models since, in general, one can verify that e ` c∨d may hold while neither e ` c
nor e ` d hold – e.g. consider e = (x = 1∨ x = 2), c = (x = 1) and d = (x = 2). In
contrast, the formula c ∧̇d and the atomic proposition c∧d have the same models
since e ` (c∧d) holds if and only if both e ` c and e ` d hold.

The above discussion tells us that the operators of the constraint system should
not be confused with those of the temporal logic. In particular, the operators ∨ and
∨̇. This distinction does not make our logic intuitionistic. In fact, classically but
not intuitionistically valid statements such as ¬̇A ∨̇A and ¬̇¬̇A⇒̇A are also valid
in our logic (i.e., all sequences in Cω are models of these statements).

6.3 Proving properties of ntcc processes

Recall that sp(P) denotes the set of all sequences in C ω that P can possibly output
on inputs from arbitrary environments (see Proposition 4.1). In this section we
consider the problem of proving assertions of the form “P satisfies A”, meaning
that every sequence P can possibly output on inputs from arbitrary environments
satisfies A.

DEFINITION 6.4. (P |= A) Given a ntcc process P, and a temporal logic formula
A, we say that P satisfies A, notation P |= A, iff sp(P)⊆ [[A]].

Notice for example that ? tell(c) |= ♦c since in every infinite sequence output
by ? tell(c) on arbitrary inputs there must be an element entailing c. We also have
P = tell(c)+ tell(d) |= (c ∨̇d) as every constraint e output by P entails either c or
d. In contrast, Q = tell(c∨d) 6|= (c ∨̇d) in general since Q can output a constraint
e which certainly entails c∨d and still entails neither c nor d – e.g. take e = (x =
1∨ x = 2), c = (x = 1) and d = (x = 2). Notice, however, that Q |= (c∨ d). The
reader may now see why we wish to distinguish the temporal formula c ∨̇d from
the atomic proposition c∨d.

In order to reason about statements of the form P |= A, we propose a proof system
for assertions of the form P ` A. Intuitively, we want P ` A to be the “counterpart”
of P |= A in the inference system, namely P ` A should approximate P |= A as
closely as possible (ideally, they should be equivalent).

The system is presented in Table 6.3. Rule P1 gives a proof saying that every
output of tell(c) on inputs of arbitrary environments should definitely satisfy the
atomic proposition c, i.e., tell(c) |= c. Rule P2 can be explained as follows. Sup-
pose that given a summation P = ∑i∈I when ci do Pi we have a proof that each Pi
satisfies Ai. Then we certainly have a proof saying that every output of P on arbi-
trary inputs should satisfy either: (a) some of the guards ci and their corresponding
Ai (i.e., ˙∨

i∈I(ci ∧̇Ai)), or (b) none of the guards (i.e., ˙∧
i∈I ¬̇ci). The other rules

can be explained in a similar way.
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TABLE 6.3: A proof system for linear-temporal properties of ntcc processes.

P1 tell(c) ` c

P2
∀i ∈ I Pi ` Ai

∑
i∈I

when ci do Pi `
˙∨

i∈I

(ci ∧̇Ai) ∨̇
˙∧

i∈I

¬̇ci

P3
P ` A Q ` B

P ‖ Q ` A ∧̇B

P4
P ` A

local x in P ` ∃̇x A

P5
P ` A

next P ` ◦A

P6
P ` A

unless c next P ` c ∨̇◦A

P7
P ` A

!P ` �A

P8
P ` A

?P ` ♦A

P9
P ` A

P ` B
if A⇒̇B

DEFINITION 6.5. (P ` A) We say that P ` A iff the assertion P ` A has a proof in
the system in Table 6.3.

The rest of the section is devoted to exploring the relation between P |= A and
P ` A. To this purpose, it will be useful to introduce the concept of strongest
temporal formula derivable for a process.

DEFINITION 6.6. (STRONGEST TEMPORAL FORMULA) A formula A is the
strongest temporal formula derivable for a process P if

(1) P ` A and

(2) for every formula A′ such that P ` A′, we have A⇒̇A′.
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Note that the strongest temporal formula of a process P, if it exists, is unique
modulo logical equivalence. We give now a constructive proof of the existence of
such a formula for every process P.

DEFINITION 6.7. (stf (P)) The function stf : Proc→ A is defined as follows:

stf (tell(c)) = c
stf (∑i∈I when(ci)doPi) =

( ˙∨
i∈Ici ∧̇stf (Pi)

)

∨̇ ˙∧
i∈I ¬̇ci

stf (P ‖ Q) = stf (P) ∧̇ stf (Q)
stf (local x inP) = ∃̇x stf (P)
stf (next P) = ◦stf (P)
stf (unless c next P) = c ∨̇◦stf (P)
stf (!P) = �stf (P)
stf (?P) = ♦stf (P)

We show now that stf (P) is the formula characterized by Definition 6.6.

PROPOSITION 6.1. For every process P, stf (P) is the strongest temporal formula
derivable for P.

PROOF.
(1) P ` stf (P) can proven by structural induction on P.

(2) P ` A implies stf (P)⇒̇A can be proven by induction on (the depth) of the
inference; considering all possible cases for the final step of the inference of
P ` A.2

Furthermore, we have a complete correspondence between the denotational se-
mantics of P and the models of stf (P):

LEMMA 6.1. For every process P, [[P]] = [[stf (P)]].

PROOF. By structural induction on P. 2

The following proposition establishes that in the inference system every pro-
cesses can be proven to satisfy the “always true” temporal formula, and no process
can be proven to satisfy the “always false” temporal formula. It also gives us some
derived inference rules which will save us some work when proving properties of
our application examples (Section 7.2). It follows from the two previous results
and the soundness of the denotational semantics.

PROPOSITION 6.2. For every process P,
(1) P ` ˙true
(2) P 6` ˙false

(3)
P ` A

P ‖ Q ` A

(4)
P ` A P ` B

P ` A ∧̇B
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PROOF. (1) Trivially, stf (A)⇒̇ ˙true. Hence,

P ` stf (P)
Proposition6.1

P ` ˙true
P9

(2) Suppose that for some P, P ` ˙false. We have [[ ˙false]] = /0. From the
operational semantics it is easy to see that every process P, on any input it produces
some output. Hence [[ ˙false]] ⊂ sp(P). From the soundness of the denotational
semantics (Theorem 5.1) and Lemma 6.1 we have sp(P) ⊆ [[P]] = [[stf (P)]]. From
Proposition 6.1 stf (P) is the strongest formula derivable for P, thus by definition
of ⇒̇, [[stf (P)]] ⊆ [[ ˙false]], a contradiction.

(3) We have the following derivation

P ` A Q ` ˙true
1

P ‖ Q ` A ∧̇ ˙true
P3

P ‖ Q ` A P9

(4) From Proposition 6.1 it follows that stf (P)⇒̇A ∧̇B. Therefore,

P ` stf (P)
Proposition 6.1

P ` A ∧̇B P9
2

Finally, we have the following result, which states the correspondence between
P ` A and the semantics counterparts of P and A:

THEOREM 6.1. For every ntcc process P and every formula A, P`A iff [[P]]⊆ [[A]].

PROOF.
P ` A

iff (by Proposition 6.1)
stf (P)⇒̇A

iff (by definition of ⇒̇)
[[stf (P)]] ⊆ [[A]]

iff (by Lemma 6.1)
[[P]]⊆ [[A]] 2

From Theorems 6.1, 5.1 and 5.2 we immediately derive the following relations
between |= and `:

COROLLARY 6.1. (SOUNDNESS OF THE LOGIC)

For every ntcc process P and every formula A, if P ` A then P |= A.

COROLLARY 6.2. (COMPLETENESS OF THE LOGIC) For every local indepen-
dent process P and every formula A, if P |= A then P ` A.



174 M. NIELSEN, C. PALAMIDESSI, F. VALENCIA

The reason why this theorem is called “relative completeness” is because we
need to determine the validity of the temporal implication in consequence rule P9.
The validity problem in the linear-time temporal logic of [Manna and Pnueli 1991]
is known to be decidable for the quantifier-free fragment as well as for some other
interesting first-order fragments (see [Hodkinson et al. 2000]). We therefore have
reasons to believe that the validity problem is decidable also for interesting frag-
ments of our logic. This topic is currently being investigated by the authors.

Note that from the results of this section it follows that in order to prove P ` A it
would be sufficient to prove stf (P)⇒̇A. Proving such implication, however, may
not be simple. As pointed-out in [Manna and Pnueli 1991], it has the disadvantage
that, even for a simple A such as ♦(x > 1) the formula stf (P)⇒̇A carries the full
complexity of stf (P). The inference system provides the additional flexibility of
proving P ` A by using the consequence rule P9 on subprocesses of P and on
formulae different from A.

7. Applications

In this section we illustrate some ntcc examples. We first need to define an under-
lying finite-domain constraint system.

DEFINITION 7.1. (A FD CONSTRAINT SYSTEM) Define FD[max], where max >
1, as the constraint system whose signature Σ includes symbols in {0,1, ....,max−
1,succ,prd,+,×, mod ,=} and first-order theory ∆ is the set of sentences valid in
arithmetic modulo max.

The intended meaning of FD[max] is the natural numbers interpreted as in arith-
metic modulo max. Henceforth, we assume that the signature is extended with
two new unary predicate symbols call and change. We will designate D as the
set {0,1, ....,max− 1} and use v and w to range over its elements. We shall often
just write v (w) instead of the expression v ∈ D (w ∈ D) if D is being used as an
indexing set.

7.1 Recursion

Often it is convenient to specify behavior by using recursive definitions. In our
language we do not have them, but we can show that we can encode a (restricted)
form of recursion. Namely, we consider recursive definitions of the form

q(x) def
= Pq

where q is the process name and Pq is restricted to call q at most once and such a call
must be within the scope of a “next”. The reason for such a restriction is that we
want to keep bounded the response time of the system: we do not want Pq to make
infinitely or unboundedly many recursive calls of q within the same time interval.
Furthermore, we consider call-by-value in the sense that the intended behavior of
a call q(t), where t is a term fixed to a value v (i.e., the current store entails t = v ),
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is that of Pq[v/x], where [v/x] is the operation of (syntactical) replacement of every
occurrence of x by v.

As in the π-calculus we do not want, when unfolding recursive calls of q, the
free variables of Pq (see Definition 3.1) to get captured in the lexical-scope of a
bound-variable in Pq, as in dynamic-scoping. The following example should make
this matter clearer.

EXAMPLE 7.1.

q(x) def
= (when y = 1 do tell(c) ) ‖ local y in next(q(x) ‖ tell(y = 1))

Notice that, assuming dynamic-scoping, if we unfold the recursive call of q(x)
within the next, the variable y in the guard y = 1 gets captured in the lexical-scope
of the bound-variable y. It easy to see that q(0) would always tell c after the next
time unit.

We shall avoid this kind of capture by requiring f v(Pq) ⊆ {x}, if a recursive
call of q occurs within Pq in the lexical-scope of a bound-variable. For clarity, we

shall then sometimes write q(x)[y1, . . . ,yn]
def
= Pq, to explicitly mention that vari-

ables y1, . . . ,yn may occur free in Pq.

7.1.1 The encoding

First we introduce some notation. Given q(x) def
= Pq, we will use q,qarg to denote

any two variables not in f v(Pq). We use x← t to denote the process ∑v whent =
vdo ! tell(x = v). Intuitively, x← t denotes the persistent assignment of t’s fixed
value, say v, to x. Furthermore, let pPq the process obtained by replacing in P any
call q(t) with tell(call(q)) ‖ tell(qarg = t). The idea is that such a replacement will
tell that there is a call of q with argument t and excite a new copy of Pq.

The process corresponding to definition of q(x), denoted as pq(x) def
= Pqq, is:

! (when call(q) do local x in (x← qarg ‖ pPqq)) .

Thus, whenever the process q is called with argument qarg, the local x is assigned
the argument’s value so it can be used by q’s body pPqq.

Finally, we consider the calls q(t) in other processes. Each such a call is replaced
by

localqqarg in(pq(x) def
= Pqq ‖ tell(call(q)) ‖ tell(qarg = t)),

which we shall denote by pq(t)q. The local declarations are needed to avoid inter-
ference with other recursive calls.

7.1.2 Parameterless recursion

Our encoding generalizes easily to the case of an arbitrary number of parameters.
We will be using parameterless recursion as well, thus we shall give the encoding
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for this particular the case. So, given a definition q def
= Pq we define its encoding

as pq def
= Pqq =! (when call(q) dopPqq) , where in this case pPqq results from re-

placing in Pq each call q by tell(call(q)). The calls to definition q in other process

should be replaced by the process pqq = local q in (pq def
= Pqq ‖ tell(call(q))).

We finish this section with a result which gives us a proof principle for proving
temporal properties of recursive definitions. The next lemma states a property that
one would expect of recursive calls, i.e., if B is satisfied by q′s body then B[v/x]
should be satisfied by q(t) provided that t = v.

LEMMA 7.1. (BASIC TEMPORAL PROPERTY OF RECURSION) Given a definition
pq(x) def

= Pqq, suppose that q,qarg do not occur free in B and that pPqq ` B. Then
for all v ∈D , pq(t)q ` t = v⇒̇B[v/x].

PROOF. From Proposition 6.1 we obtain the the strongest formula F derivable for
pq(t)q, i.e.,

F = ∃̇q,qarg(call(q) ∧̇qarg = t ∧̇�(call(q)⇒ ∃̇x(A ∧̇H))

where A is the strongest-formula derivable for pPqq and H is the formula
˙∨

w(qarg = w ∧̇�x = w) ∨̇ ˙∧
w ¬̇x = w. From Definition 6.6, A⇒̇B. Let G be

the formula obtained from replacing A with B in F . Thus, F ⇒̇G. From Rule P9
we get pq(t)q `G. Now let v an arbitrary value in D . By observing that q does not
occur free in B and some manipulations we verify that

G⇒̇G′ = ∃̇qarg(qarg = t ∧̇ ∃̇x(B ∧̇H)).

From Rule P9 we get pq(t)q ` G′. By observing that qarg does not occur free in
B, we verify that G′ ⇒̇(t = v⇒̇B[v/x]). By applying Rule P9 we get the desired
result, i.e., pq(t)q ` t = v⇒̇B[v/x]. 2

For parameterless recursion we have the following version of the above lemma.

LEMMA 7.2. (PROPERTY OF PARAMETERLESS RECURSION) Given a definition
pq def

= Pqq, suppose that q does not occur free in B and pPqq ` B. Then pqq ` B.

7.2 Cell example

Cells provide a basis for the specification and analysis of mutable and persistent
data structures. Let us assume that the signature is extended with an unary predicate
symbol change. A mutable cell x: (v) can be viewed as a structure x which has a
current value v and which can, in the future, be assigned a new value.

x: (z) def
= tell(x = z) ‖ unless change(x) next x: (z)

exchg[x,y]
def
= ∑

v
when x = v do( tell(change(x)) ‖ tell(change(y))

‖ next( px: (g(v))q ‖ py: (v)q) )
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Definition x: (z) represents a cell x whose value is z and it will be the same in
the next time interval unless it is to be changed next (i.e., change(x)). Definition
exchg[x,y] represents an exchange operation in the following sense: if v is x’s cur-
rent value then g(v) and v will be the next values of x and y respectively. The
following proposition describe the exchange operation in logical terms.

PROPOSITION 7.1. (A TEMPORAL PROPERTY OF CELLS) For every value v ∈
D , pexchg[x,y]q ` x = v⇒̇◦(x = g(v) ∧̇y = v) .

Below we describe in detail the proof of the above proposition to illustrate the
inference system at work. The abbreviations Pr. and Eq. in the derivations below
stands for “Proposition” and “Equation”, respectively. Recall P1,P2,. . . ,P9 are the
labels of the inference rules in Table 6.3.

Consider x: (z) def
= Px: = tell(x = z) ‖ unless change(x) next x: (z). Thus, pPx:q =

tell(x = z) ‖ U with U = punless change(x) next x: (z)q – see the “p.q” notations
in the encoding of recursion and parameterless recursion, Section 7.1.1.

We have the following derivation (proof) of
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pPx:q ` x = z. (7.1)

tell(x = z) ` x = z P1

pPx:q ` x = z
Pr.6.2(3)

For y: (z) def
= Py: = tell(y = z) ‖ unless change(y) next y: (z), we get a similar

derivation of
pPy:q ` y = z. (7.2)

By applying Lemma 7.1 to (7.1) and (7.2) we get that for arbitrary g,w

px : (g(w))q ` x = g(w) and py : (w)q ` y = w. (7.3)

Let us consider the definition exchg[x,y]
def
= Q = ∑

w
when (x = w) do Qw,

where each Qw = R ‖ next(px : (g(w))q ‖ py : (w)q) with R being the process
tell(change(x)) ‖ tell(change(y)).

Since there are no recursive calls pQwq = Qw and pQq = Q. The following is a
derivation of

pQq ` (x = v⇒̇◦(x = g(v) ∧̇y = v)). (7.4)

∀w ∈D

x : (g(w)) ` x = g(w)
Eq.(7.3)

y : (w) ` y = w
Eq.(7.3)

px : (g(w))q ‖ py : (w)q ` x = g(w) ∧̇y = w
P3

next(px : (g(w))q ‖ py : (w)q) ` ◦(x = g(w) ∧̇y = w)
P5

Qw ` ◦(x = g(w) ∧̇y = w)
Pr.6.2(3)

Q ` ˙∨

w∈D
(x = w ∧̇◦(x = g(w) ∧̇y = w)) ∨̇ ˙∧

w∈D
¬̇x = w

P2

Q ` ˙∧

w∈D
(x = w⇒̇◦(x = g(w) ∧̇y = w))

P9

Q ` (x = v⇒̇◦(x = g(v) ∧̇y = v))
P9

From Equation (7.4) and Lemma 7.2 we obtain

pexchg[x,y]q ` x = v⇒̇◦(x = g(v) ∧̇y = v)

as wanted 2.
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Often in operations exchg[x,y] we use functions g that always return the same
value (i.e. constants). It is convenient to take the liberty of using that value as its
symbol. Let us consider the following example

EXAMPLE 7.2. The execution of px:(3)q ‖ py:(5)q ‖ pexch7[x,y]q will give us in
the next time unit the cells x and y with values 7 and 3, respectively. In fact, we get
the following derivation

D pexch7[x,y]q ` x = 3⇒̇◦(x = 7 ∧̇y = 3)
Pr.7.1

px : (3)q ‖ py : (5)q ‖ pexch7[x,y]q ` x = 3 ∧̇(x = 3⇒̇◦(x = 7 ∧̇y = 3))
P3

px : (3)q ‖ py : (5)q ‖ pexch7[x,y]q ` ◦(x = 7 ∧̇y = 3)
P9

where D is the derivation

px : (3)q ` x = 3
Eq.(7.1)

px : (3)q ‖ py : (5)q ` x = 3
Pr.6.2(3)

Assignments, increasing and decreasing operations are typical cell operations.
The assignment of v to a cell x, written x := v, can then be encoded as
local y in pexchv(x,y)q where the local variable y is used as dummy variable (cell).
Similarly, we can encode instructions x := x+1 and x := x−1 by using dummy
variables, and the succ and prd functions. We shall use these constructs in the
next sections.

Finally we give a temporal property which states the invariant behavior of a cell,
i.e., if it satisfies A now, it will satisfy A next unless it is changed.

PROPOSITION 7.2. (ANOTHER CELL TEMPORAL PROPERTY) For all values v∈
D , px:(v)q ` (A ∧̇¬̇change(x))⇒̇◦A.

PROOF. By verifying that stf (px : (v)q)⇒̇(A ∧̇¬̇change(x))⇒̇◦A). 2

7.3 RCX robots: the zigzagging example

An RCX is a programmable, controller-based LEGO R© brick used to create
autonomous robotic devices [Lund and Pagliarini 1999]. Zigzagging [Fredslund
1999] is a task in which an (RCX-based) robot can go either forward, left, or right
but (1) it cannot go forward if its preceding action was to go forward, (2) it cannot
turn right if its second-to-last action was to go right, and (3) it cannot turn left if its
second-to-last action was to go left. In order to model this problem, without over-
specifying it , we use guarded choice. We use cells a1 and a2 to “look back” one
and two time units, respectively. We use three distinct constants f,r,l ∈D−{0}
and extend the signature with the predicate symbols forward,right,left .
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GoF def
= pexchf[a1,a2]q ‖ tell(forward)

GoR def
= pexchr[a1,a2]q ‖ tell(right)

GoL def
= pexchl[a1,a2]q ‖ tell(left)

Zigzag def
= ! ( when (a1 6= f) do pGoFq

+ when (a2 6= r) do pGoRq

+ when (a2 6= l) do pGoLq )

GoZigzag def
= pa1:(0)q ‖ pa2:(0)q ‖ pZigzagq.

Initially cells a1 and a2 contain neither f,r nor l. After a choice is made accord-
ing to (1), (2) and (3), it is recorded in a1 and the previous one moved to a2.

One can verify that pGoZigzagq |= �(♦right ∧̇♦left), thus stating that the
robot indeed goes right and left infinitely often. Since pGoZigzagq is a locally
independent process, from the completeness of our inference it follows that:

PROPOSITION 7.3. (A ZIGZAG TEMPORAL PROPERTY)

pGoZigzagq ` �(♦right ∧̇♦left).

7.4 Multi-agent systems: The Pursuit game example

The Predator/Prey (or Pursuit) game [Benda et al. 1986] has been studied using
a wide variety of approaches [Haynes and Sen 1996] and it has many different
instantiations that can be used to illustrate different multi-agent scenarios [Stone
and Veloso 2000]. As the Zigzagging example, instances of the Predator/Prey game
have been modeled using autonomous robots [Nolfi and Floreano 1998]. Here we
model a simple instance of this game.

The predators and prey move around in a discrete, grid-like toroidal world with
square spaces; they can move off one end of the board and come back on the
other end. Predators and prey move simultaneously. They can move vertically
and horizontally in any direction. In order to simulate fast but not very precise
predators and a slower but more maneuverable prey we assume that predators move
two squares in straight line while the prey moves just one.

The goal of the predators is to “capture” the prey. A capture position occurs
when the prey moves into a position which is within the three-squares line of a
predator current move; i.e. if for some of the predators, the prey current position
is either the predator current position, the predator previous position, or the square
between these two positions. This simulates the prey deadly moving through the
line of attack of a predator.

For simplicity, we assume that initially the predators are in the same row im-
mediately next to each other, while the prey is in front of a predator (i.e, in the
same column, above this predator) one square from it. The prey’s maneuver to try
to escape is to move in an unpredictable zigzagging around the world. The strategy
of the predators is to cooperate to catch the prey. Whenever one of the predators
is in front of the prey it declares itself as the leader of the attack and the other
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becomes its support. Therefore depending on the moves of the prey the role of
leader can be alternated between the predators. The leader moves towards the prey,
i.e. if it sees the prey above it then it moves up, if it sees the prey below it then
it moves down, and so on. The support predator moves in the direction the leader
moves, thus making sure it is always next to leader.

In order to model this example we extend the signature with the predicates sym-
bols righti,lefti,upi,downi for i ∈ {0,1}. For simplicity we assume there are
only two predators Pred0 and Pred1. We use the cells xi,yi and cells x,y for repre-
senting the current positions of predator i and the prey, respectively, in a max×max
matrix (we assume that max = 2k for some k > 1) representing the world. We also
use the primed version of these cells to keep track of corresponding previous po-
sitions and cell l to remember which predator is the current leader. We can now
formulate the capture condition. Predator i captures the prey with a horizontal
move iff

x′i = x = xi∧ ( (yi = y′i−2∧ (y = y′i∨ y = y′i−1∨ y = y′i−2))∨
(yi = y′i +2∧ (y = y′i∨ y = y′i +1∨ y = y′i +2)) )

and with a vertical move iff

y′i = y = yi∧ ( (xi = x′i−2∧ (x = x′i∨ x = x′i−1∨ x = x′i−2))∨
(xi = x′i +2∧ (x = x′i∨ x = x′i +1∨ x = x′i +2)) ).

We define capturei as the conjunction of the two previous constraints.
The process below models the behavior of the prey. The prey moves as in the

Zigzagging example. Furthermore, the values of cells x,y and x′,y′ are updated
according to the zigzag move (e.g., if it goes right the value of x is increased and x ′

takes x’s previous value).

Prey def
= pGoZigzagq ‖ !( when forward do pexchprd[y,y′]q

+ when right do pexchsucc[x,x′]q
+ when left do pexchprd[x,x′]q).

The process Predi with i∈ {0,1} models the behavior of predator i. The operator
⊕ denotes binary summation.

Predi
def
= ! ( when xi = x do(pl := iq ‖ pPursuit iq)

+ when l = i∧ xi⊕1 6= x do pPursuitiq

+ when l = i⊕1∧ xi 6= x do pSupport iq ).

Thus whenever Predi is in front of the prey (i.e. xi = x ) it declares itself as the
leader by assigning i to the cell l. Then it runs process Pursuit i defined below and
keeps doing it until the other predator Pred i⊕1 declares itself the leader. If the other
process is the leader then Predi runs process Support i defined below.

Process Pursuiti, whenever the prey is above of corresponding predator (yi <
y∧ xi = x), tells the other predator that the move is to go up and increases by two



182 M. NIELSEN, C. PALAMIDESSI, F. VALENCIA

the contents of yi while keeping in cell y′i the previous value. The other cases which
correspond to going left, right and down can be described similarly.

Pursuiti
def
= when (yi < y∧ xi = x) do

(pexchsucc2 [yi,y′i]q ‖ tell(upi))
+when (yi > y∧ xi = x) do

(pexchprd2 [yi,y′i]q ‖ tell(downi))
+when (xi < x∧ yi = y) do

(pexchsucc2 [xi,x′i]q ‖ tell(righti))
+when (xi > x∧ yi = y) do

(pexchprd2 [xi,x′i]q ‖ tell(lefti)).

The process Support i is defined according to the move decision of the leader.
Hence, if the leader moves up (e.g. upi⊕1) then the support predator moves up as
well. The other cases are similar.

Support i
def
= when upi⊕1 do

(pexchsucc2 [yi,y′i]q ‖ tell(upi))
+when downi⊕1 do

(pexchprd2 [yi,y′i]q ‖ tell(downi))
+when righti⊕1 do

(pexchsucc2 [xi,x′i]q ‖ tell(righti))
+when lefti⊕1 do

(pexchprd2 [xi,x′i]q ‖ tell(lefti)).

We assume that initially Pred0 is the leader and that it is in the first row in the
middle column . The other predator is next to it in the same row. The prey is just
above Pred0. The process Init below specifies these conditions. Let p = max/2.

Init def
= ∏i∈0,1(pxi : (p+ i)q ‖ pyi : (0)q ‖ px′i : (p+ i)q ‖ py′i : (0))q
‖ px : (p)q ‖ py : (1)q ‖ px′ : (p)q ‖ py′i : (1)q ‖ pl : 0q.

Operationally, one can verify that

pInitq ‖ pPred0q ‖ pPred1q ‖ pPreyq |=♦(capture0 ∨̇capture1)

thus stating that the predators eventually capture the prey under our initial condi-
tions. Notice we only used locally independent processes. Thus the proposition
below follows from the completeness of the inference system.

PROPOSITION 7.4. (A TEMPORAL PROPERTY OF PREDATORS)

pInitq ‖ pPred0q ‖ pPred1q ‖ pPreyq ` ♦(capture0 ∨̇capture1).

It is worth noticing that in the case of one single predator, say Pred0,
the prey may sometimes escape under the same initial conditions, i.e.
pInitq ‖ pPred0q ‖ pPreyq 6` ♦capture0. A similar situation occurs if the predators
were not allowed to alternate the leader role.
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7.5 Musical applications

In the last decade several formalisms have been proposed to account for musical
structures and the operations used to construct and transform them [Barbar et al.
1998, Balaban and Samoun 1993, Pachet et al. 1996]. We can regard music perfor-
mance and composition as a complex task of defining and controlling interaction
among concurrent activities. In [Alvarez et al. 2001], PiCO, a concurrent processes
calculus integrating constraints and objects was proposed. Musical applications
are programmed in a visual language having this calculus as its underlying model.
Since there is no explicit notion of time in PiCO some musical examples, in par-
ticular those involving time and synchronization, are difficult to express. In this
section we model two such examples originally introduced by Rueda and Valencia
[2001] (see also Rueda and Valencia [2002] for further examples).

In the following example we shall use the derived construct

W(c,P)
def
= when c do P ‖ unless c next W(c,P).

This construct waits until c holds and then executes P. We use the more readable
notation whenever c do P for W(c,P).

7.5.1 Music example: controlled improvisation

This example models a controlled improvisation musical system. There is a certain
number m of musicians (or voices), each playing blocks of three notes. Each of
them is given a particular pattern (i.e., a list) of allowed delays between each note
in the block. The musician can freely choose any permutation of his pattern. For
example, given a pattern p = [4,3,5] a musician can play his block with spaces
of 5 then 4 and then 3 between the notes. Once a musician has finished playing
his block of three notes, he must wait for a signal of the conductor telling him
that the others musicians have also finished their respective blocks. Only after
this he can start playing a new block. The exact time in which he actually starts
playing a new block is not specified, but it is constrained to be no later than the
sum of the durations of all patterns. For example, for three musicians and patterns
p1 = [3,2,2], p2 = [4,3,5] and p3 = [3,3,4] no delay between blocks greater than
29 time units is allowed. Musicians keep playing this way until all of them play a
note at the same time. After this, all the musicians should stop playing.

In order to model this example we assume that constant sil∈D represents some
note value for silence. Process Mi, i≤m, models the activity of the i−th musician.
When ready to start playing (starti = 1), the i−th musician chooses a permutation
( j,k, l) of his given pattern pi. Then, Mi spawns a process Playi

( j,k,l), thus playing a
note at time j (after starting), but not before, then at time j + k but not before, and
finally at time j +k+ l. Constraint ci[notei] specifies some value for notei different
from sil. After playing his block, the i−th musician signals termination by setting
cell flagi to 1. Furthermore, upon receiving the go = 1 signal, the i−th musician
eventually starts a new block no later than pdur which is a constant representing
the sum of the durations of all patterns.
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Mi
def
= !when (starti = 1) do

∑
( j,k,l)∈perm(pi)

( pPlayi
( j,k,l)q ‖ next j+k+l( pflagi := 1q ‖

whenever(go = 1)do
?[0,pdur]tell(starti = 1))

Playi
( j,k,l)

def
=

![0, j−1]tell(notei = sil) ‖ next jtell(ci[notei])

‖ ![ j+1, j+k−1]tell(notei = sil) ‖ next j+ktell(ci[notei])
‖ ![ j+k+1, j+k+l−1]tell(notei = sil) ‖ next j+k+ltell(ci[notei])

The Conductor process is always checking (listening) whether all the musicians
play a note exactly at the same time

∧

i∈[1,m](notei 6= sil). If this happens it sets
the cell stop, initially set to 0, to 1. At the same time, it waits for all flags to be set
to 1, and then resets the flags and gives the signal go = 1 to all musician to start a
new block, unless all of them have output a note at the same time (i.e., stop = 1).

Conductor def
=

whenever
∧

i∈[1,m]
(notei 6= sil) do pstop := 1q

‖ !when
∧

i∈[1,m]
(flagi = 1)∧ (stop = 0)do (tell(go = 1) ‖ ∏

i∈[1,m]
pflagi := 0q)

Initially the m flag cells are set to 0, the Mi are given the start signal start i = 1
and, as mentioned above, the cell stop is set to 0. The system (i.e., the perform-
ance) System is just the parallel execution (performance) of all the Mi musicians
controlled by the Conductor process.

Init def
= ∏i∈[1,m](pflagi : 0q ‖ tell(starti = 1)) ‖ pstop : 0q

System def
= pInitq ‖ pConductorq ‖ ∏i∈[1,m]pMiq

The temporal logic of ntcc can then be used to formally specify and prove ter-
mination properties for this system. For example, we may wonder whether the
assertion

pSystemq `♦stop = 1

holds. This assertion expresses that the musicians eventually stop playing at all
regardless their choices. We may also wonder whether there exists certain choices
of musicians for which they eventually stops playing note at all. For proving this
we can verify whether the assertion

pSystemq `�stop = 0

does not hold, i.e., there is a run of the system for which at some time unit all
the notes are different from sil. Since pSystemq is locally independent, it follows
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from completeness result that these termination properties can be formally proved
in the inference system for ntcc.

7.5.2 Rhythm patterns

In this section we shall model synchronization of rhythm patterns in ntcc. Let us
first define a ”metronome” process.

M[tick,count,δ]
def
=

!( when (count mod δ) = 0 do ptick := tick +1q ‖ pcount := 0q

+when (count mod δ) 6= 0 do pcount := count +1q)

One could think of M[tick,count,δ] as a process that “ticks” (by increasing tick)
every δ time units. This process could be controlled by the acceleration process:

Accel[signal,δ]
def
= ! when signal = 1∧δ > 0 do pδ := δ−1q

Process Accel[signal,k] can “speed up the ticks of M[tick,count,δ]” by decreasing
δ, if some other process, which we shall refer to as Control[signal], tells signal = 1.

We can now define the Rythm process R(s,d,e)[tick,note] which can be synchron-
ized by M[tick,count,δ] and thus possibly accelerated by Control[signal].

R(s,d,e)[tick,note] def
=

! when s >= tick >= e∧ (tick− start) mod d = 0 do Pitch[note]

Process R(s,d,e)[tick,note] runs a certain Pitch[note] process, which outputs some
pitch on note, at every duration-th tick, from the start-th tick to the end-th tick.
Adding rhythms of two eight notes, two triplets and two quintuplets can then be
defined by the system:

System def
=

local tick,δ,count,signal in (
Init ‖ Control[signal] ‖ pM[tick,count,δ]q ‖ pAccel(signal,δ)q
‖ pR(0,30,120)[tick,δ]q ‖ pR(0,20,120)[tick,δ]q ‖ pR(0,12,120)[tick,δ]q )

where Init = ptick : 0q ‖ pδ : 30q ‖ pcount : 0q.
Since the Rhythm processes depend on variables tick and δ, complex patterns

of interactions of global and local speeds, such as metric modulations, can be
modeled.

8. Related work

Our proposal is a strict extension of tcc [Saraswat et al. 1994], in the sense that
tcc can be encoded in (the restricted-choice subset of) ntcc, while the vice-versa
is not possible because tcc does not have constructs to express nondeterminism or
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unbounded finite-delay. In [Saraswat et al. 1994] the authors proposed also a proof
system for tcc, based on an intuitionistic logic enriched with a next operator. The
system, however, is complete only for hiding-free and recursion-free processes. In
contrast our system is based on the standard classical temporal logic of [Manna
and Pnueli 1991] and is complete for locally independent ntcc processes.

An extension of tcc, which does not consider nondeterminism or unbounded
finite-delay, has been proposed in [Saraswat et al. 1996]. This extension adds
strong pre-emption: the “unless” can trigger activity in the current time interval.
In contrast, ntcc can only express weak pre-emption. As argued in [de Boer et al.
2000], in the specification of (large) timed systems weak pre-emption often suf-
fices (and nondeterminism is crucial). Nevertheless, strong pre-emption is impor-
tant for reactive systems. In principle, strong pre-emption could be incorporated
in ntcc: Semantically one would have to consider assumptions about the future
evolutions of the system. As for the logic, one would have to consider a temporal
extension of Default Logic [Reiter 1980].

Other extensions of tcc have been proposed in [Gupta et al. 1998, Gupta et al.
1999]. In [Gupta et al. 1998] processes can evolve continuously as well as dis-
cretely. The language in [Gupta et al. 1999] allows random assignments with some
given distribution. None of these extensions, however, consider nondeterminism
or unbounded finite-delay.

The tccp calculus [de Boer et al. 2000] is the only other proposal for a nondeter-
ministic timed extension of ccp that we know of. One major difference with our
approach is that the information about the store is carried through the time units, so
the semantic setting is rather different. The notion of time is also different; in tccp
each time unit is identified with the time needed to ask and tell information to the
store. As for the constructs, unlike ntcc, tccp provides for arbitrary recursion and
does not have an operator for specifying (unbounded) finite-delay. A proof system
for tccp processes was recently introduced in [de Boer et al. 2001]. The underlying
linear temporal logic in [de Boer et al. 2001] can be used for describing input-
output behavior while our logic can only be used for the strongest-postcondition.
As such the temporal logic of ntcc processes is less expressive than that one under-
lying the proof system of tccp, but it is also semantically simpler and defined as
the standard linear-temporal logic of [Manna and Pnueli 1991]. This may come in
handy when using the Consequence Rule which is also present in [de Boer et al.
2001].

Functional Reactive Programming [Wan and Hudak 2000] (FRP) and Temporal
Logic Programming [Moszkowski 1986] (TLP) are high-level declarative frame-
works for programming reactive systems. In FRP programs are described in terms
of continuous, time-varying, reactive values, and conditions that occur at discrete
points in time. In TLP programs are described in terms of temporal formulae.
The main distinction between ntcc and these frameworks arises from the under-
lying paradigm upon they are defined. In ntcc the underlying paradigm is con-
current constraint programming whereas in FRP is functional programming and in
TLP is logic programming. As argued in [Saraswat et al. 1994], in comparison with
logic programming ccp provides a more algebraic view of process combinators
to model concurrency. Such an algebraic view is fundamental in concurrency
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theory [Milner 1980]. FRP does not deal with algebraic issues for concurrency.
In fact, only recently FRP was extended with nondeterminism to provide for paral-
lel programming [Peterson et al. 2000].

The ntcc calculus has also been studied in [Nielsen and Valencia 2002] and
[Nielsen et al. 2002]. In [Nielsen and Valencia 2002] we studied in detail the equiv-
alences arising from the observable behavior introduced in Section 4. In particular
it is shown that these equivalences and their induced congruences are decidable for
a substantial fragment of the calculus. In [Nielsen et al. 2002] we compared the
expressive power of several variants of the calculus. These variants differ mainly
in their way of expressing infinite behavior. In particular it is shown that gen-
eral recursion is strictly more expressive than replication which as expressive as
parameterless recursion with static scoping. Parameterless recursion with dynamic
scoping, however, is as expressive as general recursion.

9. Concluding remarks

We introduced a model of temporal concurrent constraint programming which we
call the ntcc calculus. We showed examples of its applicability to timed systems,
multi-agent systems and musical applications. We provided a denotational seman-
tics that approximates the notion of strongest postcondition of processes (in the
sense of [de Boer et al. 1997]) and identified an significant fragment for which
such a denotation is complete. We defined a linear temporal logic following the
standard definition of [Manna and Pnueli 1991], and related it with the denota-
tional semantics. This allowed us to define what it means for a process to satisfy a
linear temporal specification. Finally, we defined a (relatively) complete inference
system for proving that a process satisfies a linear-temporal specification, and we
applied it to prove some temporal properties of our examples.

Our current research in ntcc includes the study of decidability issues of the input-
output equivalence for ntcc. From this study, we learned that the combination be-
tween nondeterminism and hiding (even without the finite-delay operator) presents
technical difficulties as one can express unbounded nondeterministic processes
with them.

In the search of a fully-abstract fixed point model with respect to the input-output
behavior, we found that although ntcc allows countable nondeterminism and infi-
nite computations to happen (see [Apt and Plotkin 1986] and [Nystrm 1996] for
impossibility results under these conditions), a relatively simple model seems to
exist as a result of the particular nature of ntcc.

The plan for future research includes the extension of ntcc to a probabilistic
model following ideas in [Herescu and Palamidessi 2000]. This is justified by the
existence of RCX program examples involving stochastic behavior which cannot
be faithfully modeled with nondeterministic behavior. We also also plan to study
decidability issues for our logic. Namely, whether a formulae is valid and whether
a given process satisfies a given temporal formula. In a more practical setting we
plan to define a programming language for RCX controllers based on ntcc.



188 M. NIELSEN, C. PALAMIDESSI, F. VALENCIA

Acknowledgements

The authors thank Maurizio Gabbrielli, Camilo Rueda, Dale Miller, Vineet Gupta,
Radha Jagadeesan, Prakash Panangaden, and Marco Carbone for helpful comments
and criticism on various aspects of ntcc. The authors are specially grateful to Alicia
Villanueva for having found some inaccuracies in a prelimanary version of this
paper. Thanks also goes to the anonymous referees for their valuable suggestions
on how to improve this paper.

References

ALVAREZ, G., DIAZ, J. F., QUESADA, L. O., RUEDA, C., TAMURA, G., VALENCIA, F., AND
ASSAYAG, G. 2001. Integrating Constraints and Concurrent Objects in Musical Applications:
A Calculus and its Visual Language. Constraints 6 , 1 (Jan.), 21–25.

APT, KRZYSZTOF R. AND PLOTKIN, GORDON D. 1986. Countable Nondeterminism and Random
Assignment. Journal of the ACM 33 , 4, 724–767.

BALABAN, M. AND SAMOUN, C. 1993. Hierarchy, time and inheritance in music modelling. Lan-
guages of Design 1 , 3, 147–172.
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