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Concurrency

Concurrent Systems: Agents (or processes) that interact with each other.

® Systems as networks where arcs represent agent interaction.

2 Models for Concurrency: CCS, Pi-Calculus, CSP. Arcs denote Links.
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Concurrency, Constraints

In CCP [Saraswat, '89]: Agents interact via constraints over shared variables.

® Systems as networks where arcs represent agent interaction.

® Arcs as constraints on the (shared-variables of) agents.
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Concurrency, Constraints, and Time

As other models, CCP has extended for new and wider phenomena

E.g:
e Mobility |Gilbert and Palamidessi '00, Réty '98, Rueda & Valencia '97].

e Stochastic Behavior [Saraswat, Jagadeesan '98, Gupta-Panangaden-
Jagadeesan '99]

® Timed Behavior
@ (Basic) Timed CCP [Gupta-Jagadeesan-Saraswat '94]
@ Timed Default CCP [Gupta-Jagadeesan-Saraswat '95]
@ Hybrid CCP [Gupta-Jagadeesan-Saraswat '96]
@ Timed CCP: the tccp model [DeBoer-Gabbrielli-Meo "00]
@ Nondeterministic (Basic) Timed CCP [Nielsen-Palemidessi-Valencia '01]
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Timed CCP: the tcc model

In the tcc model, as time passes, some constraints may disappear or be created.

Eglt=1
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Timed CCP: the tcc model

In the tcc model, as time passes, some constraints may disappear or be created.

Eglt=2
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Timed CCP: the tcc model

In the tcc model, as time passes, some constraints may disappear or be created.

Eglt=3
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Timed CCP: the tcc model

In the tcc model, as time passes, some constraints may disappear or be created.

Eglt=14
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The Goal of this Talk

"..One of the outstanding challenges in concurrency is to find the right
marriage between logic and behavioural approaches” R. Milner.

About Timed CCP (I shall argue that):

2 |t is simple.
2 |t expresses interesting real-world temporal situations.
2 |t is rigorously formalized upon process algebra and logic.

2 |t offers reasoning techniques from denotational semantics and process logic.
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Agenda

2 Basic Timed CCP intuitions.

2 Semantics.

2 A Logic and Proof System.

2 Applications.

2 Behavior.

2 Hierarchy of temporal CCP languages
2 Future Work
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CCP Intuitions: A Typical CCP Scenario

temperature>42 temperature=507.P
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CCP Intuitions: A Typical CCP Scenario

temperature=507.P
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CCP Intuitions: A Typical CCP Scenario

temperature=507.P

/

temperature>42

temperature<70

O<temperature<1007.Q)
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CCP Intuitions: A Typical CCP Scenario

temperature=507.P

temperature>42

temperature<70
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CCP Intuitions: A Typical CCP Scenario

temperature=507.P

temperature>42

temperature<70

@ Partial Information (e.g. temperature is some unknown value > 20).
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CCP Intuitions: A Typical CCP Scenario

temperature=507.P

/

temperature>42

temperature<70

N

Q

@ Partial Information (e.g. temperature is some unknown value > 20).

2 Concurrent Execution of Processes.
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CCP Intuitions: A Typical CCP Scenario

temperature=507.P

/

temperature>42

temperature<70
Q

@ Partial Information (e.g. temperature is some unknown value > 20).
2 Concurrent Execution of Processes.

2 Synchronization via Blocking-Ask.
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CCP Intuitions: Representing Partial Information

Definition. A constraint system consists of a signature . and first-order
theory A over 3.

2 Constraints a, b, ¢, ...: formulae over X.
2 Relation FA: decidable entailment relation between constraints.

2 C: set of constraints under consideration.
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Reactive Systems
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Reactive Systems
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Reactive Systems
11 / 01
P

) - P

t=2

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

21



Concurrency, Time & Constraints

CLEI, 2005

Reactive Systems

i\/

1

t=2

i2 02
- P

2

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

22



Concurrency, Time & Constraints

CLEI, 2005

Reactive Systems
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Reactive Systems

VARV
P - P P

1 2 3

1

t=3

e Stimulus i; : input information (as a constraint) for P; .
e Response 0;: output information (as a constraint) of P; .

e Stimulus-Response duration: time interval (or time unit).

Examples: PLC's, RCX Robots, Micro-Controllers, Synchronous Languages.
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Basic tcc Processes

Processes Description | Action within the time interval

2 tell(c) telling information | add c to the store
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Processes

Basic tcc Processes

Description

Action within the time interval

o tell(c)

2 whencdo P

telling information

asking information

add ¢ to the store

when ¢ in the store execute P
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Processes

Basic tcc Processes

Description

Action within the time interval

o tell(c)
e whencdo P

@ localxzin P

telling information

asking information

hiding

add ¢ to the store

when ¢ in the store execute P

execute P with local
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Processes

Basic tcc Processes

Description

Action within the time interval

o tell(c)
e whencdo P
e localzxin P

2 next P

telling information
asking information
hiding

unit-delay

add ¢ to the store
when ¢ in the store execute P
execute P with local

delay P one time unit.
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Processes

Basic tcc Processes

Description

Action within the time interval

o tell(c)

e whencdo P
e localxin P
e next P

@ unless cnext P

telling information
asking information
hiding

unit-delay

time-out

add ¢ to the store

when ¢ in the store execute P
execute P with local x

delay P one time unit.

unless ¢ now in the store do P next
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Processes

Basic tcc Processes

Description

Action within the time interval

o tell(c)

e whencdo P

telling information

asking information

add ¢ to the store

when ¢ in the store execute P

e localxin P hiding execute P with local x

e next P unit-delay delay P one time unit.

e unless cnext P | time-out unless ¢ now in the store do P next
2 PlQ parallelism execute P and @)
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Basic tcc Processes

Processes Description | Action within the time interval

2 ) ..; whenc;do P; | guarded choice choose P; s.t., ¢; in the store
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Basic tcc Processes

Processes Description | Action within the time interval
o Zie[ when c; do P; | guarded choice choose P; s.t., ¢; in the store
3 <P unbounded delay | delay P undefinitely (not forever)
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Basic tcc Processes

Processes Description | Action within the time interval
° Zie] when c; do P; | guarded choice choose P; s.t., ¢; in the store
o xP unbounded delay | delay P undefinitely (not forever)
2 P replication execute P each time unit

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

33



Concurrency, Time & Constraints CLEI, 2005

Some Derived Constructs

e Abortion

abort & | (tell(false)).

e Asynchronous Parallel
def

PlQ = (P Q)+ (P || xQ)

e Bounded Replication
def

e P = Htgz'gt' next’P
e Bounded Delay
def i
ke = D icicpmext'P
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Power Saver Example

2 A power saver :

l(unless (lights = off) next « tell(lights = off))
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Power Saver Example

2 A refined power saver :

l(unless (lights = off) next x|y 60 tell(lights = off))
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Power Saver Example

2 A more refined one; deterministic power saver:

l(unless (lights = off) next tell(lights = off))
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Operational Semantics

@ |Internal Transitions:

a b= ¢
RT Geli(c),a) — (skip,anc) U (S . whenc do P, a) — (P}, a)
kB (1 P,a) — (P || next! P, a) RS (x P,a) — (next"P,a) (n=0)
e Observable Transition

<P7 a> —" <Q,a/> —— ([ Q' if Q = next Q’

RO @.a) Q' if @ = unless (c) next Q'
P == F(Q) = § F@Q)IFQ) ifQ=01lQ
local z in F(Q') if @ =local z in Q’
L skip otherwise
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Operational Semantics

e Internal Transitions:

a b= ¢
RT Geli(c),a) — (skip,anc) U (S . whenc do P, a) — (P}, a)
kB (1 P,a) — (P || next! P, a) RS (x P,a) — (next"P,a) (n=0)
2 Observable Transition

<P7 a> —" <Q,a/> —— ([ Q' if Q = next Q’

RO @.a) Q' if @ = unless (c) next Q'
P == F(Q) = { F@Q)IFQ) ifQ=01]Q>
local z in F(Q') if @ =local z in Q’
L skip otherwise
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Observations to Make of Processes

® Stimulus-response interaction

P=p (c1,c1) P, (c2,c5) P, (c3,c3)

(a,a’)

denoted by P =——=“with a = c¢y.co...and o/ = ¢}.c} ...

Observable Behavior
@ Input-Output  io(P) = {(a,a') | P
@ Qutput o(P) ={d"|P (true:’alw}

@ Strongest Postcondition sp(P) ={da'|P %w}

(a,a”)

“}
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Strongest-Postcondition Denotational Semantics

[tell(a)] ={c-a€C¥ : cFa,}

[PllRlI=[PIN[Q]

[!P]={a : forall g € C*,a’ € C¥: a = B.o implies &’ € [P]}
[xP]={B.a: BeEC, ac[P]}

[[Zielwhen(ai)dopi]]: Uiel{c'o‘ : ckFa;andec-a € [P])U
(Nier{c-a: ca;, a€ C¥})

Definition. P is locally-independent iff its guards depend on no local variables.

Theorem. sp(P) C [ P] and, if P is a locally-independent, sp(P) = [ P]
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Related Work & Road Map

@ |0 Denotation for Timed CCP: [ Gupta-Jagadeesan-Saraswat '94]
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Related Work & Road Map

|O Denotation for Basic Timed CCP: [ Gupta-Jagadeesan-Saraswat '94]
@ |0 Denotation for Nondeterministic Timed CCP [DeBoer-Gabrielli-Meo '01].
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Related Work & Road Map

|O Denotation for Basic Timed CCP: [Gupta-Jagedeesan-Saraswat '94]

|O Denotation Nondeterministic Timed CCP [DeBoer-Gabbrielli-Meo "01].
@ SP Denotation for Nondeterministic Basic Timed CCP [Nielsen-Palimidessi-
Valencia '02].
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Related Work & Road Map

|O Denotation for Basic Timed CCP: [Gupta-Jagadeesan-Saraswat'94]

|O Denotation Nondeterministic Timed CCP [DeBoer-Gabbrielli-Meo'01].

SP Denotation for Nondeterministic Basic Timed CCP [Nielsen-Palamidessi-
Valencia'02].

RoadMap:
Operational and Denotational Models for Timed CCP
2 Coming Next: Logic & Specification.
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An LTL Process Logic

Syntax. A:=c|AAA|-A|T,A|0A|SA|OA
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An LTL Process Logic

Syntax. A:=c|AAA|-A|T,A|0A|SA|OA

@ ¢ means ¢ holds in the current time unit”
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An LTL Process Logic

Syntax. A:=c|AAA|-A|T,A|0A|SA|OA

e ¢ means c holds in the current time unit”’
@ [JA means " A holds always"
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An LTL Process Logic

Syntax. A:=c|AAA|-A|T,A|0A|SA|OA

e ¢ means c holds in the current time unit”
e [JA means " A holds always"
2 $A means A eventually holds”
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An LTL Process Logic

Syntax. A:=c|AAA|-A|T,A|0A|SA|OA

e ¢ means c holds in the current time unit’
e [JA means " A holds always"

e A means A eventually holds”

3 OA means " A holds in the next time unit’
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An LTL Process Logic
Syntax. A:=c|AANA|-~A|3,A|0A|OA|DA

e ¢ means c¢ holds in the current time unit’.
e [ 1A means "A holds always'".

o A means A eventually holds”

e OA means "A holds in the next time unit”

Semantics. Say a = ¢j.¢co.... = Aiff (o, 1) = A where
(a, 1) = ¢ iff c;i Fc
(a, 1) = A iff (a, 1) £ A
(a,1) = A1 N Ay iff (a,1) = A1 and (a, 1) = As
(a, 1) = OA iff (a,i+1) = A
(a, 1) = UOA iff forallj > i (a,7) F A
(a,1) = QA iff there exists j > i st. (a,j) F A
(a, 1) = A iff there is o xvariant of ast. (@', 1) = A.
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An LTL Process Logic

Syntax. A:=c|AAA|-A|T,A|0A|SA|OA

e ¢ means c holds in the current time unit’”.
e [ 1A means "A holds always'.

e A means A eventually holds”

e OA means A holds in the next time unit”

For example

Blfa=(x>1).(zr>2)(x>3)....thena = Qx> 42
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An LTL Process Logic
Syntax. A:=c|AANA|-A|T,A|0A|GA|OA

e ¢ means c holds in the current time unit’”.
e [ 1A means "A holds always'.

e A means A eventually holds”

e OA means A holds in the next time unit”

For example
oelfa=(x>1)(r>2).(x>3)....then a = Ox > 42

2 J(AV B) 04V OB 77
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An LTL Process Logic
Syntax. A:=c|AANA|-A|T,A|0A|GA|OA

e ¢ means c holds in the current time unit’”.
e [ 1A means "A holds always'.

e A means A eventually holds”

e OA means A holds in the next time unit”

For example

oelfa=(x>1)(r>2).(x>3)....then a = Ox > 42
e J(AV B) «OAVOB?

e LGA &OQUA 77
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Specification and Satisfaction

Specifications can be expressed as LTL formulae.

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

55



Concurrency, Time & Constraints

CLEI, 2005

Specification and Satisfaction

Specifications can be expressed as LTL formulae. We then say:

P meets A, written P = A, iff all sequences P outputs satisfy A

Yhs
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Specification and Satisfaction

Specifications can be expressed as LTL formulae. We then say:

P meets A, written P = A, iff all sequences P outputs satisfy A

Eg.,
@ I(unless (LightsOff) next x tell(LightsOff)) = < (LightsOff)
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Specification and Satisfaction

Specifications can be expressed as LTL formulae. We then say:

P meets A, written P = A, iff all sequences P outputs satisfy A

Eg.,
e !(unless (LightsOff) next * tell(LightsOff)) = <& (LightsOff)
2 l(when (AlarmGoesOff) do tell(CloseGate)) = [OAlarmGoesOff =- [CloseGate
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Specification and Satisfaction

Specifications can be expressed as LTL formulae. We then say:

P meets A, written P = A, iff all sequences P outputs satisfy A

Eg.,
e !(unless (LightsOff) next * tell(LightsOff)) = <& (LightsOff)
o!(when (AlarmGoesOff) do tell(CloseGate)) |= [ AlarmGoesOff = OCloseGate

2 But how can we prove P = A7
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Theorem.

Proof System for P = A

tell(c) F ¢ (tell)

PFHA QFB PEA .
PlGQrAnB P localzin P F Jg4 (11de)
PrA (next)
next P O A4

P+ PHA
ProA P ppoa Gt

Viel P+ A

(sum)
ZiEI when C; do Pi [ \/iEI(Ci VAN AZ) V /\'iEI e

PHA A= B
P B (vel)

P=A iff PEA

(Completeness) For every locally-independent process P,

Yhs
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Verification P = A

2 Can we prove P = A automatically 7
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Verification P = A

2 Can we prove P = A automatically 7

YES, even for infinite-state processes and first-order LTL for-
mulael.
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Verification P = A

2 Can we prove P = A automatically 7

YES, even for infinite-state processes and first-order LTL for-
mulael.

Theorem. Given a locally-independent P and a negation-free A, the problem
of whether P |= A is decidable.
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Verification P = A

2 Can we prove P = A automatically 7

YES, even for infinite-state processes and first-order LTL for-
mulael.

Theorem. Given a locally-independent P and a negation-free A, the problem
of whether P |= A is decidable.

...and the proof uses the denotational semantics rather than the operational
semantics .
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Theoretical Applications: Pnueli's First-Order LTL

Pnueli's First-Order LTL (FOLTL):

@ Syntax like that of the Timed CCP Logic.
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Theoretical Applications: Pnueli's First-Order LTL

Pnueli's First-Order LTL (FOLTL):
@ Syntax like that of the Timed CCP Logic.

2 Models are sequences of states
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Theoretical Applications: Pnueli's First-Order LTL

Pnueli's First-Order LTL (FOLTL):
@ Syntax like that of the Timed CCP Logic.
2 Models are sequences of states

@ Variables can be flexible (i.e., can change as time passes) or rigid.
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Theoretical Applications: Pnueli's First-Order LTL

Pnueli's First-Order LTL (FOLTL):

@ Syntax like that of the Timed CCP Logic.

2 Models are sequences of states

@ Variables can be flexible (i.e., can change as time passes) or rigid.

@ [Abadi '89] proved the full-language to be undecidable.
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Theoretical Applications: Pnueli's First-Order LTL

Pnueli's First-Order LTL (FOLTL):

@ Syntax like that of the Timed CCP Logic.

2 Models are sequences of states

@ Variables can be flexible (i.e., can change as time passes) or rigid.
@ [Abadi '89] proved the full-language to be undecidable.

@ Several work identifying decidable fragments of FOLTL.
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Theoretical Applications: Pnueli's First-Order LTL

Pnueli's First-Order LTL (FOLTL):

@ Syntax like that of the Timed CCP Logic.

2 Models are sequences of states

@ Variables can be flexible (i.e., can change as time passes) or rigid.
@ [Abadi '89] proved the full-language to be undecidable.

@ Several work identifying decidable fragments of FOLTL.

2 Without rigid variables, FOLTL is decidable. Proof by using the theory
of Timed CCP.
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Programming Applications: Cells

@ Cell x : (v) models cell z with contents v.

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

71



Concurrency, Time & Constraints CLEI, 2005

Programming Applications: Cells

@ Cell x : (v) models cell z with contents v.

x:(2) e tell(x = z) || unless change(x) next z : (2)
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Programming Applications: Cells

@ Cell x : (v) models cell z with contents v.
x:(2) e tell(x = z) || unless change(x) next z : (2)

@ Exchange exchs(z,y) modelsy := z ;2 = f(x).
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Programming Applications: Cells

@ Cell x : (v) models cell z with contents v.
x:(2) e tell(x = z) || unless change(x) next z : (2)

@ Exchange exchs(z,y) modelsy := z ;2 = f(x).

exchy(x,y) e >, when (z = v) do ( tell(change(x)) || tell(change(y))

| mext(z: f(v) | v:(v)))
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Programming Applications: Cells

@ Cell x : (v) models cell z with contents v.

x:(2) e tell(x = z) || unless change(x) next z : (2)

@ Exchange exchs(z,y) modelsy := z ;2 = f(x).

exchy(x,y) e >, when (z = v) do ( tell(change(x)) || tell(change(y))

| mext(z: f(v) | v:(v)))

Example. x: (3) ||y : (5) || exchs(x,y)
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Programming Applications: Cells

@ Cell x : (v) models cell z with contents v.

x:(2) e tell(x = z) || unless change(x) next z : (2)

@ Exchange exchs(z,y) modelsy := z ;2 = f(x).

exchy(x,y) e >, when (z = v) do ( tell(change(x)) || tell(change(y))

| mext(z: f(v) | v:(v)))

Example. x: (3) ||y : (5) || exchr(x,y) ———= x:(7) || y: (3).
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Applications: Logic & Proof System at Work

Proposition. | exchy(x,y) F (z=v) = O(x = f(v) Ny =)
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Applications: Logic & Proof System at Work

Proposition. | exchy(x,y) F (z=v) = O(x = f(v) ANy =) |

Pr.1
LPAR
LNEXT

2 (gw) Fe=gw " ywFy=w
z:(g(w) [[y: (w)Fz=g(w)Ay=w
next (2 : (g(w)) ||y : (w)) F Oz = g(w) Ay = w)
Vw € D tell(change(x)) || tell(change(y)) || next(z : f(w) || v: (w)) F Oz = g(w) Ay = w)

exch¢(z,y) F V (z=wAO@=gw Ay=w)V A “z=w
weD weD

Lem.(3)
LSUM

-0 : LCONS
exchy¢(z,y) F /G\D(x =w=0V(zr=g(w) Ny =w))

exchy(z,y) - (z =v= Oz = g(v) Ay =v))

LCONS
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Programming Applications: LEGO Zigzagging

Specification. Go forward (f), right (r) or left (1) but DO NOT go:

@ f if preceding action was f,

3 r if second-to-last action was r, and
3 1 if second-to-last action was 1.
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Programming Applications: LEGO Zigzagging

Specification. Go forward (f), right (r) or left (1) but DO NOT go:
@ f if preceding action was f,

3 r if second-to-last action was r, and

@ 1 if second-to-last action was 1.

GoForward dlef ferchlacty, acty) || tell(forward)
GoRight dlef Terchlacty, acty) || tell(right)
GolLeft dlef legchlacty, actg) || tell(left)
Zigzag dlef ( when (act; # £) do GoForward

+  when (acty # r)do GoRight

+  when (acty # 1)do GoLeft )

| next Zigzag
StartZigzag dlef acty:(0) || acty:(0) || Zigzag
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Programming Applications: LEGO Zigzagging
Specification. Go forward (f), right (r) or left (1) but DO NOT go:

@ f if preceding action was f,

2 r if second-to-last action was r, and
@ 1 if second-to-last action was 1.

GoForward dlef ferchlacty, acty) || tell(forward)
GoRight dlef Topchlacty, acty) || tell(right)
GoLeft dlef logeh(acty,acty) || tell(left)
Zigzag dlef ( when (act; # £) do GoForward

+  when (acty # r)do GoRight

+  when (acty # 1) do GoLeft )

| next Zigzag
StartZigzag dlef acty:(0) || actyp:(0) || Zigzag

Proposition. StartZigzag - O({$right A $left)
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A Timed CCP Programming Language for Robots

LMAN (Hurtado&Munoz 2003): A timed ccp reactive programming language
for LEGO RCX Robots.

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

82



Concurrency, Time & Constraints CLEI, 2005

Music Applications: Controlled Improvisation.

Music composition and performance is a complex task of defining and controlling
concurrent activity. E.g:

> There are My, ..., M,, musicians (or Voices if you wish). Each M; is given a
three-notes pattern p; of delays between each note in the block.

> Once her block is played, the musician waits for the others to finish their
respective blocks before start playing a new one.

> The exact time a new block will be started is not specified, but should not be
later than pdur; the sum of the durations of all patterns.

> Musicians keep playing notes until all of them play a note simultaneously.
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Music Applications: Controlled Improvisation

def

M; = Y Gwneprnty (Play( e | next? ™ ( flag; :=1 |
whenever (go = 1) do
*[O,pdur]Mi ) )
Playéj,k,l) o lo,j_1tell(note; = sil) || next’tell(c;[note;])
| 'a1ek_1ytell(note; = sil) || next’™*tell(c;[note;])
| 'trt,j+rri—tell(note; = sil) || next’ T"tell(c; [note;))
C « (when A, ,,(flag; = 1) A (stop = 0) do
(tell(go = 1) || [ Licpy,m) flag; := 0))
next whenever /\ . note; #* sil) do stop :=
h i€[1,m] # d 1
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Music Applications: Controlled Improvisation

it & [ Licp my(tell(ci[notes]) || flag; : 0) || stop : 0

def .
Sys = Init || C || 1Lep m M

> Notice that regardless the musicians’ choices the system always terminates iff
Sys = Ostop = 1.

> Notice that there are some musicians’ choices on which the system terminates

iff
Sys I Ustop = 0.

The above statements can be effectively verified!
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More Timed CCP Applications and Languages

¢ Music Composition and Performance (Rueda&Valencia 2004).
e Biological System (Olarte&Rueda 2005, Gutierrez& Perez& Rueda 2005).

e TimedGentzen (Saraswat 1995): A tcc-based programming language for
reactive-systems implemented in Prolog.

e JCC (Saraswat&Gupta 2003): An integration of timed ccp into JAVA. See

http://www.cse.psu.edu/~saraswat/jcc.html
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Related Work & Road Map

@ Logic & Proof System for Timed CCP: [ Gupta-Jagadeesan-Saraswat '94,'95]

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

87



Concurrency, Time & Constraints CLEI, 2005

Related Work & Road Map

Logic & Proof System for Timed CCP: [ Gupta-Jagadeesan-Saraswat '94,'95]
@ Logic & Proof System for Nondeterministic Timed CCP [DeBoer-Gabrielli-Meo
01].
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Related Work & Road Map

Logic & Proof System for Timed CCP: [ Gupta-Jagadeesan-Saraswat '94,'95]
Logic & Proof System for Nondeterministic Timed CCP [DeBoer-Gabrielli-Meo
01].
@ Logic & Proof System Nondeterministic Basic Timed CCP [Nielsen-Palamidessi-
Valencia '02]. .
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Related Work & Road Map

Logic & Proof System for Timed CCP: [Gupta-Jagadeesan-Saraswat '94,'95]

Logic & Proof System for Nondeterministic Timed CCP [DeBoer-Gabbrielli-Meo
01].

Logic & Proof System Nondeterministic Basic Timed CCP [Nielsen-Palamidessi-
Valencia '02].
@ Decidability of Verification [Valencia '03].
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Related Work & Road Map

Logic & Proof System for Timed CCP: [Gupta-Jagadeesan-Saraswat '94,'95]

Logic & Proof System for Nondeterministic Timed CCP [DeBoer-Gabrielli-Meo
01].

Logic & Proof System Nondeterministic Basic Timed CCP [Nielsen-Palamidessi-
Valencia '02].

Decidability of Verification [Valencia '03]
@ Verification (Model Checking) for Timed CCP [Falaschi and Villanueva '03]

RoadMap:
Operational and Denotational Models for Timed CCP
Timed CCP Logic and its Applications

2 Coming Next: Behavioral Equivalences.
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Observations to Make of Processes

® Stimulus-response interaction

P=p (c1,c1) P, (c2,c5) P, (c3,c3)

(a,a’)

denoted by P =——=“with a = c¢y.co...and o/ = ¢}.c} ...

Observable Behavior
@ Input-Output  io(P) = {(a,a') | P
@ Qutput o(P) ={d"|P (true:’alw}

@ Strongest Postcondition sp(P) ={da'|P %w}

(a,a”)

“}
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Behavioral Equivalences

Definition. Letl € {o0,10,sp}. Define P ~; Q iffI(P) =1(Q).

Unfortunately, neither ~;, nor ~, are congruences. Let =~;, and =, be the
corresponding congruences.

Theorem. =;,==,C~,;, C~,.
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Distinguishing Context Characterizations

Theorem. Given P, Q and ~ € {=2,, ~iy, ~}, one can construct a context C'F@)[ ]
such that:

P ~ @Q ifandonly if C’SJP’Q)[P] ~o CSJP’Q) Q]

e Interesting consequence of the theorem:

Decidability of all ~;,, ~,,~, and =~;, reduce to that of ~,.

e Interesting result introduced for the proof:

Given P one can construct a finite set including all relevant inputs.
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Behavioral Equivalence: Decidability.

Definition. A star-free P is locally-deterministic iff all its summations
occur outside of its local processes.

Theorem. Given a locally-deterministic P one can effectively construct a
Biichi automaton Bp that recognizes o( P).

As a corollary,

Theorem. =~,,~;,,~; , ~s are all decidable for locally-deterministic
Processes.
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Related Work & Road Map

@ Decidability of Various Equivalences [Valencia '03]
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Related Work & Road Map

@ Decidability of Various Equivalences [Valencia '03]
@ Timed CCP Bisimilarity Equivalence and its Axiomatization [Tini "00]

RoadMap:
Operational and Denotational Models for Timed CCP
Timed CCP Logic and its Applications
Behavioral Equivalences

2 Coming Next: Timed CCP Language Hierarchy.
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Variants and their Expressive Power

Basic Timed CCP with the following alternatives for
infinite behavior.

e tcc|Rec]
Recursive definitions A(x1, ..., 2y) ' P with fo(P) C{zy,...,zn}.

e tcc|Rec, Identical Parameters]
As above but every call of A in P is of the form A(xz1,...,z,).

e tcc|Rec, No Parameters, Dyn. Scoping]
Recursive definitions A % P with Dynamic Scoping

e tcc|Rec, No Parameters, Static Scoping]

Recursive definitions A & P with Static Scoping.
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TCC Hierarchy and ~;, (un)decidability.

" UNDECIDABLE

ntcc[Rec] ntcc[Rec, No Par., Dyn. Scope].‘: !
. (PCP)

' DECIDABLE
Y
(Buchi Autom.)

ntcc[Rec, Ident. Par.] ntcc[Rec,No Par, Static Scope]

ntcc[Replication]

® Qualitative distinction between dynamic and static scope.

® The results have inspired similar results for CCS.

—> : Encoding.
—: Sublanguage.
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Final Remarks

Timed CCP combines the declarative view of LTL with the operational-behavioral
view from process calculi .
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Final Remarks

Timed CCP combines the declarative view of LTL with the operational-behavioral
view from process calculi .

"..One of the outstanding challenges in concurrency is to find the right
marriage between logic and behavioural approaches” R. Milner.
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Final Remarks

Timed CCP combines the declarative view of LTL with the operational-behavioral
view from process calculi .

"..One of the outstanding challenges in concurrency is to find the right
marriage between logic and behavioural approaches” R. Milner.

About Timed CCP:

2 Simple ideas from concurrency and temporal logic.
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Final Remarks

Timed CCP combines the declarative view of LTL with the operational-behavioral
view from process calculi .

"..One of the outstanding challenges in concurrency is to find the right
marriage between logic and behavioural approaches” R. Milner.

About Timed CCP:

2 Simple ideas from concurrency and temporal logic.

2 |t expresses interesting real-world temporal situations.
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Final Remarks

Timed CCP combines the declarative view of LTL with the operational-behavioral
view from process calculi .

"..One of the outstanding challenges in concurrency is to find the right
marriage between logic and behavioural approaches” R. Milner.

About Timed CCP:

2 Simple ideas from concurrency and temporal logic.
2 |t expresses interesting real-world temporal situations.

2 Formalization upon process algebra and logic.
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Final Remarks

Timed CCP combines the declarative view of LTL with the operational-behavioral
view from process calculi .

"...One of the outstanding challenges in concurrency is to find the right
marriage between logic and behavioural approaches”. R. Milner.

About Timed CCP:

2 Simple ideas from concurrency and temporal logic.
2 |t expresses interesting real-world temporal situations.
2 Formalization upon process algebra and logic.

@ Techniques from a denotational semantics and process logic.
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Ongoing and Future Work

e Implementation of Automatic Tools for analyzing Timed CCP Processes.
e Probabilistic Timed CCP (Olarte&Rueda 2005, Perez 2005).
e Secure CCP (Ecole Polytechnique, IBM, Univ. Pisa, Javeriana, Univalle).

e Timed CCP for reasoning about Biological Systems (Olarte&Rueda 2005,
Gutierrez& Perez 2005).
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Examples of Observables

when b do next tell(d) when a do next when b do next tell(d)
when a do next + I
when ¢ do next tell(e) when a do next when ¢ do next tell(e)
P Q

Assuming a, b, ¢, d and e mutually exclusive:

e 0(P)=0(Q) = {true“}.

e 0(P)# 10(Q): If a« = a.c.true” then (a, ) € 10(Q) but (v, @) & i0(P)

e sp(P) # sp(Q): If a =a.c.true” then a € sp(Q) but a & sp(P).
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