
An Introduction to the �-Calculus

Chapter to appear in Handbook of Process Algebra, ed. Bergstra, Ponse and Smolka,

Elsevier

Joachim Parrow�

Dep. Teleinformatics,

Royal Institute of Technology, Stockholm

Abstract

The �-calculus is a process algebra where processes interact by sending

communication links to each other. This paper is an overview of and intro-

duction to its basic theory. We explore the syntax, semantics, equivalences

and axiomatisations of the most common variants.

�
email joachim@it.kth.se

1

Contents

1 Introduction 3

2 The �-Calculus 6

2.1 Basic De�nitions . 6

2.2 Structural Congruence . 9

2.3 Simple Examples . 12

3 Variants of the Calculus 15

3.1 Match and Mismatch . 15

3.2 Sum . 16

3.3 The Polyadic Calculus . 18

3.4 Recursion and Replication . 20

3.5 The Asynchronous Calculus . 21

3.6 The Higher-Order Calculus . 23

4 Operational Semantics 25

5 Variants of the Semantics 28

5.1 The Role of Structural Congruence 28

5.2 Symbolic Transitions . 30

5.3 The Early Semantics . 34

5.4 Reductions . 35

5.5 Abstractions and Concretions . 36

6 Bisimilarity and Congruence 39

6.1 Bisimilarity . 39

6.2 Congruence . 42

7 Variants of Bisimilarity 43

7.1 Early Bisimulation . 43

7.2 Barbed Congruence . 46

7.3 Open Bisimulation . 47

7.4 Weak Bisimulation . 52

8 Algebraic Theory 54

8.1 Bisimilarity . 54

8.2 Congruence . 57

9 Variants of the Theory 60

9.1 Early Bisimilarity and Congruence 60

9.2 Open Bisimilarity . 62

9.3 Weak Congruence . 62

10 Sources 64
2

1 Introduction

The �-calculus is a mathematical model of processes whose interconnections

change as they interact. The basic computational step is the transfer of a com-

munication link between two processes; the recipient can then use the link for

further interaction with other parties. This makes the calculus suitable for mod-

elling systems where the accessible resources vary over time. It also provides

a signi�cant expressive power since the notions of access and resource underlie

much of the theory of concurrent computation, in the same way as the more

abstract and mathematically tractable concept of a function underlies functional

computation. This introduction to the �-calculus is intended for a theoretically

inclined reader who knows a little about the general principles of process algebra

and who wishes to learn the fundamentals of the calculus and its most common

and stable variants.

Let us �rst consider an example. Suppose a server controls access to a printer

and that a client wishes to use it. In the original state only the server itself has

access to the printer, represented by a communication link a. After an interac-

tion with the client along some other link b this access to the printer has been

transferred:

Server

After interaction:

b

c
a

Before interaction:

PrinterPrinter

Server
Client Client

In the �-calculus this is expressed as follows: the server that sends a along b

is ba : S ; the client that receives some link along b and then uses it to send data

along it is b(c) : cd : P . The interaction depicted above is formulated

ba : S j b(c) : cd : P
�
�! S j ad : P

We see here that a plays two di�erent roles. In the interaction between the server

and the client it is an object transferred from one to the other. In a further

interaction between the client and the printer it is the name of the communication

3

link. The idea that the names of the links belong to the same category as the

transferred objects is one of the cornerstones of the calculus, and is one way in

which it is di�erent from other process algebras. In the example a; b; c; d are

all just names which intuitively represent access rights: a accesses the printer, b

accesses the server, d accesses some data, and c is a placeholder for an access to

arrive along a. If a is the only way to access the printer then we can say that the

printer \moves" to the client, since after the interaction nothing else can access

it. For this reason the �-calculus has been called a calculus of \mobile" processes.

But the calculus is much more general than that. The printer may have many

links that make it do di�erent things, and the server can send these links to

di�erent clients to establish di�erent access capabilities to a shared resource.

At �rst sight it appears as if the �-calculus is just a specialised form of a

value-passing process algebra where the values are links. In such a comparison

the calculus may be thought rather poor since there are no data types and no

functions de�ned on the names; the transferable entities are simple atomic things

without any internal structure. The reason that the �-calculus nevertheless is

considered more expressive is that it admits migrating local scopes. This impor-

tant point deserves an explanation here.

Most process algebras have a way to declare a communication link local to a

set of processes. For example in CCS the fact that P and Q share a private port

a is symbolised by (P jQ)na, where the operator na is called restriction on a. The

signi�cance is that no other process can use the local link a, as if it were a name

distinct from all other names in all processes.

In the �-calculus this restriction is written (�a)(P jQ). It is similar in that

no other process can use a immediately as a link to P or Q. The di�erence is

that the name a is also a transferable object and as such can be sent, by P or

Q, to another process which then can use the restricted link. Returning to the

example above suppose that a is a local link between the server and the printer.

Represent the printer by R, then this is captured by (�a)(ba : S j R). The server

is still free to send a along b to the client. The result would be a private link

shared between all three processes, but still distinct from any other name in any

other process, and the transition is consequently written

(�a)(ba : S j R) j b(c) : cd : P
�
�! (�a)(S j R j ad : P)

So, although the transferable objects are simple atomic things they can also be

declared local with a de�ned scope, and in this way the calculus transcends the

ordinary value-passing process algebras. This is also the main source of diÆculty

in the development of the theory because the scope of an object, as represented

by the operands of its restriction, must migrate with the object as it is transferred

between processes.

The �-calculus is far from a single well de�ned body of work. The central idea,

a process algebraic de�nition of link-passing, has been developed in several direc-

tions to accommodate speci�c applications or to determine the e�ects of various

4

semantics. Proliferation is certainly a healthy sign for any scienti�c area although

it poses problems for those who wish to get a quick overview. Presumably some

readers new to the �-calculus will be satis�ed with a compact presentation of a

single version, while other may be interested in the spectrum of variations.

This paper aims to serve both these needs. In the following, the even-

numbered sections develop a single strand of the calculus. Section 2 presents

the syntax and give some small examples of how it is used. In Section 4 we

proceed to the semantics in its most common form as a labelled transition sys-

tem. In Section 6 we consider one of the main de�nitions of bisimulation and the

congruence it induces, and in Section 8 we look at their axiomatisations through

syntactic equalities of agents. These sections do not depend on the odd-numbered

sections and can be considered as a basic course of the calculus. There will be

full de�nitions and formulations of the central results, and sketches that explain

the ideas and structure of the proofs.

Each odd-numbered section presents variations on the material in the preced-

ing one. Thus, in Section 3 we explore di�erent versions of the calculus, such as

the e�ect of varying the operators, and the asynchronous, polyadic, and higher-

order calculus. Section 5 treats alternative ways to de�ne the semantics, with

di�erent versions of labelled and unlabelled transitions. Section 7 de�nes a few

other common bisimulation equivalences (the �-calculus, like any process alge-

bra, boasts a wide variety of equivalences but in this paper we concentrate on the

aspects particular to �), and their axiomatisations are treated in Section 9. In

these sections we do not always get a full formal account, but hopefully enough

explanations that the reader will gain an understanding of the basic ideas. Fi-

nally, Section 10 contains references to other work. We give a brief account of

how the calculus evolved and mention other overviews and introductory papers.

We also indicate sources for the material treated in this paper.

It must be emphasised that there are some aspects of the �-calculus we do

not treat at all, such as modal logics, analysis algorithms, implementations, and

ways to use the calculus to model concurrent systems and languages. Also, the

di�erent variants can be combined in many ways, giving rise to a large variety

of calculi. I hope that after this introduction a reader can explore the �eld with

some con�dence.

5

2 The �-Calculus

We begin with a sequence of de�nitions and conventions. The reader who makes

it to Section 2.3 will be rewarded with small but informative examples.

2.1 Basic De�nitions

We assume a potentially in�nite set of names N , ranged over by a; b; : : : ; z, which

will function as all of communication ports, variables and data values, and a set

of (agent) identi�ers ranged over by A, each with a �xed nonnegative arity. The

agents, ranged over by P;Q; : : : are de�ned Table 1. From that table we see that

the agents can be of the following forms:

1. The empty agent 0, which cannot perform any actions.

2. An Output Pre�x ax : P . The intuition is that the name x is sent along the

name a and thereafter the agent continues as P . So a can be thought of as

an output port and x as a datum sent out from that port.

3. An Input Pre�x a(x) : P , meaning that a name is received along a name a,

and x is a placeholder for the received name. After the input the agent will

continue as P but with the newly received name replacing x. So a can be

thought of as an input port and x as a variable which will get its value from

the input along a.

4. A Silent Pre�x � : P , which represents an agent that can evolve to P without

interaction with the environment. We use �, � to range over a(x), ax and �

and call them Pre�xes, and we say that � : P is a Pre�x form, or sometimes

just Pre�x when this cannot cause confusion.

5. A Sum P +Q representing an agent that can enact either P or Q.

6. A Parallel Composition P j Q, which represents the combined behaviour of

P and Q executing in parallel. The components P and Q can act indepen-

dently, and may also communicate if one performs an output and the other

an input along the same port.

7. A Match if x = y then P . As expected this agent will behave as P if x

and y are the same name, otherwise it does nothing.

8. A Mismatch if x 6= y then P . This agent will behave as P if x and y are

not the same name, otherwise it does nothing.

9. A Restriction (�x)P . This agent behaves as P but the name x is local,

meaning it cannot immediately be used as a port for communication be-

tween P and its environment. However, it can be used for communication

between components within P .

6

Pre�xes � ::= ax Output

a(x) Input

� Silent

Agents P ::= 0 Nil

� : P Pre�x

P + P Sum

P j P Parallel

if x = y then P Match

if x 6= y then P Mismatch

(�x)P Restriction

A(y1; : : : ; yn) Identi�er

De�nitions A(x1; : : : ; xn)
def
= P (where i 6= j) xi 6= xj)

Table 1: The syntax of the �-calculus.

10. An Identi�er A(y1; : : : ; yn) where n is the arity of A. Every Identi�er has a

De�nition A(x1; : : : ; xn)
def
= P where the xi must be pairwise distinct, and

the intuition is that A(y1; : : : ; yn) behaves as P with yi replacing xi for each

i. So a De�nition can be thought of as a process declaration, x1; : : : ; xn as

formal parameters, and the Identi�er A(y1; : : : ; yn) as an invocation with

actual parameters y1; : : : ; yn.

The operators are familiar from other process algebras so we shall in the

following concentrate on some important aspects particular to the �-calculus,

trusting the reader to be con�dent with the more general principles.

The forms Nil, Sum and Parallel have exactly the same meaning and use as

in other process algebras, and the Pre�x forms are as in the algebras that admit

value-passing. The if constructs Match and Mismatch may appear limited in

comparison with value-passing algebras which usually admit arbitrary Boolean

expressions (evaluating to either true or false). But on closer consideration it is

apparent that combinations of Match and Mismatch are the only possible tests

that can be performed in the �-calculus: the objects transmitted are just names

and these have no structure and no operators are de�ned on them, so the only

thing we can do is compare names for equality. We can combine such tests

conjunctively by nesting them, for example

if x = y then if u 6= v then P

7

behaves as P if both x = y and u 6= v hold. We can combine them disjunctively

by using Sum, for example

if x = y then P + if u 6= v then P

behaves as P if at least one of x = y and u 6= v hold. Sometimes we shall use a

binary conditional

if x = y then P else Q

as an abbreviation for if x = y then P + if x 6= y then Q.

As in other algebras we say that P is guarded in Q if P is a proper subterm

of a Pre�x form in Q. Also, the input Pre�x a(x) : P is said to bind x in P , and

occurrences of x in P are then called bound. In contrast the output Pre�x ax : P

does not bind x. These Pre�xes are said to have subject a and object x, where

the object is called free in the output Pre�x and bound in the input Pre�x. The

silent Pre�x � has neither subject nor object.

The Restriction operator (�x)P also binds x in P . Its e�ect is as in other

algebras (where it is written nx in CCS and Æx in ACP) with one signi�cant

di�erence. In ordinary process algebras the things that are restricted are port

names and these cannot be transmitted between agents. Therefore the restriction

is static in the sense that the scope of a restricted name does not need to change

when an agent executes. In the �-calculus there is no di�erence between \port

names" and \values", and a name that represents a port can indeed be trans-

mitted between agents. If that name is restricted the scope of the restriction

must change, as we shall see, and indeed almost all of the increased complexity

and expressiveness of the �-calculus over value-passing algebras come from the

fact that restricted things move around. The reader may also think of (�x)P as

\new x in P", by analogy with the object-oriented use of the word \new", since

this construct can be thought of as declaring a new and hitherto unused name,

represented by x for the bene�t of P .

In summary, both input Pre�x and Restriction bind names, and we can de�ne

the bound names bn(P) as those with a bound occurrence in P and the free

names fn(P) as those with a not bound occurrence, and similarly bn(�) and

fn(�) for a Pre�x �. We sometimes write fn(P;Q) to mean fn(P) [fn(Q),

and just � for fn(�) [bn(�) when it is apparent that it represents a set of

names, such as in \x 2 �". In a De�nition A(x1; : : : ; xn)
def
= P we assume

that fn(P) � fx1; : : : ; xng. In some examples we shall elide the parameters of

Identi�ers and De�nitions when they are unimportant or can be inferred from

context.

A substitution is a function from names to names. We write fx=yg for the

substitution that maps y to x and is identity for all other names, and in general

fx1 : : : xn=y1 : : : yng, where the yi are pairwise distinct, for a function that maps

each yi to xi. We use � to range over substitutions, and sometimes write ~x for

a sequence of names when the length is unimportant or can be inferred from

8

context. The agent P� is P where all free names x are replaced by �(x), with

alpha-conversion wherever needed to avoid captures. This means that bound

names are renamed such that whenever x is replaced by �(x) then the so obtained

occurrence of �(x) is free. For example,

(a(x) : (�b)xb : cy : 0)fxb=ycg is a(z) : (�d)zd : bx : 0

A process algebra fan may have noticed that one common operator is not

present in the �-calculus: that of relabelling (in CCS written [a=b]). The primary

use of relabelling is to de�ne instances of agents from other agents, for example,

if B is a bu�er with ports i and o then B[i0=i; o0=o] is a bu�er with ports i0 and

o0. In the �-calculus we will instead de�ne instances through the parameters of

the Identi�ers, so for example a bu�er with ports i and o is B(i; o), and with

ports i0 and o0 it is B(i0; o0). For injective relabellings this is just another style of

speci�cation which allows us to economise on one operator. (A reader familiar

with the CCS relabelling should be warned that it has the same e�ect as port

substitution only if injective. In general they are di�erent.)

Finally some notational conventions: A sum of several agents P1 + � � � + Pn
is written

Pn
i=1 Pi, or just

P
j Pj when n is unimportant or obvious, and we here

allow the case n = 0 when the sum means 0. A sequence of distinct Restrictions

(�x1) � � � (�xn)P is often abbreviated to (�x1 � � �xn)P . In a Pre�x we sometimes

elide the object if it is not important, so a : P means a(x) : P where x is a name

that is never used, and similarly for output. And we sometimes elide a trailing

0, writing � for the agent � : 0, where this cannot cause confusion. We give

the unary operators precedence over the binary and j precedence over +, so for

example (�x)P j Q +R means (((�x)P) j Q) +R.

2.2 Structural Congruence

The syntax of agents is in one sense too concrete. For example, the agents a(x) : bx

and a(y) : by are syntactically di�erent, although they only di�er in the choice of

bound name and therefore intuitively represent the same behaviour: an agent

that inputs something along a and then sends that along b. As another example

the agents P jQ and QjP represent the same thing: a parallel composition of the

agents P and Q. Our intuition about parallel composition is that it is inherently

unordered, and we are forced to syntactically distinguish between P jQ and QjP

only because our language is linear.

We therefore introduce a structural congruence to identify the agents which in-

tuitively represent the same thing. It should be emphasised that this has nothing

to do with the traditional behavioural equivalences in process algebra which are

de�ned in terms of the behaviour exhibited by an agent under some operational

semantics. We have yet to de�ne a semantics, and the structural congruence

identi�es only agents where it is immediately obvious from their structure that

they are the same.

9

The structural congruence � is de�ned as the smallest congruence satisfying the

following laws:

1. If P and Q are variants of alpha-conversion then P � Q.

2. The Abelian monoid laws for Parallel: commutativity P jQ � QjP , associa-

tivity (P jQ)jR � P j(QjR), and 0 as unit P j0 � P ; and the same laws for

Sum.

3. The unfolding law A(~y) � Pf~y=~xg if A(~x)
def
= P .

4. The scope extension laws

(�x)0 � 0

(�x)(P j Q) � P j (�x)Q if x 62 fn(P)

(�x)(P +Q) � P + (�x)Q if x 62 fn(P)

(�x)if u = v then P � if u = v then (�x)P if x 6= u and x 6= v

(�x)if u 6= v then P � if u 6= v then (�x)P if x 6= u and x 6= v

(�x)(�y)P � (�y)(�x)P

Table 2: The de�nition of structural congruence.

The reader will here correctly object that \represent the same thing" and

\immediately obvious" are not formally de�ned concepts, and indeed several

di�erent versions of the structural congruence can be found in the literature;

there is no canonical de�nition and each has di�erent merits. In Section 5.1 we

will meet some of them and explore their consequences. Until then we adopt a

particular structural congruence. The de�nition is given in Table 2. We brie
y

comment on the clauses in the de�nition.

1. Alpha-conversion, i.e., choice of bound names, identi�es agents like a(x) : bx

and a(y) : by.

2. The Abelian monoid laws mean that Parallel and Sum are unordered. For

example, when we think of a composition of three agents P ,Q,R it does

not matter if we write it as (P jQ)jR or (RjQ)jP . The same holds for Sum.

The fact that 0 is a unit means that P j0 � P and P + 0 � P , something

which follows from the intuition that 0 is empty and therefore contributes

nothing to a Parallel composition or Sum.

3. The unfolding just says that an Identi�er is the same as its De�nition, with

the appropriate parameter instantiation.

4. The scope extension laws come from our intuition that (�x)P just says that

x is a new unique name in P ; it can be thought of as marking the occurrences

10

of x in P with a special colour saying that this is a local name. It then

does not really matter where the symbols \(�x)" are placed as long as they

mark the same occurrences. For example, in 0 there are no occurrences

so the Restriction can be removed at will. In Parallel composition, if all

occurrences are in one of the components then it does not matter if the

Restriction covers only that component or the whole composition.

Note that we do not have that (�x)(P j Q) � (�x)P j (�x)Q. The same

occurrences are restricted in both agents, but in (�x)(P j Q) they are restricted

by the same binder (or if you will, coloured by the same colour), meaning that

P and Q can interact using x, in contrast to the situation in (�x)P j (�x)Q.

Through a combination of these laws we get that (�x)P � P if x 62 fn(P):

P � P j 0 � P j (�x)0 � (�x)(P j 0) � (�x)P

So as a special case we get (�x)(�x)P � (�x)P for all P .

Another key fact is that all unguarded Restrictions can be pulled out to the

top level of an agent:

Proposition 1 Let P be an agent where (�x)Q is an unguarded subterm. Then

P is structurally congruent to an agent (�x0)P 0 where P 0 is obtained from P by

replacing (�x)Q with Qfx0=xg, for some name x0 not occurring in P .

The proof is by alpha-converting all bound names so that they become syntacti-

cally distinct, and then applying scope extension (from right to left) to move the

Restriction to the outermost level. This corresponds to the intuition that instead

of declaring something as local it can be given a syntactically distinct name: the

e�ect is the same in that nothing else can access the name.

Our scope extension laws are in fact chosen precisely such that Proposition 1

holds. For example, we have not given any scope extension law for Pre�xes

and can therefore only pull out unguarded Restrictions. The reader may have

expected a law like (�x)� : P � � : (�x)P for x 62 �. Indeed such a law would be

sound, in the sense that it conforms to intuition and does not disrupt any of the

results in this paper, and it will hold for the behavioural equivalences explored

later in sections 6 and 7. But it will not be necessary at this point, in particular

it is not necessary to prove Proposition 1.

Structural congruence is much stronger, i.e., identi�es fewer agents, than any

of the behavioural equivalences. The structural congruence is used in the de�ni-

tion of the operational semantics, which in turn is used to de�ne the behavioural

equivalences. The main technical reasons for taking this route are that many of

the following de�nitions and explanations become simpler and that we get a uni-

form treatment for those variants of the calculus that actually require a structural

congruence. In Section 5.1 we comment on the possibility to de�ne the calculus

without a structural congruence.

11

2.3 Simple Examples

Although we shall not present the operational semantics just yet (a reader who

wishes to look at it now will �nd it in Section 4) it might be illuminating to see

some examples of the scope migration mentioned in Section 1, that Restrictions

move with their objects. Formally, scope migration is a consequence of three

straightforward postulates. The �rst is the usual law for inferring interactions

between parallel components. This is present in most process algebras and implies

that

a(x) : cx j ab
�
�! cb j 0

or in general

a(x) : P j ab :Q
�
�! Pfb=xg j Q

The second postulate is that Restrictions do not a�ect silent transitions. P
�
�! Q

represents an interaction between the components of P , and a Restriction (�x)P

only restricts interactions between P and its environment. Therefore P
�
�! Q

implies (�x)P
�
�! (�x)Q. The third postulate is that structurally congruent

agents should never be distinguished and thus any semantics must assign them the

same behaviour. Now what are the implications for restricted objects? Suppose

that b is a restricted name, i.e., that we are considering a composition

a(x) : cx j (�b)ab

Will there be an interaction between the components and if so what should it

be? Structural congruence gives the answer, because b is not free in the left hand

component so the agent is by scope extension structurally congruent to

(�b)(a(x) : cx j ab)

and this agent has a transition between the components: because of

a(x) : cx j ab
�
�! cb j 0

we get that

(�b)(a(x) : cx j ab)
�
�! (�b)(cb j 0)

and the rightmost 0 can be omitted by the monoid laws. So by identifying

structurally congruent agents we obtain that

a(x) : cx j (�b)ab
�
�! (�b)cb

or in general that, provided b 62 fn(P),

a(x) : P j (�b)ab :Q
�
�! (�b)(Pfb=xg j Q)

In other words, the scope of (�b) \moves" with b from the right hand component

to the left. This phenomenon is sometimes called scope extrusion. If b 2 fn(P) a

12

similar interaction is possible by �rst alpha-converting the bound b to some name

b0 62 fn(P), and we would get

a(x) : P j (�b)ab :Q
�
�! (�b0)(Pfb0=xg j Qfb0=bg)

So Pfb0=xg still contains b free and it is not the same as the received restricted

name b0.

For another example consider:

((�b)a(x) : P) j ab :Q

Here the right hand component has a free b which should not be the same as the

bound b to the left. Is there an interaction between the components? We cannot

immediately extend the scope to the right hand component since it has b free.

But we can �rst alpha-convert the bound b to some new name b0 and then extend

the scope to obtain

(�b0)(a(x) : Pfb0=bg j ab :Q)

and it is clear that we have a transition

(�b0)(a(x) : Pfb0=bg j ab :Q)
�
�! (�b0)Pfb0=bgfb=xg j Q

So the restricted name, now b0, will still be local to the left hand component; the

attempt to intrude the scope is thwarted by an alpha-conversion. In summary,

through alpha-conversion and scope extension we can send restricted names as

objects, and Restrictions will always move with the objects and never include

free occurrences of that name.

This ability to send scopes along with restricted names is what makes the

calculus convenient for modelling exchange of private resources. For example,

suppose we have an agent R representing a resource, say a printer, and that it

is controlled by a server S which distributes access rights to R. In the simplest

case the access right is just to execute R. This can be modelled by introducing

a new name e as a trigger, and guarding R by that name, as in

(�e)(S j e : R)

Here R cannot execute until it receives a signal on e. The server can invoke it by

performing an action e, but moreover, the server can send e to a client wishing

to use R. For example, suppose that a client Q needs the printer. It asks S along

some predetermined channel c for the access key, here e, to R, and only upon

receipt of this key can R be executed. We have

c(x) : x : Q j (�e)(ce : S j e : R)
�
�! (�e)(e : Q j S j e : R)

�
�! (�e)(Q j S j R)

The �rst transition means that Q receives an access to R and the second that this

access is used. We can informally think of this as if the agent R is transmitted

13

(represented by its key e) from S to Q, so in a sense this gives us the power of

a higher-order communication where the objects are agents and not only names.

But our calculus is more general since a server can send e to many clients, meaning

that these will share R (rather than receiving separate copies of R). And R

can have several keys that make it do di�erent things, for example R can be

e1 : R1 j e2 : R2 � � �, and the server can send only some of the keys to clients

and retain some for itself, or send di�erent keys to di�erent clients representing

di�erent access privileges.

A related matter is if S wishes to send two names d and e to a client, and insure

that the same client receives both names. If there are several clients then the

simple solution of transmitting d and e along predetermined channels may mean

that one client receives d and another e. A better solution is to �rst establish

a private channel with a client and then send d and e along that channel. The

private channel is simply a restricted name:

(�p)cp : pd : pe : S

A client interacting with C must be prepared to receive a name, and then along

that name receive d and e:

c(p) : p(x) : p(y) : Q

Now, even if we have a composition with several clients and a server, the only

possibility is that d and e end up with the same client. This feature is so common

that we introduce an abbreviation for it:

che1 � � � eni : P means (�p)cp : pe1 : � � � : pen : P

c(x1 � � �xn) : Q means c(p) : p(x1) : � � � : p(xn) : Q

where we choose p 62 fn(P;Q) and all xi are pairwise distinct. We will then have

che1 � � � eni : P j c(x1 � � �xn) : Q
�
�! � � �

�
�! P j Qfe1 : : : en = x1 : : : xng

The idea to establish private links in this way has many other uses. Suppose

for example that Q wishes to execute P by transmitting on its trigger e, and then

also wait until P has completed execution. One way to represent this is to send

to P a private name for signalling completion, as in

(�r)er : r : Q j e(x) : P
�
�! (�r)(r : Q j Pfr=xg)

Here Q must wait until someone signals on r before continuing. This someone

can only be P since no other is in the scope of r. This scheme is quite general,

for example P can delegate to another agent the task to restart Q, by sending r

to it as an object in an interaction.

The �-calculus has been used to succinctly describe many aspects of concur-

rent and functional programming, and also of high-level system description where

mobility plays an important role. We shall not attempt an overview of all appli-

cations here. In the rest of this paper we concentrate on some central aspects of

the theory of the calculus.

14

3 Variants of the Calculus

The calculus can be varied in many ways. There are many useful subcalculi which

imply a somewhat simpler theory, and we shall also brie
y consider two popular

extensions: the polyadic and the higher-order calculi.

3.1 Match and Mismatch

The Match and Mismatch operators are absent in many presentations of the

calculus. This means a certain loss of expressiveness. But in a sense, equality

test of names can be implemented without Match. Consider the following typical

use of a test: an agent P receives a name and continues as Q if the name is y

and as R if the name is z:

P = a(x) : (if x = y then Q + if x = z then R)

Without the Match a similar e�ect can be achieved exploiting the Parallel

operator, where a communication is possible only if the subjects of the input and

output actions are the same:

P = a(x) : (x j (y :Q + z : R))

If the received name is y then, after reception, a communication between

the �rst and second parallel component is possible, after which Q can execute.

Similarly, if it is z then a communication between the �rst and third component

enables R. This will work provided no other agent can interfere by interacting

on the names y and z. So it is not a general encoding of Match, although

many speci�c instances can be emulated in this way. Consider for example an

implementation of Boolean values: There are agents Truea and Falsea, emitting

Boolean values along a, and an agent Casea(Q;R), receiving a Boolean along a

and enacting Q or R depending on the value of the Boolean. A straightforward

encoding would use two special names t and f :

Truea = at

Falsea = af

Casea(Q;R) = a(x) : (if x = t then Q + if x = f then R)

So e.g. Casea(Q;R) j Truea
�
�! if t = t then Q + if t = f then R, and

this agent will behave as Q. The same e�ect can be achieved without Match, at

the expense of an extra communication. The idea is that Case emits two new

names and True and False respond by signalling on one of them:

Truea = a(xy) : x

Falsea = a(xy) : y

Casea(Q;R) = (�xy)ahxyi : (x :Q + y : R)

15

where x and y do not occur in Q or R. It will now hold that Casea(Q;R) j Truea
evolves to

(�xy)(x j (x :Q + y : R))

and the only possible continuation, in any environment, is a � to Q, since x and

y are local. In this way many instances of the Match construct, including all that

aim to capture tests over ordinary data types, can be encoded.

The Mismatch if x 6= y then cannot be implemented in a similar way.

Omitting Mismatch may be thought to drastically reduce the expressive power

but it turns out the e�ect is not very severe. For example, if the possible values

of a certain data type are u, v and w, the Mismatch if x 6= u then P can be

replaced by if x = v then P + if x = w then P . In practice, the data types

where equality test is admitted almost always have a predetermined �nite range,

or can be modelled through a �nite set of constructors. Mismatch also makes

some portions of the theory a little more complicated. For these reasons many of

the versions of the �-calculus do not use it. However, it appears to be necessary

for many axiomatisations (cf. Sections 8 and 9).

3.2 Sum

The Sum operator + is sometimes regarded as unrealistic from an implementation

perspective. The problem is that it represents a form of synchronous global choice.

Consider:

(a : P1 + b : P2) j (a :Q1 + b : Q2)

Clearly this agent can evolve to either P1jQ1 (through a communication along

a) or to P2jQ2 (along b). The choice of which path should be taken involves both

parallel components, and is resolved synchronously. If parallel components are

distant then this needs a non-trivial protocol, and it can therefore be argued that

the general form of Sum is not a realistic primitive operator.

There are two main reasons for including the Sum operator. One is that

it admits representations of automata in a straightforward way. Automata have

proved useful for high-level descriptions of communicating systems and are present

in many modelling languages. The basic idea is that the behaviour of a compo-

nent is thought of as a directed graph where the nodes represent the reachable

states and the edges, labelled by actions, represent the possibilities to move be-

tween states. This can be represented in the �-calculus as follows: For each state

choose a unique Identi�er, and introduce the De�nition

A
def
=

nX

i=1

�i : Ai

for each state A where the outgoing edges are labelled �1; : : : ; �n leading to states

A1; : : : ; An.

16

The other reason is related to axiomatisations of the behavioural equivalences

(see Section 8). All axiomatisations so far use a version of the expansion law,

which replaces Parallel by Sum, as in

a j b = a : b+ b : a

No complete axiomatisation is known for a calculus with Parallel and without

Sum.

In situations where high-level modelling is not called for and where complete

axiomatisation is not an issue, variants of the �-calculus without Sum have been

used, for example to describe the semantics of programming languages. Apart

from omitting the computationally questionable primitive of synchronous global

choice, which would make an implementation of the calculus diÆcult, it simpli�es

the theory to only have one binary operator.

Many presentations of the calculus use guarded Sums in place of Sum, meaning

that the operands of the Sum must be Pre�x forms. The general format of

a guarded sum is
Pn

i=1 �i : Pi (i.e., it is an n-ary operator). So for example

a : P + b : Q is a guarded Sum, but a : P +(QjR) is not. With guarded Sum some

parts of the theory become simpler, notably the weak bisimulation equivalence is

a congruence (see Section 7.4) for the same reason as in ordinary process algebra.

The loss of expressiveness is not dramatic: guarded Sum is suÆcient both for

representing automata and for formulating the expansion theorem. But using

n-ary operators for arbitrarily large n may be considered awkward by those who

seek a minimal theory. Note that an n-ary guarded Sum cannot be reduced to a

sequence of binary guarded Sums, so the n-ary operators are actually necessary

for all n. In contrast, for the ordinary sum,
Pn

i=1 Pi is de�ned as n � 1 binary

Sums.

It is interesting that some cases of guarded Sum can be emulated by the

Parallel operator. Consider for example � : P + � : Q. This represents a kind of

internal choice: one of the branches will be taken but the environment cannot

a�ect which one. The agent behaves in the same way as

(�a)(a j a : P j a :Q)

assuming a 62 fn(P;Q). For another example consider the agent Casea(Q;R)

from the previous section; it was de�ned as

Casea(Q;R) = (�xy)ahxyi : (x :Q + y : R)

Here the Sum can simply be replaced by a Parallel composition

Casea(Q;R) = (�xy)ahxyi : (x :Q j y : R)

without a�ecting the behaviour, assuming Truea and Falsea are de�ned as before.

It will now hold that Casea(Q;R) j Truea evolves to

(�xy)(x j x :Q j y : R)
�
�! Q j (�y)(y : R)

and this agent will behave as Q, since R is guarded by a private name.

17

3.3 The Polyadic Calculus

A straightforward extension is to allow multiple objects in communications: out-

puts of type ahy1 � � �yni : P and inputs of type a(x1 � � �xn) : Q where the xi are

pairwise distinct. We here also admit the case n = 0 when there is no object at

all, and then we elide the brackets writing a for ahi and a for a(). As was seen in

Section 2.3 this does not really increase the expressiveness of the calculus since

polyadic interactions can be emulated by sequences of monadic interactions over

a private link.

The semantics for a polyadic calculus is only notationally more complex than

for the monadic calculus. As expected we will be able to infer

a(~x) : P j ah~yi : Q
�
�! Pf~y=~xg j Q

where the substitution is a simultaneous substitution of all yi for xi (note that

all xi must be di�erent since they are objects in the same input Pre�x).

The question then arises how to treat agents such as a(xy) : P j ahui : Q where

the arity of the output is not the same as the arity of the input. Such an in-

compatibility should be caught by a type system. The idea is that each name

is assigned a sort, containing information about the objects that can be passed

along that name. If S is a set of sorts, a sort context � is a function from N to

S, in other words �(a) is the sort of a.

In the simplest system a sort would just be a natural number, S = N, such

that �(a) denotes the arity of a, i.e., the number of objects in any Pre�x where

a is the subject. Formally we write � ` P to mean that P conforms to �, and

rules for inferring � ` P can easily be given by induction over the structure of

P . For example,

� ` P; �(a) = n

� ` ahx1 � � �xni : P

� ` P; � ` Q

� ` P jQ

With this idea the agent a(xy) : P j ahui : Q is ill-formed in the sense that it

cannot conform to any sort context: �(a) is required to be 2 in one component

and 1 in the other component. However, although this simple scheme works for

this particular example it is not in general suÆcient to catch all incompatible

arities that may arise when an agent executes. Consider:

a(u) : u(z) j ahxi : xhvvi

A sorting assigning 2 to x and 1 to all other names works �ne here. Yet the agent

can evolve through an interaction along a to

x(z) j xhvvi

which is ill-formed. To be able to catch not only the immediately obvious arity

con
icts but also any such con
icts that can arise during execution more infor-

mation must be added to the sorts. For each name, the number of objects passed

18

along that name is not enough, also the sort of each such object must be included.

In the example above, the left component requires the sort of a to be one object

(corresponding to u) which has sort 1 because of the subterm u(z). The right

component requires the sort of a to be one object (corresponding to x) of sort 2

because of the subterm xhvvi. With this re�ned notion of sort an agent such as

a(u) : u(z) j ax : xhvvi is ill-formed.

Of course arity con
icts can lie arbitrarily deep, meaning that the sort of a

must contain information about the objects which are passed along the objects

which are passed along . . . which are passed along a to arbitrary depth. One way

to set this up is the following. To each sort S in S associate a �xed object sort

ob(S) in S� i.e., the object sort is a (possibly empty) sequence of sorts. The

intention is that if a has sort S where ob(S) = hS1 : : :Sni, and a(x1 : : : xn) is a

Pre�x, then each xi has sort Si. With a slight abuse of notation the sorting rule

for input then becomes:

� [f~x 7! ob(�(a))g ` P

� ` a(~x) : P

It should be read as follows: In order to establish that a(x1 : : : xn) : P conforms to

�, �nd the object sorts S1 : : : Sn of a according to �, and verify that P conforms

to � where also each xi is assigned sort Si. The rule for output is:

ob(�(a)) = �(y1) : : :�(yn); � ` P

� ` a~y : P

In order to establish that ahy1 : : : yni : P conforms to � it is enough to show that

it assigns y1 : : : yn the object sorts of a, and that P conforms to �. In this way

agents such as a a : P , where a name is sent along itself, can also be given a

sorting: if S is the sort of a then ob(S) = hSi.

There is a large variety of type systems which include more information, such

as if names can be used for input or output or both, and there are notions

of subtypes and polymorphism. Binding occurrences in Restrictions are either

explicitly sorted as in (�x : S)P , or a sort inference system is used to compute

a suitable sort. Whether the latter is possible depends on the details of the sort

system.

In conclusion, although polyadic interactions do not really increase the expres-

siveness it adds convenience and clarity when using the calculus, and eÆciently

implementable sort systems can ascertain that no mismatching arities will ever

occur when agents evolve.

19

3.4 Recursion and Replication

In the �-calculus as in most other process algebras the mechanism for describing

iterative or arbitrarily long behaviour is recursion: a recursive De�nition

A(~x)
def
= P

where A occurs in P can be thought of as the de�nition of a recursive procedure

A with formal parameters ~x, and the agent A(~y) is then an invocation with actual

parameters ~y. Sometimes this is notated through an explicit �xpoint constructor:

if P is an agent then �x X :P is an agent. Here the agent variable X may occur

in P , and �x X :P means the same as the agent Identi�er A with the De�nition

A
def
= PfA=Xg. Fixpoints and De�nitions are thus only notational variants. In

large speci�cations the De�nitions tend to be more readable, but the �xpoints

sometimes allow a more optimal formulation for theory development.

For some purposes the special case of Replication is convenient. If P is an

agent then !P , the Replication of P , is given by the de�nition

!P
def
= P j !P

or using �xpoints: !P is the agent

�x X : (P j X)

In other words, !P represents an unbounded number of copies of P | the recur-

sion can obviously be unfolded an arbitrary number of times:

!P � P j !P � P j P j !P � P j P j P j !P etc.

For example, an agent which can receive inputs along i and forward them on o

is:

M = !i(x) : ox

Suppose this agent receives �rst u and then v along i. Then, by unfolding the

Replication, M � i(x) : ox j i(x) : ox j M , the agent will evolve to ou j ov j M ,

ready to receive more messages along i but also to emit u and v in arbitrary

order.

Any agent using a �nite family of De�nitions can be encoded by Replication

as follows. Consider
A1(~x1)

def
= P1

...

An(~xn)
def
= Pn

used in an agent Q. Then there is a corresponding agent Q0 which behaves as

Q and only uses Replication. Q0 is constructed as follows. Introduce names

20

a1; : : : ; an, one for each Identi�er, and let bP be the agent obtained by replacing

any invocation Ai(~y) with an output aih~yi in P . Let

D = !a1(~x1) : cP1 j � � � j !an(~xn) : cPn

Thus D is an agent which emulates all the De�nitions in the sense that it can

interact with any such output. Finally

Q0 = (�a1 � � �an)(Dj
bQ)

will then behave in the same way as Q, with the only di�erence that an unfolding

of a De�nition will be emulated by an interaction between bQ and D. For example,

letN
def
= i(x) : ox :N , which di�ers fromM above in that messages are delivered in

order and only one message is stored at a time. The agent with only Replication

which behaves as N is

(�a)(!a : i(x) : ox : a j a)

3.5 The Asynchronous Calculus

The �-calculus, as most other process algebras, is based on the paradigm of

synchronous communication; an interaction means that one component emits

a name at the same time as another component receives it. In contrast, in

asynchronous communication there is an unpredictable delay between output and

input, during which the message is in transit. This can be modelled by inserting

an agent representing an asynchronous communication medium between sender

and receiver. The properties of the medium (whether it has a bound on the

capacity, whether it preserves the order of messages etc.) is then determined by

its de�nition. For example, an unbounded medium not preserving the order of

messages is:

M
def
= i(x) : (ox jM)

(The same behaviour is expressed with Replication in Section 3.4.) When M

receives u along i it evolves to ou j M , and can at any time deliver u along o,

and also continue to accept more messages.

Interestingly, this particular form of asynchrony is also captured by a subcal-

culus of � in which there is no need to explicitly represent media. The subcalculus

consists of the agents satisfying the following requirements:

1. Only 0 can follow an output Pre�x.

2. An output Pre�x may not occur as an unguarded operand of +.

The �rst requirement disallows agents such as ax : by, where an agent other than

0 follows ax. The second requirement disallows ax+b(y), but allows � : ax+b(y).

21

This subcalculus is known as the asynchronous �-calculus, and the rationale

behind it is as follows. An unguarded output Pre�x ax occurring in a term

represents a message that has been sent but not yet received. The action of

sending the message is placing it in an unguarded position, as in the following

� : (ax j P)
�
�! ax j P

After this transition, ax can interact with a receiver, and the sender proceeds

concurrently as P . Because of requirement 1 the fact that a message has been

received cannot be detected by P unless the receiver explicitly sends an acknowl-

edgement. Because of requirement 2 a message cannot disappear unless it is

received. Therefore, � : (ax j P) can be paraphrased as \send ax asynchronously

and continue as P ."

Of course, with a scheme for sending explicit acknowledgements synchronous

communication can be emulated, so the loss of expressiveness from the full �-

calculus is largely pragmatic. In agents like

� : (�b)(ab j b(x) : P)

the scope of b is used to protect this kind of acknowledgement. Here the agent

can do an asynchronous output of ab, but it is blocked from continuing until it

receives an acknowledgement along b:

(�b)(ab j b(x) : P) j a(x) : Q
�
�! (�b)(b(x) : P j Qfb=xg)

The acknowledgement can only arrive from the recipient (Q) of the message, since

there is no other agent that can send along the restricted name b.

The asynchronous calculus has been used successfully to model programming

languages where the underlying communication discipline is asynchronous. The

theory is slightly di�erent since only \asynchronous" observers are deemed rele-

vant. For example, the agent a(x) : ax is semantically the same as � since the ac-

tions of receiving a datum and then emitting it on the same channel cannot be de-

tected by any other asynchronous process or observer. An interesting consequence

is that a general form of Sum, the input-guarded Sum y1(x) : P1+ � � �+ yn(x) : Pn
can be encoded as:

(�a)(at j (y1(x) : a(z) : (af j if z = t then P1 else y1x)

j
...

j

yn(x) : a(z) : (af j if z = t then Pn else ynx)))

The idea is that a acts as a lock. Initially t is emitted on a; the �rst component

to interact with a will continue to emit f on a, all other components will resend

22

the datum along yi, thereby undoing the input along yi. This only works in the

asynchronous calculus, where receiving and then emitting the same message is,

from an observer's point of view, the same as doing nothing. (An alert reader

will complain that if...then...else is de�ned using Sum. This is no great

matter, it can be taken as primitive or de�ned as the Parallel composition of the

branches.)

3.6 The Higher-Order Calculus

Finally we shall look at an extension of the �-calculus called the higher-order

�-calculus. Here the objects transmitted in interactions can also be agents. A

higher-order output Pre�x form is of the kind

ahP i : Q

meaning \send the agent P along a and then continue as Q." The higher-order

input Pre�x form is of the kind

a(X) : Q

meaning \receive an agent for X and continue as Q." Of course Q may here

contain X, and the received agent will then replace X in Q. For example, an

interaction is

ahbu : 0i : b(x) j a(X) : (Xjcv)
�
�! b(x) j bu j cv

The �rst component sends bu : 0 along a, the second component receives it and

executes it in parallel with cv. The transmitted agent bu is then free to interact

with the remainder of the �rst component b(x), sending u to it along b. Since

names and agents can both be objects in an interaction, a sorting discipline such

as in Section 3.3, extended with a sort for \agent", can be employed to weed out

unwanted combinations such as ahP i : Q j a(x) : x(u).

Formally, we introduce a new category of agent variables, ranged over by

X, and extend the de�nition of agents to include the agent variables and the

higher-order Pre�x forms. The notion of replacing an agent variable by an agent,

PfQ=Xg, is as expected (and the same as in the �xpoint construct of Section 3.4),

and the higher-order interaction rule gives that

a(X) : P j ahQi : R
�
�! PfQ=Xg j R

The substitution PfQ=Xg is de�ned with alpha-conversion such that free names

in Q do not become bound in PfQ=Xg. To see the need for this consider

a(X) : b(c) : X j ahc(z) : 0i : R

23

Clearly the name c in the right hand component is not the same as the bound c

to the left. The agent is alpha-equivalent to

a(X) : b(d) : X j ahc(z) : 0i : R

where these names are dissociated. Therefore a transition to b(c) : c(z) j R is not

possible. In this sense the binding corresponds to static binding: the scope of a

name is determined by where it occurs in the agent. An alternative scheme of

dynamic binding, where the scope is determined only when the name is actually

used, is possible but much more complicated semantically. For example, such

bindings cannot use alpha-conversion.

Note that an agent variable may occur more than once in an agent. For

example,

a(X) : (XjX) j ahQi : R
�
�! Q j Q j R

where the transmitted agent Q has been \duplicated" by the interaction. This

lends the higher-order calculus considerable expressive power. Recursion and

Replication are now derivable constructs (as in the lambda-calculus where the

�xpoint combinator Y is expressible). Consider

D = a(X) : (X j ahXi)

D accepts an agent along a, and will start that agent and also retransmit it along

a. Now let P be any agent with a 62 fn(P), and

RP = (�a)(D j ahP jDi)

Then RP behaves as !P since it will spawn an arbitrary number of P :

RP
�
�! (�a)((P jD) j ahP jDi) � P j RP

�
�! P j P j RP

�
�! � � �

Obviously, for modelling programming languages with higher-order constructs

(such as functions with functions as parameters, or processes that can migrate

between sites) the higher-order calculus is suitable. However, its theory is consid-

erably more complicated. In some situations it will then help to encode it into the

usual calculus with the device from Section 2.3. Instead of transmitting an agent

P we transmit a new name which can be used to trigger P . Since the receiver of

P might invoke P several times (because the corresponding agent variable occurs

at several places) P must be replicated. The main idea of the encoding [[�]] from

higher-order to the ordinary calculus is as follows, where we assume a previously

unused name x for each agent variable X:

[[(ahP i : Q)]] = (�p)ap : ([[Q]] j !p : [[P]]) where p 62 fn(P;Q)

[[a(X) : P]] = a(x) : [[P]]

[[X]] = x

24

Consider the example above, a(X) : (XjX) j ahQi : R
�
�! Q j Q j R,

where Q and R in turn contain no higher-order Pre�xes. Using the encoding,

and assuming q is not free in Q or R, we get a similar behaviour:

a(x) : (x j x) j (�q)aq : (R j !q : Q)
�
�! (�q)(q j q j R j !q : Q)

�
�!

�
�! (�q)(0 j 0 j R j Q j Q j !q : Q)

� RjQjQ j (�q)!q : Q

where the rightmost component (�q)!q : Q will never be able to execute because

it is guarded by a private name, so the whole term will behave as QjQjR as

expected.

4 Operational Semantics

The standard way to give an operational semantics to a process algebra is through

a labelled transition system, where transitions are of kind P
�
�! Q for some set

of actions ranged over by �. The �-calculus follows this norm and most of the

rules of transitions are similar to other algebras. As expected, for an agent

� : P there will be a transition labelled � leading to P . Also as expected, the

Restriction operator will not permit an action with the restricted name as subject,

so (�a)au : P has no transitions and is therefore semantically equivalent to 0. But

what action should

(�u)au : P

have? Clearly it must have some action; inserted in a context a(x) : Q j (�u)au : P

it will enable an interaction since, assuming u 62 fn(Q), this term is structurally

congruent to (�u)(a(x) : Q j au : P) and there is an interaction between the com-

ponents. So (�u)au : P is not, intuitively, something that behaves as 0. On the

other hand it is clearly distinct from au : P and it can therefore not be given the

action au. For example,

(a(x) : if x = u then Q) j au
�
�! if u = u then Q

which can continue as Q, while

(a(x) : if x = u then Q) j (�u)au �

(�v)((a(x) : if x = u then Q) j av)
�
�!

(�v)if v = u then Q

and there are no further actions (remember that scope extension requires that u

is alpha-converted before the scope is extended.)

The solution is to give (�u)au a new kind of action called bound output written

a�u. The intuition is that a local name represented by u is transmitted along a,

extending the scope of u to the recipient. In summary, the actions ranged over

by � consists of four classes:

25

1. The internal action � .

2. The (free) output actions of kind ax.

3. The input actions of kind a(x).

4. The bound output actions a�x.

The three �rst kinds correspond precisely to the Pre�xes in the calculus.

For the sake of symmetry we introduce a fourth kind of Pre�x a�x, for a 6= x,

corresponding to the bound output action. The bound output Pre�x is merely

a combination of Restriction and output as de�ned by a�x : P = (�x)ax : P . In

this way we can continue to let � range over both actions and Pre�xes, where

fn(a�x) = fag and bn(a�x) = fxg.

An input transition P
a(x)
�! Q means that P can receive some name u along

a, and then evolve to Qfu=xg. In that action x does not represent the value

received, rather it is a reference to the places in Q where the received name will

appear. When examining further transitions from Q, all possible instantiations

for this x must be considered. Those familiar with functional programming and

the lambda-calculus might think of the transition as P
a
�! �xQ, making it clear

that the derivative, after the arrow, has a functional parameter x. (The reader

may at this point wonder about an alternative way to treat input by including

the received name in the action, as in a(x) : P
au
�! Pfu=xg. This is a viable

alternative and will be discussed in Section 5.3.)

Similarly, the bound output transition P
a�x
�! Q signi�es an output of a local

name and x indicates where in Q this name occurs. Here x is not a functional

parameter, it just represents something that is distinct from all names in the

environment.

The labelled transition semantics is given in Table 3. The rule struct makes

explicit our intuition that structurally congruent agents count as the same for

the purposes of the semantics. This simpli�es the system of transition rules. For

example, sum is suÆcient as it stands in Table 3. The dual rule

sum2

Q
�
�! Q0

P +Q
�
�! Q0

is redundant since it can be inferred from sum and struct. Similar arguments

hold for the rules par and com.

In the rule par, note the extra condition that Q does not contain a name

bound in �. This conforms to the intuition that bound names are just references

to occurrences; in the conclusion P jQ
�
�! P 0jQ the action should not refer to

any occurrence in Q. To see the need for the condition consider the inference

par
a(x) : P

a(x)
�! P

(a(x) : P) j Q
a(x)
�! P j Q

26

struct
P 0
� P; P

�
�! Q; Q � Q0

P 0 �
�! Q0

prefix
� : P

�
�! P

sum
P

�
�! P 0

P +Q
�
�! P 0

match
P

�
�! P 0

if x = x then P
�
�! P 0

mismatch
P

�
�! P 0; x 6= y

if x 6= y then P
�
�! P 0

par
P

�
�! P 0; bn(�) \ fn(Q) = ;

P jQ
�
�! P 0

jQ

com
P

a(x)
�! P 0; Q

au
�! Q0

P jQ
�
�! P 0

fu=xgjQ0

res
P

�
�! P 0; x 62 �

(�x)P
�
�! (�x)P 0

open
P

ax
�! P 0; a 6= x

(�x)P
a�x
�! P 0

Table 3: The operational semantics.

27

Combined with an output au :R
au
�! R we get

com
(a(x) : P) j Q

a(x)
�! P j Q; au :R

au
�! R

((a(x) : P) j Q) j au :R
�
�! (P j Q)fu=xg j R

This is clearly only correct if x 62 fn(Q), otherwise the free x in Q would be

a�ected by the substitution. If x 2 fn(Q) then a similar derivation is possible

after �rst alpha-converting x in a(x) : P to some name not free in Q.

The rule open is the rule generating bound outputs. It is interesting to

note that bound output actions do not appear in the com rule and therefore

cannot interact directly with inputs. Such interactions are instead inferred by

using structural congruence to pull the Restriction outside both interacting agents

(possibly after an alpha-conversion), as in the following where we assume that

u 62 fn(P):

struct

res
a(x) : P j au :Q

�
�! Pfu=xg j Q

(�u)(a(x) : P j au :Q)
�
�! (�u)(Pfu=xg j Q)

a(x) : P j (�u)au :Q
�
�! (�u)(Pfu=xg j Q)

In view of this it might be argued that bound output transitions and the rule open

can be omitted altogether, since they have no impact on inferring interactions.

Although technically this argument is valid there are other reasons for including

the bound output. One is of philosophical nature: we think of the agent (�u)au

as, intuitively, being able to do something, namely exporting a local name, and

if we do not dignify that with a transition we introduce an incompleteness in the

semantics in that not all behaviour is manifested by transitions. Another reason

is of technical convenience: when it comes to developing behavioural equivalences

(see Section 6) the bound output transitions will turn out to be indispensable.

5 Variants of the Semantics

We will here consider alternative operational semantics. Some are mere presen-

tational variants. But di�erent semantics have di�erent strengths, for example

one may be suitable for an automatic tool and another may boost intuition, so

there is a point to the diversity.

5.1 The Role of Structural Congruence

Through the rule struct we can regard an inference of P � Q as a step in an

inference of a transition. If the only purpose of the congruence is to facilitate

inference of labelled transitions then there is a possible trade-o� between what to

include in the structural congruence and what to include in the transition rules.

As we saw the dual sum2 of sum is unnecessary, but an alternative solution is

28

to omit commutativity from the structural congruence and introduce sum2. A

similar choice occurs for the Parallel combinator: structural commutativity can

be omitted at the price of introducing the duals of par and com.

For some operators there is even a choice between de�ning it entirely through

the congruence or through the transition rules. For example, the Match operator

can either be de�ned with the rule match or with an additional structural rule

if x = x then P � P

In Table 3 we chose to give it with a transition rule because of the symmetry

with mismatch. Note that Mismatch cannot be de�ned through the perhaps

expected structural rule

if x 6= y then P � P if x 6= y

since that rule would be obviously unsound for a Mismatch under an input Pre�x:

a(x) : if x 6= y then P and a(x) : P

represent two di�erent behaviours!

Another such choice occurs for Identi�ers. They are here de�ned through a

structural congruence rule A(~y) � Pf~y=~xg if A(~x)
def
= P . Alternatively we could

have given the transition rule:

ide
Pf~y=~xg

�
�! P 0; A(~x)

def
= P

A(~y)
�
�! P 0

Perhaps the most dramatic part of the structural congruence is the scope

extension which, together with com, make possible transitions like

a(x) : P j (�u)au :Q
�
�! (�u)(Pfu=xg j Q)

(provided u 62 fn(P)). Interestingly, there is a way to achieve the same e�ect

without the scope extension. It involves a new transition rule close which

represents an interaction between a bound output and an input:

close
P

a(u)
�! P 0; Q

a�u
�! Q0

P jQ
�
�! (�u)(P 0

jQ0)

Let us see how the transition from a(x) : P j (�u)au :Q mentioned above is de-

rived. It involves an alpha-conversion of x to u in the �rst operand:

struct
a(x) : P � a(u) : Pfu=xg; a(u) : Pfu=xg

a(u)
�! Pfu=xg

a(x) : P
a(u)
�! Pfu=xg

29

open in the second component gives:

open
au :Q

au
�! Q

(�u)au :Q
a�u
�! Q

and combining the two conclusions we get:

close
a(x) : P

a(u)
�! Pfu=xg; (�u)au :Q

a�u
�! Q

a(x) : P j (�u)au :Q
�
�! (�u)(Pfu=xg j Q)

Note how the scoping represented by � moves from the second operand onto the

transition arrow and reappears in the term in the conclusion!

In this way it is possible to remove all of the structural congruence except

alpha-conversion, at the expense of introducing more transition rules. In fact, it

is even possible to remove the alpha-conversion by building it into a special rule,

or into the rules that generate bound actions. For example, the rule for input

would become

a(x) : P
a(u)
�! Pfu=xg

for any u 62 fn(P), and similarly the rule open would need a modi�cation.

Therefore, the choice whether to use a structural congruence at all and, if

so, how many rules it should contain is largely one of convenience. Historically,

the �rst presentations of the calculus did not use structural congruence and an

advantage is then that some proofs by induction over inference of transition be-

come clearer. Today most presentations use some form of structural congruence,

at least including alpha-conversion, since the de�nitions become more compact

and transparent. For example, the scope extension in structural congruence is

easier to understand than the e�ect of the close and open rules.

5.2 Symbolic Transitions

In the transitional semantics an input action P
a(x)
�! Q represents that anything

can be received along a. Consequently, if we want to explore further transitions

from Q we must take into account all possible substitutions for x. Since there are

in�nitely many names it appears we have to explore the behaviour of Qfu=xg for

in�nitely many names u. In general, when a number of such inputs have been

performed, we may be interested in the behaviour not merely of an agent P but

of P� for substitutions � involving several names. This kind of in�nite branching

is awkward for proof systems and prohibits eÆcient tool support for automated

analysis.

Therefore, an alternative way to present the semantics is to let a transition

from P contain information about the behaviour not only of P itself but also of

P� for any �. The key observation is that even though there are in�nitely many

30

names a syntactically �nite agent can only subject them to a bounded number of

tests, and the conditions which enable a transition can be recorded. For example,

consider

P = au :Q j b(x) : R

We can schematically express the transitions of P� succinctly as follows. For

any � the agent P� will have an input and an output transition (with subject

�(a) and �(b) respectively). In addition, if �(a) = �(b) it will have a � -transition

arising from a communication between the components. This is the idea behind

the so called symbolic semantics, where these transitions come out as:

P
true; au
�! Q j b(x) : R

P
true; b(x)
�! au :Q j R

P
a=b; �
�! Q j Rfu=xg

The label on a transition here has two components. The �rst is a condition which

must hold for the transition to be enabled, and the second is as usual the action

of the transition.

In the �-calculus the conditions have a particularly simple form. The only

tests an agent can perform on names are for equality (arising from the Parallel

combinator, as above, and from Match) and inequality (arising from Mismatch).

Of course several of these tests may a�ect a transition, so a condition will in

general be a conjunction of equalities and inequalities on names. For example,

we will have that

if x = y then au :Q j if x 6= b then b(y) : R
x=y^x6=b^a=b; �

�! Q j Rfu=yg

Formally we letM;N range over conjunctions of name equalities and inequali-

ties, including the empty conjunction which is written true. Symbolic transitions

are of the form P
M; �
�! Q, meaning \if M holds then P has an action � leading to

Q." We let � range over pairs (M;�), so a symbolic transition is written P
�
�! Q.

For � = (M;�) we let bn(�) mean bn(�) and we let �^N mean (M ^N; �). The

rules for symbolic transitions are given in Table 4 and are similar in structure to

the rules in Section 4 for ordinary transitions. The only subtle point is the e�ect

of Restriction on a condition in the rules s-res and s-open. Suppose P has a

symbolic transition

P
M; �
�! Q

with a condition M that mentions x in a conjunct x 6= y. This means that the

transition from P only holds for substitutions assigning x and y di�erent names,

perhaps because P is of the form if x 6= y then . . . What is then the condition

M 0 of the inferred symbolic transition

(�x)P
M 0; �0

�! Q0

31

s� struct
P 0

� P; P
�
�! Q; Q � Q0

P 0 �
�! Q0

s� prefix

� : P
true; �
�! P

s� sum
P

�
�! P 0

P +Q
�
�! P 0

s� match
P

�
�! P 0 x; y 62 bn(�)

if x = y then P
�^x=y
�! P 0

s� mismatch
P

�
�! P 0; x; y 62 bn(�)

if x 6= y then P
�^x6=y
�! P 0

s� par
P

�
�! P 0; bn(�) \ fn(Q) = ;

P jQ
�
�! P 0

jQ

s� com
P

M; a(x)
�! P 0; Q

N; bu
�! Q0

P jQ
M^N^a=b; �

�! P 0
fu=xgjQ0

s� res
P

M; �
�! P 0; x 62 �

(�x)P
M�x; �
�! (�x)P 0

s� open
P

M; ax
�! P 0; a 6= x

(�x)P
M�x; a�x
�! P 0

Table 4: The symbolic transition semantics.

32

To see what it should be we must ask how substitutions involving x can enable

that transition. The requirement from M is that x should not be assigned the

same name as y. But since substitutions only a�ect free names, no substitution

will assign y the same name as the bound x in (�x)P . Therefore, the inferred

transition from (�x)P will be possible no matter how x is treated by the substi-

tution. Hence the conjunct x 6= y should not be present in M 0.

Suppose instead thatM says that x is the same as some other name y, i.e.,M

contains a conjunct x = y, meaning \this transition only holds for substitutions

assigning x and y the same name." Then the inferred transition from (�x)P will

hold for no substitution, for the same reason. In that case M 0 can be chosen

to be any unsatis�able condition, for example z 6= z. The only other types of

conjuncts in M mentioning x are the trivial x = x, which is always true and can

be removed at will, and the contradictory x 6= x, which implies that the condition

is unsatis�able.

In conclusion, the condition M 0 can be de�ned as M where conjuncts x = x

and x 6= y are removed, and conjuncts x = y are replaced with an unsatis�able

conjunct z 6= z, for all y di�erent from x. We denote this by \M �x" in Table 4.

For example (x 6= y ^ z = u)� x is (z = u), and (x = y ^ z = u)� x is z 6= z (it

is not satis�able).

As an example inference consider the symbolic transition from

(�x)if x 6= y then � : P

First by s-prefix

� : P
true; �
�! P

and then by s-mismatch

if x 6= y then � : P
x6=y; �
�! P

and �nally by s-res, since (x 6= y)� x = true and assuming x 62 �:

(�x)if x 6= y then � : P
true; �
�! (�x)P

In a similar way we get that

(�x)if x = y then � : P
z 6=z; �
�! (�x)P

In other words, the �rst transition holds for all substitutions and the second for

no substitution, i.e., is never possible. This is as it should since no substitution

can make x and y equal in an agent where x is bound.

We can now state how the symbolic semantics corresponds to the transitions

in Section 4. Write � j= M to denote that for any conjunct a = b in M it

holds that �(a) = �(b) and for any conjunct a 6= b it holds that �(a) 6= �(b). The

33

correspondence between the semantics is that P
M; �
�! P 0 implies that for all � such

that � j= M there is a transition P�
��
�! P 0�. Conversely, if P�

�
�! P 00 then for

some M;�; P 0 it holds P
M; �
�! P 0 where � j= M and P 00 � P 0� and � = ��. The

proof is through induction over the inference systems for transitions. Therefore,

a tool or proof system is justi�ed in using the symbolic semantics.

5.3 The Early Semantics

As mentioned in Section 4 there is an alternative way to treat the semantics for

input, the so called early semantics, by giving the input Pre�x the rule for all u:

e� input
a(x) : P

au
�! Pfu=xg

Here there is a �fth kind of action, the free input action of kind au, meaning

\input the name u along a". Note the di�erence between

P
a(x)
�! Q meaning P inputs something to replace x in Q, and

P
ax
�! Q meaning P receives the name x and continues as Q

In the early semantics the com rule needs a modi�cation, since the input action

in the premise refers to the transmitted name:

e� com
P

au
�! P 0; Q

au
�! Q0

P jQ
�
�! P 0

jQ0

There is no substitution in the conclusion since that has already been performed

at an earlier point in the inference of this transition, namely when the input action

was inferred. Hence the name \early" semantics. Consequently the semantics

in Section 4 is called the late semantics: the substitution emanating from an

interaction is inferred as late as possible, namely when inferring the interaction

in the com-rule. In the early semantics there is no need for the bound input

actions, so there will still only be four kinds of action. However, if scope extension

in the structural congruence is omitted in favour of the close rule as described

in Section 5.1 then the early semantics also needs the bound input actions, and

hence all �ve kinds.

To see the similarity and di�erence between late and early, consider the in-

ference of an interaction between a(x) : P and au :Q. Both semantics yield the

same � -transition. First the late semantics:

com

prefix

a(x) : P
a(x)
�! P

prefix

au :Q
au
�! Q

a(x) : P j au :Q
�
�! Pfu=xg j Q

34

Then the early semantics:

e� com

e� input
a(x) : P

au
�! Pfu=xg

prefix

au :Q
au
�! Q

a(x) : P j au :Q
�
�! Pfu=xg j Q

The � -transitions that can be inferred with the early semantics are exactly

those that can be inferred with the late semantics. The proof of this is by induc-

tion over the depth of inference of the transition. The induction hypothesis needs

to state that not only � actions but also input and output actions correspond in

the two semantics, where the correspondence between input and free input is that

P
au
�! P 0 i� 9P 00; w : P

x(w)
�! P 00 ^ P 0 � P 00fu=wg.

In view of this it is a matter of taste which semantics to adopt. It could

be argued that the early semantics more closely follows an operational intuition

since, after all, an agent performs an input action only when it actually receives

a particular value. On the other hand, experimental evidence indicates that

proof systems and decision procedures using the late semantics are slightly more

eÆcient, and as we shall see in Section 7 it allows a wider spectrum of behavioural

equivalences.

5.4 Reductions

Another idea for the operational semantics is to represent interactions using an

unlabelled transition system. The idea is that P �! Q, pronounced \P reduces

to Q", is the same as P
�
�! Q. The di�erence is that reductions are inferred

directly from the syntax of the agent, as opposed to � -transitions which are

inferred from input and output transitions. This is accomplished by a counterpart

to the com rule which explicitly mentions the Pre�xes that give rise to the

reduction:

r� com
(� � �+ a(x) : P) j (� � �+ au :Q) �! Pfu=xg j Q

In addition, the rules par and res need counterparts for reductions; they are

quite simple since there is no label on the transition:

r� par
P �! P 0

P jQ �! P 0
jQ

r� res
P �! P 0

(�x)P �! (�x)P 0

and of course the structural rule is as before:

r� struct
P 0
� P; P �! Q; Q � Q0

P 0
�! Q0

That's it! Those four rules suÆce for a subcalculus, formed by the agents satis-

fying:

35

1. All Sums are guarded Sums, i.e., of kind �1 : P1 + � � �+ �n : Pn.

2. There are no unguarded if-operators.

3. There are no � -Pre�xes.

These restrictions are not very severe. In practice Sums are almost always

guarded (this excludes agents like (P jQ)+R which are seldom used). The second

condition is easy to satisfy since any if-operator not under an input Pre�x can

be evaluated; the agent if x = y then P can be replaced by P if x = y and by

0 otherwise, and conversely for if x 6= y then P . The importance of the two

�rst conditions is that structural congruence can always be used to pull the two

active Pre�xes into a position where r-com is possible. The third condition is

also not dramatic. The silent Pre�x is derivable in the sense that (�a)(a : P j a)

behaves exactly like � : P .

The fact that �! corresponds to
�
�! in the ordinary semantics is then easily

proved by induction on inference of �!. Each such inference only uses r-com

once and r-struct a number of times.

Clearly, for ease of presentation the reduction semantics is superior to the

labelled transition semantics, and is therefore often taken as a point of departure

when describing the �-calculus. It is then important to remember that the price

for the simplicity is loss of information: the reduction semantics records only

the completed interactions within an agent, and ignores the potential that agent

shows for interacting with an environment. For example au : 0 and bu : 0 and

(�u)au : 0 all have no reductions and are therefore in some sense semantically

identical, even though they have di�erent \potential" interactions.

For this reason proof systems and decision procedures based directly on the

reduction semantics are not optimal. However, one great advantage is that it

works equally well for the higher-order calculus (Section 3.6), where a labelled

semantics is complicated with agents decorating the arrows.

5.5 Abstractions and Concretions

The input transition P
a(x)
�! Q can intuitively be thought of as P

a
�! �xQ

where �xQ is a function from names to agents. This idea can be elaborated to

give an alternative presentation of the transition system. It requires a few more

de�nitions but the rules become simpler.

De�ne agent abstractions, ranged over by F , to be of kind �xP , and dually

agent concretions, ranged over by C, to be of kind [x]P . The latter is just a

notation for the pair (x; P) and allows the output transition P
ax
�! Q to be

written P
a
�! [x]Q. We write an input Pre�x a(x) : P as a : F , where F =

�xP , and similarly an output Pre�x ax : P as a : C, with C = [x]P . Let agents,

abstractions and concretions collectively be called the extended agents, ranged

36

over by E, and let c range over names x, overlined names x, and � . A transition

will then be written P
c

�! E.

We further allow Restrictions (�x) to operate on abstractions and concretions

with the additional scope extension laws

(�y)�xP � �x(�y)P and (�y)[x]P � [x](�y)P

provided x 6= y; we also allow alpha-conversion in the usual sense, where �x (but

not [x]) counts as a binding occurrence of x. And we de�ne Parallel composition

for extended agents by

P j �xQ � �x(P jQ)

P j [u]Q � [u](P jQ)

P j (�x)[x]Q � (�x)[x](P jQ)

where x 62 fn(P). With these conventions, abstractions are structurally congru-

ent to forms of kind �xP , and concretions are congruent to one of the two forms

[x]P or (�x)[x]P , where P is an agent.

The transition rules for extended agents are given in Table 5. It is interesting

to compare with the standard semantics in Table 3. The new rules are simpler

mainly in two ways. First, since transitions carry no objects, x-par does not

need to deal with a side condition on bound objects. Second, the rule x-res

ful�ls the function of both res and open. The price for this simpli�cation is the

added complexity of the structural congruence which here has extra rules dealing

with abstractions and concretions. To see this connection consider a derivation

of

(�u)(au : P j u(b) : Q)
a�u
�! P j u(b) : Q

which uses prefix, par and open in the standard semantics. With extended

agents the inference goes by x-prefix and x-par to derive

a : [u]P j u : �bQ
a
�! [u]P j u : �bQ

and then through x-struct, the new part about Parallel composition of extended

agents,

a : [u]P j u : �bQ
a
�! [u](P j u : �bQ)

and �nally x-res

(�u)(a : [u]P j u : �bQ)
a
�! (�u)[u](P j u : �bQ)

In conclusion, the use of extended agents is conceptually attractive since some

of the \bookkeeping" activity in an inference, like keeping track of bound names

and their scope, is factored out from the transition rules and included in the

structural congruence. Also, the representation of transitions in these rules has

proved suitable for automatic tools, in particular if used in conjunction with a

symbolic semantics as in Section 5.2, where transitions are of the kind P
M; c
�! E.

The drawback is that the format is more unfamiliar to those accustomed to other

process algebras.

37

x� struct
P 0

� P; P
c

�! E; E � E 0

P 0 c
�! Q0

x� prefix
c : E

c
�! E

x� sum
P

c
�! E

P +Q
c

�! E

x� match
P

c
�! E

if x = x then P
c

�! E

x� mismatch
P

c
�! E; x 6= y

if x 6= y then P
c

�! E

x� par
P

c
�! E

P jQ
c

�! EjQ

x� com
P

a
�! �xP 0; Q

a
�! [u]Q0

P jQ
�
�! P 0

fu=xgjQ0

x� res
P

c
�! E; x 6= c; x 6= c

(�x)P
c

�! (�x)E

Table 5: Transitions for extended agents.

38

6 Bisimilarity and Congruence

We shall here look at one of the most fundamental behavioural equivalences,

namely strong bisimilarity. It turns out not to be a congruence | it is not

preserved by input pre�x | but fortunately the largest contained congruence

has a simple characterisation.

6.1 Bisimilarity

In most process algebras a family of equivalence relations on agents is based on

bisimulations, and the �-calculus is no exception. The generic de�nition of a

bisimulation is that it is a symmetric binary relation R on agents satisfying

PRQ and P
�
�! P 0 implies 9Q0 : Q

�
�! Q0

^ P 0
RQ0

The intuition is that if P can do an action then Q can do the same action and the

derivatives lie in the same relation. Two agents are said to be bisimilar if they

are related by some bisimulation; this means that they can inde�nitely mimic the

transitions of each other.

For the �-calculus extra care has to be taken for actions with bound objects.

Consider

P = a(u); Q = a(x) : (�v)vu

Intuitively these represent the same behaviour: they can do an input along a and

then nothing more. However, Q has the name u free where P has not. Therefore,

x in Q cannot be alpha-converted to u, and the transition P
a(u)
�! 0 cannot be

simulated by Q. Such a di�erence between P and Q is not important since, if

P has an action a(u), then by alpha-conversion it also has a similarly derived

action a(w) for in�nitely many w. Clearly it is suÆcient for Q to simulate only

the bound actions where the bound object is not free in Q. This argument applies

to both input and bound output actions.

Also, input (but not bound output) actions mean that the bound object is

a placeholder for something to be received. Therefore, if P
a(x)
�! P 0 then the

behaviour of P 0 must be considered under all substitutions fu=xg, and we must

require that for each such substitution Q0 is related to P 0, or in other words, that

they are related for each value received.

In the following we will use the phrase \bn(�) is fresh" in a de�nition to mean

that the name in bn(�), if any, is di�erent from any free name occurring in any

of the agents in the de�nition.

De�nition 1 A (strong) bisimulation is a symmetric binary relationR on agents

satisfying the following: PRQ and P
�
�! P 0 where bn(�) is fresh implies that

(i) If � = a(x) then 9Q0 : Q
a(x)
�! Q0 ^ 8u : P 0fu=xgRQ0fu=xg

39

(ii) If � is not an input then 9Q0 : Q
�
�! Q0 ^ P 0RQ0

P and Q are (strongly) bisimilar, written P _� Q, if they are related by a bisim-

ulation.

It follows that _� , which is the union of all bisimulations, is a bisimulation. We

also immediately have that P � Q implies P _� Q, by virtue of the rule struct.

At this point it might be helpful to consider a few examples. Requirement (i)

is quite strong as demonstrated by

P1 = a(x) : P + a(x) : 0; P2 = a(x) : P + a(x) : if x = u then P

Assume that P _6� 0. Then P1
_6� P2 since the transition P1

a(x)
�! 0 cannot be

simulated by P2. For example, P2
a(x)
�! if x = u then P does not suÆce since,

for the substitution fu=xg, the derivatives are not bisimilar. Similarly,

P1 = a(x) : P + a(x) : 0; P2 = a(x) : P + a(x) : 0+ a(x) : if x = u then P

are not bisimilar because of the transition P2
a(x)
�! if x = u then P . Neither 0

nor P is bisimilar to if x = u then P for all substitutions of x, since 0 fails for

fu=xg and P fails for the identity substitution. Using the intuition that an input

P
a(x)
�! Q can be thought of as P

a
�! �xQ, clause (i) says that the derivatives

(which are functions from names to agents) must be pointwise bisimilar.

As expected we have

a j b _� a : b+ b : a

and

a j a _� a : a+ a : a+ �

This demonstrates that _� is not in general closed under substitutions, i.e., from

P _� Q we cannot conclude that P� _� Q�. For this reason we have

c(a) : (a j b) _6� c(a) : (a : b+ b : a)

demonstrating that _� is not preserved by input Pre�x, i.e., that from P _� Q

we cannot conclude that a(x) : P _� a(x) : Q.

However, we have the following results:

Proposition 2 If P _� Q and � is injective then P� _� Q�.

Proposition 3 _� is an equivalence.

Proposition 4 _� is preserved by all operators except input Pre�x.

40

Proposition 2 is proved by establishing that transitions are preserved by in-

jective substitutions, i.e., that for injective �,

P
�
�! P 0 implies P�

��
�! P 0�

where the substitution � applied to an action � is de�ned not to a�ect bn(�).

This result is established by induction of the inference of P
�
�! P 0 and each rule

in Table 3 gives rise to one induction step. It is then straightforward to show

that f(P�;Q�) : P _� Q; � injectiveg is a bisimulation.

Proposition 3 is not diÆcult. Re
exivity and symmetry are immediate and

for transitivity it suÆces to show that _� _� is a strong bisimulation.

The proof of Proposition 4 goes by examining each operator in turn. It is a

bit complicated for the cases of Restriction and Parallel. For example, we would

like to show that

f((�x)P; (�x)Q) : P _� Qg [_�

is a bisimulation, by examining the possible transitions from (�x)P , where the

rules res and open are applicable. Unfortunately this simple idea does not

quite work since also the struct rule is applicable, so we have to include all

structurally congruent pairs in the bisimulation. A proof idea is the following.

Say that an agent is normal if all bound names are distinct and all unguarded

Restrictions are at the top level, i.e., of the form (�~x)P where P has no unguarded

Restrictions. By Proposition 1 any P is structurally congruent to a normal agent.

Now extend the transition rules with the symmetric counterparts of par and com;

in view of the commutativity in the structural congruence this does not a�ect

the transitions. That makes it possible to prove the lemma

If P
�
�! P 0 and P � N where N is normal, then by an inference of

no greater depth, N
�
�! N 0 and P 0 � N 0.

The proof is through induction on the inference of P � N and involves a tedious

examination of all rules for the structural congruence. Now we can show that the

relation on normal agents

f((�~x)(P jQ); (�~x)(P 0
jQ0)) : P _� P 0; Q _� Q0

g

is a bisimulation up to _� (as explained below), by showing that an action from

one side is simulated by an action from the other side, through induction on the

inference of the action. There are eight inductive steps through combinations of

the par, com, res and open laws to consider. All cases are routine. Because

of the lemma, actions derived through the struct rule can be ignored in the

induction since they also have a shorter inference. Finally we can take P = P 0 = 0

to show that Restriction preserves bisimilarity, and ~x the empty sequence to show

the same for Parallel.

The notion of \bisimulation up to" is a standard proof trick in these circum-

stances. It involves modifying De�nition 1 by replacing R in the consequents of

41

(i) and (ii) by _� R _� , i.e., the relational composition of _� , R, and _� . The

requirement is thus weakened: the derivatives must be bisimilar to a pair in R,

in contrast to De�nition 1 which requires that the derivatives themselves lie in

R. It then holds that if two agents are related by a bisimulation up to _� then

they are bisimilar. The proof of this is very similar to the corresponding result

for other process algebras.

6.2 Congruence

The fact that bisimilarity is not preserved by input Pre�x makes us seek the

largest congruence included in bisimilarity. The de�nition is fortunately simple:

De�nition 2 Two agents P and Q are (strongly) congruent, written P � Q, if

P� _� Q� for all substitutions �.

For an example, although a j b _� a : b + b : a these agents are not strongly con-

gruent since the substitution fa=bg makes them non-bisimilar. However, we do

have

a j b � a : b+ b : a+ if a = b then �

and the reader may by this example realise the crucial role played by the Match

operator in an expansion law which reduces a Parallel composition to a Sum.

Proposition 5 Strong congruence is the largest congruence in bisimilarity.

We �rst have to show that strong congruence is a congruence, i.e., that it is

preserved by all operators. For all operators except input Pre�x this is immediate

from the de�nition and Proposition 4. For input Pre�x we show that

f(a(x) : P; a(x) : P 0) : P � P 0
g [�

is a strong bisimulation and closed under substitutions. The latter is trivial since

� is closed under substitutions. For the bisimulation part, the transition to

consider is a(x) : P
a(x)
�! P which obviously is simulated by a(x) : P 0

a(x)
�! P 0; we

have to show that for all u, Pfu=xg is related to P 0fu=xg, and this follows from

P � P 0.

We next show that it is the largest such congruence. Assume that P and Q

are related by some congruence �0 in _� . We shall show that this implies that

P� _� Q� for any �, in other words that �0��. Without loss of generality we

can assume that �(x) 6= x for only �nitely many names x since the e�ect of � on

names not free in P or Q is immaterial. So let � = fy1 : : : yn = x1 : : : xng. Choose

a 62 fn(P;Q). By P �0 Q and the fact that �0 is a congruence we get

(�a)(a(x1 : : : xn) : P j ahy1 : : : yni) �
0 (�a)(a(x1 : : : xn) : Q j ahy1 : : : yni)

and by the fact that �0 is in _� we get, following the � -transition from both

sides, that P� _� Q�.

42

7 Variants of Bisimilarity

There are several ways in which the de�nition of equivalence can be varied. We

here consider some variants that are particular to the �-calculus, in the sense

that they di�er in how the name substitutions arising from input are treated. We

also brie
y consider the weak bisimulation equivalences.

7.1 Early Bisimulation

Bisimulations can also be de�ned from the early semantics in Section 5.3. This

leads to an equivalence which is slightly larger than _� , i.e., it equates more

agents, although that di�erence is hardly ever of practical signi�cance.

For clarity let the transitions in the early semantics be indexed by E, so for

example we have a(x) : P
au
�!E Pfu=xg. As mentioned in that section the � -

transitions are the same with the late and early semantics, in other words
�
�! is

the same as
�
�!E, and similarly for output transitions. So the distinction is only

relevant for input transitions.

In the early input transition the object represents the value received, and

therefore there is no need for clause (i) in the de�nition of bisimulation with

arbitrary instantiation of the bound object. The de�nition of early bisimulation

is in that respect simpler.

De�nition 3 A (strong) early bisimulation is a symmetric binary relation R on

agents satisfying the following: PRQ and P
�
�!E P 0 where bn(�) is fresh implies

that

9Q0 : Q
�
�!E Q0 ^ P 0RQ0

P and Q are (strongly) early bisimilar, written P _�E Q, if they are related by an

early bisimulation.

To avoid confusion we will in the following refer to De�nition 1 as late bisim-

ulation and _� as late bisimilarity, and correspondingly to � as late congruence.

A simple example highlights the di�erence between late and early.

P1 = a(x) : P + a(x) : 0; P2 = a(x) : P + a(x) : 0+ a(x) : if x = u then P

The summand a(x) : if x = u then P is the only di�erence between P1 and P2.

For late bisimilarity this di�erence is important. It gives rise to the transition
a(x)
�! leading to if x = u then P and no transition in P1 can simulate this for all

instances of x. But it is not important for early bisimilarity, and indeed P1 _�E P2.

To see this consider the transitions that the extra summand generates, they are

P2
aw
�!E if w = u then Pfw=xg

43

for all w. For the case that w = u, P1 simulates through P1
au
�!E Pfu=xg, and the

derivatives are bisimilar since if u = u then Pfu=xg has the same transitions

as Pfu=xg. For the other cases, i.e., w 6= u, P1 simulates with the transition

P1
aw
�!E 0, and the derivatives are bisimilar since if w = u then Pfw=xg has no

transitions.

Again it helps to think of late input transitions as resulting in functions from

names to agents. Consider the pictorial representation of P1 and P2 in Figure 1

where late input transitions are arrows and instantiations of the bound object are

dashed lines (for simplicity we consider only two instantiations u and w where in

reality there would be one for each name). Late bisimulation requires that the

derivatives simulate after each input
a
�! and then again after each instantiation.

Therefore P1 and P2 are not late bisimilar. In contrast, an early input means

the same as an input
a
�! and an instantiation in the same go. The intermediate

level, before the instantiation, does not exist in the early semantics. Therefore

P1 and P2 are early bisimilar. For example the bottom alternative from P2, going

through
aw
�! leading to if w = u then Pfw=ug, is simulated by P1 going through

aw
�! to 0.

It is also possible to de�ne the early bisimulation through the late semantics.

Figure 1 and the de�nition of late bisimulation provide the intuition: Consider

the part of the de�nition (clause (i)) which says

there should exist some Q0 such that for all u . . .

For early bisimulation, the corresponding part should say

for all u there should exist some Q0 such that . . .

This commutation of the quanti�ers weakens the statement, since the choice of

Q0 here can depend on u. And indeed, with it we obtain a bisimulation which

precisely coincides with early bisimulation:

De�nition 4 An early bisimulation with late semantics is a symmetric binary

relation R on agents satisfying the following: PRQ and P
�
�! P 0 where bn(�)

is fresh implies that

(i) If � = a(x) then 8u 9Q0 : Q
a(x)
�! Q0 ^ P 0fu=xgRQ0fu=xg

(ii) If � is not an input then 9Q0 : Q
�
�! Q0 ^ P 0RQ0

It is then easy to prove that a relation is an early bisimulation precisely when

it is an early bisimulation with late semantics. So it is a matter of convenience

which of the two de�nitions to use. The converse idea (to capture late bisimilarity

using early semantics) is however not possible.

Early bisimilarity satis�es the same propositions as late bisimilarity in Sec-

tion 6: it is preserved by injective substitutions and all operators except input

44

w

w

au

aw

au 0

0

if u = u then Pfu=xg

if w = u then Pfw=xg

Pfu=xg

Pfw=xg

aw

au

aw

au 0

0

Pfu=xg

Pfw=xg

P1

Late input and instantiation:

Early input includes instantiation:

P2

a

�x if x = u then P
if u = u then Pfu=xg

if w = u then Pfw=xg

u

�x0

�xP

a

a

u

w

u Pfu=xg

Pfw=xg

0

0
�x0

�xP

P1

a

a

u

w

u

w

Pfu=xg

Pfw=xg

0

0

P2

aw

au

aw

Figure 1: The di�erence between late and early bisimilarity.

P1 = a(x) : P + a(x) : 0, and P2 = P1 + a(x) : if x = u then P .

45

Pre�x; and early congruence �E, de�ned by P �E Q if for all �, P� _�E Q�, is

the largest congruence in _�E . The proofs are very similar. Early congruence is

larger than late congruence, i.e., ���E, and the example in Figure 1 suÆces to

prove that the inclusion is strict.

It is hard to imagine any practical situation where the di�erence between

late and early congruence is important. Since the theoretical properties are very

similar the choice between them is largely a matter of taste. It could be argued

that early congruence to a higher degree conforms to our operational intuition,

and that the de�nition is less complex. On the other hand, late congruence seems

to lead to more eÆcient veri�cations in automated tools.

7.2 Barbed Congruence

In some sense the notion of bisimilarity, be it late or early, assumes the observer

is unrealistically powerful: since there is a di�erence between the actions au and

a�u it is possible to directly detect if an emitted name is local. It is therefore

natural to ask what is the e�ect of reducing this discriminatory power. This

leads to the idea of barbed bisimulation where, intuitively, the observer is limited

to sensing if an action is enabled on a given channel. Although barbed bisimilarity

is weaker (i.e., equates more agents) than early bisimilarity it turns out that the

congruence obtained from barbed bisimulation is the same as early congruence.

De�nition 5 A name a is observable at P , written P # a, if a is the subject of

some action from P . A barbed bisimulation is a symmetric binary relation R on

agents satisfying the following: PRQ implies that

(i) If P
�
�! P 0 then 9Q0 : Q

�
�! Q0 ^ P 0RQ0

(ii) If P # a then Q # a

P and Q are barbed bisimilar, written P _�B Q, if they are related by a barbed

bisimulation.

The idea behind a barbed bisimulation is that the only unquestionable exe-

cution steps are the internal ones, i.e., the � -actions, since these do not require

participation of the environment. Therefore labelled transitions are not needed

to de�ne barbed bisimulation. It is enough with the reduction relation of Sec-

tion 5.4 and the observability predicate, which like reductions can be de�ned

directly from the syntax as P # a if P contains an unguarded Pre�x with subject

a not under the scope of a Restriction �a.

Barbed bisimilarity is uninteresting by itself. For example,

au _�B av _�B (�u)au

identifying three clearly di�erent agents. Of more interest is the congruence it

generates.

46

De�nition 6 Two agents P and Q are barbed congruent, written P �B Q, if

for all contexts C it holds that C(P) _�B C(Q).

In other words, barbed congruence is the largest congruence in barbed bisimilar-

ity. Clearly the three agents above are not barbed congruent. Take the context

C(P) = P j a(x) : x

Then C(au)
�
�! u # u and this cannot be simulated by C(av) and not by

C((�u)au). In fact barbed congruence coincides with early congruence:

Proposition 6 �B = �E

This lends considerable support to early congruence as the natural equivalence

relation. The main idea is to prove that �B is an early bisimulation. Suppose

P �B Q and P
�
�! P 0, then a cushioning context C can be found such that

C(P)
�
�! C 0(P 0), so C(Q) must simulate this transition. But C is cleverly con-

structed so that the only possible way that C(Q) can do this is because of a

transition Q
�
�! Q0. We shall not go further into the proof here which is quite

involved.

Variants of barbed congruence use variants of the observability predicate,

leading to a spectrum of possibilities. For example, a weaker variant is to use

P # to mean 9a : P # a, and amend clause (ii) in the de�nition of barbed

bisimilarity to P # i� Q #. With this de�nition Proposition 6 still holds, though

its counterpart for weak bisimulation (cf. Section 7.4) is less clear. Omitting

clause (ii) entirely Proposition 6 no longer holds. For example, then !� jQ and

!� jR would be barbed congruent for all Q and R.

Also, in subcalculi of � the barbed congruence may be di�erent (because

there are fewer contexts). As one example, in the asynchronous subcalculus

(Section 3.5) and where observations P # a mean that P can do an output

action along a (in the asynchronous calculus it makes sense to regard inputs as

unobservable) it holds that

a(x) : ax+ � �B �

7.3 Open Bisimulation

As has been demonstrated neither late nor early bisimilarity is a congruence; to

gain a congruence we must additionally require bisimilarity under all substitutions

of names. Interestingly, there is a way to de�ne a congruence directly through

bisimulations. This is the idea behind open bisimulation, which incorporates the

quanti�cation over all substitutions in the clause for bisimulation. This leads to

a congruence �ner than late congruence (i.e., it equates fewer agents) although

that di�erence is not very signi�cant in practice.

47

To begin we consider a subcalculus without Restriction and Mismatch. The

de�nition will subsequently be extended to accommodate Restriction (no simple

extension for Mismatch is known).

De�nition 7 A (strong) open bisimulation is a symmetric binary relation R on

agents satisfying the following for all substitutions �: PRQ and P�
�
�! P 0 where

bn(�) is fresh implies that

9Q0 : Q�
�
�! Q0 and P 0RQ0

P and Q are (strongly) open bisimilar, written P _�O Q, if they are related by an

open bisimulation.

A technical remark: the condition on bn(�) is unnecessary in view of the fact

that we deal with a subcalculus without Restriction, but it is harmless and is

included for the sake of symmetry with other similar de�nitions.

In open bisimulation there is no need for a special treatment of input actions

since the quanti�cation over substitutions recurs anyway when further transitions

are examined: If P
a(x)
�! P 0 is simulated by Q

a(x)
�! Q0, then the requirement implies

that all transitions from P 0� must be simulated by Q0� for all �, including those

substitutions that instantiate x to another name. This also demonstrates the

pertinent di�erence between open and late: where late requires the agents to

continue to bisimulate under all substitutions for the bound input object, open

requires them to bisimulate under all substitutions | not only those a�ecting

the bound input object.

It is straightforward to show that an open bisimulation is also a late bisim-

ulation, and hence P _�O Q implies P _� Q. Furthermore, directly from the

de�nition we get that open bisimilarity is closed under substitution, in the sense

that P _�O Q implies P� _�O Q�; together these facts give us that P _�O Q

implies P � Q. But the converse is not true as demonstrated by the following

example:
Q � � + � : �

R � � + � : � + � : if x = y then �

Q and R are late congruent. To see that Q� is late bisimilar to R� for all

�, consider two possibilities for �. Either �(x) = �(y), in which case R�
�
�!

if �(x) = �(y) then � is simulated by Q�
�
�! � ; or �(x) 6= �(y), in which case

it is simulated by Q�
�
�! 0. But Q and R are not open bisimilar. To see this,

choose � as the identity substitution and consider R
�
�! if x = y then � . There

are two possibilities for Q to make a � transition. One is Q
�
�! 0. But then open

bisimulation requires that the two derivatives if x = y then � and 0 bisimulate

again under all substitutions �0, and this does not hold for �0 = fx=yg since

(if x = y then �)fx=yg
�
�! 0 whereas 0fx=yg has no transition. Similarly, the

other transition Q
�
�! � fails for the identity substitution, since if x = y then �

has no transition, in contrast to � .

48

This example may seem arti�cial and, as for the di�erence between late and

early, the di�erence between open and late is probably of little practical signi�-

cance. Open bisimilarity is an equivalence and a congruence, so by analogy with

the other equivalences, writing �O for the largest congruence in _�O , we get

_�O = �O (the proofs are technically similar to the proof for late congruence).

It can also be characterised in a few other informative ways. One is through

substitution closed ground bisimulations. A ground bisimulation is a relation R

satisfying

PRQ and P
�
�! P 0 implies 9Q0 : Q

�
�! Q0 and P 0RQ0

In other words, it does not introduce substitutions at all. Now it holds that _�O

is the largest substitution closed (i.e., PRQ implies P�RQ�) ground bisimula-

tion. Another characterisation is with dynamic bisimulations: these are relations

satisfying

PRQ and C(P)
�
�! P 0 implies 9Q0 : C(Q)

�
�! Q0 and P 0RQ0

for all contexts C. It can be shown that dynamic bisimilarity is the same as open

bisimilarity.

At �rst it may seem that the Restriction operator behaves well with open

bisimulation since the substitutions only a�ect free names. Consider

P = (�x)if x = y then � and Q = 0

Neither P� nor Q� have any transitions, for any substitution �, since the sub-

stitution cannot a�ect the bound name x. Therefore P _�O Q. Similarly with

P = (�x)� : if x = y then � and Q = �

we have P _�O Q, since P
�
�! (�x)if x = y then � and this derivative is

similarly immune to substitutions. The problem arises because of bound output

actions. Consider

P = (�x)ax : if x = y then � and Q = (�x)ax

Here P
a�x
�! if x = y then � . Clearly Q cannot simulate by Q

a�x
�! 0 because

the two derivatives, if x = y then � and 0, are not bisimilar for the substitution

fx=yg. Here the bound output action has lifted the Restriction so x becomes

vulnerable to a substitution.

But we would certainly want to identify P and Q. The name x in P is a

local name and no matter what an environment does on receiving it, that name

cannot become the same as y, so the if test will never be positive. Also P and

Q are late congruent. Therefore in the presence of Restriction, De�nition 7 is too

discriminating: it considers too many substitutions.

49

One way to amend it is to use the auxiliary concept of distinctions. The

intuition behind a distinction is to record those pairs of names that will always

be distinct, no matter what actions take place. De�nition 7 is modi�ed so that

it only considers substitutions that respect distinctions, in the sense that two

names required to be distinct are not substituted by the same name. Following

a bound output transition the derivatives are related under a larger distinction,

representing the fact that the bound object will be kept di�erent from any other

name.

Formally a distinction is a symmetric and irre
exive binary relation on names.

In the following we let D range over �nite distinctions (in�nite distinctions are

not necessary and may cause problems with alpha-conversion if they include all

names). We say that a substitution � respects a distinction D if aDb implies

�(a) 6= �(b). We further let D� be the relation f(�(a); �(b)) : aDbg. When N is

a set of names we let D + (x;N) represent D [(fxg �N) [(N � fxg), in other

words it is D extended with the fact that x is distinct from all names in N .

De�nition 8 A distinction-indexed family of binary relations on agents is a

set of binary agent relations RD, one for each distinction D. A (strong) open

bisimulation is such a family satisfying the following for all substitutions � which

respect D: PRDQ and P�
�
�! P 0 where bn(�) is fresh implies that

(i) If � = a�x then 9Q0 : Q�
a�x
�! Q0 ^ P 0RD0Q0

where D0 = D� + (x; fn(P�;Q�))

(ii) If � is not a bound output then 9Q0 : Q�
�
�! Q0 ^ P 0RD�Q

0

P and Q are open D-bisimilar, written P _�D
O Q, if they are related by RD in

an open bisimulation, and they open bisimilar, written P _�O Q if they are open

;-bisimilar.

Here the proviso that bn(�) is fresh means it is not in fn(P�;Q�). The over-

loading of \ _�O " is motivated by the fact that for the subcalculus without

Restriction de�nitions 7 and 8 coincide. In essence, the distinction keeps track

of what substitutions are admissible, excluding those that do not respect the dis-

tinction. After any action except a bound output, the distinction recurs in that

the substituted names must still be distinct. After a bound output, additionally

the bound object must be distinct from any free name in the involved agents.

As an example we can now demonstrate that P _�O Q where

P = (�x)ax : if x = y then � and Q = (�x)ax

Consider the transition P
a�x
�! if x = y then � and the simulating transition

Q
a�x
�! 0. The de�nition then requires, by clause (i), that if x = y then � _�D

O 0

for D = f(x; y); (y; x)g and this is indeed the case: for a substitution � respecting

D, the agent (if x = y then �)� has no transitions.

50

�E = �B

�

_�

_�E

_�B

_�O = �O

Figure 2: Barbed, early, late and open bisimilarity and the corresponding con-

gruences. An arrow means strict inclusion, and when it goes from the left column

to the right it also means \largest congruence in".

Distinctions will however not admit Mismatch in a sensible way. For example,

we would want to equate the agents

if x 6= y then � : if x 6= y then � and if x 6= y then � : �

but the requirement that derivatives bisimulate under all substitutions will make

them inequivalent. In order to admit Mismatch a more fundamental rede�ni-

tion of the semantics is necessary, where the Mismatch is explicitly noted in the

transition, for example by using a symbolic semantics as in Section 5.2.

In conclusion, the de�nition of _�O loses some of its simplicity in the presence

of Restriction and it is still not applicable with Mismatch. It gains interest in

that it appears more eÆcient for automatic veri�cation and in that distinctions

sometimes have an independent motivation to represent \constant" names such

as values in some global data type or ports which are necessarily distinct. For

example, if Booleans are represented by two globally available names t and f then

clearly it is uninteresting to consider substitutions making them equal. Similarly,

the question whether a bu�er B(i; o) with input port i and output o behaves as

another bu�er B2(i; o) might be relevant only for the case that i 6= o.

The various de�nitions of strong bisimilarity and congruence are related in

Figure 2. In summary, barbed bisimilarity is much too weak to be interesting,

51

while the di�erence between early and late is very small and has to do with the

precise interpretation of input transitions. Barbed congruence is the same as

early congruence. The early and late congruences are obtained as bisimilarity for

all substitutions, and again the di�erence between them is small. Open bisimi-

larity (de�ned only for the subcalculus without Mismatch) is a congruence and

is more discriminating than late congruence since it requires bisimilarity for all

substitutions after every transition.

7.4 Weak Bisimulation

The main idea of weak bisimulation is that � transitions are regarded as un-

observable. We therefore de�ne =) to mean (
�
�!)�, i.e., zero or more � tran-

sitions,
�

=) to mean =)
�
�!=), and

b�
=) to mean

�
=) if � 6= � and =) if

� = � . The intention is to modify strong bisimilarity in the standard way, re-

placing
�
�! by

b�
=). The only complication is in the treatment of input actions.

These call for substitutions of the bound object, and when simulating a(x) by
�
�! � � �

�
�!

a(x)
�!

�
�! � � �

�
�! it turns out to be important that the substitution is

applied immediately after the input action
a(x)
�!, before further � transitions.

De�nition 9 A weak (late) bisimulation is a symmetric binary relation R on

agents satisfying the following: PRQ and P
�
�! P 0 where bn(�) is fresh implies

that

(i) If � = a(x) then 9Q00 : Q =)
a(x)
�! Q00 ^

8u9Q0 : Q00fu=xg =) Q0 ^ P 0fu=xgRQ0

(ii) If � is not an input then 9Q0 : Q
b�

=) Q0 ^ P 0RQ0

P and Q are weakly (late) bisimilar, written P _� Q, if they are related by a weak

bisimulation.

Clause (i) says how an input transition should be simulated: �rst do any number

of � , then the input reaching Q00, and then, for each name u received, continue to

some Q0. The e�ect is that the choice of Q00 is independent of u, and the choice

of Q0 may depend on u. Let us see an example of the signi�cance of this:

P1 = a(x) : if x = v then P + a(x) : (� + � : P + � : if x = v then P)

P2 = a(x) : (� + � : P + � : if x = v then P)

P3 = a(x) : (� + � : P)

First, observe that P2 is even strongly bisimilar to P3, since

� + � : P � � + � : P + � : if x = v then P

52

(any substitution makes the third summand behave as one of the �rst two). Now

consider a transition

P1
a(x)
�! if x = v then P

Can P2 simulate this? Yes, by the transition

P2
a(x)
�! � + � : P + � : if x = v then P

and now applying fu=xg by one � -transition to (if x = v then P)fu=xg. Since

P2 � P3 we also expect P3 to simulate it, and this requires the full glory of clause

(i), with di�erent Q0 for di�erent u. The simulating transition is

P3
a(x)
�! � + � : P

and now applying fu=xg, by one � transition to either P or 0, depending on if

u = v or not. So here we have P1 _� P2 _� P3.

This example also highlights why a simpli�cation of clause (i) to

9Q0 : Q
a(x)
=) Q0

^ 8u : P 0
fu=xgRQ0

fu=xg

fails. With such a clause we would have that P1 _� P2 and P2 _� P3, yet P1
_6� P3.

In other words, weak bisimilarity would not be transitive. The reason is that P3

no longer can simulate P1
a(x)
�! if x = v then P , since neither 0, P , nor � + � : P

is bisimilar to if x = v then P for all substitutions of x.

Another attempt at simpli�cation is to replace
�
�! by

b�
=) everywhere, also

in the antecedent:

PRQ and P
da(x)
=) P 0 where x is fresh implies that 9Q0 : Q

da(x)
=) Q0 and

8u : P 0fu=xgRQ0fu=xg

Then the so de�ned weak bisimilarity would be transitive. But it is inadequate

for another reason. Consider

P1 = a(x) : if x 6= v then (P + � : if x 6= v then R)

P2 = a(x) : if x 6= v then (P + � : R)

Here P1 and P2 are even strong late bisimilar. But with the attempted simpli�ca-

tion they would not be weak late bisimilar since P1
a(x)
=) if x 6= v then R cannot

be simulated by P2.

So it seems that clause (i) in De�nition 9 is unavoidable. Then _� is an equiv-

alence and every strong bisimulation is also a weak bisimulation, as expected. Of

course _� is not a congruence, for two independent reasons. The �rst is that it

is not preserved by input Pre�x, similarly to the situation for _� . The second

is that it is not preserved by +, similarly to the situation for observation equiva-

lence in CCS. These two concerns can be addressed independently in the standard

ways: as in Section 6 closure under all substitutions is required to preserve input,

and as in CCS simulating an initial � transition by
�

=) (rather than =)) gives a

relation preserved by +. In conclusion weak late congruence is de�ned as follows.

53

De�nition 10 P and Q are weak (late) congruent if, for all substitutions �,

P�
�
�! P 0 where bn(�) is fresh implies that

(i) If � = a(x) then 9Q00 : Q� =)
a(x)
�! Q00 ^

8u9Q0 : Q00fu=xg =) Q0 ^ P 0fu=xg _� Q0

(ii) If � is not an input then 9Q0 : Q�
�

=) Q0 ^ P 0 _� Q0

and conversely Q�
�
�! Q0 implies similar transitions from P�.

Other strong bisimulation equivalences also have weak counterparts in a sim-

ilar way. For example weak early bisimilarity is obtained by replacing Q
�
�! Q0

in De�nition 3 by Q
b�

=) Q0; since there are no bound inputs, the complication

with clause (i) in De�nition 9 above does not arise. Weak barbed congruence

is obtained by replacing Q
�
�! Q0 by Q =) Q0 and Q # a by Q =)# a in

De�nition 5. The weak barbed congruence coincides with weak early congruence

for image-�nite agents (this is a mild technical condition which roughly means

that the agent can only reach a �nite number of di�erent derivatives after
�

=)).

Also weak open bisimulation is obtained by replacing Q�
�
�! Q0 by Q�

b�
=) Q0

in De�nition 7.

8 Algebraic Theory

In this section we consider algebraic axiomatisations of late strong bisimilarity

and congruence. This means that we identify a set of axioms for equality between

agents, and that together with equational reasoning these imply all true equalities.

We get one such set of axioms for bisimilarity and another set for congruence.

These results only hold for the �nite subcalculus, i.e., we do not include Identi�ers

or Replication. (In the whole calculus such a result cannot be obtained since

bisimilarity, and also congruence, is not recursively enumerable and hence has no

decidable axiomatisation.)

8.1 Bisimilarity

Initially we restrict attention to the �nite subcalculus without Parallel compo-

sition. The axioms for strong late bisimilarity are given in Table 6. We also

implicitly use the laws of equational reasoning, i.e., that equality between agents

is re
exive, symmetric and transitive. Note that substitutivity (that an agent

can replace an equal agent in any expression) is not implied, since bisimilarity is

not a congruence.

The axioms deserve little comment. str says that all laws for structural con-

gruence can be used. congr1 says that all operators except input Pre�x preserve

54

str If P � Q then P = Q

congr1 If P = Q then au : P = au :Q

� : P = � : Q

P +R = Q+R

(�x)P = (�x)Q

congr2 If Pfy=xg = Qfy=xg for all y 2 fn(P;Q; x) then a(x) : P = a(x) : Q

s P + P = P

m1 if x = x then P = P

m2 if x = y then P = 0 if x 6= y

mm1 if x 6= x then P = 0

mm2 if x 6= y then P = P if x 6= y

r1 (�x)� : P = � : (�x)P if x 62 �

r2 (�x)� : P = 0 if x is the subject of �

r3 (�x)(P +Q) = (�x)P + (�x)Q

Table 6: Axioms for strong late bisimilarity.

bisimilarity, and congr2 says that to infer bisimilarity of input Pre�xes it is suf-

�cient to establish bisimilarity under substitutions for the bound object. Note

that congr2 mentions only a �nite number of such substitutions: names free in

the agents under consideration plus one more name represented by x. In view of

Proposition 2 this is suÆcient since all other names can be obtained through an

injective substitution on x. Laws m1{mm2 serve to evaluate if constructs, and

therefore a clause for Match and Mismatch in congr1 is unnecessary. The reader

may remember from Section 5.1 that mm2 is not admissible in the structural con-

gruence and may therefore be surprised to see this apparently unsuitable law in

Table 6. The explanation is that mm2 is unsuitable for a congruence, since pre-

�guring both sides of it by an input pre�x may invalidate it, and that bisimilarity

is not a congruence; pre�guring with an input pre�x requires the law congr2.

r1{r2 mean that a Restriction can be pushed through a Pre�x or disappear;

the only exception is when x is the free object of � in which case neither r1 nor

r2 applies. Observe that r1 can be regarded as scope extension over Pre�x; as

was mentioned in Section 2.2 an option is to have this law as part of the structural

congruence. Finally r3 means that Restriction distributes over Sum. This law is

more powerful than scope extension over sum, since it splits one binder into two.

It is easily seen that all laws are sound, so if P = Q is provable then it must

hold that P _� Q. We shall now also prove the converse. In the following it is

important to remember that � ranges also over bound output Pre�xes of kind

a�x. Let the depth of an agent be the maximal nesting of its Pre�xes.

55

exp Let P =
P

i �i : Pi and Q =
P

j �j : Qj where bn(�i) \ fn(Q) = ; and

bn(�j) \ fn(P) = ; for all i; j, and none of �i or �j is a bound output Pre�x.

Then

P jQ =
X

i

�i : (PijQ) +
X

j

�j : (P jQj) +
X

�icomp�j

� : Rij

where the relation �icomp�j and Rij are de�ned as follows: either �i = a(x) and

�j = au in which case Rij = Pifu=xgjQj, or conversely �i = au and �j = a(x) in

which case Rij = PijQjfu=xg.

Table 7: Expansion law for strong bisimilarity.

Proposition 7 Using the axioms in Table 6 every agent P is provably equal to

a head normal form (hnf) of kind
P

i �i : Pi of no greater depth.

The proof is by induction over the structure of the agent and all cases are easy.

If P is a Match or Mismatch then m1{mm2 applies; if it is a Restriction then

r3 is used to distribute it onto the summands and r1{r2 to push it through the

Pre�xes or form part of a bound output Pre�x.

Proposition 8 If P _� Q then P = Q is provable from the axioms in Table 6.

The proof is by induction on the depths of P and Q. By Proposition 7 we can

assume P and Q are head normal forms. The base case P = Q = 0 is trivial.

For the inductive step we prove that for each summand in P there is a provably

equal summand in Q and vice versa. For example, take a summand a(x) : P 0 in

P . Assume by alpha-conversion that all top-level input actions have the same

bound object x. Then from P _� Q and P
a(x)
�! P 0 we get Q

a(x)
�! Q0 such that

P 0fu=xg _� Q0fu=xg for all u. By induction they are also provably equal for all

u. So a(x) : Q0 is a summand of Q and from congr2 we get that it is provably

equal to a(x) : P 0. The other cases are similar and simpler. So, each summand

of P is provably equivalent to a summand of Q and therefore, by the law s (and

str), P is provably equivalent to Q.

We now turn to the Parallel operator. The idea behind the axiomatisation is to

introduce an expansion law through which the composition of two head normal

forms is provably equal to a head normal form. With this law Proposition 7

will continue to hold for the calculus with Parallel, and therefore the proof of

Proposition 8 needs not change. The expansion law is given in Table 7.

The proof of Proposition 7 is now extended with an inductive step for P = QjR

where Q and R are hnfs. First use scope extension (Proposition 1) to pull any un-

guarded Restrictions in QjR to top level, obtaining an agent of kind (�~x)(Q0jR0)

where Q0 and R0 are hnfs with no bound output Pre�xes. Then apply exp to

Q0jR0 gaining an agent of type (�~x)P 0 where P 0 is a hnf, and �nally use scope

extension to push back the Restrictions inwards, gaining a hnf.

56

8.2 Congruence

Following De�nition 2 we immediately obtain an axiomatisation of � by adding

that de�nition as a law. Interestingly, there is an alternative axiomatisation

that does not involve quanti�cation over substitutions and does not refer back to

bisimilarity. Again we begin with the subcalculus without Parallel.

It is informative to begin by examining the axioms in Table 6 to see what needs

to change. The rule str is still valid and useful, and the rules congr1{congr2

can be replaced by a simpler rule saying that � is a congruence. The problematic

laws are m2 and mm2 which are unsound for congruence. For example, even

though if x = y then P and 0 are bisimilar when x 6= y they are not necessarily

congruent since a substitution fx=yg makes them non-bisimilar. In an axiom

system for � we cannot rely on axioms which eliminate unguarded Match and

Mismatch operators.

A concise presentation of the axioms depends on the notion of a Generalised

match operator written if M then P , where M is a conjunction of conditions of

type x = y and x 6= y. The Generalised match is simply de�ned to be a nested

sequence of Matches and Mismatches, one for each condition:

if m1 ^ � � � ^mk then P = if m1 then (� � � (if mk then P) � � �)

where each mi is of type x = y or x 6= y. We say that M logically implies N if all

substitutions that make the conditions in M true also make the conditions in N

true, and that they are logically equivalent, written M , N , if they imply each

other. This allows us to use the compact law gm1:

if M then P = if N then P if M , N

in place of a set of laws for nestings of Matches and Mismatches. The axioms for

strong late congruence are given in Table 8.

We comment brie
y on the new axioms. gm2 is a form of case analysis,

allowing us to split an agent to a Sum of two mutually exclusive conditions.

Writing out the de�nition of if ...then ...else this law is

if x = y then P + if x 6= y then P = P

gm3 is a kind of distributive law for Generalised match over Sum. gm4 says

that a test, once passed, can be done again after an action �, since that action

cannot invalidate the outcome of the test. Here the side condition on bn(�) is

important. gm5 embodies the essence of a match: if x and y have been deemed

equal then one can substitute the other (the substitution is de�ned to not a�ect

bn(�)). Since x = y , y = x we get from gm1 that it does not matter whether

the substitution is fy=xg or fx=yg. And combined with gm3 and gm4 we get all

instances of a stronger law if x = y then � : P = if x = y then (� : P)fx=yg

where the substitution a�ects the whole Pre�x form. Finally gm6 is the essence

57

str If P � Q then P = Q

congr \=" is preserved by all operators

s P + P = P

mm1 if x 6= x then P = 0

gm1 if M then P = if N then P if M , N

gm2 if x = y then P else P = P

gm3 if M then (P1 + P2) = if M then P1 + if M then P2

gm4 if M then � : P = if M then (� : if M then P) if bn(�) 62M

gm5 if x = y then � : P = if x = y then (�fx=yg) : P

gm6 (�x)if x = y then P = 0 if x 6= y

r1 (�x)� : P = � : (�x)P if x 62 �

r2 (�x)� : P = 0 if x is the subject of �

r3 (�x)(P +Q) = (�x)P + (�x)Q

Table 8: Axioms for strong late congruence.

of Restriction: a restricted name can never be made equal to another name so

the Match will always come out as false.

As can be seen the law mm1 is inherited from the axioms for bisimilarity. Of

course also m1 is valid but it is not necessary as an axiom since it can be derived

from gm2 and mm1. Similarly, a counterpart for Mismatch to gm6, namely

gm6* (�x)if x 6= y then P = (�x)P if x 6= y

is derivable from gm2 and gm6. Thus a Restriction can always be pushed through

a generalised match. Also, note that if x = y then 0 = 0 is derivable from mm1

and gm2.

For an example of a derivation consider (�x)ax : if x = y then P which, as

argued in Section 7.3, is congruent to (�x)ax : 0. The proof from axioms is:

(�x)ax : if x = y then P = [gm6�]

(�x)if x 6= y then ax : if x = y then P = [gm4]

(�x)if x 6= y then ax : if x 6= y then if x = y then P = [gm6�]

(�x)ax : if x 6= y then if x = y then P =

(�x)ax : if x 6= y ^ x = y then P = [gm1]

(�x)ax : if x 6= x then P = [mm1]

(�x)ax : 0

It is easy to establish that all laws are sound for congruence. The proof of

completeness uses another kind of head normal form and is more involved than

the corresponding proof for bisimilarity, and we shall here only sketch it. It relies

58

on the notion of complete conjunctions. Formally, a conjunction M is complete

on a set of names V ifM implies either x = y or x 6= y for all names x; y in V . In

other words, M expresses unambiguously which names are the same and which

are not. We say thatM agrees with a substitution � ifM implies x = y if and only

if �(x) = �(y). The main use of complete conjunctions is that if M is complete

on fn(P;Q) and agrees with �, then (if M then P) � (if M then Q) holds if

and only if P� _� Q�. In this way the substitutions arising from the transitional

semantics can be internalised and represented by Generalised matches.

De�nition 11 P is in head normal form on a �nite set of names V (V -hnf) if

P =
X

i

if Mi then �i : Pi

where for all i, bn(�i) 62 V , and each Mi is complete on V .

So a V -hnf is a Sum of Generalised matches where each conjunction is complete

on V .

Proposition 9 For any V, any agent P is provably equivalent to a V -hnf of no

greater depth.

The proof is by induction over the structure of P . If P = � : P 0 then use gm2

repeatedly to generate a Sum
P

i if Mi then � : P 0 where the Mi are complete.

If P = (�x)P 0 then by induction P 0 is a V-hnf
P

i if Mi then �i : Pi. Use

r3 to distribute (�x) onto all summands, gm6 and gm6* and str to push the

Restriction through all Mi and �nally r1{r2 to push it through all �i (unless x

is the free object of �i, in which case (�x) forms part of a bound output Pre�x).

The other cases are simple from the distributive laws.

Proposition 10 If P � Q then P = Q is provable from the axioms in Table 8.

The proof is by induction on the depths of P and Q and by the previous propo-

sition we can assume that P and Q are fn(P;Q)-hnfs. The idea of the inductive

step is as before to show that for each summand in P there is a provably equal

summand in Q. We indicate the main lines for free output summands|the case

for bound actions is a little bit more involved though the idea is the same. So

let if M then � : P 0 be a summand in P with � a free output action. Choose a

substitution � that agrees with M . Then P�
��
�! P 0�. From P � Q we get that

Q� must simulate this transition. Let if N then � :Q0 be the summand of Q

that generates the simulating transition, which implies that P 0� _� Q0�. Then N

also agrees with �, and since bothM and N are complete and agree with � we get

M , N . Therefore by gm1 we can replace N by M in the summand of Q. And

by gm5 we can replace � by �, because they can only di�er in names identi�ed

by �, meaning that M implies the equality of those names. There thus remains

59

exp2 Let P =
P

i if Mi then �i : Pi and Q =
P

j if Nj then �j : Qj where

bn(�i) \ fn(Q) = ; and bn(�j) \ fn(P) = ; for all i; j, and none of �i or �j is a

bound output Pre�x. Then

P jQ =
X

i

if Mi then �i : (PijQ) +
X

j

if Nj then �j : (P jQj)

+
X

�iopp�j

if Mi ^Ni ^ ai = bj then � : Rij

where the relation �iopp�j, ai, bj and Rij are de�ned as follows: either �i = ai(x)

and �j = bju in which case Rij = Pifu=xgjQj, or conversely �i = aiu and

�j = bj(x) in which case Rij = PijQjfu=xg.

Table 9: Expansion law for strong congruence.

to prove if M then � : P 0 = if M then � :Q0. We know that P 0� _� Q0�. Since

M is complete it holds that this implies if M then P 0 � if M then Q0, whence

by induction these are provably equivalent. We now apply gm4 (for the �rst time

in the proof!) to write if M then � : P 0 as if M then � : if M then P 0. That

means it is provably equivalent to if M then � : if M then Q0, and again by

gm4 to if M then � :Q0.

Finally we consider also the Parallel operator. By analogy with the case for

bisimilarity it is enough to include an axiom which implies that the Parallel com-

position of two V -hnfs is a V -hnf. Unfortunately the axiom exp in Table 7 is not

sound for congruence, since a substitution may identify two names and thereby

enable a communication. The amended expansion law for congruence is given

in Table 9. Note the essential use of Matches to determine if a communication

is possible. With this law propositions 9 and 10 hold. Incidentally, the law is

sound and complete also for bisimilarity, i.e., it can be used in place of exp for

the purpose of Proposition 8.

9 Variants of the Theory

We here brie
y mention the axiomatisations of the equivalences treated in Sec-

tion 7.

9.1 Early Bisimilarity and Congruence

Early bisimilarity equates more agents than late and therefore we seek more

axioms. It turns out that we need to add only one axiom to Table 6 to obtain a

complete system. This characteristic axiom for early is:

early a(x) : P + a(x) : Q =

a(x) : P + a(x) : Q+ a(x) : if x = y then P else Q

60

The example from Section 7.1:

P1 = a(x) : P + a(x) : 0; P2 = a(x) : P + a(x) : 0+ a(x) : if x = u then P

is an instance of early with Q = 0. So clearly this axiom is unsound for late

bisimilarity. The soundness for early bisimilarity is straightforward from the

de�nition.

If early is adjoined to Table 6 we get a complete axiomatisation of early

bisimilarity. The proof of this is di�erent from the corresponding proof of Propo-

sition 8 since it is no longer the case that each summand of P has a bisimilar

summand of Q. Therefore, the hnfs corresponding to P and Q must �rst be satu-

rated by applying early, from left to right, as much as possible to generate new

summands. Although the axiom can be applied ad in�nitum it turns out that

there are only a �nite number of distinct new summands that need be generated

this way. If instead early is adjoined to Table 8 then we similarly get a complete

axiomatisation of early congruence. The proof is a combination of the above idea

and the proof of Proposition 10.

Interestingly, there is an alternative to early as a characteristic law for early

congruence, namely

early2 if
P

i � : Pi =
P

j � : Qj then
P

i a(x) : Pi =
P

j a(x) : Qj

We can see that early and early2 are equipotent as follows. Consider

� : P + � : Q = � : P + � : Q+ � : if x = y then P else Q

This equation is certainly true for �, since any substitution will make the third

summand behave as either � : P or � : Q. Hence all instances are derivable from

the laws in Table 8. Applying early2 to the equation we get early. So any

equation that can be derived with early can also be derived with early2. The

converse follows by the fact that early yields a complete axiomatisation for �E

and early2 is sound.

Similarly, a version of early2 for early bisimilarity is

early2
0

if 8u :
P

i � : Pifu=xg =
P

j � : Qjfu=xg then
P

i a(x) : Pi =
P

j a(x) : Qj

This may appear more complicated than early but it also replaces congr2

and an interesting point is that it does not introduce a Mismatch operator. In

the subcalculus without Mismatch we can therefore axiomatise late and early

bisimilarity (just dropmm1 andmm2 from Table 6). In contrast, for late and early

congruence the Mismatch operator plays a signi�cant role in forming complete

Generalised matches, so axiomatisations without Mismatch must take a di�erent

route.

61

9.2 Open Bisimilarity

The remaining interesting equivalence in Figure 2, open bisimilarity (which also

is open congruence), is special in that it is only de�ned for the subcalculus with-

out Mismatch. The way to axiomatise it goes through the relations _�D
O (open

bisimilarity under distinction D) so the axiomatisation schematically gives rules

for all D. The axioms in Table 8 need some modi�cations. All axioms mention-

ing Mismatch are dropped; this means that mm1 and gm2 are omitted and in

gm1,3,4 M ranges over Generalised matches with no negative conjuncts. A new

axiom

gm7 P + if x = y then P = P

is added (in the original Table 8 this is derivable through s and gm2). Finally

for the interplay between di�erent distinctions we add the following laws, where

=D means provable equality under distinction D,

d1 if x = y then P =D 0 if xDy

d2 P =D Q implies P =D0 Q if D � D0

d3 P =D Q implies (�x)P =D�x (�x)Q

Here D� x means the distinction where all pairs containing x are removed from

D. Because of these laws gm6 is derivable and needs not be taken as an axiom.

With these changes we obtain a complete axiomatisation of _�D
O for all D.

The proof is substantially more complicated than for Proposition 10. It uses a

notion of head normal form with summands of type if M then � : P , and with

the extra requirement that there are no unnecessary summands (a summand P

is unnecessary if there is another summand Q and Q _�O Q + P). The proof

that all agents are provably equal to such head normal forms uses, among other

things, the new law gm7 in order to remove unnecessary summands. The idea

of the completeness proof is that given two bisimilar head normal forms, each

summand in one of them is provably equal to a summand in the other.

9.3 Weak Congruence

Finally, for the weak late and early congruences (axiomatisations of weak open

congruence have not yet been investigated) it is enough to add the three standard

so called � -laws:

t1 � : � : P = � : P

t2 P + � : P = � : P

t3 � : (P + � : Q) = � : (P + � : Q) + � :Q

The proof follows the same lines as the corresponding proof in CCS: the head

normal forms must be saturated in the sense that if P
�

=) P 0 then P has a

summand � : P 0. To see an example derivation which demonstrates the subtlety

62

strong bisimilarity strong congruence weak congruence

late Table 6 Table 8

Table 8

and

t1, t2, t3

early

Table 6

and

early or early20

Table 8

and

early or early2

Table 8

and

early or early2

and

t1, t2, t3

open

Table 8 except laws for Mismatch

and

gm7, d1, d2, d3

not investigated

Table 10: Axiomatisations of the bisimilarities and congruences.

of the interplay between � -actions and the laws for Match and Mismatch, and

highlights a technique used in the completeness proof, suppose we want to prove

a(x):(P + if x = y then � : P) = a(x) : P

Clearly this holds, since (P + if x = y then � : P)fu=xg is weakly bisimilar

to Pfu=xg for all u. The complication is that (P + if x = y then � : P) is

not weakly congruent to P , since the former has an initial � -transition for the

substitution fy=xg. The proof technique is therefore to �rst infer

� : (P + if x = y then � : P) = � : P

and then use congr, pre�xing both sides by a(x), and t1 to remove the � . The

inference of � : (P + if x = y then � : P) = � : P is as follows:

� : (P + if x = y then � : P) = (gm2)

if x = y then � : (P + if x = y then � : P)

+ if x 6= y then � : (P + if x = y then � : P) = (gm1; 3; 4)

if x = y then � : (P + � : P) + if x 6= y then � : P = (t2)

if x = y then � : � : P + if x 6= y then � : P = (t1)

if x = y then � : P + if x 6= y then � : P = (gm2)

� : P

The di�erent axiomatisations are summarised in Table 10.

63

10 Sources

Early Developments

Computational models where mobility plays a predominant role have been present

at least since the mid 1970's in the so called actor systems by Carl Hewitt and

Gul Agha [18, 2]. Technically the �-calculus has its roots in process algebras

like Robin Milner's CCS, originally developed in the late 1970's [22, 23]. The

�rst e�orts to extend CCS with the ability to pass communication channels were

by Egidio Astesiano and Elena Zucca (1984) and by U�e Engberg and Mogens

Nielsen (1986) [4, 12]. These calculi turned out to be quite complex. The �-

calculus in its present form was developed in the late 1980's by Milner, David

Walker and myself; it was �rst presented at seminars in 1987, the �rst compre-

hensive technical reports appeared in 1989 and the journal publication in 1992

[30]. It builds on the article by Engberg and Nielsen, and simpli�es it by using

a single syntactical class of names to represent values, variables and channels.

There it is shown how to encode data types and a version of the lambda calculus;

it also explores the operational semantics (late semantics without use of struc-

tural congruence), de�nes late and early bisimilarity and congruence and gives

the axiomatisation of late bisimilarity. The calculus is very similar to the one

presented here, though there is no Mismatch operator and some di�erences in

notation. For example Restriction (�x) is written (x), and if x = y then P is

written more compactly [x = y]P , a notation that many papers on the �-calculus

follow.

Introductions and Overviews

Today the �-calculus and related theories make up a large and diverse �eld with

hundreds of published papers. Perhaps the main sign of vitality is not the the-

oretical developments, but rather the numerous calculi, computational models

and languages that borrow semantics or central concepts from � and are aimed

at more focussed areas of application, such as PICT, Facile, Join, Ambients, Spi,

POOL,. . . the list can be made very long [45, 46, 8, 15, 11, 1, 57]. A brief overview

from 1998 by Uwe Nestmann and Bj�orn Victor indicate the main issues and is

accompanied by a well maintained and exhaustive searchable on-line bibliography

founded in 1995 [35]. Nestmann also currently maintains the web page Calculi

for Mobile processes at

http://www.cs.auc.dk/mobility/

with links to introductory papers, active researchers, departments, projects and

other resources. In view of these e�orts it seems excessive to here attempt a

substantial overview or list of references. If a single introductory article for the

layman should be mentioned it must be Milner's 1991 Turing Award Lecture [26].

64

A newcomer to the �eld may also appreciate my article from 1993 using graphs

instead of formulas, with an emphasis on how various basic computational struc-

tures are represented through name-passing [39]. Otherwise a standard text is

Milner's tutorial on the polyadic �-calculus (1991), and also his recent book

(1999) is aimed at a non-specialist audience [27, 29]. A short introduction to a

simple variant of the �-calculus in comparison to the lambda-calculus is given by

Benjamin Pierce (1996) [43].

A reader seeking more detailed information concerning some speci�c topic is

well advised to �rst consult Kohei Honda's annotated on-line bibliography (reach-

able from the URL above); it is not exhaustive and not updated as frequently as

the one by Nestmann and Victor, but focuses on a few central issues and explains

the impact of each paper.

Below I brie
y mention the main sources for the aspects of the calculus elab-

orated in this introduction. The chronology refers to the �rst written account

of a piece of work known to me; the corresponding conference paper or journal

article is often published a couple of years later.

Variants of the Calculus

The Mismatch operator �rst appeared in 1990 and was used by Davide Sangiorgi

and me in 1993 [38, 41]. The role of the Sum operator has been studied by Catus-

cia Palamidessi (1997) where she shows that it is necessary for the representation

of certain distributed algorithms, and by Nestmann (1997) and Nestmann and

Pierce (1996) where encodings of Sum for special cases are analysed (the encoding

in Section 3.5 comes from the latter article) [37, 33, 34]. The polyadic calculus

with the sort system given in Section 3.3 was introduced by Milner in his 1991

tutorial. The ideas for encoding the polyadic calculus into the monadic have

been known since the �rst papers on the �-calculus but were not studied in detail

until 1996 by Nobuko Yoshida and 1998 by Paola Quaglia and Walker [58, 47].

Type inference algorithms were �rst presented independently by Simon Gay and

by Vasco Vasconcelos and Honda in 1993 [16, 55]. More elaborate systems for

types and sorts have been presented by many others. Prominent issues are more

re�ned types, for example distinguishing di�erent uses of a channel for input

and output, subtyping, polymorphism and higher-order types. A survey of such

systems remains to be written although Honda's bibliography mentioned above

explains many of the contributions. The slides of a good introductory tutorial by

Pierce (1998) are available on-line from the author's home page (reachable from

the URL for the mobility home page above) [44].

Replication in place of recursion was �rst suggested by Milner in a paper

on encodings of the lambda-calculus 1990, and although the relationship between

lambda and � has subsequently been treated by many authors that paper remains

the principal reference [25]. The issue is to some extent connected to higher-

order process calculi. Bent Thomsen, G�erard Boudol and Flemming Nielson

65

were the �rst to study such calculi in detail (independently 1989, these calculi

di�er signi�cantly from the �-calculus) [53, 9, 36, 54]. The connection with the

lambda-calculus was later clari�ed by Sangiorgi, who also studied the encoding

of the higher-order �-calculus into the standard calculus [49].

The signi�cance of the asynchronous calculus was discovered independently by

Kohei Honda and Mario Tokoro 1991 and by Boudol 1992 [19, 10]. A particularly

interesting variant is the subcalculus without free output actions, which has a

simpler theory and retains a surprising expressive power, as demonstrated by

Sangiorgi and Michele Boreale (1996) [50, 6]. Sangiorgi has recently written a

tutorial on the subject [52].

Variants of the Semantics

The �rst presentation of a structural congruence and reduction semantics is by

Milner (1990) [25], inspired by the chemical abstract machines of G�erard Berry

and Boudol from 1989 [5] and Milner also gave the semantics for abstractions

and concretions (with a slightly di�erent notation; Milner prefers P � c : E to

P
c

�! E) in his 1991 tutorial. The early semantics was �rst presented by Milner,

Walker and myself in 1991 [31].

Symbolic transitions and their use in decision procedures for bisimulation

equivalences were introduced by Matthew Hennessy and Huimin Lin in 1992 for

a process algebra where values (but not channel names) are transmitted between

agents [17]. Another chapter in this handbook by Anna Ing�olfsd�ottir and Lin

treats this issue in full. The semantics was subsequently adapted by Lin (1994)

to the �-calculus [20, 21]. Similar ideas were developed in parallel by Boreale

and Rocco de Nicola [7]. Symbolic transitions are also used by Faron Moller and

Bj�orn Victor in an automatic veri�cation tool (1994) [56].

Variants of Bisimilarity

Early bisimilarity was mentioned in the �rst paper on the calculus and was stud-

ied in more depth by Milner, Walker and myself (1991) along with modal logics

which clarify the relationship between late and early bisimulation [31]. The re-

sults on barbed congruence are primarily due to Milner and Sangiorgi (1992) and

are developed in Sangiorgi's PhD Thesis [32, 48]. A version of barbed congruence

for the asynchronous subcalculus is de�ned and axiomatised by Roberto Ama-

dio, Ilaria Castellani and Sangiorgi (1996) [3]; the example at the very end of

Section 7.2 is from that paper.

Open bisimulation (both strong and weak) and its axiomatisation (only strong)

is due to Sangiorgi 1993 who also uses a symbolic semantics [51]. The weak late

and early bisimulation equivalences and congruences were �rst formulated by

Milner (1990) [24].

66

Algebraic Theory

Strong late bisimilarity was axiomatised in the �rst paper on the calculus. San-

giorgi and I axiomatised strong late congruence and early bisimilarity and con-

gruence (through the law early) in 1993; the axiomatisations given here mainly

follow that work [41]. Axiomatisations of the weak congruences (late and early)

have been treated by Lin in a style slightly di�erent from what has been pre-

sented here [21]. The law early2 also comes from this line of work. Inferences

are there of kind C . P = Q meaning \under condition C it holds that P = Q",

which we would express as if C then P = if C then Q, making the condition

part of the agents. The fact that this yields an isomorphic proof system was only

recently established [40]. An alternative presentation of weak late congruence

and its axiomatisation is by Gianluigi Ferrari, Ugo Montanari and Paola Quaglia

(1995) [14].

Unifying E�orts

In this growing and diversifying �eld it is also appropriate to mention a few e�orts

at uni�cation. The action calculi by Milner (emanating from the work on action

structures 1992) separate the concerns of parametric dependency and execution

control [28]. The tiles structures by Ferrari and Montanari (emanating from

work with Fabio Gaducci 1995) generalise the concepts of context and context

composition [13]. The Fusion Calculus by Victor and myself (begun in 1997)

identi�es a single binding operator which can be used to derive both input and

Restriction [42]. Although each has made some progress it is clear that much

work remains to be done.

Acknowledgements

I thank Huimin Lin, Davide Sangiorgi, Thomas Noll, Gunnar �Overgaard, and the

anonymous referees for many helpful comments.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The

Spi calculus. Journal of Information and Computation, 143:1{70, 1999. An

extended abstract appeared in the Proceedings of the Fourth ACM Con-

ference on Computer and Communications Security (Z�urich, April 1997).

An extended version of this paper appears as Research Report 149, Digital

Equipment Corporation Systems Research Center, January 1998, and, in

preliminary form, as Technical Report 414, University of Cambridge Com-

puter Laboratory, January 1997.

67

[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Sys-

tems. MIT Press, 1986.

[3] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-

chronous �-calculus. Theoretical Computer Science, 195(2):291{324, 1998.

An extended abstract appeared in Proceedings of CONCUR '96, LNCS 1119:

147{162.

[4] E. Astesiano and E. Zucca. Parametric channels via label expressions in

CCS. Theoretical Computer Science, 33:45{64, 1984.

[5] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Com-

puter Science, 96:217{248, 1992.

[6] M. Boreale. On the expressiveness of internal mobility in name-passing

calculi. Theoretical Computer Science, 195(2):205{226, 1998. An extended

abstract appeared in Proceedings of CONCUR '96, LNCS 1119: 163{178.

[7] M. Boreale and R. De Nicola. A symbolic semantics for the �-calculus.

Journal of Information and Computation, 126(1):34{52, 1996. Available

as Report SI 94 RR 04, Universit�a \La Sapienza" di Roma; an extended

abstract appeared in Proceedings of CONCUR '94, pages 299{314, LNCS

836.

[8] R. Borgia, P. Degano, C. Priami, L. Leth, and B. Thomsen. Understanding

mobile agents via a non interleaving semantics for Facile. In R. Cousot and

D. A. Schmidt, editors, Proceedings of SAS '96, volume 1145 of LNCS, pages

98{112. Springer, 1996. Extended version as Technical Report ECRC-96-4,

1996.

[9] G. Boudol. Towards a lambda-calculus for concurrent and communicating

systems. In J. D��az and F. Orejas, editors, Proceedings of TAPSOFT '89,

Volume 1, volume 351 of LNCS, pages 149{161. Springer, 1989.

[10] G. Boudol. Asynchrony and the �-calculus (note). Rapport de Recherche

1702, INRIA Sophia-Antipolis, May 1992.

[11] L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat, editor, Pro-

ceedings of FoSSaCS '98, volume 1378 of LNCS, pages 140{155. Springer,

1998.

[12] U. Engberg and M. Nielsen. A calculus of communicating systems with label-

passing. Technical Report DAIMI PB-208, Comp. Sc. Department, Univ. of

Aarhus, Denmark, 1986.

68

[13] G. Ferrari and U. Montanari. A tile-based coordination view of asynchronous

�-calculus. In I. Pr�ivara and P. Ru�zi�cka, editors, Proceedings of MFCS '97,

volume 1295 of LNCS. Springer, Aug. 1994.

[14] G. Ferrari, U. Montanari, and P. Quaglia. The weak late �-calculus semantics

as observation equivalence. In I. Lee and S. A. Smolka, editors, Proceedings

of CONCUR '95, volume 962 of LNCS, pages 57{71. Springer, 1995.

[15] C. Fournet and G. Gonthier. The re
exive chemical abstract machine and

the join-calculus. In J. G. Steele, editor, Proceedings of POPL '96, pages

372{385. ACM, Jan. 1996.

[16] S. J. Gay. A sort inference algorithm for the polyadic �-calculus. In Pro-

ceedings of POPL '93. ACM, January 1993.

[17] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer

Science, 138(2):353{389, 1995. Earlier version as Technical Report 1/92,

School of Cognitive and Computing Sciences, University of Sussex, UK.

[18] C. Hewitt. Viewing control structures as patterns of passing messages. Jour-

nal of Arti�cial Intelligence, 8:323{364, 1977.

[19] K. Honda and M. Tokoro. An object calculus for asynchronous communi-

cation. In P. America, editor, Proceedings of ECOOP '91, volume 512 of

LNCS, pages 133{147. Springer, July 1991.

[20] H. Lin. Symbolic bisimulation and proof systems for the �-calculus. Tech-

nical Report 7/94, School of Cognitive and Computing Sciences, University

of Sussex, UK, 1994.

[21] H. Lin. Complete inference systems for weak bisimulation equivalences in

the �-calculus. In P. D. Mosses, M. Nielsen, and M. I. Schwarzbach, editors,

Proceedings of TAPSOFT '95, volume 915 of LNCS, pages 187{201. Springer,

1995. Presented in the CAAP-section. Available as Technical Report ISCAS-

LCS-94-11, Institute of Software, Chinese Academy of Sciences, 1994.

[22] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS.

Springer-Verlag, 1980.

[23] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[24] R. Milner. Weak bisimilarity: Congruences and equivalences, 1990. �-

calculus note RM10, Manuscript.

[25] R. Milner. Functions as processes. Journal of Mathematical Structures

in Computer Science, 2(2):119{141, 1992. Previous version as Rapport de

Recherche 1154, INRIA Sophia-Antipolis, 1990, and in Proceedings of ICALP

'91, LNCS 443.

69

[26] R. Milner. Elements of interaction. Communications of the ACM, 36(1):78{

89, 1993. Turing Award Lecture.

[27] R. Milner. The polyadic �-calculus: A tutorial. In F. L. Bauer, W. Brauer,

and H. Schwichtenberg, editors, Logic and Algebra of Speci�cation, volume 94

of Series F. NATO ASI, Springer, 1993. Available as Technical Report ECS-

LFCS-91-180, University of Edinburgh, October 1991.

[28] R. Milner. Calculi for interaction. Acta Informatica, 3(8):707{737, 1996.

[29] R. Milner. Communicating and Mobile Systems: the �-Calculus. Cambridge

University Press, May 1999.

[30] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part

I/II. Journal of Information and Computation, 100:1{77, Sept. 1992.

[31] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes.

Theoretical Computer Science, 114:149{171, 1993.

[32] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor,

Proceedings of ICALP '92, volume 623 of LNCS, pages 685{695. Springer,

1992.

[33] U. Nestmann. What is a `good' encoding of guarded choice? In

C. Palamidessi and J. Parrow, editors, Proceedings of EXPRESS '97, vol-

ume 7 of ENTCS. Elsevier Science Publishers, 1997. Full version as report

BRICS-RS-97-45, Universities of Aalborg and �Arhus, Denmark, 1997. Re-

vised version accepted (1998) for Journal of Information and Computation.

[34] U. Nestmann and B. C. Pierce. Decoding choice encodings. In U. Mon-

tanari and V. Sassone, editors, Proceedings of CONCUR '96, volume 1119

of LNCS, pages 179{194. Springer, 1996. Revised full version as report

ERCIM-10/97-R051, European Research Consortium for Informatics and

Mathematics, 1997.

[35] U. Nestmann and B. Victor. Calculi for mobile processes: Bibliography and

web pages. Bulletin of the EATCS, 64:139{144, February 1998.

[36] F. Nielson. The typed �-calculus with �rst-class processes. In

Proc. PARLE'89, volume 366 of Lecture Notes in Computer Science, pages

357{373. Springer-Verlag, 1989.

[37] C. Palamidessi. Comparing the expressive power of the synchronous and the

asynchronous �-calculus. In Proceedings of POPL '97, pages 256{265. ACM,

Jan. 1997.

70

[38] J. Parrow. Mismatching and early equivalence, 1990. �-calculus note JP13,

Manuscript.

[39] J. Parrow. Interaction diagrams. Nordic Journal of Computing, 2:407{443,

1995. A previous version appeared in Proceedings of A Decade in Concur-

rency, LNCS 803: 477{508, 1993.

[40] J. Parrow. On the relationship between two proof systems for the pi-calculus,

1999. �-calculus note JP15, Manuscript. Available from the author.

[41] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi.

Journal of Information and Computation, 120(2):174{197, 1995. A previous

version appeared in Proceedings of A Decade in Concurrency, LNCS 803:

477{508, 1993.

[42] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symme-

try in mobile processes. In Proceedings of LICS '98, pages 176{185. IEEE,

Computer Society Press, July 1998.

[43] B. C. Pierce. Foundational calculi for programming languages. In A. B.

Tucker, editor, Handbook of Computer Science and Engineering, chapter

139. CRC Press, 1996.

[44] B. C. Pierce. Type systems for concurrent calculi, Sept. 1998. Invited tutorial

at CONCUR, Nice, France.

[45] B. C. Pierce and D. N. Turner. Concurrent objects in a process calculus. In

T. Ito and A. Yonezawa, editors, Proceedings of TPPP '94, volume 907 of

LNCS, pages 187{215. Springer, 1995.

[46] B. C. Pierce and D. N. Turner. Pict: A programming language based on the

pi-calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language

and Interaction: Essays in Honour of Robin Milner, 1999. To appear.

[47] P. Quaglia and D. Walker. On encoding p� in m�. In V. Arvind and R. Ra-

manujam, editors, 18th Conference on Foundations of Software Technology

and Theoretical Computer Science (Chennai, India, December 17{19, 1998),

lncs. sv, Dec. 1998.

[48] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and

Higher-Order Paradigms. PhD thesis, LFCS, University of Edinburgh, 1993.

CST-99-93 (also published as ECS-LFCS-93-266).

[49] D. Sangiorgi. Bisimulation in higher-order process calculi. Journal of In-

formation and Computation, 131:141{178, 1996. Available as Rapport de

71

Recherche RR-2508, INRIA Sophia-Antipolis, 1995. An early version ap-

peared in Proceedings of PROCOMET'94, pages 207{224. IFIP. North Hol-

land Publisher.

[50] D. Sangiorgi. �-calculus, internal mobility and agent-passing calculi. The-

oretical Computer Science, 167(1,2):235{274, 1996. Also as Rapport de

Recherche RR-2539, INRIA Sophia-Antipolis, 1995. Extracts of parts of the

material contained in this paper can be found in Proceedings of TAPSOFT

'95 and ICALP '95.

[51] D. Sangiorgi. A theory of bisimulation for the �-calculus. Acta Informat-

ica, 33:69{97, 1996. Earlier version published as Report ECS-LFCS-93-270,

University of Edinburgh. An extended abstract appeared in the Proceedings

of CONCUR '93, LNCS 715.

[52] D. Sangiorgi. Asynchronous process calculi: The �rst-order and higher-order

paradigms, 1999. To appear in Theoretical Computer Science.

[53] B. Thomsen. A calculus of higher order communicating systems. In Pro-

ceedings of POPL '89, pages 143{154. ACM, January 1989.

[54] B. Thomsen. Plain CHOCS. A second generation calculus for higher order

processes. Acta Informatica, 30(1):1{59, 1993.

[55] V. T. Vasconcelos and K. Honda. Principal typing schemes in a polyadic

�-calculus. In E. Best, editor, Proceedings of CONCUR '93, volume 715 of

LNCS, pages 524{538. Springer, 1993.

[56] B. Victor and F. Moller. The Mobility Workbench | a tool for the �-

calculus. In D. Dill, editor, Proceedings of CAV '94, volume 818 of LNCS,

pages 428{440. Springer, 1994.

[57] D. Walker. Objects in the �-calculus. Journal of Information and Compu-

tation, 116(2):253{271, 1995.

[58] N. Yoshida. Graph types for monadic mobile processes. In V. Chandru and

V. Vinay, editors, Proceedings of FSTTCS '96, volume 1180 of LNCS, pages

371{386. Springer, 1996. Full version as Technical Report ECS-LFCS-96-350,

University of Edinburgh.

72

