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ABSTRACT

We study thecomputational limitof Constraint Satisfaction Prob-
lems (CSP’s) allowingnfinitely, or unboundedly many indexed
variables as in, e.gx; > z;42 for eachi = 1,2,.... We refer

to these CSP’s amfinite CSP’s (ICSP’s) These problems arise
in contexts in which the number of variables is unknown a priori
as well as in optimization problems wrt the number of variables
satisfying a given finite set of constraints.

In particular, we investigate the decidability of the satisfiabil-
ity problem for ICSP’s wrt (a) the first-order theory specifying
theindicesof variables and (b) the dimension of the indices. We
first show that (1) if the indices are one-dimensional and speci-
fied in the theory of the natural numbers with linear order (the the-
ory of (N, 0, suce, <)) then the satisfiability problem tecidable
We then prove that, in contrast to (1), (2) if we move to the two-
dimensional case then the satisfiability problerarislecidableor
indices specified ifN, 0, succ, <) and even in(N, 0, succ). Fi-
nally, we show that, in contrast to (1) and (2), already in the one-
dimensional case (3) if we also allow addition, we get undecidabil-
ity. l.e., if the one-dimensional indices are specifiedmsburger
arithmetic(i.e., the theory ofN, 0, succ, <, +)) then satisfiability
is undecidable

Categories and Subject Descriptors

F.4.1 Mathematical Logic and Formal Language$: Mathemat-
ical Logic—Logic and constraint programming F.4.2 Mathe-
matical Logic and Formal Language$: Grammars and Other
Rewriting Systems-Becision problems

General Terms
Theory
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1. INTRODUCTION

In many constraint applications the number of variables may not
be not known a priori, hence it can naturally be modeled as being
infinite (or unboundedas done, e.g., in [3 4 8]. This particularly
applies to today’s applications due to the advent of the Internet. For
instance, we may want to specify constraints over the resources of
a high-scale distributed network and these resources may be con-
tinuously added to the network. In fact, the study of algorithms for
this kind of CSP’s and their applications have been considered in
several work, e.g., [34 7].

Nevertheless, to our knowledge, there is no work on the com-
putational limits for the satisfiability of CSP’s allowing infinitely
(or unboundedly) many variables. |.e., studies establishing, for in-
teresting classes of these problems, whether their satisfiability can
actually becomputationallydetermined. In traditional CSP’s this is
not a issue since everything in them has a finite nature. But itis cer-
tainly an issue when you allow an infinite (or unbounded) number
of variables, even when taking on values from finite domains.

For example, a designer may formulate CSP’s for unbounded
number of variables by using constraint specifications over an in-
finite number of variables of the form, e.g:;; > x;41 for ¢ =
2,4,6,... or with two-dimensional indexes like in; ; = z; ;-1
for all 4,7 > 0. This way, the designer wishes to express that
his/her specification must be satisfiable fory numberof vari-
ables. It may simply turn out, however, that determining the sat-
isfiability of a given specification of this kind is computationally
impossible, i.eundecidable

Another example of the relevanceagcidabilityfor CSP’s with
unbounded number of variables has to do wvaighimization prob-
lem of the kind suggested by [2]. For example, suppose you are
asked to provide terminatingalgorithm.4 such that: Given a CSP
P with an unbounded number of variables z1, .. ., A should re-
turn the maximal number. € N of variableszy, z1, . . ., 2, Such
that P is satisfiable. Additionally, if suci does not exist4 must
report this. One might suggest an algoritbfithat tries incremen-
tally different values ofn until it finds the first one after which the
problem is no longer satisfiable. Notice, however that some given
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maximalm does not exist. Hence, the suggested algorithm may ac-
tually never terminate on suchfa In fact, for some natural classes
of ICSP’s the algorithm4 cannotexist because, as we shall show
in this paper, decidability of their satisfiability is undecidable thus
contradicting the existence of.



Approach. Constraint problems with unbounded number of vari-  will determine whether) € Th(.A) for any first-order formulap
ables are typically specified with expressions generating constraintsover sig(.A). A structure iscountableiff its universe is countable.
over infinitely many indexedariables; e.g.x; > z;y1 fori =

0,2,.... In this paper we shall model CSP’s that allow constraints Related Work

oninfinitely many indexed variabldmit each taking on values from  CSP’s with unboundedly many variables, their relevance, and al-

afinite domain. We call these problertiginite CSP’S(ICSP’s). In gorithms for them have been reported in other works, e.g., [4 7].
particular we investigate the decidability of tkatisfiability (i.e., To our knowledge, however, there is no work on the computa-
the existence of solutions) for ICSP’s wrt two properties on the tjonal limits of determining the satisfiability of these problems; i.e.,
indices of the variables. Namely, thedex dimensione.g., of whether it is computational possible.

the formz; (one dimensional), at ; (two dimensional), and the An infinite CSP, and more precisely an infinite SAT, was studied
Ianguag_e to specify expressions over the indieeg., using index by Freedman [8]. He used concrete groups as indexing structures
comparison and summations as uf;, x4 ;) forall j < i". and tried to establish a connection between easy (hard) problems in

the finite case and decidable (undecidable) problems in the infinite
Results.The results we present in this paper are the following:  case. More recently, in [3] the computational complexity of infinite
CSP’s was studied in the algebraic settings. In both papers the em-

1. Ifthe ICSP’s variable indices are one-dimensional and spec- phasis is on theomplexity of the ICSRwhile in the present paper
ified in the theory of the natural numbers with linear order \ye are mainly concerned wittecidability issues

(the theory of(N, 0, succ, <)) then the ICSP satisfiability is There has been some work on dynamic variable generation, e.g.,
decidable An instance of this class of problems is an ICSP 141 | oosely speaking, this approach can be used to solve an in-
with constraints of the form; < @ for: =0,2,4,.... finite CSP by "approximating” it by a sequence of finite CSP’s.

Note, though, that there are satisfiable CSP’s whose finite frag-
ments are unsatisfiable. Toy examples include the Pigeon-Hole
Principle (there is a bijection between a set and the same set with
one element removed) and the Least Number Principle (there is a
partial order that has no minimal element). Thus the dynamic vari-

able generation would fail on these examples.

3. If the indices are specified Presburger arithmetici.e., the The authors in [10] showed some evidence that, in general, it
theory of(N, 0, succ, <, +) then satisfiability isindecidable would be hard to find a connection between the computational com-

already in the one-dimensional case. An instance of this class Plexity of a finite CSP and the recursive complexity of its infinite
of ICSP’s may have constraints such@as< z; for i = counter-part. Thus we entirely concentrate on the decidability bar-
rier that depends, in our case, on the indexing structure as well as
the arity of indices, and completely ignore the complexity issues.

2. In contrast to (1) we prove that for the two-dimensional case,
ICSP satisfiability isundecidablefor indices specified in
(N, 0, succ) and hence also ifN, 0, succ, <)—E.g., ICSP’s
with constraints of the form; ; = x;_1 ;41 for eachi, j =
0,1,2,....

1,2,...—where2:; e 1+ 1.

Another noteworthy aspect of our work is that result (1) is ob-
tained by establishing a connection between ICSP’s and Finite-2, |CSP’S
State Automata. Several theoretical and implementational work, Here we define our framework fonodelingCSP’s allowing in-
specially in the area of Verification have been carried out for Finite- finitely (unboundedly) many indexed variables; ICSP’s. We find it

State Automata. Therefore, we may hope to benefit from this con- ,nyenjent to parameterize ICSP’s with iadexing structurehat
nection both for theoretical and application purposes in the study of specifies the indices of their variables.

ICSP. For example, we may be able to tailor the successful MONA A infinite constraint satisfaction problem (ICSP) consists of

verification tool [11] to deal with some classes of ICSP’s. finitely many symbols:, , . . ., € X which can be indexed to gen-

i ; erateinfinitely many indexed variable$Ve assume that eaahe
Preliminaries X isranked i.e., it has arank (or arity), denoted asank(x),
We assume that the reader is familiar with basic concepts of Com- that indicates the number of indexes the symbol can take, e.g., if
putability and Logic such as Turing Machines, Finite-State Au- rank(z) = 2 then we can index asz; 3—to avoid too many sub-
tomata, Decidability, countable sets, Truth and first-order formu- index levels we should sometimes write exg1, 3) to meanz; .

lae. Astructure A = (|.A], ®) consists of auniverse|.A| and an In an ICSP, the indexed variables take values from a given finite
interpretationfunction ® whose domain is a set of constant, func-  domainX and must satisfy the constraints specified in a given set
tion, and predicate symbolgg(A); thesignatureof .A. The func- R,e.g.xz; > z; forall j < i.

tion @ interprets each constant, function and predicate symbol in  Now, in order to provide a finite representation of ICSP’s we
sig(A), according to itsrank (also calledarity), as an element,  shall usefirst-order theoriesas the language to specify the indices
function, or relation ovet.A| in the obvious way. Typically, the  of variables—clearly, such theories must be decidable to hope for
function @ is omitted and replaced by its domain whenegeis decidable families (wrt to satisfiability) of ICSP’s. Typically, the
clear from the context. For example, the structure of arithmetic is indices are natural numbers for one-dimensional indices, or tuples
(N, 0,1, +, <, x) where the constant symbdils1 are respectively  of natural numbers for the multi-dimensional case. Thus, it seems
interpreted as the numbers zero and one, the binary function sym-natural to useountable structurewith decidable theories. Exam-

bols+, x as natural number addition and multiplication, ands ples of such structures include among others:
interpreted as the less relation on the natural numbers:-8orted

structure is a structure with universes (or sorts). In such struc- e (N,0, suce, <, +) (Presburger arithmetig
tures the symbols and variables are assigned sorts and interpreted

accordingly. ®

Given a structured, thefirst-order theoryof A, Th(.A), is the
set of all first-order formulae ovetig(.A) that are true ind. The
set Th(A) is decidableiff there exists an effective procedure that .

(
(N, 0, succ, <) (Linear-order arithmetig,
(N, 0, succ) (Successor arithmetic

(

{0,...,n—1},0, succ, <, +, x) (Arithmetic modulo h



All'in all, ICSP’s are tuples of the forn? = (Z, X, 3, R). In-
tuitively, P specifies a problem with an infinite setinflexed vari-
ables Vars(P) generated by indexing the symbolsihwith (se-
quences of) elements ¢f| whereZ is a countable structure with
decidableTh(Z). The indexed variables ifvars(P) take on val-
ues from the finitelomainX while complying with theconstraints
given by theconstraint-patternsn R. Now, a constraint-pattern
specifies what indexed variables its constraishould be applied
to. For example, we shall use constraints patterns such as

<vl >7 > 42, 37' >j<i; C[‘T(Z)7 y(])])
to mean:
“For each i > 42, there existg < ¢ such thate(z;, y;) holds”

The expressiol; >4 > 42, anuniversal index-generatppro-
duces all indices greater than forty-two, and; > j < 4, anexis-
tential index-generatgmproduces some indexsuch that < j.

The above intuition about ICSP’s is made precise by the follow-
ing definition.

DEFINITION 2.1 (ICSP5). AnICSPP = (Z, X,X, R) is a
tuple satisfying the following:
e 7 is a countable structure an@’h(Z) is decidable; then-
dexing structure
e X is afinite set of ranked symbols; thelexable-variables
e Y is afinite set of constants; tltmain of values

e R is a finite set ofconstraint patterns.A constraint pat-
tern has the formG[i1], ..., Glin]; c[z1(s1), ..., @n(sn)])
wherec C X" is ann-ary relation calledconstraintand for
k=1,...,n:

- Glix] = Qik > ¢ With Q € {V, 3} and ¢ (i1, . .
a formula oversig(Z) with free-variableg, . .

— zr € X andsy € {il, .,.,in}mnk(zk).

7Zk)

EachGlix] is called anindex-generatoof i; universalif it
takes the fornv;, > ¢, existentialotherwise.

Define Vars(P), the (indexed) variablesf P, as the set of all
x(t), also written ast;, withz € X andt € |Z|™*® . O

A solution of an ICSPP = (Z, X, %, R) is an assignment of
values from the domai to the variablesVars(P) that satisfies
the constraints specified by the constraints-patteris iRormally,

DEFINITION 2.4 (SATISFIABILITY ). LetP = (Z,X,3, R)
be an ICSP. LeT» be the (two-sorted) structure that results from
extendingZ with a universeX, the symbols inX and Vars(P),
and, for each constraintin R, a symbok, interpreted as the rela-
tion c.

Aninterpretation(or assignmentv : Vars(P) — X assigns to
eachz(t) € Vars(P) avalue inX. An assignment is said to be
solution ofthe ICSPP if and only if for every constraint pattern
(G[i1], - .., Glinl; clzi(s1), ..., zn(sn)]) € R, v satisfies, in the
structureZp, the formula

Qlil((bl o %12(¢2 ... Qni7L(¢’lL oy 5($1(81)7 e

wheree;, == if Q, = Velsee, = A.
An ICSP issatisfiabldf and only if it has a solution. []

yZn(5n)))))

ExAMPLE 2.5. The ICSPP in Example 2.3 is satisfiable. Ver-
ify that the assignment(xo) = 1,v(z1) = 0,v(z2) = 1,v(x3) =
0,v(z4) =1,...Iis asolution ofP.

3. SOME SIMPLE ICSP’S EXAMPLES

Interesting applications of CSP with unbounded number of vari-
ables can be found [3 4 7]. Here, in order make the reader familiar
with our ICSP representation, we we shall show how to express
some musical and a infinite version of well-known recreational
mathematics as ICSP’s.

In what follows, we simplify further the notation: every genera-
tor of the formQ,, > T, i.e. there are no restrictions on the index
is denoted simply by,

Music Sequenceghe authors in [13] argued for ICSP’s in

the context of computer music via constraint specifications. Con-
straints are defined on the arbitrary long sequences of chords that
can be generated. Each chord represents the notes to be played at
the same time. The highest voice is the sequence that results from
taking the highest notes in the sequence of chords. The lower voice
is defined analogously. A standard constraint is that the highest
voice goes up at tim&iff the lowest voice does not do it at the same
time. This standard constraint can be defined as an ICSP as follows

We now describe some conventions on constraint expressions to(y;: h, < h,,, < —(l; < li11)) . The meaning of, andl; is ob-

simplify the presentation of ICSP’s.

CONVENTION 2.2. For any constraintc, we assume a predi-
catec(zi,...,xn) = T iff (z1,...,2,) € c. We shall take
the liberty of expressing constraints as first-order formulae over
the indexed variables of the underlying ICSP. Alsa;:ifs an in-
dexedboolean variabléi.e., the domain of the underlying ICSP is
boolean), we find it convenient to write and -z, to denote the
constraintsz; = T andz, = L, respectively. Furthermore, we

shall often assume implicit the meaning of symbols and expression

when clear from the context. E.g. if the underlying domain is-
{0, 1,2}, we implicitly assume denotes{(0, 1), (0, 2), (1,2)}.

Let us now illustrate a very simple ICSP example.

ExaMPLE 2.3. Consider the constraint problem with variables
x1, T2, ...taking on valuesid0, 1} and satisfyinge; > ;41 for
each evern. This problem can be specified &= (Z, X, X%, R),
whereZ = (N, 0, succ, <,+), X = {z} with the rank ofz being
1, ={0,1},and R = {{Vi> even(i),Vj > ¢; > (x(i),z(j)))}
with even(i) © 3 (1 +1=14)and ¢(i,j) & j=i+1. O

vious; the highest and lowest note, respectively, played at time
The underlying indexing structure of this problem is Linear-order
Arithmetic (N, 0, succ, <).

Infinite N-Queens.The second problem we considetfig infi-

nite n-queens problemVe have an infinite chess-board (rectangu-
lar grid in the plane) and want to place an infinite number of queens
so that: there is exactly one queen in each row and each column;
there are no two queens in any diagonal. The infinitgueens
problem can be represented by the following ICSP with indexed
boolean variables of the forig, and the following constraint pat-
terns :

(=P )
(Vijuw & (W # V) 5 Giu = Giv)
i3 5 @)
(Vuyo,i > (U #V) 5 quj = “qug)
(Vuyo,ii b (u+v=1+7)A (U9 ; Guo= Gij)
Vuy,ijb(u—v=1=F)A(U#1) ; Guv= Gij)



The meaning of;; is obvious: there is a queen in thth row and

jth column iff ¢;; = T. The first line says there is at least one
gueen in each row, while the second one says that there are not two
gueens in the same row; the first two constraints altogether express
the fact that there is exactly one queen in each row. The third and
fourth lines express the same property for columns. The las two

constraints say that there is no diagonal containing two queens. Therjgyre 1: A Biichi characterization of the ICSP in Example 4.3.

()

underlying indexing structure is Presburger Arithmetic.

4. DECIDABILITY RESULTS

In this section we present (un)decidability results for the satisfi-
ability of ICSP’s.

CONVENTION 4.1. We shall say that an ICSEZ, X, 3, R) is
k-dimensionak > 1 iff each symbol inX has at most rank and
at least rank one. Also, we shall often say that a certain family of
ICSP’s are (un)decidable to mean that the satisfiability problem for
such a family is (un)decidable.

First, we state the decidability for the family of one-dimensional
ICSP'sP = (Z, X, X, R) with indices specified in the theory of
the natural numbers with linear order; i.&,= (N, 0, succ, <).

LEMMA 4.4 (BUCHI REPRESENTATION. Suppose thaP =
((N, 0, suce, <), X, X, R) is a one-dimensional ICSP. One can ef-
fectively construct a Bchi FSABp such thatC(Bp) is (isomor-
phic to)

{v(Xo).v(X1).... | vis asolution ofP}.
PrROOF See[6]. O
As a corollary of Lemma 4.4 and the decidability of the empti-

ness problem for Bchi automata [14], we get the decidability of
satisfiability for the ICSP’s under consideration.

THEOREM 4.5. Let P = ((N, 0, succ, <), X, X, R) be a one-
dimensional ICSP. The question of whetiehas a solution is de-

We then show that if we move to the two-dimensional case, ICSP’s cidable.

with linear-orders become undecidable. We conclude by showing

that if we also allow summation(i.e. Presburger arithm#tie=
(N, 0, succ, <, +)) then ICSP’s are undecidable already in the one-
dimensional case.

4.1 Linear-Order ICSP’s: One Dimension

We shall state that one-dimensional ICSP’s with linear-order in-
dexing structures can be characterized kgl automata [5].

Biichi FSA. Recall that Bichi automata are ordinary finite-state
automata (FSA) with an acceptance condition for infinite (r
sequences: a@ sequence is accepted iff the automaton can read
it from left to right while visiting a final state infinitely often. The
language recognized by aiBhi automatorB is denoted by (B).
Regularw-languages are those recognized hiycBi FSA.

We shall use the following notation.

NOTATION 4.2. Let P = (Z,X, X, R) be a one-dimensional
ICSP. Suppose tha&f = {z1,...,z,}andthatv : Vars(P) — X
is an assignment for the indexed variablesfaf We usev(X:)
wheret € |Z| to denotgv(z1,),. .., v(zx,)); i.e., the sequence of
values assigned to variables that are indexed with

The idea of the characterization of linear-order one-dimensional
ICSP’s is that every solution of any such an ICSP can be viewed
as anw-sequence of the form(Xo).v(X1). . . . exhibiting W) reg-
ularities. Let us illustrate this with the following example.

ExampPLE 4.3. Consider a problem with variablesgy, x4, . ..
whose domain i& = {0, 1}, and constraints; # x;11 for each
i =0,1,2,.... Clearly, this problem can be expressed as a one-
dimensional ICSPP with indexing structurgN, 0, succ, <) and
set of indexable symbol§ = {z}. Now,v is a solution ofP iff
v(Xo).v(X1)....Iis accepted by theil®hi automaton in Figure 1.

]

The following lemma states theilBhi automata representation
of the ICSP’s under consideration.

4.2 Linear-Order ICSP’s: Two-Dimensions

Here, we show that in contrast to one-dimensional ICSP’s, the
satisfiability problem for two-dimensional ones with linear-order
indexing structure is undecidable. In fact, we prove something
stronger: The problem is undecidable for two-dimensional ICSP’s
whose indexing structure is simp{¥Y, 0, succ).

The result can be obtained via reduction from one of the classic
undecidable problems in computability: thialting Problem for
Turing-Machines The key idea of the reduction is to use a variable
x;, foreachi,t = 0,1, ... to represent the state of tixeh cell in
the tape of the machine at timeConstraints can then be set up to
express valid transitions between configurations.

The above-mentioned reduction suggests that linear-order two-
dimensional ICSP’s are very expressive as they are capable of spec-
ifying arbitrary Turing computations. This is to be contrasted with
the expressiveness of linear order one-dimensional ICSP’s; from
Lemma 4.4 it does not go beyond of that didhi FSA.

Our reduction lemma can be stated as follows:

LEMMA 4.6 (TURING REDUCTION). LetM be a Turing ma-
chine. One can effectively construct a two-dimensional |@3P
with indexing structuréN, 0, succ) such that:

Py; has a solution iff M does not halt
PrROOF See[6]. O

As an immediate consequence of the previous lemma and the un-
decidability of the Halting problem we get undecidability of two-
dimensional ICSP’s withN, 0, succ). Hence, two-dimensional
ICSP’s with linear-order as indexing structure are also undecidable.

THEOREM 4.7. Let P = (Z, X, 3, R) be a two-dimensional
ICSP with indexing structurg € {(N, 0, succ), (N, 0, succ, <)}.
The question of whethd? has a solution is undecidable.

4.3 Presburger ICSP’s: One Dimension

In this section we shall prove that Presburger one-dimensional
ICSP’s are undecidable wrt satisfiability, even if we only have
single single-indexed variahlall constraint patterns are universal



andeach constraint is -clausg i.e. a disjunction of at most two
literals.

Now, it is well known that Presburger Arithmetic with a single
(uninterpreted) unary predicate is undecidable (in ¢tcom-
plete) [9]. It is also known that certain temporal logics based on
Presburger Arithmetic are undecidable, too [1]. Unfortunately nei-
ther proof applies to our setting.

Two-counter MachinesOur proof is a reduction from the
Halting problem for two-counter machineswo-counter machines

are a universal model of computation, i.e. equivalent to Turing ma-
chines. As in the case of two-dimensional linear-order ICSP’s, the
reduction also states that Presburger ICSP’s are very expressive
as implies they are capable of specifying arbitrary Turing com-
putations. However, in Presburger this already happens for one-
dimensional ICSP’s.

Before stating the reduction, we need to recall how two-counter
machines are defined. They were introduced by Minsky in [12]
and are also knows adinsky machines There are two registers
(called counter$ c¢; and cq; each of them holds a natural num-
ber. The “program” of the machine is a sequencewdhstructions
o, a1, - .. am—1, €ach instruction being of the forms

1. Add1toc; and goton; (i € {1,2} and0 < j < m).

2. if ¢; = 0 go to a; else subtract from ¢; and go toay
(z € {1,2} and0 < j, k < m).

The machine always starts @y with ¢c; = 2* andc, = 0 where

x € Nis the input. It stops only if it reaches,,—; with ¢; = 2¥

for somey € N andce = 0; y is the result of the computation.
We can now state the reduction lemma:

LEMMA 4.8 (MINSKY REDUCTION). Suppose thaiM is a
Minsky machine with a sequencerafinstructionsao, . . . am—1
and a natural numben. It is possible to effectively construct a one-
dimensional ICSRPx with (N, 0, succ, <, +) as indexing struc-
ture such that:

P is satisfiable if and only itAM does not halt on the input.
PROOF See[6]. [
We can now state the undecidability of Presburger one-dimensional

ICSP’s which follows immediately from Lemma 4.8 and the unde-
cidability of the Halting problem for two-counter machines.

THEOREM 4.9. Let P = ((N,0, succ,<,+), X, X, R) be a
one-dimensional ICSP. The question of whetRdras a solution is
undecidable.

5. FUTURE WORK

We conclude this paper by suggesting some directions for re-
search on ICSP’s:

6

e For every ICSPP with indexing structure univers¥, there
is natural sequence of finite CSH%,: P, is obtained from
P by restricting the values of all variables having an index
greater tham to some default valuel( in case of proposi-
tional variables). It would be very interesting to find con-
nection between the decidability 6f and the complexity of
P,,. It would be also nice to prove some kind of compactness
theorem saying that if ever,, is satisfiable, then so iB.

It can also be interesting to consider an extension to our
ICSP’s to allow constraints whose arity is not fixed. This
kind of constraints also arises in practice; e.g., in constraints
involving arbitrary summations.

To a more practical level, given theliBhi automata repre-
sentation of ICSP’s given in this paper, one should look into
tools for these automata to see if they can be tailored to deal
with ICSP’s. A good starting point could be the MONA
tool [11].
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