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ABSTRACT
We study thecomputational limitsof Constraint Satisfaction Prob-
lems (CSP’s) allowinginfinitely, or unboundedly, many indexed
variables as in, e.g.,xi > xi+2 for eachi = 1, 2, . . .. We refer
to these CSP’s asInfinite CSP’s (ICSP’s). These problems arise
in contexts in which the number of variables is unknown a priori
as well as in optimization problems wrt the number of variables
satisfying a given finite set of constraints.

In particular, we investigate the decidability of the satisfiabil-
ity problem for ICSP’s wrt (a) the first-order theory specifying
the indicesof variables and (b) the dimension of the indices. We
first show that (1) if the indices are one-dimensional and speci-
fied in the theory of the natural numbers with linear order (the the-
ory of (N, 0, succ, <)) then the satisfiability problem isdecidable.
We then prove that, in contrast to (1), (2) if we move to the two-
dimensional case then the satisfiability problem isundecidablefor
indices specified in(N, 0, succ, <) and even in(N, 0, succ). Fi-
nally, we show that, in contrast to (1) and (2), already in the one-
dimensional case (3) if we also allow addition, we get undecidabil-
ity. I.e., if the one-dimensional indices are specified inPresburger
arithmetic(i.e., the theory of(N, 0, succ, <,+)) then satisfiability
is undecidable.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]: Mathemat-
ical Logic—Logic and constraint programming; F.4.2 [Mathe-
matical Logic and Formal Languages]: Grammars and Other
Rewriting Systems—Decision problems

General Terms
Theory
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1. INTRODUCTION
In many constraint applications the number of variables may not

be not known a priori, hence it can naturally be modeled as being
infinite (or unbounded)as done, e.g., in [3 4 8]. This particularly
applies to today’s applications due to the advent of the Internet. For
instance, we may want to specify constraints over the resources of
a high-scale distributed network and these resources may be con-
tinuously added to the network. In fact, the study of algorithms for
this kind of CSP’s and their applications have been considered in
several work, e.g., [3 4 7].

Nevertheless, to our knowledge, there is no work on the com-
putational limits for the satisfiability of CSP’s allowing infinitely
(or unboundedly) many variables. I.e., studies establishing, for in-
teresting classes of these problems, whether their satisfiability can
actually becomputationallydetermined. In traditional CSP’s this is
not a issue since everything in them has a finite nature. But it is cer-
tainly an issue when you allow an infinite (or unbounded) number
of variables, even when taking on values from finite domains.

For example, a designer may formulate CSP’s for unbounded
number of variables by using constraint specifications over an in-
finite number of variables of the form, e.g.,xi > xi+1 for i =
2, 4, 6, . . . or with two-dimensional indexes like inxi,j = xi,j−1

for all i, j > 0. This way, the designer wishes to express that
his/her specification must be satisfiable forany numberof vari-
ables. It may simply turn out, however, that determining the sat-
isfiability of a given specification of this kind is computationally
impossible, i.e.undecidable.

Another example of the relevance ofdecidabilityfor CSP’s with
unbounded number of variables has to do withoptimization prob-
lem of the kind suggested by [2]. For example, suppose you are
asked to provide aterminatingalgorithmA such that: Given a CSP
P with an unbounded number of variablesx0, x1, . . .,A should re-
turn the maximal numberm ∈ N of variablesx0, x1, . . . , xm such
thatP is satisfiable. Additionally, if suchm does not exist,Amust
report this. One might suggest an algorithmA that tries incremen-
tally different values ofm until it finds the first one after which the
problem is no longer satisfiable. Notice, however that some given
P may be satisfiable forany numbernumber of variables—i.e., the
maximalm does not exist. Hence, the suggested algorithm may ac-
tually never terminate on such aP. In fact, for some natural classes
of ICSP’s the algorithmA cannotexist because, as we shall show
in this paper, decidability of their satisfiability is undecidable thus
contradicting the existence ofA.



Approach.Constraint problems with unbounded number of vari-
ables are typically specified with expressions generating constraints
over infinitely many indexedvariables; e.g.,xi > xi+1 for i =
0, 2, . . .. In this paper we shall model CSP’s that allow constraints
on infinitely many indexed variablesbut each taking on values from
afinitedomain. We call these problemsInfinite CSP’s(ICSP’s). In
particular we investigate the decidability of thesatisfiability (i.e.,
the existence of solutions) for ICSP’s wrt two properties on the
indices of the variables. Namely, theindex dimension; e.g., of
the formxi (one dimensional), orxi,j (two dimensional), and the
language to specify expressions over the indices; e.g., using index
comparison and summations as in “c(xi, xi+j) for all j < i”.

Results.The results we present in this paper are the following:

1. If the ICSP’s variable indices are one-dimensional and spec-
ified in the theory of the natural numbers with linear order
(the theory of(N, 0, succ, <)) then the ICSP satisfiability is
decidable. An instance of this class of problems is an ICSP
with constraints of the formxi < xi+1 for i = 0, 2, 4, . . ..

2. In contrast to (1) we prove that for the two-dimensional case,
ICSP satisfiability isundecidablefor indices specified in
(N, 0, succ) and hence also in(N, 0, succ, <)—E.g., ICSP’s
with constraints of the formxi,j = xi−1,j+1 for eachi, j =
0, 1, 2, . . . .

3. If the indices are specified inPresburger arithmetic(i.e., the
theory of(N, 0, succ, <,+) then satisfiability isundecidable
already in the one-dimensional case. An instance of this class
of ICSP’s may have constraints such asxi < x2i for i =

1, 2, . . .—where2i
def
= i+ i.

Another noteworthy aspect of our work is that result (1) is ob-
tained by establishing a connection between ICSP’s and Finite-
State Automata. Several theoretical and implementational work,
specially in the area of Verification have been carried out for Finite-
State Automata. Therefore, we may hope to benefit from this con-
nection both for theoretical and application purposes in the study of
ICSP. For example, we may be able to tailor the successful MONA
verification tool [11] to deal with some classes of ICSP’s.

Preliminaries
We assume that the reader is familiar with basic concepts of Com-
putability and Logic such as Turing Machines, Finite-State Au-
tomata, Decidability, countable sets, Truth and first-order formu-
lae. A structureA = (|A|,Φ) consists of auniverse|A| and an
interpretationfunctionΦ whose domain is a set of constant, func-
tion, and predicate symbolssig(A); thesignatureof A. The func-
tion Φ interprets each constant, function and predicate symbol in
sig(A), according to itsrank (also calledarity), as an element,
function, or relation over|A| in the obvious way. Typically, the
function Φ is omitted and replaced by its domain wheneverΦ is
clear from the context. For example, the structure of arithmetic is
(N, 0, 1,+, <,×) where the constant symbols0, 1 are respectively
interpreted as the numbers zero and one, the binary function sym-
bols+,× as natural number addition and multiplication, and< is
interpreted as the less relation on the natural numbers. Ann-sorted
structure is a structure withn universes (or sorts). In such struc-
tures the symbols and variables are assigned sorts and interpreted
accordingly.

Given a structureA, thefirst-order theoryof A, Th(A), is the
set of all first-order formulae oversig(A) that are true inA. The
setTh(A) is decidableiff there exists an effective procedure that

will determine whetherφ ∈ Th(A) for any first-order formulaφ
oversig(A). A structure iscountableiff its universe is countable.

Related Work
CSP’s with unboundedly many variables, their relevance, and al-
gorithms for them have been reported in other works, e.g., [4 7].
To our knowledge, however, there is no work on the computa-
tional limits of determining the satisfiability of these problems; i.e.,
whether it is computational possible.

An infinite CSP, and more precisely an infinite SAT, was studied
by Freedman [8]. He used concrete groups as indexing structures
and tried to establish a connection between easy (hard) problems in
the finite case and decidable (undecidable) problems in the infinite
case. More recently, in [3] the computational complexity of infinite
CSP’s was studied in the algebraic settings. In both papers the em-
phasis is on thecomplexity of the ICSP, while in the present paper
we are mainly concerned withdecidability issues.

There has been some work on dynamic variable generation, e.g.,
[4]. Loosely speaking, this approach can be used to solve an in-
finite CSP by ”approximating” it by a sequence of finite CSP’s.
Note, though, that there are satisfiable CSP’s whose finite frag-
ments are unsatisfiable. Toy examples include the Pigeon-Hole
Principle (there is a bijection between a set and the same set with
one element removed) and the Least Number Principle (there is a
partial order that has no minimal element). Thus the dynamic vari-
able generation would fail on these examples.

The authors in [10] showed some evidence that, in general, it
would be hard to find a connection between the computational com-
plexity of a finite CSP and the recursive complexity of its infinite
counter-part. Thus we entirely concentrate on the decidability bar-
rier that depends, in our case, on the indexing structure as well as
the arity of indices, and completely ignore the complexity issues.

2. ICSP’S
Here we define our framework formodelingCSP’s allowing in-

finitely (unboundedly) many indexed variables; ICSP’s. We find it
convenient to parameterize ICSP’s with anindexing structurethat
specifies the indices of their variables.

An infinite constraint satisfaction problem (ICSP) consists of
finitelymany symbolsx, y, . . . ,∈ X which can be indexed to gen-
erateinfinitely many indexed variables. We assume that eachx ∈
X is ranked; i.e., it has arank (or arity), denoted asrank(x),
that indicates the number of indexes the symbol can take, e.g., if
rank(x ) = 2 then we can indexx asx1,3—to avoid too many sub-
index levels we should sometimes write e.g.x(1, 3) to meanx1,3.
In an ICSP, the indexed variables take values from a given finite
domainΣ and must satisfy the constraints specified in a given set
R, e.g.,xi > xj for all j < i.

Now, in order to provide a finite representation of ICSP’s we
shall usefirst-order theoriesas the language to specify the indices
of variables—clearly, such theories must be decidable to hope for
decidable families (wrt to satisfiability) of ICSP’s. Typically, the
indices are natural numbers for one-dimensional indices, or tuples
of natural numbers for the multi-dimensional case. Thus, it seems
natural to usecountable structureswith decidable theories. Exam-
ples of such structures include among others:

• (N, 0, succ, <,+) (Presburger arithmetic),

• (N, 0, succ, <) (Linear-order arithmetic),

• (N, 0, succ) (Successor arithmetic),

• ({0, . . . , n− 1}, 0, succ, <,+,×) ( Arithmetic modulo n).



All in all, ICSP’s are tuples of the formP = 〈I, X,Σ, R〉. In-
tuitively, P specifies a problem with an infinite set ofindexed vari-
ablesVars(P ) generated by indexing the symbols inX with (se-
quences of) elements of|I| whereI is a countable structure with
decidableTh(I). The indexed variables inVars(P ) take on val-
ues from the finitedomainΣ while complying with theconstraints
given by theconstraint-patternsin R. Now, a constraint-pattern
specifies what indexed variables its constraintc should be applied
to. For example, we shall use constraints patterns such as

〈∀i . i > 42,∃j . j < i ; c[x(i), y(j)]〉

to mean:

“For each i > 42, there existsj < i such thatc(xi, yj) holds.”

The expression∀i . i > 42, anuniversal index-generator, pro-
duces all indicesi greater than forty-two, and∃j . j < i, anexis-
tential index-generator, produces some indexj such thati < j.

The above intuition about ICSP’s is made precise by the follow-
ing definition.

DEFINITION 2.1 (ICSP’S). An ICSPP = 〈I, X,Σ, R〉 is a
tuple satisfying the following:

• I is a countable structure andTh(I) is decidable; thein-
dexing structure.

• X is a finite set of ranked symbols; theindexable-variables.

• Σ is a finite set of constants; thedomain of values.

• R is a finite set ofconstraint patterns.A constraint pat-
tern has the form〈G[i1], . . . , G[in]; c[x1(s1), ..., xn(sn)]〉
wherec ⊆ Σn is ann-ary relation calledconstraint, and for
k = 1, . . . , n:

– G[ik] = Qik . φk with Q∈ {∀,∃} andφk(i1, . . . , ik)
a formula oversig(I) with free-variablesi1, . . . , ik.

– xk ∈ X andsk ∈ {i1, ..., in}rank(xk).

EachG[ik] is called anindex-generatorof ik; universalif it
takes the form∀ik . φ, existentialotherwise.

DefineVars(P ), the (indexed) variablesof P , as the set of all
x(t), also written asxt, withx ∈ X andt ∈ |I|rank(x).

We now describe some conventions on constraint expressions to
simplify the presentation of ICSP’s.

CONVENTION 2.2. For any constraintc, we assume a predi-
cate c(x1, . . . , xn) = > iff (x1, . . . , xn) ∈ c. We shall take
the liberty of expressing constraints as first-order formulae over
the indexed variables of the underlying ICSP. Also, ifxt is an in-
dexedboolean variable(i.e., the domain of the underlying ICSP is
boolean), we find it convenient to writext and¬xt to denote the
constraintsxt = > andxt = ⊥, respectively. Furthermore, we
shall often assume implicit the meaning of symbols and expression
when clear from the context. E.g. if the underlying domain isΣ =
{0, 1, 2}, we implicitly assume< denotes{(0, 1), (0, 2), (1, 2)}.

Let us now illustrate a very simple ICSP example.

EXAMPLE 2.3. Consider the constraint problem with variables
x1, x2, . . . taking on values in{0, 1} and satisfyingxi > xi+1 for
each eveni. This problem can be specified asP = 〈I, X,Σ, R〉,
whereI = (N, 0, succ, <,+), X = {x} with the rank ofx being
1, Σ = {0, 1}, andR = {〈∀i . even(i),∀j . φ;> (x(i), x(j))〉}
with even(i)

def
= ∃l(l + l = i) and φ(i, j)

def
= j = i+ 1.

A solution of an ICSPP = 〈I, X,Σ, R〉 is an assignment of
values from the domainΣ to the variablesVars(P ) that satisfies
the constraints specified by the constraints-patterns inR. Formally,

DEFINITION 2.4 (SATISFIABILITY ). Let P = 〈I, X,Σ, R〉
be an ICSP. LetIP be the (two-sorted) structure that results from
extendingI with a universeΣ, the symbols inX and Vars(P ),
and, for each constraintc in R, a symbol̄c, interpreted as the rela-
tion c.

An interpretation(or assignment) v : Vars(P ) → Σ assigns to
eachx(t) ∈ Vars(P ) a value inΣ. An assignmentv is said to be
solution of the ICSPP if and only if for every constraint pattern
〈G[i1], . . . , G[in]; c[x1(s1), ..., xn(sn)]〉 ∈ R, v satisfies, in the
structureIP , the formula

Q1i1(φ1 •1 Q2i2(φ2 •2 . . .Qnin(φn •n c̄(x1(s1), . . . , xn(sn)))))

where•k =⇒ if Qk = ∀ else•k = ∧.
An ICSP issatisfiableif and only if it has a solution.

EXAMPLE 2.5. The ICSPP in Example 2.3 is satisfiable. Ver-
ify that the assignmentv(x0) = 1, v(x1) = 0, v(x2) = 1, v(x3) =
0, v(x4) = 1, . . . is a solution ofP .

3. SOME SIMPLE ICSP’S EXAMPLES
Interesting applications of CSP with unbounded number of vari-

ables can be found [3 4 7]. Here, in order make the reader familiar
with our ICSP representation, we we shall show how to express
some musical and a infinite version of well-known recreational
mathematics as ICSP’s.

In what follows, we simplify further the notation: every genera-
tor of the formQx .>, i.e. there are no restrictions on the indexx,
is denoted simply byQx.

Music Sequences.The authors in [13] argued for ICSP’s in
the context of computer music via constraint specifications. Con-
straints are defined on the arbitrary long sequences of chords that
can be generated. Each chord represents the notes to be played at
the same time. The highest voice is the sequence that results from
taking the highest notes in the sequence of chords. The lower voice
is defined analogously. A standard constraint is that the highest
voice goes up at timei iff the lowest voice does not do it at the same
time. This standard constraint can be defined as an ICSP as follows
〈∀i;hi < hi+1 ⇔ ¬(li < li+1)〉 . The meaning ofhi andli is ob-
vious; the highest and lowest note, respectively, played at timei.
The underlying indexing structure of this problem is Linear-order
Arithmetic (N, 0, succ, <).

InfiniteN-Queens.The second problem we consider isthe infi-
niten-queens problem. We have an infinite chess-board (rectangu-
lar grid in the plane) and want to place an infinite number of queens
so that: there is exactly one queen in each row and each column;
there are no two queens in any diagonal. The infiniten-queens
problem can be represented by the following ICSP with indexed
boolean variables of the formqij and the following constraint pat-
terns :

〈∀i∃j ; qij〉
〈∀i,u,v . (u 6= v) ; qiu ⇒ ¬qiv〉

〈∀i∃j ; qji〉
〈∀u,v,j . (u 6= v) ; quj ⇒ ¬qvj〉

〈∀u,v,i,j . (u+ v = i+ j) ∧ (u 6= i) ; quv ⇒ ¬qij〉
〈∀u,v,i,j . (u− v = i− j) ∧ (u 6= i) ; quv ⇒ ¬qij〉



The meaning ofqij is obvious: there is a queen in theith row and
jth column iff qij = >. The first line says there is at least one
queen in each row, while the second one says that there are not two
queens in the same row; the first two constraints altogether express
the fact that there is exactly one queen in each row. The third and
fourth lines express the same property for columns. The las two
constraints say that there is no diagonal containing two queens. The
underlying indexing structure is Presburger Arithmetic.

4. DECIDABILITY RESULTS
In this section we present (un)decidability results for the satisfi-

ability of ICSP’s.

CONVENTION 4.1. We shall say that an ICSP〈I, X,Σ, R〉 is
k-dimensionalk ≥ 1 iff each symbol inX has at most rankk and
at least rank one. Also, we shall often say that a certain family of
ICSP’s are (un)decidable to mean that the satisfiability problem for
such a family is (un)decidable.

First, we state the decidability for the family of one-dimensional
ICSP’sP = 〈I, X,Σ, R〉 with indices specified in the theory of
the natural numbers with linear order; i.e.,I = (N, 0, succ, <).
We then show that if we move to the two-dimensional case, ICSP’s
with linear-orders become undecidable. We conclude by showing
that if we also allow summation(i.e. Presburger arithmeticI =
(N, 0, succ, <,+)) then ICSP’s are undecidable already in the one-
dimensional case.

4.1 Linear-Order ICSP’s: One Dimension
We shall state that one-dimensional ICSP’s with linear-order in-

dexing structures can be characterized by Büchi automata [5].

Büchi FSA.Recall that B̈uchi automata are ordinary finite-state
automata (FSA) with an acceptance condition for infinite (orω)
sequences: anω sequence is accepted iff the automaton can read
it from left to right while visiting a final state infinitely often. The
language recognized by a Büchi automatonB is denoted byL(B).
Regularω-languages are those recognized by Büchi FSA.

We shall use the following notation.

NOTATION 4.2. Let P = 〈I, X,Σ, R〉 be a one-dimensional
ICSP. Suppose thatX = {x1, . . . , xn} and thatv : Vars(P )→ Σ
is an assignment for the indexed variables ofP . We usev(Xt)
wheret ∈ |I| to denote(v(x1t), . . . , v(xnt)); i.e., the sequence of
values assigned to variables that are indexed witht.

The idea of the characterization of linear-order one-dimensional
ICSP’s is that every solutionv of any such an ICSP can be viewed
as anω-sequence of the formv(X0).v(X1). . . . exhibiting (ω) reg-
ularities. Let us illustrate this with the following example.

EXAMPLE 4.3. Consider a problem with variablesx0, x1, . . .
whose domain isΣ = {0, 1}, and constraintsxi 6= xi+1 for each
i = 0, 1, 2, . . .. Clearly, this problem can be expressed as a one-
dimensional ICSPP with indexing structure(N, 0, succ, <) and
set of indexable symbolsX = {x}. Now,v is a solution ofP iff
v(X0).v(X1). . . . is accepted by the B̈uchi automaton in Figure 1.

The following lemma states the Büchi automata representation
of the ICSP’s under consideration.

Figure 1: A Büchi characterization of the ICSP in Example 4.3.

LEMMA 4.4 (BÜCHI REPRESENTATION). Suppose thatP =
〈(N, 0, succ, <),X ,Σ ,R〉 is a one-dimensional ICSP. One can ef-
fectively construct a B̈uchi FSABP such thatL(BP ) is (isomor-
phic to)

{v(X0).v(X1). . . . | v is a solution ofP}.

PROOF. See [6].

As a corollary of Lemma 4.4 and the decidability of the empti-
ness problem for B̈uchi automata [14], we get the decidability of
satisfiability for the ICSP’s under consideration.

THEOREM 4.5. LetP = 〈(N, 0, succ, <),X ,Σ ,R〉 be a one-
dimensional ICSP. The question of whetherP has a solution is de-
cidable.

4.2 Linear-Order ICSP’s: Two-Dimensions
Here, we show that in contrast to one-dimensional ICSP’s, the

satisfiability problem for two-dimensional ones with linear-order
indexing structure is undecidable. In fact, we prove something
stronger: The problem is undecidable for two-dimensional ICSP’s
whose indexing structure is simply(N, 0, succ).

The result can be obtained via reduction from one of the classic
undecidable problems in computability: theHalting Problem for
Turing-Machines. The key idea of the reduction is to use a variable
xi,t for eachi, t = 0, 1, . . . to represent the state of thei-th cell in
the tape of the machine at timet. Constraints can then be set up to
express valid transitions between configurations.

The above-mentioned reduction suggests that linear-order two-
dimensional ICSP’s are very expressive as they are capable of spec-
ifying arbitrary Turing computations. This is to be contrasted with
the expressiveness of linear order one-dimensional ICSP’s; from
Lemma 4.4 it does not go beyond of that of Büchi FSA.

Our reduction lemma can be stated as follows:

LEMMA 4.6 (TURING REDUCTION). LetM be a Turing ma-
chine. One can effectively construct a two-dimensional ICSPPM
with indexing structure(N, 0, succ) such that:

PM has a solution iffM does not halt.

PROOF. See [6].

As an immediate consequence of the previous lemma and the un-
decidability of the Halting problem we get undecidability of two-
dimensional ICSP’s with(N, 0, succ). Hence, two-dimensional
ICSP’s with linear-order as indexing structure are also undecidable.

THEOREM 4.7. Let P = 〈I, X,Σ, R〉 be a two-dimensional
ICSP with indexing structureI ∈ {(N, 0, succ), (N, 0 , succ, <)}.
The question of whetherP has a solution is undecidable.

4.3 Presburger ICSP’s: One Dimension
In this section we shall prove that Presburger one-dimensional

ICSP’s are undecidable wrt satisfiability, even if we only havea
single single-indexed variable, all constraint patterns are universal



andeach constraint is a2-clause, i.e. a disjunction of at most two
literals.

Now, it is well known that Presburger Arithmetic with a single
(uninterpreted) unary predicate is undecidable (in factΠ1

1 com-
plete) [9]. It is also known that certain temporal logics based on
Presburger Arithmetic are undecidable, too [1]. Unfortunately nei-
ther proof applies to our setting.

Two-counter Machines.Our proof is a reduction from the
Halting problem for two-counter machines. Two-counter machines
are a universal model of computation, i.e. equivalent to Turing ma-
chines. As in the case of two-dimensional linear-order ICSP’s, the
reduction also states that Presburger ICSP’s are very expressive
as implies they are capable of specifying arbitrary Turing com-
putations. However, in Presburger this already happens for one-
dimensional ICSP’s.

Before stating the reduction, we need to recall how two-counter
machines are defined. They were introduced by Minsky in [12]
and are also knows asMinsky machines. There are two registers
(called counters) c1 and c2; each of them holds a natural num-
ber. The “program” of the machine is a sequence ofm instructions
α0, α1, . . . αm−1, each instruction being of the forms

1. Add1 to ci and go toαj (i ∈ {1, 2} and0 ≤ j < m).

2. if ci = 0 go to αj else subtract1 from ci and go toαk
(i ∈ {1, 2} and0 ≤ j, k < m).

The machine always starts atα0 with c1 = 2x andc2 = 0 where
x ∈ N is the input. It stops only if it reachesαm−1 with c1 = 2y

for somey ∈ N andc2 = 0; y is the result of the computation.
We can now state the reduction lemma:

LEMMA 4.8 (MINSKY REDUCTION). Suppose thatM is a
Minsky machine with a sequence ofm instructionsα0, . . . αm−1

and a natural numbern. It is possible to effectively construct a one-
dimensional ICSPPM with (N, 0, succ, <,+) as indexing struc-
ture such that:

PM is satisfiable if and only ifM does not halt on the inputn.

PROOF. See [6].

We can now state the undecidability of Presburger one-dimensional
ICSP’s which follows immediately from Lemma 4.8 and the unde-
cidability of the Halting problem for two-counter machines.

THEOREM 4.9. Let P = 〈(N, 0, succ, <,+),X ,Σ ,R〉 be a
one-dimensional ICSP. The question of whetherP has a solution is
undecidable.

5. FUTURE WORK
We conclude this paper by suggesting some directions for re-

search on ICSP’s:

• Having identified decidable classes of ICSP, it would be in-
teresting to find their complexity. It is known that complexity
of linear orders with uninterpreted unary predicates is double
exponential, which implies that ICSP’s with indexing struc-

ture(N, 0, succ, <) can be solved in time22O(s)
wheres is

the size of the constraint patterns. It would be interesting to
identify the subclasses of ICSP’s that can be solved in (sin-
gle) exponential and polynomial time ins.

• We have proven that ICSP’s with(N, 0, succ,+) as indexing
structure are undecidable. It would be nice to find general
conditions under which the ICSP’s are decidable.

• For every ICSPP with indexing structure universeN, there
is natural sequence of finite CSP’sPn: Pn is obtained from
P by restricting the values of all variables having an index
greater thann to some default value (⊥ in case of proposi-
tional variables). It would be very interesting to find con-
nection between the decidability ofP and the complexity of
Pn. It would be also nice to prove some kind of compactness
theorem saying that if everyPn is satisfiable, then so isP .

• It can also be interesting to consider an extension to our
ICSP’s to allow constraints whose arity is not fixed. This
kind of constraints also arises in practice; e.g., in constraints
involving arbitrary summations.

• To a more practical level, given the Büchi automata repre-
sentation of ICSP’s given in this paper, one should look into
tools for these automata to see if they can be tailored to deal
with ICSP’s. A good starting point could be the MONA
tool [11].
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