
On In�nite CSP's

Stefan Dantchev and Frank D. Valencia ?

1 Dept. of Mathematics and Computer Science, University of Leicester, UK
2 Dept. of Information Technology, Uppsala University

Email:dantchev,fvalenci@brics.dk

Abstract We present a new generalization of Constraint Satisfaction

Problems (CSP's) to allow in�nitely (or unboundedly) many indexed

variables. The indices of variables are speci�ed in a �rst-order decidable

theory. We call this generalization In�nite CSP's (ICSP's). Applications

of ICSP include problems in which the number of variables is unknown a

priori, and optimization problems wrt the number of variables satisfying

a given �nite set of constraints.

We shall study the decidability of the satis�ability problem for ICSP's

wrt (a) the �rst-order theory specifying the indices of variables and (b)

the dimension of the indices. We �rst show that (1) if the indices are

one-dimensional and speci�ed in the theory of the natural numbers with

linear order (the theory of (N; 0; succ; <)) then the satis�ability problem

is decidable. We then prove that, in constrast to (1), (2) if we move to

the two-dimensional case then the satis�ability problem is undecidable

for indices speci�ed in (N; 0; succ; <) and even in (N; 0; succ). Finally, we
show that, in constrast to (1) and (2), already in the one-dimensional

case (3) if we also allow addition, we get undecidability. I.e., if the one-

dimensional indices are speci�ed in Presburger arithmetic (i.e., the theory

of (N; 0; succ; <;+)) then satis�ability is undecidable.

1 Introduction

Constraint satisfaction problems (CSP) occur widely in engineering, science and

the arts. Applications are frequently reported in production planning, resource

allocation [BLN01], music composition [AADR98], Veri�cation [EM97], Security

[BB01] Bioinformatics [GW94] and many others. In fact, a CSP is any problem

that can be expressed as that of �nding, for a given set of variables, assignments

satisfying some given particular properties. These properties are represented by

relations called constraints.

Motivation. In many CSP's the number of variables may not be not known

a priori. This arises in applications such as: scheduling, music generation, and

online problems such as auctions. The following quote from [Bes04] exempli�es

the importance of this kind of CSP's best :

? The contribution of F. Valencia to this work was supported by the PROFUNDIS

Project.



2 Stefan Dantchev and Frank D. Valencia

�...I remember an application we had to solve some years ago for a company

that wanted to make the planning of the employees for two or three years in

advance. They knew almost nothing about the constraints on very future days,

just that every Friday morning there is the lab meeting, on Wednesday afternoon

the children day, etc. Plus some events planned long in advance ... At that time

we dreamed of open number of variables, but that didn't exist...� [Bes04].

In this paper we introduce a framework to express CSP's that allows con-

straints on unboundedly many indexed variables but each taking on values from a

�nite domain. We call these problems In�nite CSP's (ICSP's). Furthermore, we

shall study the decidability of the satis�ability (i.e., the existence of solutions)

for ICSP's wrt two properties on the indices of the variables: Namely,

� Index dimension: E.g., of the form xi (one dimensional), or xi;j (two dimen-

sional).

� Language to specify indices : E.g., using index comparison and summations

such as in �c(xi; xi+j) for all j s.t, j < i�.

Relevance. The study of the decidability of ICSP's satis�ability is relevant for

the speci�cation of constraint problems in which one does not know a priori the

numbers of variables. A designer can formulate a speci�cation for an arbitrary

number of variables by using, for example, constraint expressions of the form

xi > xi+1 for i = 2; 4; 6; : : : or with two-dimensional indexes like in xi;j = xi;j�1
for all i; j > 0. The satis�ability question, here is of the essence because, after

all, as remarked in [Var96], a speci�cation is interesting for a designer only if it

is satis�able.

Another application of decidability studies for ICSP's has to do with opti-

mization problems of the kind suggested by [Apt04]. For example, suppose you

are asked to provide an (terminating) algorithm A such that: Given a CSP P

with an unbounded number of variables x0; x1; : : :, A should return the maximal

number m 2 N of variables x0; x1; : : : ; xm such that P is satis�able, if such an

m exists. One might suggest an algorithm A that, unless P is satis�able for

any number of variables, tries incrementally di�erent values of m knowing that

eventually it will �nd the �rst one after which the problem is no longer satis-

�able. Notice that because of the �unless� condition, the decidability of ICSP

satis�ability is fundamental here.

Results. The results we present in this paper are the following: (1) if the indices

are one-dimensional and speci�ed in the theory of the natural numbers with

linear order (the theory of (N; 0; succ; <)) then the ICSP satis�ability is decidable.

In contrast, (2) for the two-dimensional case, ICSP satis�ability is undecidable

for indices speci�ed in (N; 0; succ) and hence also in (N; 0; succ; <). Furthermore,

we prove that (3) if the indices are speci�ed in Presburger arithmetic (i.e., the

theory of (N; 0; succ; <;+) then satis�ability is undecidable already in the one-

dimensional case.

Another interesting aspect of our work is that result (1) is obtained by es-

tablishing a connection between ICSP's and a standard computational model:



On In�nite CSP's 3

Namely, Büchi Finite-State Automata [Buc62]. Several theoretical and imple-

mentational work, specially in the area of Veri�cation have been carried out

for Büchi Automata (see [KM01]). Therefore, we may hope to bene�t from this

connection both for theoretical and application purposes in the study of ICSP.

Organization. The rest of this paper is organized as follows: Section 2 gives

some preliminaries and discusses related work. Section 3 introduces the notion

of ICSP. Some examples of ICSP's are given in Section 4. Section 5 presents

the above-mentioned decidability results. Finally, some concluding remarks are

given in Section 6.

2 Preliminaries and Related Work

2.1 Preliminaries

We assume that the reader is familiar with basic concepts of Computability and

Logic such as Turing Machines, Finite-State Automata, Decidability, countable

sets, Truth and �rst-order formulae.

Given a �rst-order formulae �, we use the notation �(x1; : : : ; xn) to mean

that the free variables of � are in fx1; : : : ; xng.

A structure A = (jAj; �) consists of a universe jAj and an interpretation

function � whose domain is a set of constant, function, and predicate symbols

sig(A); the signature of A. The function � interprets each constant, function

and predicate symbol in sig(A), according to its rank (also called arity), as an

element, function, or relation over jAj in the obvious way. Typically, the function

� is omitted and replaced by its domain whenever � is clear from the context.

For example, the structure of arithmetic is (N; 0; 1;+; <;�) where the constant
symbols 0; 1 are respectively interpreted as the numbers zero and one, the binary

function symbols +;� as natural number addition and multiplication, and < is

interpreted as the less relation on the natural numbers. An n-sorted structure

is a structure with n universes (or sorts). In such structures the symbols and

variables are assigned sorts and interpreted accordingly.

Given a structure A, the �rst-order theory of A, Th(A), is the set of all

�rst-order formulae over sig(A) that are true in A: The set Th(A) is decidable
i� there exists an e�ective procedure that will determine whether � 2 Th(A) for
any �rst-order formula � over sig(A): A structure is countable i� its universe is

a countable set.

2.2 Related Work

It should be noticed that the term in�nite CSP has been used for another dif-

ferent approach: CSP's with in�nite domain of values (e.g. [OV93]). To our

knowledge there is little work on CSP's with in�nitely (or unboundedly) many

variables. An in�nite CSP, and more precisely an in�nite SAT, was studied by

Freedman [Fre98]. He used concrete groups as indexing structures and tried to



4 Stefan Dantchev and Frank D. Valencia

establish a connection between easy (hard) problems in the �nite case and de-

cidable (undecidable) problems in the in�nite case. More recently, in [BN03]

the computational complexity of in�nite CSP's was studied in the algebraic set-

tings. In both papers the emphasis is on the complexity of the ICSP, while in

the present paper we are mainly concerned with decidability issues.

3 ICSP's

An in�nite constraint satisfaction problem (ICSP) consists of �nitely many sym-

bols x; y; : : : ;2 X which can be indexed to generate in�nitely many indexed

variables, e.g., x1; x2; : : : ; or x1;1; x1;2; : : :. We assume that each x 2 X is ranked;

i.e., it has a rank (or arity), denoted as rank(x); that indicates the number of

indexes the symbol can take, e.g., if rank(x ) = 2 then we can index x as x1;3�to

avoid too many sub-index levels we should sometimes write e.g. x(1; 3) to mean

x1;3. In an ICSP, the indexed variables take values from a given �nite domain �

and must satisfy the constraints speci�ed in a given set R, e.g., xi > xj for all

j < i.

Now, in order to provide a �nite representation of ICSP's we shall use �rst-

order theories as the language to specify the indices of variables�clearly, such

theories must be decidable to hope for decidable families (wrt to satis�ability) of

ICSP's. Typically, the indices are natural numbers for one-dimensional indices, or

tuples of natural numbers for the multi-dimensional case. Thus, it seems natural

to use countable structures with decidable theories. Examples of such structures

include among others:

� (N; 0; succ; <;+) (Presburger arithmetic),
� (N; 0; succ; <) (Linear-order arithmetic),
� (N; 0; succ) (Successor arithmetic),
� (f0; : : : ; n� 1g; 0; succ; <;+;�) (i.e., Arithmetic modulo n).

All in all, ICSP's are tuples of the form P = hI; X;�;Ri. Intuitively, P

speci�es a problem with an in�nite set of indexed variables Vars(P ) generated
by indexing the symbols in X with (sequences of) elements of jIj where I is

a countable structure with decidable Th(I). The indexed variables in Vars(P )
take on values from the �nite domain � while complying with the constraints

given by the constraint-patterns in R. Now, a constraint-pattern speci�es what

indexed variables its constraint c should be applied to. For example, we shall use

constraints patterns such as

h8i . i > 42; 9j . j < i ; c[x(i); y(j)]i

to mean:

�For each i > 42; there must exist j < i such that c(xi; yj) holds.�

The expression 8i . i > 42, an universal index-generator, produces all indices

i greater than forty-two, and 9j . j < i, an existential index-generator, produces

some index j such that i < j.

The above intuition about ICSP's is made precise by the following de�nition.



On In�nite CSP's 5

De�nition 1 (ICSP's). An ICSP is a tuple P = hI; X;�;Ri satisfying the

following:

� I is a countable structure and Th(I) is decidable; the indexing structure.

� X is a �nite set of ranked symbols; the indexable-variables.

� � is a �nite set of constants; the domain of values.

� R is a �nite set of tuples of the form hG[i1]; : : : ; G[in]; c[x1(s1); :::; xn(sn)]i;
the constraint-patterns. Here c � �n is an n-ary relation called constraint,

and for k = 1; : : : ; n:
� G[ik] = Qik .�k with Q 2 f8; 9g and �k(i1; : : : ; ik) a formula over sig(I).
� xk 2 X and sk 2 fi1; :::; ing

rank(xk).

Each G[ik] is called an index-generator of ik; universal if it takes the form

8ik . �, existential otherwise.

De�ne Vars(P ), the (indexed) variables of P , as the set of all x(t), also

written as xt, with x 2 X and t 2 jIjrank(x): ut

We now describe some conventions on constraint expressions to simplify the

presentation of ICSP's.

Convention 1 For any constraint c, we assume a predicate c(x1; : : : ; xn) = >

i� (x1; : : : ; xn) 2 c. We shall take the liberty of expressing constraints as �rst-

order formulae over the indexed variables of the underlying ICSP. Also, if xt is

an indexed boolean variable (i.e., the domain of the underlying ICSP is boolean),

we �nd it convenient to write xt and :xt to denote the constraints xt = > and

xt = ?, respectively. Furthermore, we shall often assume implicit the meaning

of symbols and expression when clear from the context. E.g. if the underlying

domain is � = f0; 1; 2g, we implicitly assume < denotes f(0; 1); (0; 2); (1; 2)g:

Let us now illustrate a very simple ICSP example.

Example 1. Consider the constraint problem with variables x1; x2; : : : taking

on values in f0; 1g and satisfying xi > xi+1 for each even i. This problem

can be speci�ed as P = hI; X;�;Ri, where I = (N; 0; succ; <;+), i.e., Pres-
burger Arithmetic, X = fxg with the rank of x being 1, � = f0; 1g; and

R = fh8i . even(i);8j . � ; > (x(i); x(j))ig with even(i)
def

= 9l(l + l = i) and

�(i; j)
def

= j = i+ 1: ut

A solution of an ICSP P = hI; X;�;Ri is an assignment of values from the

domain � to the variables Vars(P ) that satis�es the constraints speci�ed by the

constraints-patterns in R. Formally,

De�nition 2 (Solutions & Satis�ability). Let P = hI; X;�;Ri be an ICSP.

Let IP be the (two-sorted) structure that results from extending I with a universe

�, the symbols in X and Vars(P ), and, for each constraint c in R, a symbol �c,
interpreted as the relation c:

An interpretation (or assignment) v : Vars(P ) ! � assigns to each x(t) 2
Vars(P ) a value in �. Such an assignment v is a solution of P if and only



6 Stefan Dantchev and Frank D. Valencia

if for each constraint-pattern hG[i1]; : : : ; G[in]; c[x1(s1); :::; xn(sn)]i 2 R, the as-

signment v satis�es, in the structure IP , the formula

Q1i1(�1 �1 Q2i2(�2 �2 : : : Qnin(�n �n �c(x1(s1); : : : ; xn(sn)))))

where �k = ) if Qk = 8 else �k = ^:

An ICSP is satis�able if and only if it has a solution. ut

Example 2. The ICSP P in Example 1 is satis�able. Verify that the assignment

v(x0) = 1; v(x1) = 0; v(x2) = 1; v(x3) = 0; v(x4) = 1; : : : is a solution of P .

4 ICSP's Examples

It is easy to see that many variants of the discrete time temporal logic can be

expressed as ICSP's in our setting. Instead of presenting these fairly straightfor-

ward constructions, we shall show how to express some musical and well-known

recreational mathematics problems as ICSP's. In what follows, we simplify fur-

ther the notation: every generator of the form Qx.>, i.e. there are no restrictions

on the index x, is denoted simply by Qx.

Music Sequences. The authors in [RV04] already argued for ICSP's in the

context of computer music via constraint speci�cations. Constraints are de�ned

on the arbitrary long sequences of chords that can be generated. Each chord

represents the notes to be played at the same time. The highest voice is the

sequence that results from taking the highest notes in the sequence of chords.

The lower voice is de�ned analogously. A standard constraint is that the highest

voice goes up at time i i� the lowest voice does not do it at the same time. This

standard constraint can be de�ned as an ICSP as follows

h8i;hi < hi+1 , :(li < li+1)i

The meaning of hi and li is obvious; the highest and lowest note, respectively,

played at time i. The underlying indexing structure of this problem is Linear-

order Arithmetic (N; 0; succ; <).

In�nite N-Queens. The �rst problem we consider is the in�nite n-queens

problem. We have an in�nite chess-board (rectangular grid in the plane) and

want to place an in�nite number of queens so that: there is exactly one queen in

each row and each column; there are no two queens in any diagonal. The in�nite

n-queens problem can be represented by the following ICSP with indexed boolean

variables of the form qij and the following constraint patterns :

h8i9j ; qiji

h8i;u;v . (u 6= v) ; qiu ) :qivi

h8i9j ; qjii

h8u;v;j . (u 6= v) ; quj ) :qvji

h8u;v;i;j . (u+ v = i+ j) ^ (u 6= i) ; quv ) :qiji

h8u;v;i;j . (u� v = i� j) ^ (u 6= i) ; quv ) :qiji



On In�nite CSP's 7

The meaning of qij is obvious: there is a queen in the ith row and jth column

i� qij = >. The �rst line says there is at least one queen in each row, while

the second one says that there are not two queens in the same row; the �rst

two constraints altogether express the fact that there is exactly one queen in

each row. The third and fourth lines express the same property for columns.

The las two constraints say that there is no diagonal containing two queens. The

underlying indexing structure is Presburger Arithmetic.

In�nite Knight Tours. The second problem we express as an ICSP is the

in�nite knight tour. Clearly a knight tour on an in�nite chess-board de�nes a

bijection between Z2 (a square on the chess-board) and Z (a moment in time),

so we will express the fact that there is a such bijection as an ICSP with boolean

indexed variables:

h8i;j9u ; tijui

h8i;j;u;v . (u 6= v) ; tiju ) :tijvi

h8u9ij ; tijui

h8ijzwu . (i 6= z) _ (j 6= w) ; tiju ) :tzwui

The �rst two lines say that tiju de�nes a total function from Z
2 to Z. The

third and the fourth constraint say that the function is surjective and injective,

respectively. For the in�nite knight tour, we may think that tiju = > if and

only if the knight is on the square (i; j) at the time u. We then need to add

a constraint expressing the fact that if the knight is on the square (i; j) at the
time u, then he must jump to one of the neighbouring squares (in the sense of

legitimate knight moves) at the time u+1. It is not hard to see that the following
constraint pattern does the job:

h8i
�2;i�1;i1:i2;j�2;j�1;j1:j2;u;v

.

(i�2 = i� 2) ^ (i�1 = i� 1) ^ (i1 = i+ 1) ^ (i2 = i+ 2) ^

(j�2 = j � 2) ^ (j�1 = j � 1) ^ (j1 = j + 1) ^ (j2 = j + 2) ^

(v = u+ 1) ;

tiju ) (ti
�1j�2v

_ ti
�2j�1v

_ ti
�1j2v

_ ti2j�1v
_ ti1j�2v

_

ti
�2j1v

_ ti1j2v _ ti2j1v)i

The underlying indexing structure is (Z; succ).

5 Decidability Results

In this section we present (un)decidability results for the satis�ability of ICSP's.

Convention 2 We shall say that an ICSP hI; X;�;Ri is k-dimensional k � 1
i� each symbol in X has at most rank k and at least rank one. Also, we shall

often say that a certain family of ICSP's are (un)decidable to mean that the

satis�ability problem for such a family is (un)decidable.



8 Stefan Dantchev and Frank D. Valencia

First, we state the decidability for the family of one-dimensional ICSP's P =
hI; X;�;Ri with indices speci�ed in the theory of the natural numbers with

linear order; i.e., I = (N; 0; succ; <). We then show that if we move to the two-

dimensional case, ICSP's with linear-orders become undecidable. We conclude

by showing that if we also allow summation(i.e. Presburger arithmetic I =
(N; 0; succ; <;+)) then ICSP's are undecidable already in the one-dimensional

case.

5.1 Linear-Order ICSP's: One Dimensional Case

We shall state that one-dimensional ICSP's with linear-order indexing structures

can be characterized in terms of Büchi automata [Buc62].

Büchi FSA. Recall that Büchi automata are ordinary �nite-state automata

(FSA) with an acceptance condition for in�nite (or !) sequences: an ! sequence

is accepted i� the automaton can read it from left to right while visiting a �-

nal state in�nitely often. The language recognized by a Büchi automaton B is

denoted by L(B). Regular !-languages are those recognized by Büchi FSA.

We shall use the following notation.

Notation 1 Let P = hI; X;�;Ri be a one-dimensional ICSP. Suppose that

X = fx1; : : : ; xng and that v : Vars(P ) ! � is an assignment for the indexed

variables of P . We use v(Xt) where t 2 jIj to denote (v(x1t ); : : : ; v(xnt)); i.e.,
the sequence of values assigned to variables that are indexed with t.

The idea of the characterization of linear-order one-dimensional ICSP's is

that every solution v of any such an ICSP can be viewed as an !-sequence of

the form v(X0):v(X1): : : : exhibiting (!) regularities. Let us illustrate this with

the following example.

Example 3. Consider a problem P with domain � = f0; 1g, indexed variables

x0; x1; : : : and constraints xi 6= xi+1 for each i = 0; 1; 2; : : :. Clearly, P can

be expressed as a one-dimensional ICSP with indexing structure (N; 0; succ; <)
and set of indexable symbols X = fxg . Notice that v is a solution of P i�

v(X0):v(X1): : : : is accepted by the following Büchi automaton:

(0)

(1)

(1) (0)

ut

The following lemma states the Büchi automata representation of the ICSP's

under consideration.



On In�nite CSP's 9

Lemma 1 (Büchi Representation). Let P = h(N; 0; succ; <);X ;� ;Ri be a

one-dimensional ICSP. One can e�ectively construct a Büchi FSA BP such that

L(BP ) is (isomorphic to)

fv(X0):v(X1): : : : j v is a solution of Pg:

Proof (Outline). The construction can be obtained as the Büchi construction

given in [Tho90] for Monadic Second-Order Logic formulae interpreted over !-

sequences (S1S). In fact, ICSP's can be translated to S1S: The S1S �rst-order

language has quanti�ers over sequence positions which corresponds in our case

to indexing variables. Also, S1S includes the predicate < over sequence positions.

Furthermore, for every symbol a in the signature of sequences, S1S has a predi-

cate a?(i) to test whether the symbol a occurs at position i of the interpreting

sequence. Since constraints are �nite relations such predicates can be used to

represent them using disjunctive normal form in the obvious way. ut

As a corollary of Lemma 1 we get the decidability of satis�ability for the

ICSP's under consideration.

Theorem 1. Given a one-dimensional ICSP P = h(N; 0; succ; <);X ;� ;Ri, the

question of whether P has a solution is decidable.

Proof. It follows from Lemma 1 and the decidability of the emptiness problem

for Büchi automata [SVW87]; whether a given Büchi automaton accepts at least

one sequence. ut

Relevance of the Büchi FSA Representation. Let us discuss a little about

the relevance of Lemma 1. First, Büchi automata give us a �nite representation of

all the solutions of a given one-dimensional ICSP's with linear-orders. Second,

(the languages of) Büchi automata are closed under intersection, disjunction

and complementation. This allows to perform compositional analysis of ICSP's.

So, for example, if one is given two automata BP and BQ representing the

solutions of two ICSP' P and Q (possibly with common variables and domains),

then one can perform an operation on these two automata, to get an automata

representing the (solutions of the) conjunction between P and Q.

5.2 Linear-Order ICSP's: Two-Dimensional Case

Here, we show that in contrast to one-dimensional ICSP's, the satis�ability

problem for two-dimensional ones with linear-order indexing structure is un-

decidable. In fact, we prove something stronger: The problem is undecidable for

two-dimensional ICSP's whose indexing structure is simply (N; 0; succ).
The result can be obtained via reduction from one of the classic undecidable

problems in computability: the Halting Problem for Turing-Machines. The key

idea of the reduction is to use a variable xi;t for each i; t = 0; 1; : : : to represent

the state of the i-th cell in the tape of the machine at time t. Constraints can

then be set up to express valid transitions between con�gurations.



10 Stefan Dantchev and Frank D. Valencia

The above-mentioned reduction suggests that linear-order two-dimensional

ICSP's are very expressive as they are capable of specifying arbitrary Turing

computations. This is to be contrasted with the speci�cation expressiveness of

linear-order one-dimensional ICSP which from Lemma 1 does not go beyond of

that of Büchi FSA.

Our reduction lemma can be stated as follows:

Lemma 2 (Turing Reduction). Let M be a deterministic Turing machine.

One can e�ectively construct a two-dimensional ICSP PM with indexing struc-

ture (N; 0; succ) such that:

PM has a solution i� M does not halt:

Proof (Outline). Given M , our ICSP PM has a variable xi;t for i; t = 0; 1; 2; :::
representing the state of the Turing machine cell i at time t including the state

of the �nite control if the head is at that cell.

Furthermore, the ICSP PM has constraint � on xi;t, xi;t�1, and xi;t's adjacent

cells xi�1;t�1 and xi+1;t�1 at time t�1. For every i � 0 and t > 0, the constraint
�(xi;t; xi�1;t�1; xi;t�1; xi+1;t�1) speci�es how the cell i at time i is computed as

a transition from the con�guration at time t�1; and if M is in the halting state

at time t � 1 with the head on one of i � 1, i or i + 1, no value of xi;t should

satisfy the constraint. Finally, PM has also constraint �0 describing the initial

con�guration.

One can verify that PM can be speci�ed as a two-dimensional ICSP with

indexing structure (N; 0; succ) and that it has a solution if and only if the machine

does not halt. ut

As an immediate consequence of the previous lemma and the undecidability

of the Halting problem we get undecidability of two-dimensional ICSP's with

(N; 0; succ). Hence, also two-dimensional ICSP's with linear-order as indexing

structure are undecidable.

Theorem 2. Given a two-dimensional ICSP P = hI; X;�;Ri with indexing

structure I 2 f(N; 0; succ); (N ; 0 ; succ; <)g, the question of whether P has a

solution is undecidable.

5.3 Presburger ICSP's: One Dimensional Case

In this section we shall prove that Presburger one-dimensional ICSP's are un-

decidable wrt satis�ability, even if we only have a single single-indexed variable,

all constraint patterns are universal and each constraint is a 2-clause, i.e. a
disjunction of at most two literals.

Now, it is well known that Presburger Arithmetic with a single (uninter-

preted) unary predicate is undecidable (in fact �1
1 complete) [Hal91]. It is also

known that certain temporal logics based on Presburger Arithmetic are unde-

cidable, too [AH89]. Unfortunately neither proof applies to our setting.



On In�nite CSP's 11

Our proof is a reduction from the Halting problem for two-counter machines.

Two-counter machines are a universal model of computation, i.e. equivalent to

Turing machines. They were introduced by Minsky in [Min61] and are sometimes

called Minsky machines.

Minsky two-counter machines. Recall that a two-counter machine is de�ned as

follows. There are two registers (called counters) c1 and c2; each of them holds

a natural number. The �program� of the machine is a sequence of m instructions

�0; �1; : : : �m�1, each instruction being of the forms

1. Add 1 to ci and go to �j (i 2 f1; 2g and 0 � j < m).

2. if ci = 0 go to �j else subtract 1 from ci and go to �k (i 2 f1; 2g and

0 � j; k < m).

The machine always starts at �0 with c1 = 2x and c2 = 0 where x 2 N is the

input. It stops only if it reaches �m�1 with c1 = 2y for some y 2 N and c2 = 0;
y is the result of the computation.

As in the case of two-dimensional linear-order ICSP's, the reduction also

states that Presburger ICSP's are very expressive as they are capable of specify-

ing arbitrary Turing computations. However, in Presburger this already happens

for one-dimensional ICSP's.

We can now state the reduction lemma:

Lemma 3 (Minsky Reduction). Let M be a two-counter machine with a

sequence of m instructions �0; �1; : : : �m�1 and a natural number n: One can

e�ectively construct a one-dimensional ICSP PM with an indexing structure

(N; 0; succ; <;+) such that:

PM is satis�able if and only if M does not halt on the input n:

The proof of the above lemma is more involved than that of Lemma 2. So,

we will devote the end of this section to describe it. But �rst, we state the

undecidability of Presburger one-dimensional ICSP's which follows immediately

from Lemma 3 and the undecidability of the Halting problem for two-counter

machines.

Theorem 3. Given a one-dimensional P = h(N; 0; succ; <;+);X ;� ;Ri, the

question of whether P has a solution is undecidable.

Proof of Lemma 3. Let M; n as in Lemma 3. We describe the construction

of a one-dimensional ICSP PM with indexing structure (Z; 0; succ; <;+) and
indexed boolean variables fpu j u 2 Zg s.t.,

PM is satis�able if and only if M does not halt on the input (1)

The proof of Lemma 3 can be obtained via the standard isomorphism between

Z and N as it can be expressed with the operations from (N; 0; succ; <;+).



12 Stefan Dantchev and Frank D. Valencia

Let us �rst describe the construction intuitively. We encode the states of M

by positive integers. We use the variables fpu j u 2 Zg of the ICSP PM to encode

a property P on positive integers. The constraints of PM specify that: P holds

at the initial state of M; if P hold at any state then it holds at its successor;

P does not hold at any possible �nal state of M. This implies the statement in

Equation 1.

The above-mentioned constraints can be expressed by purely universal con-

straints, so we simplify the notation further: since each generator is of the

form Qx1;x2;:::xk . ' (x1; x2; : : : xk), we omit Qx1;x2;:::xk.-part and simply write

' (x1; x2; : : : xk). Also, notice that we are using x1; x2; : : : to denote indices (or

indexing variables); the indexed variables of the ICSP will be denoted by vari-

ables of the form pu,px, py, etc.

We now de�ne the encodings. We use the negative indices to encode the

powers of two, i.e.

for every u < 0 pu = > if and only if �u = 2v for some v � 0.

We will need these in order to check the correctness of the value in c1 when the

machine halts at �m�1. This condition can be expressed by the following set of

constraint-patterns:

hx = �1 ; pxi

h(x < �1) ^ :9u (x = u+ u) ; :pxi

h(x < 0) ^ (x = y + y) ; px , pyi:

The �rst constraint says that 1 is a power of two; the second one says that no

odd number is a power of two; the third one says that an even number x is a

power of two if and only if x=2 is.

We use positive indices to encode the states of the machine M, each state

consisting of the index i of the current instruction �i (0 � i < m) together

with the content of the counters c1 and c2. We encode such a triple by a single

natural number x = i+m2c13c2 . Clearly the initial state is encoded bym2n. The
fact thatP holds at the initial state of M is expressed by the following simple

constraint-pattern:

hx = m2n ; pxi

(note that m2n is a given constant, so that x = m2n is a legitimate formula in

Presburger Arithmetic).

In order to say that if P holds at the state x then it holds at the successor

state y, we �rst need to �decode� x. The instruction index can be obtained by

taking x mod m; the increment of c1 (c2) can be done by multiplying x div m by

2 (respectively 3); the decrement of of c1 (c2) can be done by dividing x div m

by 2 (respectively 3) if it is greater than zero, i.e. if x div m is divisible by 2
(respectively 3). We shall use the following abbreviation:

DIVm(x; u; w) which stands for

0
@x = u+ u+ � � �u| {z }

m times

+w

1
A ^ (w � 0) ^ (w < m);



On In�nite CSP's 13

the intended meaning is that the quotient and the remainder when x is divided

by (the constant) m are u and w, respectively.

Depending on the instruction �i, we have one of the following four possibili-

ties for every i, 0 � i � m� 2:

1. �i : add 1 to c1 and go to �j . The current state is encoded by i+m2c13c2

for some c1; c2 2 N and the successor state is j +m2c1+13c2 :

h(x > 0) ^ 9u (DIVm (x; u; i) ^DIVm (y; u+ u; j)) ; px ) pyi:

2. �i : add 1 to c2 and go to �j . This is pretty similar to the previous case:

h(x > 0) ^ 9u (DIVm (x; u; i) ^DIVm (y; u+ u+ u; j)) ; px ) pyi:

3. �i : if c1 = 0 go to �j else subtract 1 from c1 and go to �k. The current state

is encoded by i +m2c13c2 for some c1; c2 2 N. If c1 = 0 then the successor

state is j +m2c13c2 . If c1 > 0 then the successor state is k +m2c1�13c2 .

h(x > 0) ^DIVm (x; u; i) ^ (:9w (u = w + w) ^DIVm (y; u; j)

_9w ((u = w + w) ^DIVm (y; w; k))) ; px ) pyi

4. �i : if c2 = 0 go to �j else subtract 1 from c2 and go to �k. This is similar

to the previous case:

h(x > 0) ^DIVm (x; u; i) ^ (:9w (u = w + w + w) ^DIVm (y; u; j)

_9w ((u = w + w + w) ^DIVm (y; w; k))) ; px ) pyi

Finally we need to say that P does not hold at any possible �nal state, i.e. a

state of the form m� 1 +m2p for some p 2 N:

h9u ((y < 0) ^ (u+ y = 0) ^DIVm (x; u;m� 1)) ; py ) :pxi

(note that here y < 0, so that py has nothing to do with the property P de�ned

on the states of M, but simply says that �y is a power of two). ut

6 Concluding Remarks & Future Work

We have presented ICSP's; a framework to specify CSP's with unbounded num-

ber of indexed variables. We proved decidability of one-dimensional ICSP's

with linear-order indexing structures. We also proved undecidability for two-

dimensional ICSP's with linear-order indexing structures as well as for one-

dimensional ICSP's with Presburger indexing structures. The decidability result

was obtained by a reduction to Büchi automata while the undecidability ones

were obtained by a reduction from Turing and Minsky machines. We argued that

the Büchi representation of one-dimensional ICSP's with linear-order may help

to provide for the compositional analysis of these problems.

We conclude this paper by suggesting some theoretical and practical direction

for research on ICSP's:



14 Stefan Dantchev and Frank D. Valencia

� Having identi�ed decidable classes of ICSP, it would be interesting to �nd

their complexity. It is known that complexity of linear orders with uninter-

preted unary predicates is double exponential, which implies that ICSP's

with indexing structure (N; 0; succ; <) can be solved in time 22
O(s)

where s is

the size of the constraint patterns. It would be interesting to identify the sub-

classes of ICSP's that can be solved in (single) exponential and polynomial

time in s.
� We have proven that ICSP with indexing structure (N; 0; succ;+) is unde-

cidable. It would be nice to �nd general conditions under which the ICSP's

are decidable.
� For every ICSP P with indexing structure universe N, there is natural se-

quence of �nite CSP's Pn: Pn is obtained from P by restricting the values of

all variables having an index greater than n to some default value (? in case

of propositional variables). It would be very interesting to �nd connection

between the decidability of P and the complexity of Pn. It would be also

nice to prove some kind of compactness theorem saying that if every Pn is

satis�able, then so is P .
� It can also be interesting to consider an extension to our ICSP's to allow

constraints whose arity is not �xed. This kind of constraints also arises in

practice; e.g., in constraints involving arbitrary summations.
� To a more practical level, given the Büchi automata representation of ICSP's

given in this paper, one should look into tools for these automata to see if

they can be tailored to deal with ICSP's. A good starting point could be the

MONA tool [KM01].

Acknowledgments

We are indebted to Krzysztof Apt, Christian Bessière, Rina Dechter, Camilo

Rueda and Pascal Van Hentenryck for indicating to us relevant aspects of ICSP's.

We also wish to thank Peter Bro Miltersen and Parosh Abdula for technical

discussions on the topics of this paper.

References

[AADR98] C. Agon, G. Assayag, O. Delerue, and C. Rueda. Objects, time and con-

straints in openmusic. In ICMC98, pages 1�12. ICMA, 1998.

[AH89] R. Alur and T.A. Henzinger. A really temporal logic. In Proc. 30th IEEE

Symp. on Foundations Of Computer Science, pages 164�169, 1989.

[Apt04] K.R. Apt. Personal Communication, 2004.
[BB01] G. Bella and S. Bistarelli. Soft constraints for security protocol analysis:

Con�dentiality. LNCS, 1990, 2001.

[Bes04] C. Bessière. Personal Communication, 2004.

[BLN01] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling.

Applying Constraint programming to Scheduling Problems. Kluwer, 2001.

[BN03] M. Bodirsky and J. Nesetril. Constraint satisfaction with countable ho-

mogeneous templates. In M. Baaz and J.A. Makowsky, editors, Computer

Science Logic, volume 2803 of LNCS, pages 44�57. Springer, August 2003.



On In�nite CSP's 15

[Buc62] J. R. Buchi. On a decision method in restricted second order arithmetic. In

Proc. Int. Cong. on Logic, Methodology, and Philosophy of Science, pages

1�11. Stanford University Press, 1962.

[EM97] J. Esparza and S. Melzer. Model checking LTL using constraint program-

ming. In 18th International Conference on Application and Theory of Petri

Nets, volume 1248, pages 1�20. Springer-Verlag, 1997.

[Fre98] M. Freedman. k-sat on groups and undecidability. In Proc. 30th ACM

Symp. on Theory Of Computing, pages 572�576, 1998.

[GW94] C. Gaspin and E. Westhof. The determination of secondary structures of

RNA as a constraint satisfaction problem. In Advances in molecular bioin-

formatics. IOS Press, 1994.

[Hal91] J.Y. Halpern. Presburger arithmetic with unary predicates is �11 complete.

Journal of Symbolic Logic, 56(2):637�642, June 1991.

[KM01] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS Notes

Series NS-01-1, Department of Computer Science, University of Aarhus,

January 2001.

[Min61] M. Minsky. Recursive unsolvability of post's problem of "tag" and other

topics in theory of turing machines. Annals of Mathematics, 74(3):437�455,

November 1961.

[OV93] W. Older and A. Vellino. Constraint Arithmetic on Real Intervals. In

Frédéric Benhamou and Alain Colmerauer, editors, Constraint Logic Pro-

gramming: Selected Research. MIT Press, 1993.

[RV04] C. Rueda and F. Valencia. On validity in modelization of musical problems

by ccp. In Formal Systems and Music: Special Issue of Soft Computin.

Springer-Verlag, 2004.

[SVW87] A. Sistla, M. Vardi, and P. Wolper. The complementation problem for

buchi automata with applications to temporal logic. Theoretical Computer

Science, 49:217�237, 1987.

[Tho90] W. Thomas. Automata on in�nite objects. In Jan van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume B, Formal models and

semantics, pages 133�191. Elsevier, 1990.

[Var96] M. Vardi. An automata-theoretic approach to linear temporal logic. In Ban�

Higher Order Workshop, volume 1043 of LNCS, pages 238�266. Springer,

1996.


