
CCS with Replication in the Chomsky Hierarchy:
The Expressive Power of Divergence

Jesús Aranda1,!, Cinzia Di Giusto2, Mogens Nielsen3, and Frank D. Valencia4

1 Universidad del Valle, Colombia and LIX École Polytechnique, France
jesus.aranda@lix.polytechnique.fr

2 Dip. Scienze dell’Informazione, Università di Bologna, Italy
digiusto@cs.unibo.it

3 BRICS, University of Aarhus, Denmark
mn@brics.dk

4 CNRS and LIX École Polytechnique, France
frank.valencia@lix.polytechnique.fr

Abstract. A remarkable result in [4] shows that in spite of its being less expre-
ssive than CCS w.r.t. weak bisimilarity, CCS! (a CCS variant where infinite be-
havior is specified by using replication rather than recursion) is Turing powerful.
This is done by encoding Random Access Machines (RAM) in CCS!. The enco-
ding is said to be non-faithful because it may move from a state which can lead
to termination into a divergent one which do not correspond to any configuration
of the encoded RAM. I.e., the encoding is not termination preserving.

In this paper we study the existence of faithful encodings into CCS! of mod-
els of computability strictly less expressive than Turing Machines. Namely, gra-
mmars of Types 1 (Context Sensitive Languages), 2 (Context Free Languages)
and 3 (Regular Languages) in the Chomsky Hierarchy. We provide faithful en-
codings of Type 3 grammars. We show that it is impossible to provide a faithful
encoding of Type 2 grammars and that termination-preserving CCS! processes
can generate languages which are not Type 2. We finally show that the languages
generated by termination-preserving CCS! processes are Type 1 .

1 Introduction

The study of concurrency is often conducted with the aid of process calculi. A common
feature of these calculi is that they treat processes much like the λ-calculus treats com-
putable functions. They provide a language in which the structure of terms represents
the structure of processes together with a reduction relation to represent computational
steps. Undoubtedly Milner’s CCS [9], a calculus for the modeling and analysis of syn-
chronous communication, remains a standard representative of such calculi.

Infinite behaviour is ubiquitous in concurrent systems. Hence, it ought to be repre-
sented by process terms. In the context of CCS we can find at least two representa-
tions of them: Recursive definitions and Replication. Recursive process definitions take
the form A(y1, . . . , yn) each assumed to have a unique, possibly recursive, parametric

! The work of Jesús Aranda has been supported by COLCIENCIAS (Instituto Colombiano para
el Desarrollo de la Ciencia y la Tecnologı́a “Francisco José de Caldas”) and INRIA Futurs.

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 383–398, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

384 J. Aranda et al.

process definition A(x1, . . . , xn) def= P . The intuition is that A(y1, . . . , yn) behaves as
P with each yi replacing xi. Replication takes the form !P and it means P | P | · · · ;
an unbounded number of copies of the process P in parallel. An interesting result is
that in the π-calculus, itself a generalization of CCS, parametric recursive definitions
can be encoded using replication up to weak bisimilarity. This is rather surprising since
the syntax of !P and its description are so simple. In fact, in [3] it is stated that in CCS
recursive expressions are more expressive than replication. More precisely, it is shown
that it is impossible to provide a weak-bisimulation preserving encoding from CCS with
recursion, into the CCS variant in which infinite behaviour is specified only with repli-
cation. From now on we shall use CCS to denote CCS with recursion and CCS! to the
CCS variant with replication.

Now, a remarkable expressiveness result in [4] states that, in spite of its being less ex-
pressive than CCS in the sense mentioned above, CCS! is Turing powerful. This is done
by encoding (Deterministic) Random Access Machines (RAM) in CCS!. Nevertheless,
the encoding is not faithful (or deterministic) in the sense that, unlike the encoding of
RAMs in CCS, it may introduce computations which do not correspond to the expected
behaviour of the modeled machine. Such computations are forced to be infinite and
thus regarded as non-halting computations which are therefore ignored. Only the finite
computations correspond to those of the encoded RAM.

A crucial observation from [4] is that to be able to force wrong computation to be
infinite, the CCS! encoding of a given RAM can, during evolution, move from a state
which may terminate (i.e. weakly terminating state) into one that cannot terminate (i.e.,
strongly non-terminating state). In other words, the encoding does not preserve (weak)
termination during evolution. It is worth pointing that since RAMs are deterministic
machines, their faithful encoding in CCS given in [3] does preserve weak termina-
tion during evolution. A legitimate question is therefore: What can be encoded with
termination-preserving CCS! processes?

This work. We shall investigate the expressiveness of CCS! processes which indeed
preserve (weak) termination during evolution. This way we disallow the technique used
in [4] to unfaithfully encode RAMs.

A sequence of actions s (over a finite set of actions) performed by a process P spec-
ifies a sequence of interactions with P ’s environment. For example, s = an.b̄n can be
used to specify that if P is input n a’s by environment then P can output n b’s to the
environment. We therefore find it natural to study the expressiveness of processes w.r.t.
sequences (or patterns) of interactions (languages) they can describe. In particular we
shall study the expressiveness of CCS! w.r.t. the existence of termination-preserving
encodings of grammars of Types 1 (Context Sensitive grammars), 2 (Context Free gra-
mmars) and 3 (Regular grammars) in the Chomsky Hierarchy whose expressiveness
corresponds to (non-deterministic) Linear-bounded, Pushdown and Finite-State Au-
tomata, respectively. As elaborated later in the related work, similar characterizations
are stated in the Caucal hierarchy of transition systems for other process algebras [2].

It worth noticing that by using the non termination-preserving encoding of RAM’s in
[3] we can encode Type 0 grammars (which correspond to Turing Machines) in CCS!.

Now, in principle the mere fact that a computation model fails to generate some
particular language may not give us a definite answer about its computation power. For

CCS with Replication in the Chomsky Hierarchy 385

a trivial example, consider a model similar to Turing Machines except that the machines
always print the symbol a on the first cell of the output tape. The model is essentially
Turing powerful but fails to generate b. Nevertheless, our restriction to termination-
preserving processes is a natural one, much like restricting non-deterministic models to
deterministic ones, meant to rule out unfaithful encodings of the kind used in [4]. As
matter of fact, Type 0 grammars can be encoded by using the termination-preserving
encoding of RAMs in CCS [3].

Contributions. For simplicity let us use CCS−ω
! to denote the set of CCS! processes

which preserve weak termination during evolution as described above. We first provide
a language preserving encoding of Regular grammars into CCS−ω

! . We also prove that
CCS−ω

! processes can generate languages which cannot be generated by any Regular
grammar. Our main contribution is to show that it is impossible to provide language
preserving encodings from Context-Free grammars into CCS−ω

! . Conversely, we also
show that CCS−ω

! can generate languages which cannot be generated by any Context-
free grammar. We conclude our classification by stating that all languages generated by
CCS−ω

! processes are context sensitive. The results are summarized in Fig. 1.

CSL
CCS−ω

!

REG
CFL

Fig. 1. Termination-Preserving CCS! Processes (CCS−ω
!) in the Chomsky Hierarchy

Outline of the paper. This paper is organized as follows. Section 2 introduces the
CCS calculi under consideration. We then discuss in Section 3 how unfaithful encodings
are used in [4] to provide an encoding of RAM’s. We prove the above-mentioned results
in Section 4. Finally, some concluding remarks are given in Section 5.

2 Preliminaries

In what follows we shall briefly recall the CCS constructs and its semantics as well as
the CCS! calculus.

2.1 The Calculi

Finite CCS. In CCS, processes can perform actions or synchronize on them. These
actions can be either offering port names for communication, or the so-called silent

386 J. Aranda et al.

action τ. We presuppose a countable set N of port names, ranged over by a, b, x, y . . .
and their primed versions. We then introduce a set of co-names N = {a | a ∈ N}
disjoint from N . The set of labels, ranged over by l and l′, is L = N ∪ N . The set of
actions Act , ranged over by α and β, extends L with a new symbol τ. Actions a and a
are thought of as complementary, so we decree that a = a. We also decree that τ = τ .

The processes specifying finite behaviour are given by:

P, Q . . . := 0 | α.P | (νa)P | P | Q (1)

Intuitively 0 represents the process that does nothing. The process α.P performs an
action α then behaves as P . The restriction (νa)P behaves as P except that it can offer
neither a nor ā to its environment. The names a and ā in P are said to be bound in
(νa)P . The bound names of P , bn(P), are those with a bound occurrence in P , and the
free names of P , fn(P), are those with a not bound occurrence in P . The set of names
of P , n(P), is then given by fn(P) ∪ bn(P). Finally, P | Q represents parallelism;
either P or Q may perform an action, or they can also synchronize when performing
complementary actions.

Notation 1. We shall write the summation P + Q as an abbreviation of the process
(ν u)(u | u.P | u.Q). We also use (νa1 . . . an)P as a short hand for (νa1) . . . (νan)P .
We often omit the “0” in α.0.

The above description is made precise by the operational semantics in Table 1. A tran-
sition P

α−→ Q says that P can perform α and evolve into Q. In the literature there

Table 1. An operational semantics for finite processes

ACT
α.P

α−→ P
RES

P
α−→ P ′

(ν a)P α−→ (ν a)P ′
if α #∈ {a, a}

PAR1
P

α−→ P ′

P | Q
α−→ P ′ | Q

PAR2
Q

α−→ Q′

P | Q
α−→ P | Q′

COM
P

l−→ P ′ Q
l−→ Q′

P | Q
τ−→ P ′ | Q′

are at least two alternatives to extend the above syntax to express infinite behaviour. We
describe them next.

2.2 Parametric Definitions: CCS and CCSp

A typical way of specifying infinite behaviour is by using parametric definitions [10].
In this case we extend the syntax of finite processes (Equation 1) as follows:

P, Q, . . . := . . . | A(y1, . . . , yn) (2)

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We assume that
every such an identifier has a unique, possibly recursive, definition A(x1, . . . , xn) def=

CCS with Replication in the Chomsky Hierarchy 387

PA where the xi’s are pairwise distinct, and the intuition is that A(y1, . . . , yn) behaves
as its body PA with each yi replacing the formal parameter xi. For each A(x1, . . . , xn)
def= PA, we require fn(PA) ⊆ {x1, . . . , xn}.

Following [5], we should use CCSp to denote the calculus with parametric definitions
with the above syntactic restrictions.

Remark 1. As shown in [5], however, CCSp is equivalent w.r.t. strong bisimilarity to
the standard CCS. We shall then take the liberty of using the terms CCS and CCSp to
denote the calculus with parametric definitions as done in [10].

The rules for CCSp are those in Table 1 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn] α−→ P ′

A(y1, . . . , yn) α−→ P ′
if A(x1, . . . , xn) def= PA (3)

As usual P [y1 . . . yn/x1 . . . xn] results from replacing every free occurrence of xi with
yi renaming bound names in P wherever needed to avoid capture.

2.3 Replication: CCS!

One simple way of expressing infinite is by using replication. Although, mostly found
in calculus for mobility such as the π-calculus and mobile ambients, it is also studied
in the context of CCS in [3,5].

For replication the syntax of finite processes (Equation 1) is extended as follows:

P, Q, . . . := . . . | !P (4)

Intuitively the process !P behaves as P | P | . . . | P | !P ; unboundedly many
P ’s in parallel. We call CCS! the calculus that results from the above syntax The ope-
rational rules for CCS! are those in Table 1 plus the following rule:

REP
P | !P α−→ P ′

!P α−→ P ′ (5)

3 The Role of Strong Non-termination

In this section we shall single out the fundamental non-deterministic strategy for the
Turing-expressiveness of CCS!. First we need a little notation.

Notation 2. Define s=⇒, with s = α1. . . . αn ∈ L∗, as

(τ−→)∗ α1−→ (τ−→)∗ . . . (τ−→)∗ αn−→ (τ−→)∗.

For the empty sequence s = ε, s=⇒ is defined as (τ−→)∗.

388 J. Aranda et al.

We shall say that a process generates a sequence of non-silent actions s if it can perform
the actions of s in a finite maximal sequence of transitions. More precisely:

Definition 1 (Sequence and language generation). The process P generates a se-
quence s ∈ L∗ if and only if there exists Q such that P

s=⇒ Q and Q ' α−→ for any
α ∈ Act . Define the language of (or generated by) a process P , L(P), as the set of all
sequences P generates.

The above definition basically states that a sequence is generated when no reduction
rule can be applied. It is inspired by language generation of the model of computations
we are comparing our processes with. Namely, formal grammars where a sequence is
generated when no rewriting rule can be applied.

As we shall see below (strong) non-termination plays a fundamental role in the ex-
pressiveness of CCS!. We borrow the following terminology from rewriting systems:

Definition 2 (Termination). We say that a process P is (weakly) terminating (or that
it can terminate) if and only if there exists a sequence s such that P generates s. We say
that P is (strongly) non-terminating, or that it cannot terminate if and only if P cannot
generate any sequence.

The authors in [4] show the Turing-expressiveness of CCS!, by providing a CCS! en-
coding [[·]] of Random Access Machines (RAMs) a well-known Turing powerful deter-
ministic model [11]. The encoding is said to be unfaithful (or non-deterministic) in the
following sense: Given M , during evolution [[M]] may make a transition, by performing
a τ action, from a weakly terminating state (process) into a state which do not corre-
spond to any configuration of M . Nevertheless such states are strongly non-terminating
processes. Therefore, they may be thought of as being configurations which cannot lead
to a halting configuration. Consequently, the encoding [[M]] does not preserve (weak)
termination during evolution.

Remark 2. The work [4] considers also guarded-summation for CCS!. The results about
the encodability of RAM’s our work builds on can straightforwardly be adapted to our
guarded-summation free CCS! fragment.

Now rather than giving the full encoding of RAMs in CCS!, let us use a much simpler
example which uses the same technique in [4]. Below we encode a typical context
sensitive language in CCS!.

Example 1. Consider the following processes

P = (ν k1, k2, k3, ub, uc)(k1 | k2 | Qa | Qb | Qc)
Qa = !k1.a.(k1 | k3 | ub | uc)
Qb = k1.!k3.k2.ub.b.k2

Qc = k2.(!uc.c | ub.DIV)

where DIV =!τ . It can be verified that L(P) = {anbncn}. Intuitively, in the process
P above, Qa performs (a sequence of actions) an for an arbitrary number n (and also
produces n ub’s). Then Qb performs bm for an arbitrary number m ≤ n and each time
it produces b it consumes a ub. Finally, Qc performs cn and diverges if m < n by
checking if there are ub’s that were not consumed.)*

CCS with Replication in the Chomsky Hierarchy 389

The Power of Non-Termination. Let us underline the role of strong non-termination
in Example 1. Consider a run

P
anbm

=⇒ . . .

Observe that the name ub is used in Qc to test if m < n, by checking whether some ub

were left after generating bm. If m < n, the non-terminating process DIV is triggered
and the extended run takes the form

P
anbmcn

=⇒ τ−→ τ−→ . . .

Hence the sequence anbmcn arising from this run (with m < n) is therefore not in-
cluded in L(P).

The tau move. It is crucial to observe that there is a τ transition arising from the
moment in which k2 chooses to synchronize with Qc to start performing the c actions.
One can verify that if m < n then the process just before that τ transition is weakly
terminating while the one just after is strongly non-terminating.)*

Formally the class of termination-preserving processes is defined as follows.

Definition 3 (Termination Preservation). A process P is said to be (weakly) termina-
tion-preserving if and only if whenever P

s=⇒ Q
τ−→ R:

– if Q is weakly terminating then R is weakly terminating.

We use CCS−ω
! to denotes the set of CCS! processes which are termination-preserving.

One may wonder why only τ actions are not allowed in Definition 3 when moving from
a weakly terminating state into a strongly non-terminating one. The next proposition
answers to this.

Proposition 1. For every P, P ′, α '= τ if P
α−→ P ′ and P is weakly terminating then

P ′ must be weakly terminating.

Proof (Outline). As a mean of contradiction let P ′ be a strongly non-terminating proc-
ess such that P

α−→ P ′ where α '= τ . Let γ be an arbitrary maximal sequence of
transitions from P. Since P

α−→ P ′, the action α will be performed in γ as a visible
action or in a synchronization with its complementary action ᾱ. In the synchronization
case, one can verify that there exists another maximal sequence γ′ identical to γ except
that in γ′, α and ᾱ appear as visible actions instead of their corresponding synchro-
nization. Therefore, there exists a sequence P

t1=⇒ Q
α−→ R

t2=⇒! (Fig. 2). From
P

t1=⇒ Q
α−→ R and P

α−→ P ′, we can show that P
α−→ P ′ t1=⇒ R

t2=⇒! (Fig. 3)
thus contradicting the assumption that P ′ is a strongly non-terminating process.)*
We conclude this section with a proposition which relates preservation of termination
and the language of a process.

Proposition 2. Suppose that P is terminating-preserving and that L(P) '= ∅. For every
Q, if P

s=⇒ Q then ∃s′ such that s.s′ ∈ L(P).

Proof. Let Q an arbitrary process such that P
s=⇒ Q. Since L(P) '= ∅ then P is

weakly terminating. From Definition 3 and Proposition 1 it follows that Q is weakly

terminating. Hence there exists a sequence s′ such that P
s=⇒ Q

s′
=⇒ R ! and thus

from Definition 1 we have s.s′ ∈ L(P) as wanted.)*

390 J. Aranda et al.

Fig. 2. Alternative evolutions of P involving α

Fig. 3. Confluence from P to R

4 CCS! and Chomsky Hierarchy

In this section we study the expressiveness of termination-preserving CCS! processes in
the Chomsky hierarchy. Recall that, in a strictly decreasing expressive order, Types 0,
1, 2 and 3 in the Chomsky hierarchy correspond, respectively, to unrestricted-grammars
(Turing Machines), Context Sensitive Grammars (Non-Deterministic Linear Bounded
Automata), Context Free Grammars (Non-Deterministic PushDown Automata), and
Regular Grammars (Finite State Automata).

We assume that the reader is familiar with the notions and notations of formal gra-
mmars. A grammar is a quadruple G = (Σ, N, S, P) where Σ are the terminal symbols,
N the non-terminals, S the initial symbol, P the set of production rules. The language of
(or generated by) a formal grammar G, denoted as L(G), is defined as all those strings
in Σ∗ that can be generated by starting with the start symbol S and then applying the
production rules in P until no more non-terminal symbols are present.

4.1 Encoding Regular Languages

Regular Languages (REG) are those generated by grammars whose production rules
can only be of the form A → a or A → a.B. They can be alternatively characterized as
those recognized by regular expressions which are given by the following syntax:

e = ∅ | ε | a | e1 + e2 | e1.e2 | e∗

where a is a terminal symbol.

CCS with Replication in the Chomsky Hierarchy 391

Definition 4. Given a regular expression e, we define !e" as the CCS! process (ν m)
(!e"m | m) where !e"m, with m '∈ fn([[e]]), is inductively defined as follows:

!∅"m = DIV
!ε"m = m
!a"m = a.m

!e1 + e2"m =






!e1"m if L(e2) = ∅
!e2"m if L(e1) = ∅
!e1"m + !e2"m otherwise

!e1.e2"m = (ν m1)(!e1"m1 | m1.!e2"m) with m1 '∈ fn(e1)

!e∗"m =

{
m if L(e) = ∅
(ν m′)(m′ | !m′.!e"m′ | m′.m) with m′ '∈ fn(e) otherwise

where DIV =!τ.

Remark 3. The conditionals on language emptiness in Definition 4 are needed to make
sure that the encoding of regular expressions always produce termination-preserving
processes. To see this consider the case a+∅. Notice that while [[a]] = a and [[∅]] = DIV
are termination-preserving, a + DIV is not. Hence [[e1 + e2]] cannot be defined as
[[e1]]+ [[e2]]. Since the emptiness problem is decidable for regular expressions, it is clear
that given e, [[e]] can be effectively constructed.

The following proposition, which can be proven by using induction on the structure of
regular expressions, states the correctness of the encoding.

Proposition 3. Let [[e]] as in Definition 4. We have L(e) = L([[e]]) and furthermore [[e]]
is termination-preserving.

From the standard encoding from Type 3 grammars to regular expressions and the above
proposition we obtain the following result.

Theorem 3. For every Type 3 grammar G, we can construct a termination-preserving
CCS! process PG such that L(G) = L(PG).

The converse of the theorem above does not hold; Type 3 grammars are strictly less
expressive.

Theorem 4. There exists a termination-preserving CCS! process P such that L(P) is
not Type 3.

The above statement can be shown by providing a process which generates the typical
anbn context-free language. Namely, let us take

P = (ν k, u)(k | !(k.a.(k | u)) | k.!(u.b)).

One can verify that P is termination-preserving and that L(P) = anbn.

392 J. Aranda et al.

4.2 Impossibility Result: Context Free Languages

Context-Free Languages (CFL) are those generated by Type 2 grammars: grammars
where every production is of the form A → γ where A is a non-terminal symbol and γ
is a string consisting of terminals and/or non-terminals.

We have already seen that termination-preserving CCS! process can encode a typical
CFL language such as anbn. Nevertheless, we shall show that they cannot in general
encode Type 2 grammars.

The nesting of restriction processes plays a key role in the following results CCS!.

Definition 5. The maximal number of nesting of restrictions |P |ν can be inductively
given as follows:

|(ν x)P |ν = 1 + |P |ν |P | Q|ν = max(|P |ν , |Q|ν)
|α.P |ν = |!P |ν = |P |ν |0|ν = 0

A very distinctive property of CCS! is that the maximal nesting of restrictions is invari-
ant during evolution.

Proposition 4. Let P and Q be CCS! processes. If P
s=⇒ Q then |P |ν = |Q|ν .

Remark 4. In CCS because of the unfolding of recursive definitions the nesting of
restrictions can increase unboundedly during evolution1. E.g., consider A(a) where
A(x) def= (ν y)(x.ȳ.R | y.A(x)) (see Section 2.2) which has the following sequence
of transitions A(a) aaa...=⇒ (νy)(R | (νy)(R | (νy)(R | . . .))))*

Another distinctive property of CCS! is that if a CCS! process can perform a given
action β, it can always do it by performing a number of actions bounded by a value that
depends only on the size of the process. In fact, as stated below, for a significant class
of processes, the bound can be given solely in terms of the maximal number of nesting
of restrictions.

Now, the above statement may seem incorrect since as mentioned earlier CCS! is
Turing expressive. One may think that β above could represent a termination signal
in a TM encoding, then it would seem that its presence in a computation cannot be
determined by something bounded by the syntax of the encoding. Nevertheless, recall
that the Turing encoding in [4] may wrongly signal β (i.e., even when the encoded
machine does not terminate) but it will diverge afterwards.

The following section is devoted to some lemmas needed for proving our impossi-
bility results for CCS! processes.

Trios-Processes
For technical reasons we shall work with a family of CCS! processes, namely trios-
processes. These processes can only have prefixes of the form α.β.γ . The notion of
trios was introduced for the π-calculus in [14] . We shall adapt trios and use them as a
technical tool for our purposes.

1 Also in the π-calculus [15], an extension of CCS! where names are communicated, the nesting
of restrictions can increase during evolution due to its name-extrusion capability.

CCS with Replication in the Chomsky Hierarchy 393

We shall say that a CCS! process T is a trios-process iff all prefixes in T are trios;
i.e., they all have the form α.β.γ and satisfy the following: If α '= τ then α is a name
bound in T , and similarly if γ '= τ then γ is a co-name bound in T . For instance
(νl)(τ.τ.l | l.a.τ) is a trios-process. We will view a trio l.β.l as linkable node with
incoming link l from another trio, outgoing link l to another trio, and contents β.

Interestingly, the family of trios-processes can capture the behaviour of arbitrary
CCS! processes via the following encoding:

Definition 6. Given a CCS! process P , [[P]] is the trios-process (ν l)(τ.τ.l | !P "l)
where !P "l, with l '∈ n(P), is inductively defined as follows:

!0"l = 0
!α.P "l = (ν l′)(l.α.l′ | [[P]]l′) where l′ '∈ n(P)
!P | Q"l = (ν l′, l′′)(l.l′.l′′ | [[P]]l′ | [[P]]l′′) where l′, l′′ '∈ n(P) ∪ n(Q)
!!P "l = (ν l′)(!l.l′.l | ![[P]]l′) where l′ '∈ n(P)
!(ν x)P "l = (ν x)[[P]]l

Notice that the trios-process [[α.P]]l encodes a process α.P much like a linked list. In-
tuitively, the trio l.α.l′ has an outgoing link l to its continuation [[P]]′l and incoming link
l from some previous trio. The other cases can be explained analogously. Clearly the
encoding introduces additional actions but they are all silent—i.e., they are synchroni-
zations on the bound names l, l′ and l′′.

Unfortunately the above encoding is not invariant w.r.t. language equivalence be-
cause the replicated trio in !!P "l introduces divergence. E.g, L((νx)!x) = {ε} but
L([[(νx)!x]]) = ∅. It has, however, a pleasant invariant property: weak bisimilarity.

Definition 7 (Weak Bisimilarity). A (weak) simulation is a binary relation R satisfy-
ing the following: (P, Q) ∈ R implies that:

– if P
s=⇒ P ′ where s ∈ L∗ then ∃Q′ : Q

s=⇒ Q′ ∧ (P ′, Q′) ∈ R.

The relation R is a bisimulation iff both R and its converse R−1 are -simulations.
We say that P and Q are (weak) bisimilar, written P ≈ Q iff (P, Q) ∈ R for some
bisimulation R.

Proposition 5. For every CCS! process P , P ≈ [[P]] where [[P]] is the trios-process
constructed from P as in Definition 6.

Another property of trios is that if a trios-process T can perform an action α, i.e., T s.α=⇒,

then T
s′.α=⇒ where s′ is a sequence of actions whose length bound can be given solely

in terms of |T |ν .

Proposition 6. Let T be a trios-process such that T
s·β=⇒. There exists a sequence s′,

whose length is bounded by a value depending only on |T |ν , such that T
s′·β=⇒ .

We conclude this technical section by outlining briefly the main aspects of the proof
of the above proposition. Roughly speaking, our approach is to consider a minimal
sequence of visible actions t = β1. . . . βm performed by T leading to β (i.e., P

t=⇒

394 J. Aranda et al.

and βm = β) and analyze the causal dependencies among the (occurrences of) the
actions in this t. Intuitively, βj depends on βi if T , while performing t, could not had
performed βj without performing βi first. For example in

T = (νl)(νl′)(νl′′)(τ.a.l | τ.b.l′ | l.l′.l′′ | l′′.c.τ)

β = c, t = abc, we see that c depends on a and b, but b does not depend on a since T
could had performed b before a.

We then consider the unique directed acyclic graph Gt arising from the transitive
reduction2 of the partial ordered induced by the dependencies in t. Because t is minimal,
β is the only sink of Gt.

We write βi !t βj (βj depends directly on βi) iff Gt has an arc from βi to βj .
The crucial observation from our restrictions over trios is that if βi !t βj then (the
trios corresponding to the occurrences of) βi and βj must occur in the scope of a res-
triction process Rij in T (or in some evolution of T while generating t). Take e.g,
T = τ.a.τ | (ν l)(τ.b.l | l.c.τ) with t = a.b.c and b ! c. Notice that the trios corres-
ponding to the actions b and c appear within the scope of the restriction in T

To give an upper bound on the number of nodes of Gt (i.e., the length of t), we give
an upper bound on its length and maximal in-degree. Take a path βi1!tβi2 . . . !tβiu

of size u in Gt. With the help of the above observation, we consider sequences of res-
triction processes Ri1i2Ri2i3 . . . Riu−1iu such that for every k < u the actions βik and
βik+1 (i.e., the trios where they occur) must be under the scope of Rikik+1 . Note that any
two different restriction processes with a common trio under their scope (e.g. Ri1i2 and
Ri2i3) must be nested, i.e., one must be under the scope of the other. This induces tree-
like nesting among the elements of the sequence of restrictions. E.g., for the restrictions
corresponding to βi1!tβi2!tβi3!tβi4 we could have a tree-like situation with Ri1i2

and Ri3i4 being under the scope of Ri2i3 and thus inducing a nesting of at least two.
We show that for a sequence of restriction processes, the number m of nesting of them
satisfies u ≤ 2m. Since the nesting of restrictions remains invariant during evolution
(Proposition 4) then u ≤ 2|T |ν . Similarly, we give an upper bound 2|T |ν on the indegree
of each node βj of Gt (by considering sequences Ri1j , . . . , Rimj such that βik ! βj ,
i.e having common trio corresponding to βj under their scope). We then conclude that
the number of nodes in Gt is bounded by 2|T |ν×2|T |ν

.

Main Impossibility Result
We can now prove our main impossibility result.

Theorem 5. There exists a Type 2 grammar G such that for every termination-preser-
ving CCS! process P , L(G) '= L(P).

Proof. It suffices to show that no process in CCS−ω
! can generate the CFL anbnc. Sup-

pose, as a mean of contradiction, that P is a CCS−ω
! process such that L(P) = anbnc.

Pick a sequence ρ = P
an

=⇒ Q
bnc=⇒ T ! for a sufficiently large n. From Proposition

5 we know that for some R, [[P]] an

=⇒ R
bnc=⇒ and R ≈ Q . Notice that R may not

2 The transitive reduction of a binary relation r on X is the smallest relation r′ on X such that
the transitive closure of r′ is the same as the transitive closure of r.

CCS with Replication in the Chomsky Hierarchy 395

be a trios-process as it could contain prefixes of the form β.γ and γ. However, such
prefixes into τ.β.γ and τ.τ.γ, we obtain a trios-process R′ such that R ≈ R′ and

|R|ν = |R′|ν . We then have R′ bnc=⇒ and, by Proposition 6, R′ s′·c=⇒ for some s′ whose

length is bounded by a constant k that depends only on |R′|ν . Therefore, R
s′·c=⇒ and

since R ≈ Q, Q s′·c=⇒ D for some D. With the help of Proposition 4 and from Definition
6 it is easy to see that |R′|ν = |R|ν = |[[P]]|ν ≤ 1 + |P | + |P |ν where |P | is the size of
P . Consequently the length of s′ must be independent of n, and hence for any s′′ ∈ L∗,

ans′cs′′ '∈ L(P). Nevertheless P
an

=⇒ Q
s′·c=⇒ D and therefore from Proposition 2

there must be at least one string w = ans′cw′ ∈ L(P); a contradiction.)*

It turns out that the converse of Theorem 5 also holds: Termination-preserving CCS!
processes can generate non CFL’s. Take

P = (ν k, u)(k | !k.a.(k | u)) | k.!u.(b | c))

One can verify that P is termination-preserving. Furthermore, L(P) ∩ a∗b∗c∗ =
anbncn, hence L(P) is not a CFL since CFL’s are closed under intersection with regular
languages. Therefore:

Theorem 6. There exists a termination-preserving CCS! process P such that L(P) is
not a CFL.

Now, notice that if we allow the use of CCS! processes which are not termination-
preserving, we can generate anbnc straightforwardly by using a process similar to that
of Example 1.

Example 2. Consider the process P below:

P = (ν k1, k2, k3, ub)(k1 | k2 | Qa | Qb | Qc)
Qa = !k1.a.(k1 | k3 | ub)
Qb = k1.!k3.k2.ub.b.k2

Qc = k2.(c | ub.DIV)

where DIV =!τ. One can verify that L(P) = {anbnc}.)*

Termination-Preserving CCS. Type 0 grammars can be encoded by using the
termination-preserving encoding of RAMs in CCS given in [3]. However, the fact that
preservation of termination is not as restrictive for CCS as it is for CCS! can also be
illustrated by giving a simple termination-preserving encoding of Context-Free gra-
mmars.

Theorem 7. For every type 2 grammar G, there exists a termination-preserving CCS
process PG, such that L(PG) = L(G).

Proof Outline. For simplicity we restrict ourselves to Type 2 grammars in Chomsky
normal form. All production rules are of the form A → B.C or A → a. We can

396 J. Aranda et al.

encode the productions rules of the form A → B.C as the recursive definition A(d) def=
(ν d′)(B(d′) | d′.C(d)) and the terminal production A → a as the definition A(d) def=
a.d. Rules with the same head can be dealt with using the summation P + Q. One
can verify that, given a Type 2 grammar G, the suggested encoding generates the same
language as G.

Notice, however, that there can be a grammar G with a non-empty language exhibit-
ing derivations which do not lead to a sequence of terminal (e.g., A → B.C, A → a,
B → b, C → D.C,D → d). The suggested encoding does not give us a termination-
preserving process. However one can show that there exists another grammar G′, with
L(G) = L(G′) whose derivations can always lead to a final sequence of terminals . The
suggested encoding applied to G′ instead, give us a termination-preserving process.)*

4.3 Inside Context Sensitive Languages (CSL)

Context-Sensitive Languages (CSL) are those generated by Type 1 grammars. We shall
state that every language generated by a termination-preserving CCS! process is context
sensitive.

The next proposition reveals a key property of any given termination-preserving
CCS! process P which can be informally described as follows. Suppose that P ge-
nerates a sequence s of size n. By using a technique similar to the proof of Theorem 5
and Proposition 6, we can prove that there must be a trace of P that generates s with a
total number of τ actions bounded by kn where k is a constant associated to the size of
P . More precisely,

Proposition 7. Let P be a termination-preserving CCS! process. There exists a con-
stant k such that for every s = α1 . . . αn ∈ L(P) then there must be a sequence

P (τ−→)m0 α1−→ (τ−→)m1 . . . (τ−→)mn−1 αn−→ (τ−→)mn !

with Σn
i=0mi ≤ kn.

Now recall that context-sensitive grammars are equivalent to linear bounded non-
deterministic Turing machines. That is a non-deterministic Turing machine with a tape
with only kn cells, where n is the size of the input and k is a constant associated with
the machine. Given P , we can define a non-deterministic machine which simulates the
runs of P using the semantics of CCS! and which uses as many cells as the total num-
ber of performed actions, silent or visible, multiplied by a constant associated to P .
Therefore, with the help of Proposition 7, we obtain the following result.

Theorem 8. If P is a termination-preserving CCS! process then L(P) is a context-
sensitive language.

Notice that from the above theorem and Theorem 5 it follows that the languages gener-
ated by termination-preserving CCS! processes form a proper subset of context sensitive
languages.

CCS with Replication in the Chomsky Hierarchy 397

5 Related and Future Work

The closest related work is that in [3,4] already discussed in the introduction. Further-
more in [3] the authors also provide a discrimination result between CCS! and CCS by
showing that the divergence problem (i.e., given P , whether P has an infinite sequence
of τ moves) is decidable for the former calculus but not for the latter.

In [5] the authors study replication and recursion in CCS focusing on the role of
name scoping. In particular they show that CCS! is equivalent to CCS with recursion
with static scoping. The standard CCS in [9] is shown to have dynamic scoping. A
survey on the expressiveness of replication vs recursion is given in [13] where several
decidability results about variants of π, CCS and Ambient calculi can be found. None
of these works study replication with respect to computability models less expressive
than Turing Machines.

In [12] the authors showed a separation result between replication and recursion in
the context of temporal concurrent constraint programming (tccp) calculi. They show
that the calculus with replication is no more expressive than finite-state automata while
that with recursion is Turing Powerful. The semantics of tccp is rather different from
that of CCS. In particular, unlike in CCS, processes interact via the shared-memory
communication model and communication is asynchronous.

In the context of calculi for security protocols, the work in [6] uses a process cal-
culus to analyze the class of ping-pong protocols introduced by Dolev and Yao. The
authors show that all nontrivial properties, in particular reachability, become undecid-
able for a very simple recursive variant of the calculus.The authors then show that the
variant with replication renders reachability decidable. The calculi considered are also
different from CCS. For example no restriction is considered and communication is
asynchronous.

There is extensive work in process algebras and rewriting transition systems pro-
viding expressiveness hierarchies similar to that of Chomsky as well as results closely
related to those of formal grammars. For example work involving characterization of
regular expression w.r.t. bisimilarity include [7,8] and more recently [1]. An excellent
description is provided in [2]. These works do not deal with replication nor the restric-
tion operator which are fundamental to our study.

As for future work, it would be interesting to investigate the decidability of the ques-
tion whether a given CCS! process P preserves termination. A somewhat complemen-
tary study to the one carried in this paper would be to investigate what extension to CCS!
is needed for providing faithful encoding of RAMs. Clearly the extension with recur-
sion is sufficient but there may be simpler process constructions from process algebra
which also do the job.

Acknowledgments. We would like to thank Maurizio Gabbrielli and Catuscia Palami-
dessi for their suggestions on previous versions of this paper.

We are indebted to Nadia Busi for providing helpful comments, suggestions and
information to complete this work. Her influential research on expressiveness is inspi-
rational to us: may she rest in peace.

398 J. Aranda et al.

References

1. Baeten, J.C.M., Corradini, F.: Regular expressions in process algebra. In: LICS 2005, pp.
12–19. IEEE Computer Society Press, Washington, DC, USA (2005)

2. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures ch. 9, pp.
545–623. Elsevier, North-Holland (2001)

3. Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive definitions in channel based
calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)

4. Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication, and iteration in
process calculi. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)

5. Giambiagi, P., Schneider, G., Valencia, F.D.: On the expressiveness of infinite behavior and
name scoping in process calculi. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987,
pp. 226–240. Springer, Heidelberg (2004)

6. Huttel, H., Srba, J.: Recursion vs. replication in simple cryptographic protocols. In: Vojtáš,
P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp.
175–184. Springer, Heidelberg (2005)

7. Kanellakis, P.C., Smolka, S.A.: CCS expressions finite state processes, and three problems
of equivalence. Inf. Comput. 86(1), 43–68 (1990)

8. Milner, R.: A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci. 28(3), 439–466 (1984)

9. Milner, R.: Communication and Concurrency. International Series in Computer Science.
Prentice Hall, Englewood Cliffs (1989) SU Fisher Research 511/24

10. Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge University
Press, Cambridge (1999)

11. Minsky, M.: Computation: finite and infinite machines. Prentice-Hall, Englewood Cliffs
(1967)

12. Nielsen, M., Palamidessi, C., Valencia, F.: On the expressive power of concurrent constraint
programming languages. In: PPDP 2002, pp. 156–167. ACM Press, New York (2002)

13. Palamidessi, C., Valencia, F.D.: Recursion vs replication in process calculi: Expressiveness.
Bulletin of the EATCS 87, 105–125 (2005)

14. .Parrow, J.: Trios in concert. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and
Interaction: Essays in Honour of Robin Milner, pp. 621–637. MIT Press, Cambridge (2000)

15. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge Univer-
sity Press, New York (2001)

